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Abstract Cross-efficiency evaluation is an extension of data envelopment analysis
(DEA) aimed at ranking decision making units (DMUs) involved in a production
process regarding their efficiency. As has been done with other enhancements and
extensions of DEA, in this paper we propose a fuzzy approach to the cross-efficiency
evaluation. Specifically, we develop a fuzzy cross-efficiency evaluation based on the
possibility approach by Lertworasirikul et al. (Fuzzy Sets Syst 139:379-394, 2003a)
to fuzzy DEA. Thus, a methodology for ranking DMUs is presented that may be used
when data are imprecise, in particular for fuzzy inputs and outputs being normal and
convex. We prove some results that allow us to define “consistent” cross-efficiencies.
The ranking of DMUs for a given possibility level results from an ordering of cross-
efficiency scores, which are real numbers. As in the crisp case, we also develop
benevolent and aggressive fuzzy formulations in order to deal with the alternate optima
for the weights.

Keywords Fuzzy cross-efficiency evaluation - Fuzzy data envelopment analysis -
Possibility theory

1 Introduction

In decision making processes, ranking constitutes a crucial step for choosing among
alternatives after their evaluation. In multi-attribute decision making (MADM) prob-
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lems we have n alternatives which are assessed against m criteria. The evaluations that
result from these assessments provide the final ranking values of the alternatives, so
that the alternative with the highest ranking value is usually considered as the best of
the alternatives, that is, the one with best performance.

Rankings have experienced an increasing popularity. An example of this can be
found in Higher Education with the university rankings or league tables. Most visi-
ble international rankings are The Academic Ranking of World Universities (ARWU)
by Shanghai Jiao Tung University, commonly known as the Shanghai index and the
World University Ranking by Times Higher Education (THESQS). As has been widely
acknowledged in the related literature, university rankings are controversial but influ-
ential. Despite their limitations, university rankings have some effect on decision
making regarding higher education institutions: on the choice of a convenient place
by students, on recruitment decisions by employers, on university policies, motivating
the competitiveness among them, etc. See Witte and Hudrlikova (2013) for a discus-
sion.

In this paper we are concerned with the assessment of performance of DMUs
involved in production processes. Specifically, the focus is on the evaluation of their
relative efficiency in the use of several inputs to produce several outputs by means
of DEA models. DEA provides efficiency scores in the form of the classical ratios
of a weighted sum of outputs to a weighted sum of inputs. One of the key issues
of this methodology lies in the fact that the individual circumstances of the DMUs
(there are often considerable variations in goals, policies, etc., among units) can be
considered in the analysis through a DMU-specific assignment of input and output
weights. Specifically, the DEA efficiency scores provide a self-evaluation of DMUs
based on the inputs and output weights that show them in their best possible light.
However, this attractive feature of DEA may become a problem if we are interested
in ranking the DMUs. Since the DMUs are evaluated with DMU-specific weights,
which means that the importance attached to each of the inputs and outputs often
varies depending on the unit that is being evaluated, it has been widely claimed in
the literature that the DEA efficiency scores cannot be used for purposes of ranking
DMU (see, e.g., Cooper and Tone 1997; Sinuany-Stern and Friedman 1998; Kao and
Hung 2005; Ramén et al. 2010 for discussions).

Cross-efficiency evaluation, as introduced in Sexton et al. (1986) and Doyle and
Green (1994), arose as an extension of DEA aimed at ranking DMUs. The idea behind
the cross-efficiency evaluation is to apply one DMU’s perspective to others, by using
its DEA weights in the evaluations. That is, the efficiency of each unit is assessed
with the weights of all the DMUs instead of with only its own weights. Each of
these assessments, which are called the cross-efficiencies, is defined as the classical
efficiency ratio of a weighted sum of outputs to a weighted sum of inputs. Eventually,
the cross-efficiency score of a given unit is calculated as the average of the cross-
efficiencies of such unit obtained with the weights of all the DMUs. Cross-efficiency
evaluation provides thus a peer-evaluation of the DMUSs, instead of a self-evaluation,
which makes it possible to derive an ordering. We highlight the parallelism between
the cross-efficiency evaluation and MADM problems. Cross-efficiency evaluation can
be seen as a MADM problem in which the DMUs are the alternatives and the DEA
weights of each of them act as the criteria used in the evaluations.
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The literature has emphasized the following two as the principal advantages of the
cross-efficiency evaluation (see, for example, Anderson et al. 2002): (1) it provides
an ordering of the DMUs and (2) it eliminates unrealistic weighting schemes without
requiring the elicitation of weight restrictions. Doyle and Green (1994) have also
highlighted the interpretation of the cross-efficiency evaluation as peer-appraisal. As a
result, these authors suggest that cross-efficiency evaluation has less of the arbitrariness
of additional constraints and has more of the right connotations of a democratic process,
as opposed to authoritarianism (externally imposed weights) or egoism (self-appraisal,
DEA).

