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Abstract Reliability analysis of a system based on probability theory has beenwidely
studied and used. Nevertheless, it sometimes meets with one problem that the compo-
nents of a system may have only few or even no samples, so that we cannot estimate
their probability distributions via statistics. Then reliability analysis of a system based
on uncertainty theory has been proposed. However, in a general system, some compo-
nents of the systemmay have enough sampleswhile some othersmay have no samples,
so the reliability of the system cannot be analyzed simply based on probability theory
or uncertainty theory. In order to deal with this type systems, this paper proposes a
method of reliability analysis based on chance theory which is a generalization of
both probability theory and uncertainty theory. In order to illustrate the method, some
common systems are considered such as series system, parallel system, k-out-of-n
system and bridge system.

Keywords Uncertainty theory · Uncertain random variable · Chance measure ·
Reliability · Boolean system

1 Introduction

System reliability analysis plays a crucial role in engineering since the occurrence
of failures maybe lead to catastrophic consequences. Most researchers assumed each
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component in the systemworkswith a given probability and studied the system reliabil-
ity frommathematical aspect. In 1947, Freudethal first developed structural reliability
that is the application of probabilistic methods. Then Cornell (1969) proposed a struc-
tural reliability index. From then on, reliability analysis based on probability theory
has got many significant achievements.

Before applying probability theory to practical problem, a fundamental premise is
to estimate probability distribution that is close enough to frequency. Otherwise, the
law of large numbers is no longer valid. In fact, we sometimes have no observed date
because of the technological or economical difficulties. In this case, we have to invite
the experts to evaluate their belief degree that a component works well. However, Liu
(2015) pointed that human beings usually estimate a much wider range of values than
the object actually takes. Therefore, the belief degrees deviate far from the frequency.
If we still take human belief degrees as probability distribution, we maybe cause a
counterintuitive result that was given by Liu (2012).

In order to model the belief degree, an uncertainty theory was founded by Liu
(2007). It satisfies normality, duality, subadditivity and product axioms in mathe-
matics. Nowadays, uncertainty theory has become a branch of pure mathematics
and has been widely applied in many fields such as uncertain programming (Liu
2009a, b), uncertain risk analysis (Liu 2010a, b), and uncertain reliability analysis
(Liu 2010b).

In a general system, some components may have enough samples to ascertain their
functioning probabilities, while some others may have no samples. In order to deal
with this phenomenon, Liu (2013a) proposed chance theory as amixture of probability
theory and uncertainty theory in 2013.After that, chance theorywas developed steadily
and applied widely in many fields such as uncertain random programming (Liu 2013b;
Ke et al. 2014; Zhou et al. 2014), uncertain risk analysis (Liu and Ralescu 2014, 2016),
uncertain random graph (Liu 2014), and uncertain random network (Liu 2014; Sheng
and Gao 2014).

Probability theory is applicable when we have a large amount of samples, and
uncertainty theory is applicable when we have no samples but belief degree from
the experts. Chance theory, as a mixture of probability theory and uncertainty theory,
is applicable for a complex system containing uncertainty and randomness. In this
paper, we aim at employing chance theory to analyze the reliability of a complex
system involving both uncertainty and randomness. The rest of this paper is organized
as follows. Section 2 introduces some basic concepts about uncertain variable and
uncertain random variable. Section 3 proposes the concept of reliability index of an
uncertain random system, and the reliability of a series system and a parallel system
will be analyzed. Section 4 proves a reliability index theorem. A k-out-of-n system,
parallel–series system, series–parallel system and bridge system are studied. At last,
some conclusions are made in Sect. 5.

2 Preliminaries

In this section, we introduce some basic concepts and results in uncertainty theory and
chance theory.
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2.1 Uncertainty theory

Uncertainty theory was founded by Liu (2007) and refined by Liu (2010a). Math-
ematically, uncertainty theory satisfies normality, duality, subadditivity and product
axioms. Practically, uncertainty is anything that is described by belief degrees.

Definition 2.1 (Liu 2007) Let � be a nonempty set, and L be a σ -algebra over �. A
set functionM is called an uncertain measure if it satisfies the following three axioms,

Axiom 1 M{�} = 1 for the universal set �.
Axiom 2 M{�} + M{�c} = 1 for any event � ∈ L.
Axiom 3 For every countable sequence of events �1,�2, . . . , we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

In this case, the triple (�,L,M) is called an uncertainty space.

Besides, in order to provide the operational law, another axiom named product
axiom was proposed by Liu (2009a).

