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Abstract We consider imprecise evaluation of alternatives in multiple criteria rank-
ing problems. The imprecise evaluations are represented by n-point intervals which
are defined by the largest interval of possible evaluations and by its subintervals
sequentially nested one in another. This sequence of subintervals is associated with
an increasing sequence of plausibility, such that the plausibility of a subinterval is
greater than the plausibility of the subinterval containing it. We explain the intuition
that stands behind this proposal, and we show the advantage of n-point intervals com-
pared to other methods dealing with imprecise evaluations. Although n-point intervals
can be applied in any multiple criteria decision aiding (MCDA) method, in this paper,
we focus on their application in robust ordinal regression which, unlike other MCDA
methods, takes into account all compatible instances of an adopted preference model,
which reproduce an indirect preference information provided by the decision maker.
An illustrative example shows how the method can be applied in practice.
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1 Introduction

Multiple criteria decision aiding (MCDA) [for an exhaustive collection of state-of-the-
art surveys see Figueira et al. (2005)] concerns a set of alternatives A = {a, b, c, . . .}
evaluated on a set of m criteria G = {g1, . . . , gm}, and deal with three main types of
problems: ranking, sorting and choice taking into account preferences of a Decision
Maker (DM). To handle these problems, three different approaches are commonly
used:

– assigning to each alternative a value through a value function, i.e., a real number
reflecting its degree of desirability,

– comparing the evaluations of alternatives on the considered criteria using a binary
relation,

– using a set of “if..., then...” decision rules induced from the DM’s preference
information.

In the first case, the multi-attribute value theory (MAVT) (Keeney and Raiffa 1993) is
most frequently used;MAVT provides a methodology for building a value function. In
the second case, the most popular are the methods which build an outranking relation
on the set of alternatives to compare them pairwise (Roy 1996). In the third case,
the decision rules are derived from the DM’s preference information structured by
the dominance-based rough set approach (DRSA) (Greco et al. 2001; Słowiński et al.
2009).

In the context of MAVT, one often uses additive value functions, that is functions
obtained by adding up marginal value functions representing the degree of preference
on the corresponding evaluation criteria. In order to use this approach, one needs to
constructmarginal value functions for all considered criteria. The construction requires
some preference information elicited by the DM. An analyst can obtain it in one of
two ways: asking the DM to provide this information directly, or indirectly. As direct
definition of marginal value functions requires too big cognitive effort from the DM,
indirect elicitation of preference information has been proposed and widely used in
MCDA(see, e.g., Jacquet-Lagreze andSiskos 2001). Indirect preference information is
expressed by theDM in terms of decision examples, e.g., holistic pairwise comparisons
of some reference alternatives. When looking for an additive value function which is
compatible with the decision examples provided by the DM, i.e., which reproduces
the DM’s decisions, one can find, in general, many compatible instances of such
value function, and each of these instances can give a different recommendation in the
considered decision context. For this reason, robust ordinal regression (ROR) (Greco
et al. 2008) was proposed (for a survey on ROR see Corrente et al. 2013), that takes
into consideration all compatible instances of the value function simultaneously. In
the context of ROR, possible and necessary preference relations are built for each pair
of alternatives a and b, such that the first one is true if a is at least as good as b for at
least one compatible instance of the value function, and the second is true when a is
at least as good as b for all compatible instances of the value function.

In this paper, we extend ROR on a new important issue: imprecise evaluations of
alternatives. In many real world problems, alternatives are imprecisely evaluated on
the considered criteria; this is due to several reasons: inexact definition of criteria,
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uncertainty or imprecision of data used for calculation of performances of alternatives
on particular criteria, or subjective assessment of the performances. Different types
of imprecise information on weights, value functions and probabilities have been
dealt with in the literature (Park and Kim 1997; Weber 1987). Moreover, imprecise
evaluation of alternatives on criteria has been considered in different studies. Among
them, let us remember an adaptation of the DRSA to the case of multiple criteria
sorting problems with imprecise evaluations and assignments (Dembczynski et al.
2009).

A review of literature on handling imprecise evaluations of alternatives in the
MCDA context leads us to conclusion that there are three main approaches to this
issue:

– considering imprecise evaluations by means of probability distributions, as in the
decision under uncertainty (Moskowitz et al. 1993),

– stochastic multicriteria acceptability analysis (SMAA) (Lahdelma et al. 1998)
which considers probability distributions on the space of evaluations as well as on
the space of weights and computes for each alternative the probability of getting a
given ranking position or the frequency with which it is preferred to another one,

– application of fuzzy numbers for modeling imprecise evaluations of alternatives
(Zadeh 1975), so that a membership function assigns to each performance a value
ranging from 0 (in case of certain non-membership) to 1 (in case of certain mem-
bership), like in the adaptation of outranking methods to fuzzy evaluations of
alternatives proposed by Czyżak and Słowiński (1997) [for a survey of applica-
tions of fuzzy set theory toMCDAsee, e.g.,Dubois (2011); handlingof imprecision
due to verbal evaluation of alternatives has been considered by Dong and Herrera-
Viedma (2015) and surveyed by Herrera et al. (2009)].

In this paper, we approach the issue of imprecise evaluations of alternatives in
a different way than above. The basic idea is that the DM, or experts advising the
DM, can specify an imprecise evaluation not only in terms of the interval of possible
values, but also in terms of several gradually embedded subintervals, such that each
subinterval contained in a larger subinterval includes more plausible values than the
larger one. Suppose, for example, that three experts assessed an investment alterna-
tive with respect to a “profit” it may bring. The first one estimates the profit could
vary between 2000 and 5000, the second estimates it between 2500 and 6000, and
the third one estimates it between 4000 and 8000. If the DM would like to summa-
rize these estimates, (s)he could say that the range of the possible profit (confirmed
values by at least one expert) is equal to the interval [2000, 8000], the subinterval
of more plausible values (confirmed by at least two experts) is [2500, 6000], and the
subinterval of the most plausible values (confirmed by all three experts) is [4000,
5000]. This type of information can be modeled by means of the n-point interval
recently proposed by Ozturk et al. (2011). In this example, the information related
to the profit of the investment alternative can be represented by the 6-point interval
[2000, 2500, 4000, 5000, 6000, 8000]. Handling imprecise evaluations on considered
criteria by n-point intervals has several advantages over other models. These benefits
are listed below:
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– n-point intervals permit the DM to express imprecision in a quite easy way by
using few meaningful reference values, that does not require a great cognitive
effort;

– using n-point intervals, the DM can give a finer information than just intervals of
possible performances of an alternative on the considered criteria;

– using n-point intervals, theDM is not obliged to give any exact probability distribu-
tion on imprecise performances of alternatives which, in general, is an information
not available to her/him;

– the use of n-point intervals avoids the adoption of the linear interpolation typi-
cally considered in triangular and trapezoidal fuzzy numbers, that is an arbitrary
assumption to some extent.

All above points have been detailed in Sect. 3, wherewe compared the n-point intervals
with other ways of handling imprecise evaluations, such as probabilities, stochastic
multiobjective acceptability analysis and fuzzy numbers.

The paper is structured in the following way: Sect. 2 describes basic concepts of
imprecise evaluations; in Sect. 3 we compare the proposed method with other ways of
handling imprecision in multiple criteria evaluations; Sect. 4 provides definitions of
dominance relations and their properties; Sect. 5 shows howRORcan handle imprecise
evaluations; Sect. 6 provides some properties of necessary and possible preference
relations; Sect. 7 presents a didactic example, and conclusions are gathered in Sect. 8;
all proofs and some further results are deferred to the Appendix.

2 Imprecise evaluations—intuition behind the model and basic
definitions

We are considering a decision problem in which a finite set of alternatives, denoted
by A = {a, b, c, . . .}, can have imprecise evaluations with respect to a set of m
evaluation criteria G = {g1, . . . , gm}. In case of precise evaluations, a criterion
g j , j ∈ J = {1, . . . ,m}, is a function g j : A → X j , where X j is the set of all
possible evaluations (cardinal or ordinal, depending on the evaluation scale of cri-
terion g j ) that an alternative could assume on criterion g j . In case of n-point
intervals we assume that each criterion is a function g j : A→ I j , where I j ={
(x1, . . . , xn) : xl+1 � j xl , l = 1, . . . , n − 1

} ⊆ X j
n , and � j is a complete preorder

(transitive and complete binary relation) on I j , representing preferences with respect
to criterion g j . � j coincides with the binary relation ≥ on R if criterion g j has a
quantitative-numerical scale, however, it is defined differently if criterion g j has a
qualitative-nominal scale. To explain this difference, let us consider the evaluation
of a student regarding a certain subject denoted by g j . If the evaluation is expressed
on a quantitative-numerical scale (for example the evaluation of the student can vary
between 2 and 10), then � j coincides with ≥ because to state that student a is not
worse than student b on criterion g j , it is sufficient to check if g j (a) ≥ g j (b). Now,
let us suppose that the evaluations with respect to this subject are expressed on the
following qualitative-nominal scale: “very bad”, “bad”, “medium”, “good” and “very
good”. Then, one needs to define an ordering � j of these nominal terms that is obvi-
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Handling imprecise evaluations in multiple criteria… 131

ously different from the inequality ≥ between two real numbers, that is “very good”
� j “good” � j “medium” � j “bad” � j “very bad”.