Cross-efficiency evaluation has received much attention in the related literature. In
fact, “cross-efficiency evaluation and ranking” is identified as one of the four research
fronts in DEA in the study carried out by Liu et al. (2016), which applies a network
clustering method in order to group the DEA literature over the period 2000 to 2014.
We also note that this methodology has been widely applied for ranking performance
of DMUs in many different contexts. See, among others, the applications in Oral et al.
(1991) to R&D projects, in Green et al. (1996) to preference voting, in Chen (2002)
to the electricity distribution sector, in Lu and Lo (2007) to economic-environmental
performance, in Ruiz et al. (2013) and Gutiérrez and Ruiz (2013) to sport, and in Lim
et al. (2014) to portfolio selection.

Since the seminal article by Charnes et al. (1978), DEA has been progressively
enhanced with numerous extensions of the basic methodology. In many cases, these
were intended to address the problems and needs that arose in its use in practice.
In particular, DEA was initially developed to be used with crisp data. Nevertheless,
several fuzzy formulations of the classical DEA models have been proposed in order
to deal with imprecise data (see Kao and Liu 2000; Guo and Tanaka 2001; Ledn et al.
2003; Lertworasirikul et al. 2003a,b). What is more, some of the DEA enhancements
above mentioned have in turn been extended to fuzzy approaches. For example, see
the fuzzy approaches in Liu and Chuang (2009) to DEA/AR models, in Zerafat Angiz
et al. (2010) to non-radial models or Lozano (2014) to network DEA. See Hatami-
Marbini et al. (2011) and Emrouznejad et al. (2014) for a couple of updated reviews
of Fuzzy Data Envelopment Analysis (FDEA) methods.

In this paper, we propose a fuzzy cross-efficiency evaluation to be used in the
case of having inputs and/or outputs which are fuzzy numbers. This issue has been
previously addressed in Sirvent and Le6n (2014) in the related literature. Sirvent
and Leén (2014) point out that rankings of DMUs based on the ordering of fuzzy
efficiencies can be criticized for the same reasons as those resulting from crisp DEA
efficiency scores, which justifies the need of a fuzzy cross-efficiency evaluation. They
also claim that, unlike in crisp DEA, it is not possible to set out a general approach to
the cross-efficiency evaluation in FDEA because there exist many different definitions
of efficiency in FDEA. Thus, each fuzzy approach to the cross-efficiency evaluation
will depend on the specific features of the FDEA model used for the measurement of
efficiency.

The fuzzy cross-efficiency evaluation in Sirvent and Le6n (2014) is based on the
fuzzy DEA model by Guo and Tanaka (2001). This model is developed for symmetrical
triangular fuzzy inputs and outputs, and follows the fuzzy ranking approach to solve
fuzzy linear programming problems. For a given possibility level 4 in between O
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and 1 pre-specified by the decision-maker, it provides an efficiency score which is a
non-symmetrical triangular fuzzy number. Sirvent and Ledn select this FDEA model
because it defines fuzzy efficiency in a ratio form in terms of input and output weights,
so the cross-efficiencies can be defined analogously. Thus, the fuzzy cross-efficiency
evaluation is consistent with the DEA efficiency assessment in the sense that the cross-
efficiency of a given DMU calculated with its own input and output weights coincides
with its fuzzy DEA efficiency score.

We propose here a fuzzy cross-efficiency evaluation based on the fuzzy DEA
model in Lertworasirikul et al. (2003a). This efficiency model is developed for the
more general case of fuzzy inputs and outputs being normal and convex, and is
solved by following a possibility approach in which fuzzy constraints are treated
as fuzzy events. By using possibility measures and specifying the corresponding
acceptable levels of possibility for the constraints, the resulting FDEA model is
transformed into a possibility linear programming problem, which provides a pos-
sibilistic efficiency score for every DMU at the pre-specified possibility levels. We
prove some results that allow us to define the fuzzy cross-efficiencies in a ratio form
by using the input and output weights provided by this fuzzy efficiency model, so
the fuzzy cross-efficiency evaluation is also consistent with the original fuzzy effi-
ciency measurement. The ranking of DMUs results thus from the ordering of the
cross-efficiency scores, which are real numbers for a given possibility level. In Sirvent
and Ledn (2014) the cross-efficiency scores for each possibility level are triangular
fuzzy numbers, so a method for ranking fuzzy numbers is needed in order to derive
an ordering.