Axiom 4 Let (�k,Lk,Mk)be uncertainty spaces for k = 1, 2, . . .. The product uncer-
tain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respec-
tively.

Definition 2.2 (Liu 2007) An uncertain variable is a measurable function ξ from an
uncertainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real
numbers, we have

{ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B} ∈ L.

Definition 2.3 (Liu 2007) The uncertainty distribution � of an uncertain variable ξ

is defined by
�(x) = M{ξ ≤ x}

for any real number x .

If the uncertainty distribution �(x) of ξ has an inverse function �−1(α) for α ∈
(0, 1), then ξ is called a regular uncertain variable, and �−1(α) is called the inverse
uncertainty distribution of ξ. Inverse uncertainty distribution plays an important role
in the operations of independent uncertain variables.
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Definition 2.4 (Liu 2007) The uncertain variables ξ1, ξ2, . . . , ξn are said to be inde-
pendent if

M

{
n⋂

i=1

(ξi ∈ Bi )

}
=

n∧
i=1

M {ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 2.1 (Liu 2010a) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
regular uncertainty distributions �1,�2, . . . , �n, respectively. Assume the function
f (x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xm, and strictly
decreasing with respect to xm+1, xm+2, . . . , xn . Then the uncertain variable ξ =
f (ξ1, ξ2, . . . , ξn) has an inverse uncertainty distribution

�−1(α) = f
(
�−1

1 (α), . . . , �−1
m (α),�−1

m+1(1 − α), . . . , �−1
n (1 − α)

)
.

An uncertain variable is called Boolean if it takes values either 0 or 1. The following
is a Boolean uncertain variable

ξ =
{
1 with uncertain measure a
0 with uncertain measure 1 − a

where a ∈ [0, 1]. The operational law of Boolean system was introduced by Liu
(2010a) as follows.

Theorem 2.2 (Liu 2010a)Assume that ξ1, ξ2, . . . , ξn are independent Boolean uncer-
tain variables, i.e.,

ξi =
{
1 with uncertain measure ai
0 with uncertain measure 1 − ai

for i = 1, 2, . . . , n. If f is a Boolean function, then ξ = f (ξ1, ξ2, . . . , ξn) is a Boolean
uncertain variable such that

M{ξ = 1} =

⎧⎪⎨
⎪⎩

sup
f (x1,x2,...,xn)=1

min
1≤i≤n

νi (xi ), if sup
f (x1,x2,...,xn)=1

min
1≤i≤n

νi (xi ) < 0.5

1 − sup
f (x1,x2,...,xn)=0

min
1≤i≤n

νi (xi ), if sup
f (x1,x2,...,xn)=1

min
1≤i≤n

νi (xi )≥0.5

where xi take values either 0 or 1, and νi are defined by

νi (xi ) =
{
ai , if xi = 1
1 − ai , if xi = 0

for i = 1, 2, . . . , n, respectively.
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Definition 2.5 (Liu 2007) Let ξ be an uncertain variable. Then the expected value of
ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr.

For an uncertain variable ξ with uncertainty distribution �(x), its expected value
can be expressed as

E[ξ ] =
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx .

And if ξ has an inverse uncertainty distribution function �−1(α), then

E[ξ ] =
∫ 1

0
�−1(α)dα.

Theorem 2.3 (Liu and Ha 2010) Assume ξ1, ξ2, . . . , ξn are independent uncer-
tain variables with regular uncertainty distributions �1,�2, . . . , �n, respectively.
If f (x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xm and strictly
decreasing with respect to xm+1, xm+2, . . . , xn, then the uncertain variable ξ =
f (ξ1, ξ2, . . . , ξn) has an expected value

E[ξ ] =
∫ 1

0
f
(
�−1

1 (α), . . . , �−1
m (α),�−1

m+1(1 − α), . . . , �−1
n (1 − α)

)
dα

provided that E[ξ ] exists.

2.2 Chance theory

Chance theory, as a mixture of uncertainty theory and probability theory, was founded
by Liu (2013a, b) to deal with a system exhibiting both randomness and uncertainty.
The basic concept is the chance measure of an uncertain random event in a chance
space.

Let (�,L,M) be an uncertainty space, and (
,A,Pr) be a probability space. Then

(�,L,M) × (
,A,Pr) = (� × 
,L × A,M × Pr)

is called a chance space.