In the description of the proposed methodology, for the sake of simplicity and
without loss of generality, we shall assume the following:

– each criterion has a quantitative scale; therefore X j ⊆ R, and thus � j coincides
with ≥ (indeed, if the scale X j of criterion g j is ordinal, one can always encode
it in numerical terms, such that for all x j , y j ∈ X j

x j � j y j ⇔ x j ≥ y j ,

with x j and y j being number codes of x j and y j );
– the greater gij (a), a ∈ A, the better is alternative a on indicator gij , j = 1, . . . ,m,

i = 1, . . . , n (in the opposite case, we can take as indicator −gij and we come
back to the previous case).

We represent the imprecise evaluation of alternative a on criterion g by means of
an n-point interval [g1(a), . . . , gn(a)], where g1(a) ≤ . . . ≤ gn(a). The n-points
g1(a), . . . , gn(a) define a sequence of c nested intervals, where c = n

2 if n is even
and c = n+1

2 if n is odd,

[
g1(a), gn(a)

]
⊇

[
g2(a), gn−1(a)

]
⊇ . . . ⊇

{[
gc(a), gc+1(a)

]
, if n is even,

[
gc(a), gc(a)

]
, if n is odd

related to c increasing levels of plausibility L1, . . . , Lc, such that the evaluation of
alternative a on criterion g belongs to the interval

[
g1(a), gn(a)

]
with level of plau-

sibility L1, while the evaluation of a on g belongs to the interval
[
gc(a), gc+1(a)

]

(or
[
gc(a), gc(a)

]
) with level of plausibility Lc. In general, the evaluation of a on g

belongs to the interval [gr (a), gn−r+1(a)] with level of plausibility Lr , r = 1, . . . , c.
For example, consider an imprecise evaluation of an investment a on criterion

“profit”, denoted g1, expressed by the following 6-point interval
[2000, 2500, 4000, 5000, 6000, 8000] with the corresponding plausibility levels
L1 =“possible”, L2 =“fairly plausible”, L3 =“very plausible”. This means that:

– values in the interval [2000, 8000] = [g11(a), g61(a)] are possible, that is their
plausibility is L1,

– values in the interval [2500, 6000] = [g21(a), g51(a)] are fairly plausible, that is
their plausibility is L2,

– values in the interval [4000, 5000] = [g31(a), g41(a)] are very plausible, that is
their plausibility is L3.

In the following, considering the same number n of indicators for each considered
criterion, the evaluations of a will be represented by the following vector:

g(a) =
([

g11(a), . . . , gn1 (a)
]
, . . . ,

[
g1j (a), . . . , gnj (a)

]
, . . . ,

[
g1m(a), . . . , gnm(a)

])
.

Even if in this paper we consider ROR, n-point intervals can be used with any
MCDA method. Indeed, from this point of view, each one of the indicators gij (a),
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g j ∈ G and i = 1, . . . , n, can be seen as a specific criterion in a reformulation of
the original MCDA problem, where the original set of criteria G = {g1, . . . , gm} is
replaced by the new set of criteria G = {g11, . . . , gn1 , . . . , g1m, . . . , gnm}. For example,
if a weighted sum would be the utility model, then for each alternative a ∈ A the
following overall value of a would be defined as:

U (a) =
m∑

j=1

n∑

i=1

wi
j g

i
j (a)

with wi
j representing the weight given to the indicator gij , such that wi

j ≥ 0, j =
1, . . . ,m, i = 1, . . . , n, and

m∑

j=1

n∑

i=1

wi
j = 1.

3 Comparison with other ways of handling imprecision in multiple
criteria evaluations

In this section, we compare the proposed way of handling imprecise evaluations with
other methods known from the literature: decision under uncertainty, SMAA, and
fuzzy numbers.

3.1 Decision under uncertainty

Let us begin this section observing that the values g1(a),…,gn(a) of the n-point inter-
val [g1(a), . . . , gn(a)] can be interpreted as qualitative counterparts of the Hurwicz
criterion (Hurwicz 1951). In case of decision under uncertainty the Hurwicz criterion
suggests to evaluate the payoff of an act by the value

αM + (1 − α)m,

where m and M are the minimum and the maximum outcomes, and α ∈ [0, 1] is a
coefficient measuring the optimism of the DM. Indeed, one can imagine that each
indicator g1(a),…,gn(a) is related to an increasing degree of optimism, such that
g1(a) is the most pessimistic evaluation, gn(a) is the most optimistic evaluation, and,
in general, gr (a), r = 1, . . . , n, are evaluations such that the greater is r the more
optimistic they are.

Let us observe that our approach can easily be applied also in case of probabilistic
evaluations on criteria g j ∈ G (see, e.g., Moskowitz et al. 1993) in the sense that
imprecision is related to some probability distribution on the set of values that alter-
natives from A can assume on criteria g j ∈ G. In this case, for each a ∈ A and
g j ∈ G, one can associate to each interval [grj (a), gn−r

j (a)] when r 	= c, and to the
value grj (a), when r = c, the probability levels prj , r = 1, . . . , c, where

0 ≤ p1j ≤ p2j ≤ . . . ≤ pcj ≤ 1,
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such that there is a probability prj that g j (a) is not smaller than grj (a), and there

is an analogous probability prj that g j (a) is not greater than gn−r
j (a). For exam-

ple, if one knows the probability distribution P on values of the profit for the
investment considered in the previous section, and supposing that the DM is focus-
ing (her)his attention on probability levels 10, 25 and 40%, the 6-point interval
[2000, 2500, 4000, 5000, 6000, 8000] can be interpreted as follows:

– there is a probability of 10% that the profit is smaller than g1(a) = 2000, and
there is the same probability of 10% that the profit is greater g6(a) = 8000,

– there is a probability of 25% that the profit is smaller than g2(a) = 2500, and
there is the same probability of 25% that the profit is greater than g5(a) = 6000,

– there is a probability of 40% that the profit is smaller than g3(a) = 4000, and
there is the same probability of 40% that the profit is greater than g4(a) = 5000.

In our opinion, evaluations expressed as n-point intervals have some advantages over
probabilistic evaluations for the following reasons:

– even if the probability distributions of the values taken by alternatives a ∈ A
on criteria g j ∈ G are perfectly known, n-point intervals permit to focus on
the probability levels most important for the DM, so that the MCDA procedure
becomes more controllable;

– if the probability distributions of the values taken by alternatives a ∈ A on criteria
g j ∈ G are not perfectly known, n-point intervals permit to use this imperfect
information taking as indicators grj the values corresponding to the probability
levels for which there is some information;

– n-point intervals can also represent qualitative probability distributions by consid-
ering plausibility levels L1, . . . , Lc with a probabilistic meaning such as

– L1 =“at least weakly probable”,
– L2 =“at least fairly probable”,
– L3 =“very probable”.

Due to the verbal ordinal scale of plausibility L = {L1, . . . , Lc}, which is intuitively
understandable for the DM, expressing the imprecision in terms of n-point intervals is
relatively easy for the DM. Consequently, the use of n-point intervals is the best way
of getting a reliable information about imprecise evaluations of alternatives.

3.2 Stochastic multiobjective acceptability analysis (SMAA) and fuzzy numbers

Handling of imprecision by n-point interval evaluations is related to SMAA(Lahdelma
et al. 1998) and to the approach based on the use of fuzzy numbers.

Let us consider an interval characterized by two extreme values only, that is, the
most pessimistic and the most optimistic evaluation of an alternative on the considered
criterion. This means that the evaluation of alternative a on criterion g is represented
by the 2-point interval [g1(a), g2(a)], such that a could get whichever evaluation
between g1(a) (the most pessimistic evaluation) and g2(a) (the most optimistic eval-
uation). This is typical for handling imprecise evaluation of alternatives on particular
criteria in SMAA. However, differently from SMAA, we do not assume any probabil-
ity distribution of the evaluations in the interval [g1(a), g2(a)]. In fact, within SMAA,
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Fig. 1 Membership function of a triangular fuzzy number

a uniform probability distribution is considered, even if, in general, any probability
distribution could be assumed. It is not easy, however, to select the proper probability
distribution. Is it enough to justify the use of a uniform distribution by saying that
it is the simplest one? It is rather more reasonable and methodologically correct to
avoid consideration of any probability distribution (which is almost always the case
in multiple criteria decision making), unless one has a strong evidence in favour of
one specific probability distribution. In this sense, we retain the most stable and robust
part of the information given by the interval [g1(a), g2(a)], that is the two extreme
values, and we do not assume any probability distribution.

Now, consider the case where each interval is characterized not only by the
two extreme values but also by another point between them; in this way g(a) =
[g1(a), g2(a), g3(a)], and this 3-point interval indicates that, with respect to crite-
rion g, alternative a can assume whatever evaluation between g1(a) and g3(a), but,
it is very plausible that the evaluation assumed by a on criterion g is around g2(a).
This interpretation is coherent with an evaluation expressed by a linguistic variable
represented by means of a triangular fuzzy number. If a linguistic variable v is repre-
sented by a triangular fuzzy number ṽ = (v1, v2, v3), then the possible values of v are
between v1 and v3, such that other values have a null membership and the maximum
membership equal to 1 is assumed in v2. Moreover, the membership between v1 and
v2, as well as that one between v2 and v3, is supposed to follow a linear interpolation.
Formally, we have that the membership function μv : R → [0, 1] assigns to each
x ∈ R a value as shown in Fig. 1.