The existence of alternate optima for the weights in the DEA models is the main
difficulty with the cross-efficiency evaluation, because the cross-efficiency scores and
the rankings of units may change depending on the used weights. In order to deal with
this issue, we develop both a benevolent and an aggressive fuzzy formulation which
are aimed at making a choice of weights among the alternate optima, if any, of the
FDEA model by Lertworasirikul et al.

The paper unfolds as follows: In Sect. 2 we briefly describe the standard (crisp)
cross-efficiency evaluation methodology. In Sect. 3 we propose a fuzzy cross-
efficiency evaluation based on the fuzzy DEA model in Lertworasirikul et al. (2003a)
above mentioned. Section 4 extends to the context of the fuzzy cross-efficiency eval-
uation in this paper the crisp benevolent and aggressive approaches to the choice of
weights. The examples in Sect. 5 illustrate the proposal that is made. Last section
concludes.

2 Data envelopment analysis and cross-efficiency evaluation

Throughout the paper we assume that we have n DMUs that use m inputs to produce
s outputs. These can be described by means of the vectors (Xj, Y;),j =1, ...,n. For
the calculation of cross-efficiencies, the standard cross-efficiency evaluation uses the
weights provided by the CCR DEA model for each DMU. Thus, the input and output
weights are the optimal solutions of the following problem, which yields the efficiency
score of a given DMUj
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Max 0o = 3:)Y(2
. ll/Yj . 1
S.t.: V,—Xjfl j=1,...,n (H

v >0y, u> 0

This is the CCR model in its ratio form. By using the results on linear fractional
programming in Charnes and Cooper (1962), (1) can be converted into the following
linear problem (which is the so-called dual multiplier formulation)

Max 0p=1uYy

st: vVXp=1
/ / . (2)
—VvX;j+uY; <0 j=1,...,n

v >0y, u> 0

In standard cross-efficiency evaluations we use the optimal solutions of (2) to cal-
culate the cross-efficiencies. To be specific, if (vq, ug) is an optimal solution of (2)
for a given DMUyg, then the cross-efficiency of DMUj, j = 1, .. ., n, obtained with the
weights of DMUy is the following

/ .
U, Yj
/ .
Vg Xj

Egj = 3)

Then, the cross-efficiency score of DMUj, j = 1, ..., n, is usually defined as the
average of its cross-efficiencies obtained with the weights of all the DMUs. That is,
the cross-efficiency score of DMUj is defined as

I .
Bj= DBy j=l...n “)
d=1

The cross-efficiency score Ej provides a peer-evaluation of DMUj, and these values
can be used for ranking the DMUs.

It should be noted that the main difficulty with the cross-efficiency evaluation is
the possible existence of alternate optima for the DEA weights in (2), which may lead
to different cross-efficiency scores, and consequently to different rankings of units,
depending on the choice of weights that each DMU makes. As a potential remedy, it has
been suggested the use of alternative secondary goals to the choice of weights among
the alternate optima. Examples of this approach are the well-known benevolent and
aggressive formulations (Doyle and Green 1994) below, which seek to find the optimal
weights that maximize/minimize the efficiency of the other DMUs while maintaining
that of the DMU under evaluation (see Liang et al. 2008; Wang and Chin 2010 for
other proposals)

@ Springer



116 J. L. Ruiz, L. Sirvent

Max/Min u’ > Y;
j#d
s.t.: V2 Xj=1
= )
—0aVXg+uYy=0
—V/Xj—i-u/ijO j=1,...,n, j#d

V> 0m, u> 0

where 64 is the optimal value of problem (2) when evaluating DMUy.

3 Possibility cross-efficiency evaluation

As can be seen from Sect. 2, in order to carry out a cross-efficiency evaluation, we
first need a DEA formulation, which yields a self-evaluation of the efficiency of each
DMU through weights that show it in its best possible light, and then define the cross-
efficiencies with those DEA DMU-specific weights, in order to provide evaluations
of the different units from the point of view of that DMU’s performance. We develop
here a cross-efficiency evaluation to be used when fuzzy inputs and outputs are con-
sidered. Specifically, the proposal that is made is developed in the context of the
possibility approach followed by Lertworasirikul et al. (2003a) to measure efficiency
with DEA. Thus, we start with the following possibility linear programming problem
which evaluates the efficiency of a given DMUj

(PCCR) Max fo
st:  mWYo>f) =B
n(vXo=1)z=v (6)
T(—vXj+uYj<0) >0 j=1,...,n

VZOm,UZOs

where 5(]- and ?j represent the vectors of fuzzy inputs and fuzzy outputs of each DMU;,
j=1,...,n0B,Y,a1,...,0, €[0,1] are pre-specified acceptable levels of possibility
for the objective and the constraints, respectively, and 7w(A) denotes the possibility of
the fuzzy event A. We can see in (6) that Lertworasirikul et al. (2003a) deal with the
uncertainty in both the fuzzy objective and the fuzzy constraints of the fuzzy version of
model (2) by using possibility measures and specifying the corresponding acceptable
levels of possibility.