Definition 2.6 (Liu 2013a) Let (�,L,M) × (
,A,Pr) be a chance space, and � ∈
L×A be an uncertain random event. Then the chance measure Ch of � is defined by

Ch{�} =
∫ 1

0
Pr{ω ∈ 
 |M{γ ∈ � | (γ, ω) ∈ �} ≥ r}dr.
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Theorem 2.4 (Liu 2013a) Let (�,L,M) × (
,A,Pr) be a chance space. Then the
chance measure Ch{�} is a monotone increasing function of � and

Ch{� × A} = M{�} × Pr{A}

for any � ∈ L and any A ∈ A. Especially, we have

Ch{∅} = 0, Ch{� × 
} = 1.

Definition 2.7 (Liu 2013a) An uncertain random variable ξ is a measurable function
from a chance space (�,L,M) × (
,A,Pr) to the set of real numbers, i.e.,

{ξ ∈ B} = {(γ, ω) | ξ(γ, ω) ∈ B}

is an uncertain random event for any Borel set B.

When an uncertain random variable ξ(γ, ω) does not vary with γ , it degenerates to
a random variable. When an uncertain random variable ξ(γ, ω) does not vary with ω,
it degenerates to an uncertain variable. Therefore, a random variable and an uncertain
variable are two special uncertain random variables.

Example 2.1 Let ξ1, ξ2, . . . , ξm be random variables and η1, η2, . . . , ηn be uncertain
variables. If f is a measurable function, then

τ = f (ξ1, ξ2, . . . , ξm, η1, η2, . . . , ηn)

is an uncertain random variable determined by

τ(γ, ω) = f (ξ1(ω), ξ2(ω), . . . , ξm(ω), η1(γ ), η2(γ ), . . . , ηn(γ ))

for all (γ, ω) ∈ � × 
.

Definition 2.8 (Liu 2013a) Let ξ be an uncertain random variable. Then its chance
distribution is defined by

�(x) = Ch{ξ ≤ x}
for any x ∈ �.

As two special uncertain random variables, the chance distribution of a random
variable ξ is just its probability distribution

�(x) = Ch{ξ ≤ x} = Pr{ξ ≤ x},

and the chance distribution of an uncertain variable ξ is just its uncertainty distribution

�(x) = Ch{ξ ≤ x} = M{ξ ≤ x}.
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Theorem 2.5 (Liu 2013b) Let η1, η2, . . ., ηm be independent random variables with
probability distributions �1, �2, . . . , �m, respectively, and τ1, τ2, . . . , τn be uncer-
tain variables. Then the uncertain random variable

ξ = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn)

has a chance distribution

�(x) =
∫

�m
F(x; y1, y2, . . ., ym)d�1(y1)d�2(y2) . . . d�m(ym)

where F(x; y1, y2, . . . , ym) is the uncertainty distribution of the uncertain variable

f (y1, y2, . . . , ym, τ1, τ2, . . . , τn)

for any real numbers y1, . . . , ym.

Definition 2.9 (Liu 2013a) Let ξ be an uncertain random variable. Then its expected
value is

E[ξ ] =
∫ +∞

0
Ch{ξ ≥ r}dr −

∫ 0

−∞
Ch{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

For an uncertain random variable ξ with chance distribution �(x), its expected
value can be briefed as

E[ξ ] =
∫ +∞

0
(1 − �(x))dx −

∫ 0

−∞
�(x)dx .

If �(x) is regular, then

E[ξ ] =
∫ 1

0
�−1(α)dα.

Theorem 2.6 (Liu 2013b) Let η1, η2, . . . , ηm be independent random variables with
probability distributions�1, �2, . . . , �m, respectively, and let τ1, τ2, . . . , τn be uncer-
tain variables. Then the uncertain random variable

ξ = f (η1, . . . , ηm, τ1, . . . , τn)

has an expected value

E[ξ ] =
∫

�m
E[ f (y1, . . . , ym, τ1, . . . , τn)]d�1(y1) . . . d�m(ym)

where E[ f (y1, . . ., ym, τ1, . . ., τn)] is the expected value of the uncertain variable
f (y1, . . ., ym, τ1, . . . , τn) for any given real numbers y1, . . . , ym.
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3 Reliability of uncertain random system

A function f is called a Boolean function if it maps {0, 1}n to {0, 1}. It is usually used
to model the structure of a Boolean system.

Definition 3.1 Assume that a Boolean system ξ is comprised of n components
ξ1, ξ2, . . ., ξn . Then a Boolean function f is called its structure function if

ξ = 1 if and only if f (ξ1, ξ2, . . . , ξn) = 1. (1)

Obviously, when f is the structure function of the system, we also have ξ = 0 if
and only if f (ξ1, ξ2, . . . , ξn) = 0. For a series system containing n components, the
structure function is

f (ξ1, . . . , ξn) =
n∧

i=1

ξi .