Observe, however, that the information represented by the 3-point interval, is less
arbitrary than the one represented by a triangular fuzzy number. Indeed, in the first
case, the information specifies only the minimum and maximum values, v1 and v3,
respectively, and themost plausible value,v2.Weavoid to assign avalueofmembership
to all the values between v1 and v3, which would be arbitrary. The question is: why
a linear interpolation and not some other interpolating function? Even if one would
assume another interpolating function, how to verify that the values taken by the
membership function are correct? This doubt makes our proposal more trustworthy
again.

Finally, let us consider an imprecise evaluation represented by a 4-point interval
[g1(a), g2(a), g3(a), g4(a)], whichmeans that the possible evaluation of a is included
between g1(a) and g4(a), but themost plausible evaluation is between g2(a) and g3(a).
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Fig. 2 Membership function of a trapezoidal fuzzy number

This interpretation is coherent with an evaluation expressed by a linguistic variable
represented by a trapezoidal fuzzy number. If a linguistic variable v is represented
by a trapezoidal fuzzy number ṽ = (v1, v2, v3, v4), then the possible values of v are
between v1 and v4, such that other values have a null membership and the maximum
membership equal to 1 is assumed between v2 and v3. Moreover, the membership
between v1 and v2, as well as that one between v3 and v4, is following a linear
interpolation. Formally we have that the membership function μv : R → [0, 1]
assigns to each x ∈ R a value as shown in Fig. 2.

The analogy between n-point intervals and fuzzy numbers could be continued for
n greater than 4, however, the argument about the sensitivity of the end result on the
choice of the interpolating function would be still in favor of our proposal.

4 Definitions of dominance relations and their properties

Various types of dominance relations stem from the formulation of multiple criteria
decision problem without considering preferences. The following two concepts of
dominance arise naturally in the context of imprecise evaluations of alternatives:

Definition 4.1 Given alternatives a, b ∈ A, and i, k ∈ {1, . . . , n}, we say that “a
(i, k)-dominates b”, denoted by aΔ(i,k)b, if gij (a) ≥ gkj (b), ∀ j = 1, . . . ,m.

Definition 4.2 Given alternatives a, b ∈ A, we say that “a normally dominates b”,
denoted by aΔb, if gij (a) ≥ gij (b), ∀ j = 1, . . . ,m, and ∀i = 1, . . . , n. Equivalently,

we can say that “a normally dominates b” if a (i, i)-dominates b, ∀i = 1, . . . , n.

Let us explain the meaning of the two above concepts of dominance taking into
consideration alternatives a, b, d that get 3-point evaluations on criteria g1, g2 and g3,
where L1 =“possible” and L2 =“very plausible”, as follows:

–
[
g11(a), g21(a), g31(a)

] = [25, 35, 40], [g12(a), g22(a), g32(a)
] = [40, 55, 65],

[
g13(a), g23(a), g33(a)

] = [25, 50, 55],
– [g11(b), g21(b), g31(b)

] = [10, 20, 45], [g12(b), g22(b), g32(b)
] = [35, 50, 60],

[
g13(b), g

2
3(b), g

3
3(b)

] = [20, 45, 60],
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–
[
g11(d), g21(d), g31(d)

] = [10, 15, 20], [g12(d), g22(d), g32(d)
] = [30, 50, 55],

[
g13(d), g23(d), g33(d)

] = [20, 45, 55].
Observe that, according to indicator g1j , j = 1, 2, 3, alternative a is at least as good

as alternative b: indeed g11(a) ≥ g11(b), g
1
2(a) ≥ g12(b) and g13(a) ≥ g13(b). Thus,

considering the most pessimistic evaluation, a is not worse than b on all considered
criteria. Therefore, one can say that “a (1, 1)-dominates b”, denoted by aΔ(1,1)b.
Analogously, according to indicator g2j , j = 1, 2, 3, a is at least as good as b. This
means that considering the most plausible evaluation, a is not worse than b on all
considered criteria. Instead, it is not true that according to indicators g3j , j = 1, 2, 3, a

is at least as good as b, because g33(a) < g33(b). This means that considering the most
optimistic evaluation, a is not at least as good as b on all considered criteria. Observe,
instead, that aΔ(1,1)d, aΔ(2,2)d and aΔ(3,3)d, so one can conclude that aΔd, which
means that a is not worse than d on all criteria considering pessimistic evaluations,
the most plausible evaluations and the most optimistic evaluations on all three criteria.

Observe also that for some criterion g, one could take into account the most opti-
mistic evaluation for a and the most plausible evaluation for b, i.e., one could consider
indicator g3 for a and indicator g2 for b. This is consistent with preference represen-
tation by interval orders (Fishburn 1985). An interval order is a binary relation R on
a set X which is reflexive and Ferrers transitive (i.e., for all x, y, w, z ∈ X, x Ry and
wRz imply x Rz or wRy). If X is finite, then a binary relation R on X is an interval
order if and only if there exists u+ : X → R and u− : X → R with u+(z) ≥ u−(z)
for all z ∈ X , such that for all x, y ∈ X

xRy ⇔ u+(x) ≥ u−(y).

Suppose that the interval order R is a weak preference relation on X , such that for
each x, y ∈ X, x Ry means that x is at least as good as y. In this case, u+(z) and
u−(z) can be interpreted as the optimistic and the pessimistic evaluation of z ∈ X and,
consequently, one can say that x is weakly preferred to y, i.e., x Ry, if the optimistic
evaluation of x , i.e., u+(x), is not worse than the pessimistic evaluation of y, i.e.,
u−(y). Observe moreover that Rd , being the dual of R, i.e., the complement of the
inverse of R, such that for all x, y ∈ X , x Rd y iff not(yRx), can be interpreted as a
strong preference relation on X . Thus, we have that for all x, y ∈ X ,

x Rd y ⇔ u−(x) > u+(y),

which can be interpreted as “x is strongly preferred to y if and only if the pessimistic
evaluation of x is better than the optimistic evaluation of y”.

The idea of considering the pessimistic and the optimistic evaluations of alternatives
to define preference relationswith respect to criterion g j ∈ G can be easily extended to
the case of n-point intervals considering indicator gij for alternative x and indicator g

k
j

for alternative y, which permit to say that x is (i, k)-preferred to y on criterion g j ∈ G

(denoted by x �(i,k)
j y), if gij (x) ≥ gkj (y). Considering the above example, we have
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Handling imprecise evaluations in multiple criteria… 137

a �(3,2)
3 b because g33(a) ≥ g23(b), which means that with respect to criterion g3 the

most optimistic evaluation of a is not worse than the most plausible evaluation of b.
Using preference relations �(i,k)

j one can say that for all a, b ∈ A, aΔ(i,k)b if

and only if a �(i,k)
j b for all g j ∈ G. For example, aΔ(3,2)b, because g31(a) ≥ g21(b),

g32(a) ≥ g22(b) and g
3
3(a) ≥ g23(b), whichmeans that on all three criteria the optimistic

evaluation of a is at least as good as the most plausible evaluation of b.
It is also worth noting that among all the considered pairs (i, k), an important place

has to be given to the pairs (i, n− i+1)with i ≤ c1 because a �(i,n−i+1)
j bmeans that

all the evaluations of a ∈ A on g j ∈ G with plausibility Li , i.e., [gij (a), gn−i+1
j (a)],

are not worse than all evaluations of b ∈ A on g j with the same plausibility Li ,

[gij (b), gn−i+1
j (b)]. Looking at the above example, a �(1,3)

1 d, are not worse than all

values with plausibility L1 for d, i.e. [g11(d), g31(d)] = [10, 20].
The following proposition provides some basic properties of the dominance rela-

tions introduced above for n-point interval evaluations. These are the properties of
reflexivity and transitivity that, if satisfied conjointly, characterize the structure of a
partial preorder.

Proposition 4.1 1. If i ≥ k, i, k ∈ {1, . . . , n}, then Δ(i,k) is reflexive,
2. If i ≤ k, i, k ∈ {1, . . . , n}, then Δ(i,k) is transitive,
3. For each i ∈ {1, . . . , n} , Δ(i,i) is a partial preorder,
4. If r ≥ i and s ≤ k, i, k, r, s ∈ {1, . . . , n}, then Δ(i,k) ⊆ Δ(r,s),
5. Given alternatives a, b, c ∈ A, if aΔ(i,k)b, bΔ(i1,k1)c, and k ≥ i1, i, k, i1, k1 ∈

{1, . . . , n}, then aΔ(r,s)c with r, s ∈ {1, . . . , n}, such that r ≥ i and s ≤ k1,
6. Δ is a partial preorder,
7. Given alternatives a, b, c ∈ A, if aΔ(i,k)b, bΔc, i, k ∈ {1, . . . , n}, then aΔ(s,t)c

with s, t ∈ {1, . . . , n}, such that s ≥ i and t ≤ k,
8. Given alternatives a, b, c ∈ A, if aΔb, bΔ(i,k)c, i, k ∈ {1, . . . , n}, then aΔ(s,t)c

with s, t ∈ {1, . . . , n}, such that s ≥ i and t ≤ k.