As in the crisp case, the optimal value fy of u'Yy is used here to determine if the
DMUj under assessment is efficient in the possibilistic sense at a given possibility
level. Let o be the set of B, ¥, ay, ..., &y, then:

Definition 1 A given DMUj, is said to be o’-possibilistic efficient if, and only if, fy is
larger than or equal to 1 at the o possibility level; otherwise, DMUj is o’-possibilistic
inefficient.

To make comprehensive efficiency comparisons among DMUs in terms of the
values fls, we should consider the same set o’ for all the DMU .

@ Springer



Fuzzy cross-efficiency evaluation: a possibility approach 117

Throughout this section we assume fuzzy inputs and fuzzy outputs being normal
and convex. In that case, Lertworasirikul et al. show that model PCCR can be solved
by considering

(PCCR1) Max f
s.t.: (u’?o)éJ >
(vXo)y = 1
vXo)h <1

(—V’f(j+u’Yj)£;j <0 j=1,...,n

(N

v >0, u> 0

where (u’\?o)g denotes the upper bound of the B-level set of u' Yo, (v/ 5(0)%,J and (v/ )~(0){;
denote the upper and lower bounds of the Y-level set of v/ X, respectively, and (—v’ 5(]- +
u’?j)};j the lower bound of the aj-level set of —V’f(j +u'Y;, j=1,...,n (see the
original paper for more details).

Once we have chosen the model that establishes the fuzzy DEA framework of the
proposed approach, the key issue is therefore in how to define the cross-efficiencies,
that is, the efficiencies of the different units obtained with the DEA weights that
PCCRI provides for each DMU. In the standard crisp cross-efficiency evaluation, we
can use the optimal weights of (2) in order to define the cross-efficiencies as a ratio of
a weighted sum of outputs to a weighted sum of inputs, because the efficiency score of
DMUj provided by that model can be expressed in a ratio form 6y = u'Yo/v' X, as a
result of the normalization constraint, v'Xo = 1. However, the possibilistic efficiency
score f, provided by model PCCRI is not directly expressed as a ratio and, in addition,
the constraint of normalization involves two restrictions in this fuzzy model, (v/ 5(0)5/J >

1 and (V’Xo)% <1.

The following two lemmas provide some keys that will allow us to give a definition
of consistent cross-efficiencies in the context of an efficiency measurement carried out
with PCCR1:

Lemma 1 Let (70, v, u) be an optimal solution of model PCCRI for a given DM U,
then (v/x0)§ =1 holds.

Proof By contradiction, suppose that (v 5(0)% =k<1.

Let us define: v = 1%, 0= 1% and Ty = (ﬁ’?o)g. Then, (fo, ¥, Q) is a feasible

solution of PCCR1 since:

~ VXY 1
@Xo)y =——F = >1,
o V'Xo)k
'Xo)y = . Y =1, and
3 3 (—V'Xi +u' YL
(_0/ _]+ﬁ/Y_])£:J_ Jk I 505_]_17 5n
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e A o o @Yol R _ .
In addition, it satisfies fo = (v’ Yo)B =—x = EO > fj, which contradicts the
optimality of (fy, v, u). Therefore, (v’ 5(0)5 = 1. O

Lemma 2 Let (]_”0, v, u) be an optimal solution of model PCCRI for a given DMU,
then fy = (u’Yo)g holds.

Proof By contradiction, suppose that fo < ?o)g. Then, (%o,v,u) with fo =
0y \?o)g, is a feasible solution of PCCRI1 satisfying fo > fy, which contradicts the
optimality of (fy, v, u). Therefore, fo = (v ?o)g. O

The two previous lemmas show that the first and third constraints of model PCCR1

are binding at the optimum. Therefore, the possibilistic efficiency score fy of DMUy is
actually aratio, which is an important result we enunciate in the following proposition:

Proposition 1
. Wiy
*T XL

®)

Taking into account this result, we define the possibilistic cross-efficiencies and the
possibilistic cross-efficiency scores as follows:

Definition 2 If (f, v4, uq) is an optimal solution of model PCCR1 for a given DMUyg
at the possibility level & = (B, Y, a1, ..., ), then the possibilistic cross-efficiency
of DMUj, j = 1, .. ., n, at the possibility level o, obtained with the weights of DMUy,
is defined as the ratio:

P
dj

Wa¥pg
(vV'aXjy
Definition 3 Let Egj, d =1, ...,n, be the cross-efficiencies of a given DMU; at the

possibility level o/ = (B, Y, @y, ..., o), then the possibilistic cross-efficiency score
of DMU;j, j =1, ..., n, at the possibility level o/, is defined as

n

po 1 P

=B j=l..n (10)
d=1

Note in Definition 3 that in order to make a comprehensive aggregation of possibilis-
tic cross-efficiencies when defining the possibilistic cross-efficiency score of a given
DMU;, the involved possibilistic cross-efficiencies are required to be calculated all at
the same possibility level &' = (B, Y, oy, ..., o). The possibilistic cross-efficiency
scores Ejp, j = 1,...,n, provide a peer-evaluation of units and can be used to rank
the DMUs. Note that, for a given possibility level, these cross-efficiency scores are
real numbers, while those in Sirvent and Le6n (2014) are triangular fuzzy numbers.
As a result, rankings of DMUs at a given possibility level with our approach involve
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the ordering of real numbers, while in Sirvent and Le6n (2014) a method for ranking
fuzzy numbers must be chosen to that end.

In the following two propositions we enunciate a couple of suitable properties of
the proposed possibilistic approach to the fuzzy cross-efficiency evaluation, which
mimic what actually happens in the standard crisp cross-efficiency evaluation.

Proposition 2 For every DMUy,d =1, ..., n, Egq =J_‘d, at any possibility level.

That is, the proposed cross-efficiency evaluation is consistent with the efficiency
measurement provided by PCCRI1. The notion of “consistency” in cross-efficiency
evaluations is introduced in this paper as a desirable property that requires the cross-
efficiency of each unit calculated with its own DEA weights to coincide with its
DEA self-evaluation. It seems reasonable that when evaluating a DMU from its own
perspective this unit is rated with the efficiency score provided by the model used
as the basis for the cross-efficiency evaluation. For example, the standard crisp cross-
efficiency evaluation, which is performed on the basis of model (2) and where the cross-
efficiencies are calculated as in (3), is consistent, because 6§ =Egq,d=1,...,n.

Proposition 3 For every DMUj,j=1,...,n, K 5]_3, at any possibility level.

That is, the possibilistic cross-efficiency scores cannot be larger than the corre-
sponding possibilistic DEA efficiency scores (self-evaluations), which is consistent
with the idea that DEA, even in this possibility approach, shows the DMU under
assessment in the best possible light.

4 Alternative secondary goals

As mentioned in Sect. 2, the possible existence of alternate optima for the weights
when solving the CCR model is the main difficulty with cross-efficiency evaluations,
because this may lead to different cross-efficiency scores, and consequently to differ-
ent rankings, depending on the choice of weights that is made. Following the same
approach as in the crisp case, which is based on the choice of DEA weights among
alternate optima by using some alternative secondary goal, we develop here a couple
of fuzzy formulations which are aimed at making a choice of weights among the alter-
native optimal solutions of PCCR1, if any. Specifically, we extend to the fuzzy context
the well-known benevolent and aggressive formulations (5) proposed in Doyle and
Green (1994).

The benevolent formulation by Doyle and Green (1994) selects weights that
maintain the self-efficiency score of the unit under assessment while enhancing the
efficiency of the “composite” DMU created by aggregating the inputs and outputs of
the remaining n-1 units. Likewise, the aggressive formulation also maintains the self-
efficiency score while diminishing the efficiency of the composite DMU. In the fuzzy
context of the possibility approach by Lertworasirikul et al., we propose the following
fuzzy benevolent formulation, which selects the input and output weights of a given
DMUj to be used in the calculation of the cross-efficiencies (9) at the possibility level
o =@, Y, dq,...,0):
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(PB) Max g

U
s.t.: (U/ZYJ') >g
j#d B
U
(V/-ZXJ') > 1
i#d
L
(V/ZXJ') <1
j#d y

@Yo)g —fa(vXa)y =0

(1)

(—VXj+u¥pg <0 j=1....n
V= 0m, uz=0

where fy is the efficiency of DMUy provided by PCCR1 at the same possibility level
o, and >, ;ﬁd?j and >, ;édf(j are, respectively, the outputs and inputs of the composite
DMU. As it happens in the crisp case, PB selects the optimal solutions of PCCR1 that
maximize the efficiency of the composite DMU.