For a parallel system containing n components, the structure function is

f (ξ1, . . . , ξn) =
n∨

i=1

ξi .

For a k-out-of-n system, the structure function is

f (ξ1, . . . , ξn) =

⎧⎪⎪⎨
⎪⎪⎩
1, if

n∑
i=1

ξi ≥ k

0, if
n∑

i=1
ξi < k.

In a complex system, some components may have enough samples to estimate
their probability distributions, and can be regarded as random variables, while some
others may have no samples, and can only be evaluated by the experts and regarded as
uncertain variables. In this case, the system cannot be simply modeled by a stochastic
system or an uncertain system. Then we will employ uncertain random variable to
model the system, and analyze its reliability based on chance theory.

Definition 3.2 The reliability index of an uncertain random system ξ is defined as the
chance measure that the system is working, i.e.,

Reliabili t y = Ch{ξ = 1}. (2)

If all uncertain random components degenerate to random ones, then the reliability
index is the probability measure that the system is working. If all uncertain random
components degenerate to uncertain ones, then the reliability index (Liu 2010b) is the
uncertain measure that the system is working.
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Example 3.1 (Series System) Consider a series system containing independent ran-
dom components ξ1, ξ2, . . ., ξm with reliabilities a1, a2, . . . , am , and independent
uncertain components η1, η2, . . . , ηn with reliabilities b1, b2, . . . , bn , respectively.
Since the structure function is

f (ξ1, . . . , ξm, η1, . . . , ηn) =
(

m∧
i=1

ξi

)
∧

⎛
⎝ n∧

j=1

η j

⎞
⎠ ,

we have

Reliabili t y = Ch

⎧⎨
⎩

(
m∧
i=1

ξi

)
∧

⎛
⎝ n∧

j=1

η j

⎞
⎠ = 1

⎫⎬
⎭

= Ch

⎧⎨
⎩

(
m∧
i=1

ξi = 1

)
∩

⎛
⎝ n∧

j=1

η j = 1

⎞
⎠

⎫⎬
⎭

= Pr

{
m⋂
i=1

(ξi = 1)

}
× M

⎧⎨
⎩

n⋂
j=1

(η j = 1)

⎫⎬
⎭

=
(

m∏
i=1

Pr{ξi = 1}
)

×
⎛
⎝ n∧

j=1

M{η j = 1}
⎞
⎠

=
(

m∏
i=1

ai

)
·
⎛
⎝ n∧

j=1

b j

⎞
⎠ .

Remark 3.1 If the series system degenerates to a system containing only random
components ξ1, ξ2, . . . , ξm with reliabilities a1, a2, . . . , am , then

Reliabili t y =
m∏
i=1

ai .

If the series system degenerates to a system containing only uncertain components
η1, η2, . . ., ηn with reliabilities b1, b2, . . . , bn , then

Reliabili t y =
n∧
j=1

b j .

Example 3.2 (Parallel System) Consider a parallel system containing independent
random components ξ1, ξ2, . . . , ξm with reliabilities a1, a2, . . . , am , and independent
uncertain components η1, η2, . . . , ηn with reliabilities b1, b2, . . . , bn , respectively.
Since the structure function is
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f (ξ1, . . . , ξm, η1, . . . , ηn) =
(

m∨
i=1

ξi

)
∨

⎛
⎝ n∨

j=1

η j

⎞
⎠ ,

we have

Reliabili t y = Ch

⎧⎨
⎩

(
m∨
i=1

ξi

)
∨

⎛
⎝ n∨

j=1

η j

⎞
⎠ = 1

⎫⎬
⎭

= 1 − Ch

⎧⎨
⎩

(
m∨
i=1

ξi

)
∨

⎛
⎝ n∨

j=1

η j

⎞
⎠ = 0

⎫⎬
⎭

= 1 − Ch

⎧⎨
⎩

(
m⋂
i=1

(ξi = 0)

)
∩

⎛
⎝ n⋂

j=1

(η j = 0)

⎞
⎠

⎫⎬
⎭

= 1 − Pr

{
m⋂
i=1

(ξi = 0)

}
× M

⎧⎨
⎩

n⋂
j=1

(η j = 0)

⎫⎬
⎭

= 1 −
(

m∏
i=1

Pr{ξi = 0}
)

×
⎛
⎝ n∧

j=1

M{η j = 0}
⎞
⎠

= 1 −
(

m∏
i=1

(1 − ai )

)
·
⎛
⎝ n∧

j=1

(1 − b j )

⎞
⎠ .