Note 4.1 In the following, we shall call strong dominance, and we shall denote it
by ΔS , the dominance relation Δ(1,n). Similarly, we shall call weak dominance, and
we shall denote it by ΔW , the dominance relation Δ(n,1). When n = 2, then the
dominance relation Δ(i,k) boils down to strong dominance Δ(1,2), weak dominance
Δ(2,1) and to the dominance relations Δ(1,1) and Δ(2,2) comparing two alternatives
considering only their best values or their worst values. Using Proposition 4.1, we
can state that weak dominance and normal dominance are reflexive relations, normal
dominance and strong dominance are transitive relations, and so on.

Considering the strong and the weak dominance relations simultaneously, we can
state the following proposition:

Proposition 4.2 1. Δ(1,n) ⊆ Δ ⊆ Δ(n,1),

2. For i, k = 1, . . . , n, Δ(1,n) ⊆ Δ(i,k) ⊆ Δ(n,1).

1 Let us remember that by c we denote the number of nested intervals in the n-point intervals, which
correspond to c levels of plausibility.
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Note 4.2 Proposition 4.2 shows how important are theweak and the strong dominance
relations, as they are the only two relations that can be compared directly with Δ.
Indeed, in general, for any (i, k) ∈ {1, . . . , n} × {1, . . . , n}, with (i, k) 	= (1, n) and
(i, k) 	= (n, 1), we can have Δ(i,k)

� Δ and Δ � Δ(i,k).

5 Robust ordinal regression for imprecise evaluations—description of
the methodology

The dominance relation, which is the only objective information that comes with the
statement of a multiple criteria decision problem, is very poor. For this reason, in
order to handle DM’s preferences in one of the three typical multiple criteria decision
problems, we are using the MAVT (Keeney and Raiffa 1993). MAVT considers value
functions U (g1(a), . . . , gm(a)) where

R
m → R

such that:

“a is at least as good as b” ⇔ U (g1(a), . . . , gm(a)) ≥ U (g1(b), . . . , gm(b)),

taking into account the evaluations of alternatives on them considered criteria. In case
of imprecise evaluations, we are considering for each criterion g j , j ∈ J, n indicators
gij : A → X j , i = 1, . . . , n, assigning to each alternative a ∈ A the i-th evaluation
from interval g j (a). Using this notation, we can distinguish different types of value
functions:

– i-th sub-marginal value function referring to the i-th indicator of criterion g j ,
uij (g

i
j (a)) : X j → R, for all j ∈ J , and i = 1, . . . , n,

– marginal value function referring to criterion g j , such that Uj ([g1j (a), . . . ,

gnj (a)]) : I j → R, and

Uj

([
g1j (a), . . . , gnj (a)

])
= u1j

(
g1j (a)

)
+ . . . + unj

(
gnj (a)

)
.

The marginal value of alternative a with respect to criterion g j depends on all the
n indicators gij because each of them takes part in the evaluation of a on criterion
g j with a different level of plausibility, which is represented by the corresponding
sub-marginal value function uij . In the paper, we admit that the indicators of each
criterion are preferentially independent, which permits an additive aggregation of
sub-marginal value functions (Keeney and Raiffa 1993). An analogous assumption
is adopted with respect to aggregation of marginal value functions.

– total additive value function

U
([

g11(a) . . . , gn1 (a)
]
, . . . ,

[
g1m(a), . . . , gnm(a)

])
: I1 × · · · × Im → R
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such that

U
([

g11(a) . . . , gn1 (a)
]
, . . . ,

[
g1m(a), . . . , gnm(a)

])
=

=
m∑

j=1

Uj

([
g1j (a), . . . , gnj (a)

])
=

m∑

j=1

[
n∑

i=1

uij

(
gij (a)

)
]

. (1)

In the following, for the sake of simplicity, for each j ∈ J we write Uj (a) instead
ofUj ([g1j (a), . . . , gnj (a)]), andU (a) instead ofU

([
g11(a), . . . , gn1 (a)

]
, . . . ,

[
g1m(a),

. . . , gnm(a)
])
.

In order to take into account the imprecise nature of evaluations, we consider for
each alternative a ∈ A, n fictitious alternatives a(i), having precise evaluations on all
criteria, equal to the i-th point of interval g j (a), for each j ∈ J , i.e., g1j

(
a(i)

) = · · · =
gnj

(
a(i)

) = gij (a), for each j ∈ J .

For example, in case of three point intervals, a(1), a(2) and a(3) represent the “most
pessimistic”, the “most plausible” and the “most optimistic” realizations of alternative
a, because these fictitious alternatives take the worst, the average and the best evalu-
ations on all considered criteria, respectively. Note that given a ∈ A, a value function
U assigns to the corresponding alternatives a(i) the value:

U
(
a(i)

)
= u11

(
gi1(a)

)
+· · ·+un1

(
gi1(a)

)
+ . . .+u1m

(
gim(a)

)
+· · ·+unm

(
gim(a)

)
.

(2)
Proposition 5.1 describes the relationship between the value functions of the ficti-
tious alternatives a(i), and the relationship between the total additive value function
U (a) and the value obtained in correspondence to the most pessimistic and the most
optimistic realizations of alternative a.

Proposition 5.1 1. For each a ∈ A, if i ≥ k, i, k ∈ {1, . . . , n}, then U (a(i)) ≥
U (a(k)),

2. For each a ∈ A, U (a(1)) ≤ U (a) ≤ U (a(n)).

Let us now discuss elicitation of preference information and application of ROR to
model (1).

In order to assign to each alternative a real number representing its degree of desir-
ability, we need to know the sub-marginal value functions uij (·), for all j ∈ J and
for all i ∈ {1, . . . , n}. They can be obtained in two different ways: asking directly
the DM which is the analytical expression of functions uij (·), or inducing them from

indirect preference information elicited by the DM on a set AR ⊆ A of alternatives
called reference alternatives. The reference alternatives will be marked with a dash,
like a. We propose to use the second method, and thus the DM is asked to provide
some preference information regarding pairs of alternatives or intensity of preference
for quadruples of alternatives, such that, for all a, b, c, d ∈ AR ,

– a � b iff a is at least as good as b,
– a � j b iff a is at least as good as b on criterion g j ,
– (a, b) �∗ (c, d) iff a is preferred to b at least as much as c is preferred to d,
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– (a, b) �∗
j (c, d) iff, on criterion g j , a is preferred to b at least as much as c is

preferred to d.

Let us notice that ∼, ∼ j , ∼∗ and ∼∗
j are the symmetric parts of �, � j , �∗ and �∗

j
while ,  j , ∗ and ∗

j are the asymmetric parts of �, � j , �∗ and �∗
j . That is, for

example, a ∼ b iff a � b and b � a, while a  b iff a � b and not(b � a).
All this preference information can be translated into inequality constraints on the

values as follows:

– U (a) ≥ [>]U (b) iff a � [] b,
– Uj (a) ≥ [>]Uj (b) iff a � j

[ j
]
b,

– U (a) −U (b) ≥ [>]U (c) −U (d) ≥ 0 iff (a, b) �∗ [∗] (c, d),

– Uj (a) −Uj (b) ≥ [>]Uj (c) −Uj (d) ≥ 0 iff (a, b) �∗
j

[
∗

j

]
(c, d).

Strict inequality constraints are translated into weak inequality constraints by using
an auxiliary positive variable ε such that, for example,U (a) > U (b) becomesU (a) ≥
U (b) + ε. In the following, EDM denotes the set of inequality constraints translating
the preference information provided by the DM.

We shall call compatible a value function satisfying the set of constraints in EDM ,
as well as some monotonicity and normalization constraints:

uij (x
k
j ) − uij (x

k−1
j ) ≥ 0, for each j ∈ J, k = 2, . . . ,m j (A), i = 1, . . . , n

uij (x
1
j ) = 0, for each j ∈ J, i = 1, . . . , n

∑

j∈J
i=1,...,n

uij

(
x
m j (A)

j

)
= 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

EMN

where, for each j ∈ J , m j (A) =
∣
∣
∣
{
gij (a), i = 1, . . . , n, a ∈ A

}∣
∣
∣, x

m j (A)

j =
max
a∈A

gnj (a), x1j = min
a∈A

g1j (a), and the values xkj , k = 1, . . . ,m j (A), are ordered in

an increasing way, i.e., x1j < x2j < . . . < x
m j (A)−1
j < x

m j (A)

j .

Denoting by E AR = {
EDM ∪ EMN

}
the whole set of constraints, to check the

existence of at least one compatible value function, one has to solve the following
optimization problem

ε∗ = max ε,

subject to E AR

where the variables are uij (x
k
j ), j ∈ J , i ∈ {1, . . . , n}, k = 1, . . . ,m j (A), and ε. If

E AR
is feasible and ε∗ > 0, then there exists at least one compatible value function

U (·); conversely, there does not exist any compatible value function U (·).
Supposing that more than one compatible value function exists, we indicate by

U the set of all compatible value functions; in general, each of these functions will
produce a different ranking on the set A of alternatives. This is why ROR methods
take into account all compatible value functions instead of only one.

123



Handling imprecise evaluations in multiple criteria… 141

Definition 5.1 Given two alternatives a, b ∈ A and the set U of compatible value
functions on AR ⊆ A, we say that a is possibly preferred to b, if a is at least as good
as b for at least one compatible value function:

a �P b ⇔ there exists U ∈ U : U (a) ≥ U (b).