PB is a crisp model that can give rise to programming problems which are either
linear or nonlinear depending on the form of the membership functions of the fuzzy
inputs and outputs. In the particular case of being trapezoidal membership functions,
this model becomes the following linear programming model

Max g
U U
st (L=B) (u/Z?j) +B(u/2?j) >g
), i ),

U U
1-7v) (V’Zf(j) +Y(V’Z)~(j) >1
# j#Ad 1

L L
a —v)(v’zij) +y(v’zf<j) <1
i# ) i# )

(1 =B)WYa)§ +BUY)Y —fa((1 = N(VX)S +v(vVX)h) =0

A

(1 — o) (—VXP5+ @ YPH +a((—vXpi+@¥phH <0 j=1,...,n

v>0p, u>0;
(12)

where & = (af, a},aY, ay) denotes a trapezoidal fuzzy number with a trapezoidal
membership function with support [5%, ﬁg] and kernel [511‘, 511J]_
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Analogously, a fuzzy aggressive formulation can be developed by minimizing
instead of maximizing the objective in (11) and replacing the first constraint of that
model with (u/ Zj ¢d?j)]§ < g.Forinputs and outputs being trapezoidal fuzzy numbers,
the resulting formulation would be a model like (12), which minimizes its objective

and has (1 — B) (v’ j;éd?j)% + B(u’zj#dﬁ?j)% < g as its first constraint.

5 Iustrative examples

In this section we illustrate the use of the methodology proposed here with different
data sets that have been previously utilized in the related literature.

5.1 Example 1

The data of this example, which are recorded in Table 1, have been taken from Guo
and Tanaka (2001). The sample consists of 5 DMUs (A, B, C, D and E) with two
fuzzy inputs and two fuzzy outputs. These fuzzy inputs and outputs are symmetrical
triangular fuzzy numbers denoted by the pairs (a, ¢) where a € R is the center and
¢ > 0 s the spread. This example has also been used in Lertworasirikul et al. (2003a)
to illustrate their possibility approach to the DEA efficiency evaluation, as well as in
many other FDEA papers.

Since we have triangular fuzzy numbers, which are normal and convex, we use
model PCCRI in order to obtain the DEA weights in this example. For the analysis,
wesetpp =Y = ap = ap = oc = op = o = a, and make the following
choices of a = 0, 0.25, 0.5, 0.75 and 1. Then, we analyze the results for these different
specifications of the possibility levels [that is actually the same choice of &’s made in
the DEA efficiency analysis in Lertworasirikul et al. (2003a)]. Table 2 provides the
possibilistic DEA efficiency scores at these possibility levels. We can see that DMUs
B, D and E are possibilistically efficient at all the possibility levels considered, while
DMUs A and C are so only for lower possibility levels.

Table 3 shows the possibilistic cross-efficiency scores at the different possibility
levels considered. We note that the weights used for that purpose are the unique
optimal solution obtained when solving model PCCR1, except for o = 1. In this latter
case, we have used the weights provided by model PB, which coincides with model
(5) because we have triangular numbers. To illustrate the way to compute the cross-

Table 1 Data

Variable A B C D E

X1 (4.0,0.5) (2.9,0.0) 4.9,0.5) (4.1,0.7) (6.5, 0.6)
X2 (2.1,0.2) (1.5,0.1) (2.6,0.4) (2.3,0.1) (4.1,0.5)
y1 (2.6,0.2) (2.2,0.0) (3.2,0.5) (2.9,0.4) (5.1,0.7)
y2 (4.1,0.3) (3.5,0.2) (5.1,0.8) (5.7,0.2) (7.4,0.9)

Source: Guo and Tanaka (2001)
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Table 2 Possibilistic DEA efficiency scores at different possibility levels

Possibility level A B C D E
0 1.107 1.238 1.276 1.520 1.296
0.25 1.032 1.173 1.149 1.386 1.226
0.5 0.963 1.112 1.035 1.258 1.159
0.75 0.904 1.055 0.932 1.131 1.095
1 0.855 1 0.861 1 1

Table 3 Possibilistic cross-efficiency scores at different possibility levels

Possibility level A B C D E
0 1.096 1.166 1.223 1.300 1.188
0.25 1.025 1.120 1.114 1.216 1.101
0.5 0.960 1.076 1.017 1.136 1.022
0.75 0.901 1.028 0.927 1.076 0.986
1 0.854 1 0.860 0.984 1

Table 4 Optimal weights provided by PCCR1 at possibility level o = 0

Weight A B C D E
vi 0.120 0.163 0.104 0.008 0.223
V) 0.175 0.237 0.151 0.253 0
ug 0 0 0 0.294 0.169
u 0.526 0.714 0.455 0 0

efficiency scores, Table 4 records the optimal weights (vq4, ug) provided by PCCR1
for the O-possibility level (just as a representative case). Table 5 records the matrix of
possibilistic cross-efficiencies obtained from these optimal weights, and the associated
possibilistic cross-efficiency scores (in its last row), which are calculated as the average
of the cross-efficiencies in the corresponding column.