Remark 3.2 If the parallel system degenerates to a system containing only random
components ξ1, ξ2, . . . , ξm with reliabilities a1, a2, . . . , am , then

Reliabili t y = 1 −
m∏
i=1

(1 − ai ).

If the series system degenerates to a system containing only uncertain components
η1, η2, . . ., ηn with reliabilities b1, b2, . . . , bn , then

Reliabili t y = 1 −
⎛
⎝ n∧

j=1

(1 − b j )

⎞
⎠ =

n∨
j=1

b j .

4 Reliability index formula

This section aims at giving a formula to calculate the reliability of a system involving
both random variables and uncertain variables.
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Theorem 4.1 Assume that a Boolean system has a structure function f and contains
independent random components η1, η2, . . . , ηm with reliabilities a1, a2, . . . , am,
respectively, and independent uncertain components τ1, τ2, . . . , τn with reliabilities
b1, b2, . . . , bn, respectively. Then the reliability index of the uncertain random system
is

Reliabili t y =
∑

(y1,...,ym )∈{0,1}m

(
m∏
i=1

μi (yi )

)
· Z(y1, y2, . . . , ym) (3)

where

Z(y1, . . . , ym) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
f (y1,...,ym ,z1,...,zn)=1

min
1≤ j≤n

ν j (z j ),

if sup
f (y1,...,ym ,z1,...,zn)=1

min
1≤ j≤n

ν j (z j ) < 0.5

1 − sup
f (y1,...,ym ,z1,...,zn)=0

min
1≤ j≤n

ν j (z j ),

if sup
f (y1,...,ym ,z1,...,zn)=1

min
1≤ j≤n

ν j (z j ) ≥ 0.5,

(4)

μi (yi ) =
{
ai if yi = 1
1 − ai if yi = 0,

(i = 1, 2, . . . ,m), (5)

ν j (z j ) =
{
b j if z j = 1
1 − b j if z j = 0

( j = 1, 2, . . . , n). (6)

Proof It follows from Definition 3.1 of structure function and Definition 3.2 of relia-
bility index that

Reliabili t y = Ch{ f (η1, . . . , ηm, τ1, . . . , τn) = 1}.

By the operational law of uncertain random variables (Theorem 2.5), we have

Reliabili t y =
∑

(y1,...,ym )∈{0,1}m

(
m∏
i=1

μi (yi )

)
· M{ f (y1, . . . , ym, τ1, . . . , τn) = 1}.

When (y1, . . . , ym) is given,

f (y1, . . . , ym, τ1, . . . , τn) = 1

is a Boolean function of uncertain variables. It follows from the operational law of
Boolean system (Theorem 2.2) that

M{ f (y1, . . . , ym, τ1, . . . , τn) = 1} = Z(y1, . . . , ym)

that is determined by (4), and we complete the proof.
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Example 4.1 (k-out-of-n System) Consider a k-out-of-n system containing indepen-
dent random components ξ1, ξ2, . . ., ξm with reliabilities a1, a2, . . . , am , respec-
tively, and independent uncertain components η1, η2, . . ., ηn−m with reliabilities
b1, b2, . . . , bn−m , respectively. Note that the structure function is

f (y1, y2, . . . , ym, z1, z2, . . . , zn−m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if

m∑
i=1

yi +
n−m∑
j=1

z j ≥ k

0, if
m∑
i=1

yi +
n−m∑
j=1

z j < k.

It follows from Theorem 4.1 that the reliability of the uncertain random system is

Reliabili t y =
∑

(y1,...,ym )∈{0,1}m

(
m∏
i=1

μi (yi )

)
· Z(y1, y2, . . . , ym)

in which

μi (yi ) =
{
ai if yi = 1
1 − ai if yi = 0,

Z(y1, y2, . . . , ym) = M

⎧⎨
⎩

m∑
i=1

yi +
n−m∑
j=1

η j ≥ k

⎫⎬
⎭

=

⎧⎪⎪⎨
⎪⎪⎩
the (k −

m∑
i=1

yi )th largest value of b1, b2, . . . , bn−m, if
m∑
i=1

yi < k

1, if
m∑
i=1

yi ≥ k.