Definition 5.2 Given two alternatives a, b ∈ A and the set U of compatible value
functions on AR ⊆ A, we say that a is necessarily preferred to b, if a is at least as
good as b for all compatible value functions:

a �N b ⇔ U (a) ≥ U (b), for all U ∈ U .

Following the description of the Δ(i,k) dominance relation defined in Sect. 4, it
is meaningful from the DM’s point of view to compare U (a(i)) and U (b(k)) for all
compatible value functionsU ∈ U and for all pairs of indicators (i, k). In fact, even if
not (a �N b), that is a is not at least as good as b for all compatible value functions, it
is interesting to check if there exists some pair of indicators (i, k) such thatU (a(i)) ≥
U (b(k)) for all compatible value functions in order to understand which is the degree
of plausibility of the necessary preference of a over b. For example, considering two
alternatives a, b ∈ A evaluated by means of 3-point intervals, as done in Sect. 4, if one
discovers that U (a(2)) ≥ U (b(3)) for all U ∈ U this means that, considering the most
plausible evaluations for a (i.e., g2j (a) for all j) and the most optimistic evaluations

for b (i.e., g3j (b) for all j), a is at least as good as b for all compatible value functions.
Analogously, it is interesting to understand if there exists some pair of indicators
(i, k) such that U (a(i)) ≥ U (b(k)) for at least one value function compatible with the
preferences provided by the DM. Going back to the previous example, if one gets
that there does not exist any value function such that U (b(3)) ≥ U (a(2)), this means
that even considering the best evaluations of b (i.e., g(3)

j (b) for all j) and the most

plausible evaluations for a (i.e., g(2)
j (a) for all j), there is no compatible value function

for which b is at least as good as a.
In consequence of these considerations, the following two types of necessary and

possible preference relations can be considered:

Definition 5.3 Given two alternatives a, b ∈ A, the set U of compatible value func-
tions on AR ⊆ A, and i, k ∈ {1, . . . , n}, we say that a is (i, k)-possibly preferred to
b, if a(i) is at least as good as b(k) for at least one compatible value function:

a �P
(i,k) b ⇔ there exists U ∈ U : U

(
a(i)

)
≥ U

(
b(k)

)
.

Definition 5.4 Given two alternatives a, b ∈ A, the set U of compatible value func-
tions on AR ⊆ A, and i, k ∈ {1, . . . , n}, we say that a is (i, k)-necessarily preferred
to b, if a(i) is at least as good as b(k) for all compatible value functions:
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a �N
(i,k) b ⇔ U

(
a(i)

)
≥ U

(
b(k)

)
, for all U ∈ U .

For all a, b ∈ A, and for all i, k ∈ {1, . . . , n}, we have that:
– a �P b if EP (a, b) = E AR ∪{U (a) ≥ U (b)} is feasible and εP (a, b) > 0,where

εP (a, b) = max ε, s.t. constraints EP (a, b),
– a �N b if EN (a, b) = E AR ∪ {U (b) ≥ U (a) + ε} is infeasible or εN (a, b) ≤ 0,
where εN (a, b) = max ε, s.t. constraints EN (a, b),

– a �P
(i,k) b if EP

(i,k)(a, b) = E AR ∪ {
U (a(i)) ≥ U (b(k))

}
is feasible and

εP(i,k)(a, b) > 0, where εP(i,k)(a, b) = max ε, s.t. constraints EP
(i,k)(a, b),

– a �N
(i,k) b if EN

(i,k)(a, b) = E AR ∪ {
U (b(k)) ≥ U (a(i)) + ε

}
is infeasible or

εN(i,k)(a, b) ≤ 0, where εN(i,k)(a, b) = max ε, s.t. constraints EN
(i,k)(a, b).

6 Properties of necessary and possible preference relations

As to the basic properties of the classical necessary and possible preference relations,
theywere discussed inGreco et al. (2008) andGiarlotta andGreco (2013). Let us recall
that the necessary relation is included in the possible preference relation (�N⊆�P ),
that the necessary preference relation is a partial preorder on A, and that the possible
preference relation is strongly complete and negatively transitive.

Proposition 6.1 describes the relationship between the classical dominance and
necessary preference relations, and then the relationship between the dominance and
necessary preference relations in case of imprecise evaluations.

Proposition 6.1 1. Δ ⊆ �N ,
2. For all i, k ∈ {1, . . . , n}, Δ(i,k) ⊆ �N

(i,k) .

Proposition 6.2 gives some properties of the necessary and possible preference
relations in case of imprecise evaluations. Moreover, it provides an inclusion property
for �N

(i,k) and �P
(i,k), and a completeness property for �N

(i,k) and �P
(k,i).

Proposition 6.2 1. For all i, k ∈ {1, . . . , n}, �N
(i,k) ⊆ �P

(i,k),

2. If i ≥ k, i, k ∈ {1, . . . , n}, then �N
(i,k) is reflexive,

3. If i ≤ k, i, k ∈ {1, . . . , n}, then �N
(i,k) is transitive,

4. For all a, b ∈ A, for all i, k ∈ {1, . . . , n}, we have a �N
(i,k) b or b �P

(k,i) a,

5. If i ≥ k, i, k ∈ {1, . . . , n}, then �P
(i,k) is strongly complete and negatively transi-

tive.

Note 6.1 Let us observe that by points 1 and 3 of Proposition 6.2, �N
(i,i) is a partial

preorder for all i = 1, . . . , n.

Proposition 6.3 specifies the inclusion between different necessary and possible
preference relations in case of imprecise evaluations. Moreover, it links the preference
relations for the case of imprecise evaluations with the preference relations for the
case of precise evaluations.
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Fig. 3 Relationships between
all kinds of dominance relations
and preference relations

Proposition 6.3 1. If i1 ≥ i and k1 ≤ k, i, k, i1, k1 ∈ {1, . . . , n}, then
�N

(i,k) ⊆ �N
(i1,k1)

,

2. If i1 ≥ i and k1 ≤ k, i, k, i1, k1 ∈ {1, . . . , n}, then �P
(i,k) ⊆ �P

(i1,k1)
,

3. �N
(1,n) ⊆ �N ⊆ �N

(n,1),

4. �P
(1,n) ⊆ �P ⊆ �P

(n,1) .

Some propositions specifying more properties of the necessary and possible pref-
erence relations in case of imprecise evaluations are given in the Appendix.

Note 6.2 Since the necessary and possible preference relations �N
(1,n), �N

(n,1), �P
(1,n)

and �P
(n,1), are the only preference relations for the case of imprecise evaluations that

can be linked to the necessary and possible preference relations for the case of precise
evaluations, we shall use also the following notation:

– “strongly necessary preference relation”, to indicate the necessary preference rela-
tion �N

(1,n) (denoted by �SN ),
– “strongly possible preference relation”, to indicate the possible preference relation

�P
(1,n) (denoted by �SP ),

– “weakly necessary preference relation”, to indicate the necessary preference rela-
tion �N

(n,1) (denoted by �WN ), and
– “weakly possible preference relation”, to indicate the possible preference relation

�P
(n,1) (denoted by �WP ).

Considering the weak, normal and strong dominance, necessary and possible pref-
erence relations, as a straightforward consequence of Propositions 4.2, 5.1, 6.1 and
6.2, and of the inclusion �N⊆�P , we obtain the set of relationships shown in Fig. 3.

7 A simple example

Let us imagine that the dean of a high school intends to give a scholarship to a good
student; for this reason, she has to choose a laureate among 10 students of the school
considered to be the best candidates. In order tomanage this situation, the dean decides
to use anMCDA approach taking into account evaluations of the student on three sub-
jects: Mathematics (Mat), Physics (Phy) and Computer Science (Com). Each subject
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Table 1 Evaluations of students on three criteria

Student\subject Mat Phy Com

A M VG VG

B [G, G, VG] [VB, M, M] [B, M, G]

C [B, G, VG] G [M, M, G]

D [G, VG, VG] [M, M, G] [M, G, G]

E VG [VB, M, G] [M, M, G]

F [VB, M, G] [B, B, M] [B, B, M]

H [M, G, G] [M, G, G] [M, G, G]

I VG [M, G, VG] B

L [VB, VB, B] [B,M,M] [VB, B, M]

M [VB, B, B] [G, G, VG] VG

is thus an evaluation criterion with an ordinal scale composed of five levels ordered
from the worst to the best: Very Bad (VB), Bad (B), Medium (M), Good (G), and
Very Good (VG). Differently from previous cases, the dean has to face a new prob-
lem because some students got imprecise evaluations on some criteria. The students’
evaluations are shown in Table 1.

One can see that in the evaluation table there are either crisp evaluations or 3-point
intervals. In order to apply ourmethodweneed to consider themall as 3-point intervals.
For 3-point intervals we have nested subintervals,

[
g1(a), g3(a)

]
and

[
g2(a), g2(a)

]
,

with the corresponding levels of plausibility L1 and L2, where L1 < L2. Remark that
a crisp evaluation g(a) is, formally, a 1-point interval and it can be represented by the
3-point interval [g(a), g(a), g(a)] with equal subintervals [g(a), g(a)], [g(a), g(a)].
In our example this would mean that the evaluation of studentA on Mat is represented
by the 3-point interval [M, M, M]. As to the levels of plausibility, we have to distin-
guish between 3-point intervals with three different evaluations and 3-point intervals
with two different evaluations only. On one hand, Mat (F) = [V B, M,G] means that
the evaluation of F with respect to Mat belongs to the interval [V B,G] with plausi-
bility L1, and it can be equal to M with level of plausibility L2. On the other hand,
Com(C) = [M, M,G] and Com(D) = [M,G,G] mean that the evaluation of C and
D on Com belongs to the interval [M,G] with level of plausibility L1, but the level of
plausibility L2 is assigned to the evaluationM for studentC and to the evaluation G for
student D.