As it happens with the possibilistic efficiencies in Table 2, the possibilistic cross-
efficiency scores of each DMU in Table 3 are lower as the possibility level increases.
Moreover, we can see that, as Proposition 3 states, the possibilistic cross-efficiency
scores are lower than the corresponding possibilistic DEA efficiencies. In addition,
these two tables also show that, when o = 1, the cross-efficiency evaluation allows to
discriminating between the DMUs that have been rated with a possibilistic efficiency
equals 1.

From the cross-efficiency scores in Table 3 we can derive a ranking of DMUs for
each of the possibility levels. We can see that DMU D ranks 1st for all the possibility
levels, which shows that itis the most efficient unit, while DMU A always ranks bottom,
so it appears to be the least efficient one. In fact, for a’s higher than or equal to 0.5,
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Table 5 Possibilistic cross-efficiencies and cross-efficiency scores at possibility level a = 0

DMU providing Rated DMU
weights

A B C D E
A 1.107 1.238 1.276 1.235 1.135
B 1.107 1.238 1.276 1.235 1.135
C 1.107 1.238 1.276 1.235 1.135
D 1.104 1.119 1.177 1.520 1.238
E 1.055 1 1.109 1279 1.296
E; 1.096 1.166 1.223 1.300 1.188
Table 6 Data
DMU X] X2 y1 y2
1 (6.0, 7.0, 8.0) (29.0, 30.0, 32.0) (35.5, 38.0,41.0) (409.0, 411.0, 416.0)
2 (5.5,6.0,6.5) (33.0, 35.0, 36.5) (39.0, 40.0, 43.0) (478.0, 480.0, 484.0)
3 (7.5, 9.0, 10.5) (43.0, 45.0, 48.0) (32.0, 35.0, 38.0) (297.0, 299.0, 301.0)
4 (7.0, 8.0, 10.0) (37.5, 39.0, 42.0) (28.0, 31.0, 31.0) (347.0, 352.0, 360.0)
5 (9.0, 11.0, 12.0) (43.0, 44.0, 45.0) (33.0, 35.0, 38.0) (406.0, 411.0, 415.0)
6 (10.0, 10.0, 10.0) (53.0, 55.0, 57.5) (36.0, 38.0, 40.0) (282.0, 286.0, 289.0)
7 (10.0, 12.0, 14.0) (107.0, 110.0, 113.0) (34.5, 36.0, 38.0) (396.0, 400.0, 405.0)
8 9.0, 13.0, 16.0) (95.0, 100.0, 101.0) (37.0,41.0, 46.0) (387.0, 393.0, 402.0)
9 (12.0, 14.0, 15.0) (120.0, 125.0, 131.0) (24.0, 27.0, 28.0) (400.0, 404.0, 406.0)
10 (5.0, 8.0, 10.0) (35.0, 38.0, 39.0) (48.0, 50.0, 51.0) (470.0, 470.0, 470.0)

Source: Saati et al. (2002)

Table 7 Possibilistic cross-efficiency scores at different possibility levels

DMU Possibility level

0 0.25 0.5 0.75 1
1 1.1650 1.0892 1.0279 0.9558 0.8859
2 1.2700 1.1876 1.1131 1.0548 1
3 0.8100 0.7331 0.6613 0.6090 0.5551
4 0.7434 0.7081 0.6788 0.6453 0.6114
5 0.7265 0.6768 0.6416 0.5942 0.5504
6 0.6495 0.6123 0.5682 0.5396 0.5070
7 0.5308 0.4687 0.4118 0.3911 0.3723
8 0.7029 0.5843 0.4871 0.4412 0.3992
9 0.3434 0.3119 0.2850 0.2742 0.2658
10 1.5633 1.3359 1.1645 1.0469 0.9355
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Table 8 Data

DMU

X1

X2

y2

Y3

Y4

S S

O 0 9 N A

(16.17,17.02,17.87)
(15.64,16.46,17.28)
(11.17,11.76,12.35)
(9.99,10.52,11.05)
(9.03,9.50,9.98)
(4.55.4.79,5.03)
(5.90,6.21,6.52)
(10.56,11.12,11.68)
(3.49,3.67,3.85)
(8.48,8.93,9.38)
(16.85,17.74,18.63)
(14.11,14.85,15.59)