The only preference relation that stems from the evaluations of the students is the
normal dominance relation shown in Fig. 4a. Therefore, taking into account all differ-
ent indicators, one can observe that five of the nine students dominate L. Referring to
the weak and strong dominance relations shown in Fig. 4b, c, the first impression about
the bad quality of L is confirmed. Indeed, considering the best evaluations of L and
the worst evaluations for all others students, L weakly dominates F only (see Fig. 4b),
while four students strongly dominate L (see Fig. 4c). Since two different levels of
plausibility are considered in case of 3-point intervals, it is interesting to see what
happens when the evaluations have the highest level of plausibility for all students.
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Fig. 4 Dominance relations in the set of students obtained for imprecise evaluations shown in Table 1 and
according to definitions introduced inSect. 2; (a) dominance relationΔ; (b)weakdominance relationΔ(3,1);
(c) strong dominance relation Δ(1,3); (d) dominance relation for evaluations with the highest level of
plausibility Δ(2,2)

This result is shown in Fig. 4d. One can observe that L is dominated there by all other
students but F, and that D and H dominate four other students each. Remark that due
to point 2 of Proposition 4.1, the strong dominance relation Δ(1,3) and the dominance
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Fig. 5 Necessary preference relations in the set of students obtained after including the preference informa-
tion provided by the dean and computed according to definitions given in Sect. 5. Full arrows represent the
corresponding dominance relation; dotted arrows represent preference information provided by the dean;
bold arrows represent new necessary preferences got in consequence of the added preference information.
Note that by point 6.2 of Proposition 6.2, the strong necessary preference relation �N

(1,3) is transitive while

the weak necessary preference relation �N
(3,1) is not; (a) necessary preference relation �N ; (b) weak nec-

essary preference relation �N
3,1; (c) strong necessary preference relation �N

(1,3); (d) necessary preference

relation having the highest level of plausibility �N
(2,2)
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relation Δ(2,2) shown in Fig. 4c, d are transitive, while the weak dominance relation
shown in Fig. 4b is not transitive.

In order to get a more conclusive recommendation, the dean has expressed her
preferences through three pieces of the following preference information:

– “student M is preferred to student D”, which is translated into the constraint
U (M) > U (D);

– “Student M is preferred to student I more than student C is preferred to student
H”, which is translated into the constraint U (M) −U (I) > U (C) −U (H);

– “Student C and student M are indifferent”, which is translated into the constraint
U (C) = U (M).

Taking into account this preference information, we compute the necessary prefer-
ence relation �N , the weak necessary preference relation �N

(3,1), the strong necessary

preference relation �N
(1,3) and the necessary preference relation �N

(2,2) obtained for
evaluations with the highest level of plausibility. These necessary preference relations
are shown in Fig. 5.

One can see that the preference information provided by the dean enriched con-
siderably the dominance preference relations. Without any preference information, A
dominated students L and M only, while after the preference information was added,
A is necessarily preferred to eight other students and neither necessarily nor weakly
necessarily preferred only to E (Fig. 5a, b). Looking at Fig. 5c, d, one can observe two
interesting things: A is strongly necessarily preferred to the largest number (3) of stu-
dents, and H is necessarily preferred to the largest number of students (5) considering
the necessary preference relation computed for evaluations with the highest level of
plausibility. This means that even taking into account the worst possible evaluations,
A is a good student, however for evaluations with the highest level of plausibility, H
is better than A.

The above discussion shows that the proposedmethod permits to get a useful insight
into the multiple criteria choice problem that became more complicated by the fact of
imprecise evaluations of alternatives. Based on minimum available information about
the range and tipicality of imprecise evaluations, and using few examples of exhibited
preferences, themethod sheds light on the preference relations in the set of alternatives
and facilitates a conscious decision making.

8 Conclusions

In this paper, we dealt with one of the most important issues of multiple criteria deci-
sion aiding (MCDA), that is the imprecise evaluations of alternatives. The possible
sources of this imprecision are, for example, lack of data, imprecise measurement or
intangible criteria. Many authors have studied different types of imprecision regard-
ing weights of criteria, utility functions or probabilities about the different states of
the world. In our approach, we are supposing that evaluations of the alternatives with
respect to the different criteria can be imprecise and expressed by n-point intervals.
These intervals are characterized not only by the largest interval of possible evalua-
tions, but also by its subintervals sequentially nested one in another. To each of these
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subintervals is associated an increasing level of plausibility such that the plausibil-
ity of a subinterval is not lower than the plausibility of the subinterval containing
it. Due to this way of representing the imprecision, our approach permits fine mod-
elling of imprecise multiple criteria evaluations, taking into account a whole spectrum
of attitudes ranging from an extremely pessimistic one to an extremely optimistic one
in the evaluations. Moreover, differently from other ways of dealing with imprecision,
such as stochastic multiobjective acceptability analysis (SMAA) or fuzzy numbers,
n-point intervals take into account only the most stable, robust and meaningful infor-
mation carried by imprecise evaluations. n-point intervals can be applied to anyMCDA
method but, in this paper, we focused on additive value functions and, in order to take
into account the whole set of value functions compatible with the preference infor-
mation provided by the DM, we adapted robust ordinal regression (ROR). In result of
applying ROR, one gets necessary and possible preference relations for all realizations
of the imprecise evaluations.

The methodology proposed in this paper follows the constructivist approach (Roy
1993). This means that MCDAmethods do not assume that there pre-exist some pref-
erence system in the DM’s mind that need to be discovered, but the DM’s preferences
have to be built step by step in the course of an interaction between theDMand the ana-
lyst responsible for mathematical modeling. In other words, MCDA methods should
be seen as tools for going deeper into the decision problem, for exploring various pos-
sibilities, interpreting them, debating and arguing, rather than tools able to make the
decision. As a consequence, the performances of theMCDAmethods cannot be tested
on some benchmarks, like, for example, machine learning methods (Corrente et al.
2013). Instead, the MCDA methods are acceptable if they possess some practical and
theoretical properties judged as desirable in the actual decision context (Keeney and
Raiffa 1993; Roy and Słowiński 2013). Unfortunately, many researchers are tempted
to compare different MCDA methods by basing their conclusions on comparison of
end results obtained by these methods. As argued in Roy and Słowiński (2013) such
a comparison is ill-founded.

The presentedmethodology can be extended in several directions that are shortlisted
below:

– consideration of preference models in the form of outranking relations instead of
value functions (Roy 1996);

– consideration of the decision rule preference model composed of “if..., then...”
decision rules induced from the DM’s preference information structured by
dominance-based rough set approach (Greco et al. 2001; Słowiński et al. 2009);

– consideration of the hierarchy of criteria using the multiple criteria hierarchy
process (Corrente et al. 2012).

Acknowledgements The first and the second authors wish to acknowledge funding by the “FIR of the
University of Catania BCAEA3 New developments in Multiple Criteria Decision Aiding (MCDA) and
their application to territorial competitiveness”
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Appendix

Proof of Proposition 4.1 1. Let a ∈ A, and i, k ∈ {1, . . . , n} such that i ≥ k; this
implies that gij (a) ≥ gkj (a), ∀ j = 1, . . . ,m, and thus aΔ(i,k)a. Therefore Δ(i,k)

is reflexive. ��
2. Let us suppose that a, b, c ∈ A such that aΔ(i,k)b, bΔ(i,k)c and i ≤ k with

i, k ∈ {1, . . . , n};
⎧
⎨

⎩

aΔ(i,k)b ⇔ gij (a) ≥ gkj (b),∀ j ∈ J,

bΔ(i,k)c ⇔ gij (b) ≥ gkj (c),∀ j ∈ J.

Being i ≤ k we get that gkj (b) ≥ gij (b), and, consequently:

gij (a) ≥ gkj (b) ≥ gij (b) ≥ gkj (c),∀ j = 1, . . . ,m ⇒ gij (a) ≥ gkj (c),

∀ j ∈ J ⇔ aΔ(i,k)c.

Thus Δ(i,k) is transitive. ��
3. It follows from points 1 and 2 of this Proposition since a partial preorder is a

reflexive and transitive binary relation. ��
4. Let be a, b ∈ A and i, k, r, s ∈ {1, . . . , n} such that aΔ(i,k)b, r ≥ i and k ≥ s.

Then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aΔ(i,k)b ⇔ gij (a) ≥ gkj (b), ∀ j ∈ J,

r ≥ i ⇔ grj (a) ≥ gij (a), ∀ j ∈ J,

k ≥ s ⇔ gkj (b) ≥ gsj (b), ∀ j ∈ J.

From this it follows that:

grj (a) ≥ gij (a) ≥ gkj (b) ≥ gsj (b), ∀ j ∈ J ⇒ grj (a) ≥ gsj (b),

∀ j ∈ J ⇔ aΔ(r,s)b.

��
5. Let a, b, c ∈ A, and i, k, i1, k1 ∈ {1, . . . , n} such that aΔ(i,k)b, bΔ(i1,k1)c and

k ≥ i1. Then, we have:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aΔ(i,k)b ⇔ gij (a) ≥ gkj (b), ∀ j ∈ J,

bΔ(i1,k1)c ⇔ gi1j (b) ≥ gk1j (c), ∀ j ∈ J,

k ≥ i1 ⇔ gkj (b) ≥ gi1j (b), ∀ j ∈ J.
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From this it follows that:

gij (a)≥gkj (b)≥gi1j (b)≥gk1j (c), ∀ j ∈ J ⇒ gij (a)≥gk1j (c), ∀ j ∈ J ⇔ aΔ(i,k1)c.

For point 4 of this Proposition, if r, s ∈ {1, . . . , n} such that r ≥ i and s ≤ k1,
then aΔ(r,s)c. ��

6. We have said that Δ = ∩n
i=1Δ

(i,i); since Δ(i,i) is a partial preorder for point 3 of
this Proposition, and since the intersection of partial preorders is a partial preoder,
Δ is a partial preorder. ��

7. Let a, b, c ∈ A, and i, k ∈ {1, . . . , n}, such that aΔ(i,k)b, bΔc, s ≥ i and k ≥ t .
Then, we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aΔ(i,k)b ⇔ gij (a) ≥ gkj (b), ∀ j ∈ J,

bΔc ⇔ grj (b) ≥ grj (c), ∀ j ∈ J, ∀r = 1, . . . , n,

s ≥ i ⇔ gsj (a) ≥ gij (a), ∀ j ∈ J,

k ≥ t ⇔ gkj (c) ≥ gtj (c), ∀ j ∈ J.

From this it follows that:

gsj (a) ≥ gij (a) ≥ gkj (b) ≥ gkj (c) ≥ gtj (c), ∀ j ∈ J ⇒ gsj (a) ≥ gtj (c),

∀ j ∈ J ⇔ aΔ(s,t)c.

��
8. Let a, b, c ∈ A, and i, k ∈ {1, . . . , n}, such that aΔb, bΔ(i,k)c, s ≥ i and k ≥ t .

Then, we have:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aΔb ⇔ grj (a) ≥ grj (b), ∀ j ∈ J, ∀r = 1, . . . , n,

bΔ(i,k)c ⇔ gij (b) ≥ gkj (c), ∀ j ∈ J,

s ≥ i ⇔ gsj (a) ≥ gij (a), ∀ j ∈ J,

k ≥ t ⇔ gkj (c) ≥ gtj (c), ∀ j ∈ J,

From this it follows that:

gsj (a) ≥ gij (a) ≥ gij (b) ≥ gkj (c) ≥ gtj (c), ∀ j ∈ J ⇒ gsj (a) ≥ gtj (c),

∀ j ∈ J ⇔ aΔ(s,t)c.

��
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Proof of Proposition 4.2 1. For all i ∈ {1, . . . , n}, from point 4 of Proposition 4.1,
we have Δ(1,n) ⊆ Δ(i,i) because i ≥ 1 and i ≤ n; from this follows that Δ(1,n) ⊆
∩n
i=1Δ

(i,i) = Δ, and this proves the first part of the Proposition. ��
For the same reason, ∀i ∈ {1, . . . , n} we have Δ(i,i) ⊆ Δ(n,1) because n ≥ i and
1 ≤ i . From this it follows that Δ = ∩n

i=1Δ
(i,i) ⊆ Δ(n,1), and this proves the

second part of the Proposition. ��
2. For all i, k ∈ {1, . . . , n}, from point 4 of Proposition 4.1, since 1 ≤ i and k ≤ n,

we have Δ(1,n) ⊆ Δ(i,k) and Δ(i,k) ⊆ Δ(n,1). In this way we obtain the thesis. ��
Proof of Proposition 5.1 1. Let a ∈ A and i, k ∈ {1, . . . , n}. From the definition,

fictitious alternatives a(i) and a(k) are such that ∀ j ∈ J , and ∀r ∈ {1, . . . , n} ,

grj
(
a(i)

) = gij (a), and grj
(
a(k)

)=gkj (a). Since i ≥k, ∀r ∈{1, . . . , n} and ∀ j ∈ J ,

grj (a
(i)) ≥ grj (a

(k)), and using the monotonicity of marginal value functions

u j,r (·), we obtain ∀r ∈ {1, . . . , n}, ∀ j ∈ J urj (g
r
j (a

(i))) ≥ urj (g
r
j (a

(k))); adding
up with respect to j and r we obtain the thesis. ��

2. We have seen that:

U (a(1)) =
m∑

j=1

[
n∑

i=1

uij (g
1
j (a))

]

, U (a) =
m∑

j=1

[
n∑

i=1

uij (g
i
j (a))

]

U (a(n)) =
m∑

j=1

[
n∑

i=1

uij (g
n
j (a))

]

.

∀ j ∈ J, and ∀i ∈ {1, . . . , n}, since g1j (a) ≤ gij (a) ≤ gnj (a) and by monotonicity

of marginal value functions uij (·), we obtain:

uij

(
g1j (a)

)
≤ uij

(
gij (a)

)
≤ uij

(
gnj (a)

)

and therefore adding up with respect to j and i we obtain the thesis, that is

U
(
a(1)

)
≤ U (a) ≤ U

(
a(n)

)
.

��
Proof of Proposition 6.1 1. Let a, b ∈ A, such that aΔb. This implies that gij (a) ≥

gij (b),∀ j ∈ J,∀i = 1, . . . , n. We know that, for all U ∈ U :

U (a) =
m∑

j=1

[
n∑

i=1

uij (g
i
j (a))

]

.

From monotonicity of marginal value functions uij (·), we have that ∀ j ∈ J, and

∀i = 1, . . . , n, uij (g
i
j (a)) ≥ uij (g

i
j (b)) and adding up with respect to indices j
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and i , we obtain U (a) ≥ U (b) for all compatible value functions, thus we obtain
the thesis. ��

2. Let a, b ∈ A, and i, k ∈ {1, . . . , n} , such that aΔ(i,k)b. This implies that gij (a) ≥
gkj (b),∀ j ∈ J. We know that, for all U ∈ U :

U (a(i)) =
m∑

j=1

[
n∑

r=1

urj (g
i
j (a))

]

, U (b(k)) =
m∑

j=1

[
n∑

r=1

urj (g
k
j (b))

]

.

From the monotonicity of marginal value functions urj (·) we have that ∀ j ∈ J,

and ∀r = 1, . . . , n, urj (g
i
j (a)) ≥ urj (g

k
j (b)) and adding up with respect to indices

j and r we obtain the thesis. ��
Proof of Proposition 6.2 1. ∀a, b ∈ A, ∀i, k ∈ {1, . . . , n}, if a(i) is at least as good

as b(k) for all compatible value functions (a �N
(i,k) b), then there exists at least one

compatible value function for which a(i) is at least as good as b(k) (a �P
(i,k) b). ��

2. It follows from point 1 of Proposition 5.1. ��
3. Let a, b, c ∈ A and i, k ∈ {1, . . . , n}, i ≤ k, such that a �N

(i,k) b and b �N
(i,k) c.

This means that for all U ∈ U , U (a(i)) ≥ U (b(k)) and U (b(i)) ≥ U (c(k)). Since
i ≤ k, by point 1 of Proposition 5.1 we have that for all U ∈ U , U (a(i)) ≥
U (b(k)) ≥ U (b(i)) ≥ U (c(k)) and, consequently,U (a(i)) ≥ U (c(k)) for allU ∈ U ,
that is a �N

(i,k) c. ��
4. Let a, b ∈ A, and i, k ∈ {1, . . . , n}, such that a 	�N

(i,k) b. This means that ∃U ∈
U : U (a(i)) < U (b(k)). Therefore, b �P

(k,i) (a). ��
5. Let a, b ∈ A, and i, k ∈ {1, . . . , n}with i ≥ k such that a 	�P

(i,k) b. This means that

for allU ∈ U ,U (b(k)) > U (a(i)). Since i ≥ k, and from point 1 of Proposition 5.1,
we obtain that for all U ∈ U , U (b(i)) ≥ U (b(k)) > U (a(i)) ≥ U (a(k)); thus for
all U ∈ U , U (b(i)) > U (a(k)), therefore b �N

(i,k) a implying b �P
(i,k) a by point 1

of this Proposition. In this way, �P
(i,k) is strongly complete.

Let a, b, c ∈ A, i, k ∈ {1, . . . , n}, such that i ≥ k, a 	�P
(i,k) b and b 	�P

(i,k) c. Then,
we have:

⎧
⎨

⎩

a 	�P
(i,k) b ⇔ U (a(i)) < U (b(k)), ∀U ∈ U ,

b 	�P
(i,k) c ⇔ U (b(i)) < U (c(k)), ∀U ∈ U .

From this and from point 1 of Proposition 5.1 it follows that

U (a(i)) < U (b(k)) ≤ U (b(i)) < U (c(k)), ∀U ∈ U ⇒ U (a(i)) < U (c(k)),

∀U ∈ U ⇔ a 	�P
(i,k) c.