45

3.8
5.4
6.2

7.1
6.2

(43.0,45.3.47.6)
(38.1,40.1,42.1)
(37.6,39.6,41.6)
(34.2,36.0,37.8)
(32.5,34.2,35.9)
(19.1,20.1,21.1)
(25.2,26.5,27.8)
(34.1,35.9,37.7)
(16.5,17.4,18.3)
(32.6,34.3,36.0)
(43.3,45.6,47.9)
(36.8,38.7,40.6)

(13.5,14.2,14.9)
(12.4,13.0,13.7)
(13.1,13.8,14.5)
(10.7,11.3,11.9)
(11.4,12.0,12.6)
(4.8,5.0,5.3)
(6.7,7.0,7.4)
(8.6,9.0,9.5)
(0.1,0.1,0.1)
(6.2,6.5,6.8)
(13.3,14.0,14.7)
(13.1,13.8,14.5)

(28.6,30.1,31.6)
(28.3,29.8,31.3)
(23.3,24.5,25.7)
(23.8,25.0,26.3)
(19.4,20.4,21.4)
(15.7,16.5,17.3)
(18.7,19.7,20.7)
(23.5,24.7,25.9)
(17.2,18.1,19.0)
(19.6,20.6,21.6)
(29.5,31.1,32.7)
(24.1,25.4,26.7)

Source: Liu (2008)

Table 9 Possibilistic cross-efficiency scores at different possibility levels

DMU Possibility level
0 0.25 0.5 0.75 1

1 0.8540 0.8534 0.8629 0.8502 0.9550
2 0.8280 0.8268 0.8353 0.8229 0.9355
3 0.9704 0.9452 0.9286 0.9131 0.9245
4 0.9975 0.9705 0.9517 0.9352 0.9812
5 1.0379 1.0065 0.9847 0.9680 0.9770
6 1.0269 1.0017 0.9757 0.9579 0.9556
7 1.0576 1.0321 1.0086 0.9905 0.9879
8 0.8764 0.8689 0.8690 0.8551 0.9308
9 0.7402 0.7416 0.7241 0.7098 0.7487
10 0.8251 0.8122 0.8029 0.7892 0.8147
11 0.8109 0.8121 0.8230 0.8110 0.9077
12 0.7917 0.7722 0.7601 0.7475 0.7734

the peer evaluation provided by the cross-efficiency evaluation yields the following
full ranking of DMUs: D, B, E, C and A. For a = 0.25, only DMUs C and E would
exchange their position, whereas for « = 0 DMUs B, C and E would be 4th, 2nd and
3rd, respectively.

5.2 Other examples

With the only purpose of gaining more insight into the influence in practice of the alter-
nate optima for the weights on our approach to the cross-efficiency evaluation, we have
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repeated the analysis in Example 1 with the data sets in Saati et al. (2002) (Table 6) and
in Liu (2008) (Table 8). The inputs and outputs in these data sets are either triangular
or degenerated fuzzy numbers. In both cases, the possibilistic cross-efficiency scores,
which are reported in Tables 7 and 9, respectively, are again associated with the unique
optimal solution for the weights provided by model PCCR1 (except again for a = 1,
like in example 1, where the benevolent formulation has been used).

These examples show that the problem with the alternate optima for the weights,
which is one of the key issues in the cross-efficiency evaluation in the crisp case,
appears to have less influence in practice with the fuzzy approach proposed here. This
is because model PCCR1 seems to have frequently a unique optimal solution for the
weights (except, obviously, if the a-cuts consist of only one point, as is the case when
a = 1 if we have triangular fuzzy inputs and outputs, because in those cases PCCR1
and the crisp CCR model coincide).

6 Conclusions

Cross-efficiency evaluation is an extension of DEA that arose as a response to the
need of ranking DMUs involved in production processes regarding their efficiency.
However, in many real applications, the data cannot be measured with precision, and
the analysts have to deal with imprecise inputs and outputs. This is why we have pro-
posed here a fuzzy cross-efficiency evaluation for the case of inputs and outputs being
normal and convex fuzzy numbers. To be specific, we have developed a possibility
approach that has made it possible to define consistent cross-efficiencies. Rankings
of DMUs at a given possibility level result from the ordering of the corresponding
possibilistic cross-efficiency scores, which are real numbers. It is worth highlighting
the results that have been obtained in our examples. In particular, these seem to show
that, in practice, the problems with the alternate optima for the weights appears to have
less influence with the proposed possibilistic approach to the fuzzy cross-efficiency
evaluation. As a future research, we would like to investigate the possible extension
of other existing FDEA models for use in cross-efficiency evaluations.
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