This proves that �P
(i,k) is negatively transitive. ��
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Proof of Proposition 6.3 1. Let a, b ∈ A, and i, k, i1, k1 ∈ {1, . . . , n}, such that
i1 ≥ i , k1 ≤ k and a �N

(i,k) b. Then, from point 1 of Proposition 5.1, we have:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �N
(i,k) b ⇔ U (a(i)) ≥ U (b(k)), ∀U ∈ U ,

i1 ≥ i ⇒ U (a(i1)) ≥ U (a(i)), ∀U ∈ U ,

k1 ≤ k ⇒ U (b(k1)) ≤ U (b(k)), ∀U ∈ U .

Thus:

U (a(i1)) ≥ U (a(i)) ≥ U (b(k)) ≥ U (b(k1)),∀U ∈ U ⇒ U (a(i1)) ≥ U (b(k1)),

∀U ∈ U ⇔ a �N
(i1,k1)

b.

��
2. Let a, b ∈ A, and i, k, i1, k1 ∈ {1, . . . , n} such that i1 ≥ i , k1 ≤ k and a �P

(i,k) b.
Then, from point 1 of Proposition 5.1, we have:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �P
(i,k) b ⇔ ∃U ∈ U : U (a(i)) ≥ U (b(k)),

i1 ≥ i ⇒ U (a(i1)) ≥ U (a(i)), ∀U ∈ U ,

k1 ≤ k ⇒ U (b(k1)) ≤ U (b(k)), ∀U ∈ U .

Thus:

∃U ∈ U : U (a(i1)) ≥ U (a(i)) ≥ U (b(k)) ≥ U (b(k1)) ⇒ ∃U ∈ U : U (a(i1))

≥ U (b(k1)) ⇔ a �P
(i1,k1) b.

��
3. Let a, b ∈ A such that a �N

(1,n) b. This means that U (a(1)) ≥ U (b(n)), ∀U ∈ U .
Frompoint 2 of Proposition 5.1, we have thatU (a) ≥ U (a(1)) ≥ U (b(n)) ≥ U (b),
∀U ∈ U , and thus we obtain U (a) ≥ U (b), ∀U ∈ U , that is a �N b. In this way
we proved that �N

(1,n) ⊆ �N .

Analogously, a �N b means that U (a) ≥ U (b), ∀U ∈ U ; from point 2 of
Proposition 5.1 we obtainU (a(n)) ≥ U (a) ≥ U (b) ≥ U (b(1)), ∀U ∈ U , and thus
we have U (a(n)) ≥ U (b(1)), ∀U ∈ U , that is a �N

(n,1) b. In this way we proved

that �N ⊆ �N
(n,1) . ��

4. Let a, b ∈ A such that a �P
(1,n) b. This means that ∃U ∈ U : U (a(1)) ≥ U (b(n)).

From point 2 of Proposition 5.1 we have:

U (a) ≥ U (a(1)) ≥ U (b(n)) ≥ U (b) ⇒ U (a) ≥ U (b) ⇔ a �P b.

In this way we proved that �P
(1,n) ⊆ �P .
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Analogously, a �P b means that ∃U ∈ U : U (a) ≥ U (b); from point 2 of
Proposition 5.1 we obtain:

U (a(n)) ≥ U (a) ≥ U (b) ≥ U (b(1)) ⇒ U (a(n)) ≥ U (b(1)) ⇔ a �P
(n,1) b.

In this way we proved that �P ⊆ �P
(n,1) . ��

Proposition 8.1 provides some further results regarding the imprecise necessary and
possible preference relations.

Proposition 8.1 1. If a �N
(i,k) b, b �N

(i1,k1)
c, and k ≥ i1, with i, k, i1, k1 ∈

{1, . . . , n}, then a �N
(r,s) c, for all r, s ∈ {1, . . . , n} such that r ≥ i and s ≤ k1,

2. If a �N
(i,k) b, b �P

(i1,k1)
c, and k ≥ i1, with i, k, i1, k1 ∈ {1, . . . , n}, then a �P

(r,s) c,
for all r, s ∈ {1, . . . , n} such that r ≥ i and s ≤ k1,

3. If a �P
(i,k) b, b �N

(i1,k1)
c, and k ≥ i1, with i, k, i1, k1 ∈ {1, . . . , n}, then a �P

(r,s) c,
for all r, s ∈ {1, . . . , n} such that r ≥ i and s ≤ k1,

��

Proof 1. Leta, b, c ∈ A and i, k, i1, k1 ∈ {1, . . . , n}, such thata �N
(i,k) b,b �N

(i1,k1)
c

and k ≥ i1. Then we have:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �N
(i,k) b ⇔ U (a(i)) ≥ U (b(k)), ∀U ∈ U ,

b �N
(i1,k1)

c ⇔ U (b(i1)) ≥ U (c(k1)), ∀U ∈ U ,

k ≥ i1 ⇒ U (b(k)) ≥ U (b(i1))

From this it follows:

U (a(i)) ≥ U (b(k)) ≥ U (b(i1)) ≥ U (c(k1)),∀U ∈ U ⇒ U (a(i)) ≥ U (c(k1)),

∀U ∈ U ⇔ a �N
(i,k1)

c.

Since a �N
(i,k1)

c and r, s ∈ {1, . . . , n}: r ≥ i and s ≤ k1, from point 1 of

Proposition 6.3 we obtain a �N
(r,s) c. ��

2. Let a, b, c ∈ A, and i, k, i1, k1 ∈ {1, . . . , n}, such that a �N
(i,k) b, b �P

(i1,k1)
c,

and k ≥ i1. Then we have:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �N
(i,k) b ⇔ U (a(i)) ≥ U (b(k)), ∀U ∈ U ,

b �P
(i1,k1)

c ⇔ ∃U ∈ U : U (b(i1)) ≥ U (c(k1)),

k ≥ i1 ⇒ U (b(k)) ≥ U (b(i1)), ∀U ∈ U .
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It follows that:

∃U ∈ U : U (a(i)) ≥ U (b(k)) ≥ U (b(i1)) ≥ U (c(k1)) ⇒ ∃U ∈ U : U (a(i))

≥ U (c(k1)) ⇔ a �P
(i,k1) c.

Since r, s ∈ {1, . . . , n}: r ≥ i and s ≤ k1, from point 2 of Proposition 6.3 we
obtain a �P

(r,s) c. ��
3. Let a, b, c ∈ A, i, k, i1, k1 ∈ {1, . . . , n} such that a �P

(i,k) b, b �N
(i1,k1)

c, and
k ≥ i1. We have that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �P
(i,k) b ⇔ ∃U ∈ U : U (a(i)) ≥ U (b(k)),

b �N
(i1,k1)

c ⇔ U (b(i1)) ≥ U (c(k1)), ∀U ∈ U ,

k ≥ i1 ⇒ U (b(k)) ≥ U (b(i1)), ∀U ∈ U .

From this it follows:

∃U ∈ U : U (a(i)) ≥ U (b(k)) ≥ U (b(i1)) ≥ U (c(k1)) ⇒ ∃U ∈ U : U (a(i))

≥ U (c(k1)) ⇔ a �P
(i,k1) c.

Since r, s ∈ {1, . . . , n} such that r ≥ i and s ≤ k1, from point 2 of Proposition
6.3 we obtain a �P

(r,s) c. ��

Proposition 8.2 describes some properties involving the imprecise necessary and pos-
sible preference relations together with the classical necessary and possible preference
relations.

Proposition 8.2 1. Given a, b, c ∈ A, i ∈ {1, . . . , n} such that a �N
(i,n) b and

b �N c, then a �N
(r,1) c, for all r ∈ {1, . . . , n} such that r ≥ i ,

2. Given a, b, c ∈ A, k ∈ {1, . . . , n} such that a �N b and b �N
(1,k) c, then a �N

(n,r) c,
for all r ∈ {1, . . . , n} such that r ≤ k,

3. Given a, b, c ∈ A, i ∈ {1, . . . , n} such that a �P
(i,n) b and b �N c, then a �P

(r,1) c,
for all r ∈ {1, . . . , n} such that r ≥ i ,

4. Given a, b, c ∈ A, k ∈ {1, . . . , n} such that a �N b and b �P
(1,k) c, then a �P

(n,r) c,
for all r ∈ {1, . . . , n} such that r ≤ k,

5. Given a, b, c ∈ A, i ∈ {1, . . . , n} such that a �N
(i,n) b and b �P c, then a �P

(r,1) c,
for all r ∈ {1, . . . , n} such that r ≥ i ,

6. Given a, b, c ∈ A, k ∈ {1, . . . , n} such that a �P b and b �N
(1,k) c, then a �P

(n,r) c,
for all r ∈ {1, . . . , n} such that r ≤ k.
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Proof 1. Let a, b, c ∈ A and i, r ∈ {1, . . . , n} such that a �N
(i,n) b, b �N c and

r ≥ i . Then we have:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a �N
(i,n) b ⇔ U (a(i)) ≥ U (b(n)), ∀U ∈ U ,

b �N c ⇔ U (b) ≥ U (c), ∀U ∈ U ,

r ≥ i ⇒ U (a(r)) ≥ U (a(i)), ∀U ∈ U .

It follows that, for all U ∈ U , U (a(r)) ≥ U (a(i)) ≥ U (b(n)) ≥ U (b) ≥ U (c) ≥
U (c(1)) where U (b(n)) ≥ U (b) and U (c) ≥ U (c(1)) hold by point 2 of Propo-
sition 5.1. Thus, for all U ∈ U we obtain U (a(r)) ≥ U (c(1)), and therefore
a �N

(r,1) c. ��
Points 2-6 can be proved analogously. ��
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