Remark 4.1 If the k-out-of-n system degenerates to a system containing only random
components ξ1, ξ2, . . . , ξn with reliabilities a1, a2, . . . , an , respectively. Then

Reliabili t y =
∑

y1+···+yn≥k

(
n∏

i=1

μi (yi )

)
.

If the k-out-n system degenerates to a system containing only uncertain components
η1, η2, . . ., ηn with reliabilities b1, b2, . . . , bn , respectively. Then

Reliabili t y = the kth largest value of b1, b2, . . . , bn .

Example 4.2 (Parallel–series system) Consider a simple parallel–series system in
Fig. 1 containing independent random components ξ1, ξ2 with reliabilities a1, a2,
respectively, and independent uncertain components η1, η2 with reliabilities b1, b2,
respectively.
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η1

ξ1

η2

ξ2

Fig. 1 Parallel–series system

Fig. 2 Series–parallel system

ξ2

ξ1

η2

η1

Note that the structure function is

f (ξ1, ξ2, η1, η2) = (ξ1 ∨ η1) ∧ (ξ2 ∨ η2).

It follows from Theorem 4.1 that the reliability index is

Reliability = Ch{(ξ1 ∨ η1) ∧ (ξ2 ∨ η2) = 1}
= Pr{ξ1 = 1, ξ2 = 1} · Z(1, 1) + Pr{ξ1 = 1, ξ2 = 0} · Z(1, 0)

+Pr{ξ1 = 0, ξ2 = 1} · Z(0, 1) + Pr{ξ1 = 0, ξ2 = 0} · Z(0, 0)

= a1a2 · Z(1, 1) + a1(1 − a2) · Z(1, 0) + (1 − a1)a2 · Z(0, 1)

+ (1 − a1)(1 − a2) · Z(0, 0)

where

Z(1, 1) = M{(1 ∨ η1) ∧ (1 ∨ η2) = 1} = M{1 ∧ 1 = 1} = 1,

Z(1, 0) = M{(1 ∨ η1) ∧ (0 ∨ η2) = 1} = M{1 ∧ η2 = 1} = M{η2 = 1} = b2,

Z(0, 1) = M{(0 ∨ η1) ∧ (1 ∨ η2) = 1} = M{η1 ∧ 1 = 1} = M{η1 = 1} = b1,

Z(0, 0) = M{(0 ∨ η1) ∧ (0 ∨ η2) = 1} = M{η1 ∧ η2 = 1} = b1 ∧ b2.

Thus, the reliability index of the parallel–series system is

Reliabili t y = a1a2 + a1(1 − a2)b2 + (1 − a1)a2b1 + (1 − a1)(1 − a2)(b1 ∧ b2).

Example 4.3 (Series–parallel system) Consider a simple series–parallel system in
Fig. 2 containing independent random components ξ1, ξ2 with reliabilities a1, a2,
respectively, and independent uncertain components η1, η2 with reliabilities b1, b2,
respectively.

Note that the structure function is

f (ξ1, ξ2, η1, η2) = (ξ1 ∧ η1) ∨ (ξ2 ∧ η2).
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Fig. 3 Bridge system

η1

ξ1

η2

ξ2

η3

It follows from Theorem 4.1 that the reliability index is

Reliability = Ch{(ξ1 ∧ η1) ∨ (ξ2 ∧ η2) = 1}
= Pr{ξ1 = 1, ξ2 = 1} · Z(1, 1) + Pr{ξ1 = 1, ξ2 = 0} · Z(1, 0)

+Pr{ξ1 = 0, ξ2 = 1} · Z(0, 1) + Pr{ξ1 = 0, ξ2 = 0} · Z(0, 0)

= a1a2 · Z(1, 1) + a1(1 − a2) · Z(1, 0) + (1 − a1)a2 · Z(0, 1)

+ (1 − a1)(1 − a2) · Z(0, 0)

where

Z(1, 1) = M{(1 ∧ η1) ∨ (1 ∧ η2) = 1} = M{η1 ∨ η2 = 1} = b1 ∨ b2,

Z(1, 0) = M{(1 ∧ η1) ∨ (0 ∧ η2) = 1} = M{η1 ∨ 0 = 1} = M{η1 = 1} = b1,

Z(0, 1) = M{(0 ∧ η1) ∨ (1 ∧ η2) = 1} = M{0 ∨ η2 = 1} = M{η1 = 2} = b2,

Z(0, 0) = M{(0 ∧ η1) ∨ (0 ∧ η2) = 1} = M{0 ∨ 0 = 1} = 0.

Thus, the reliability index of the series–parallel system is

Reliabili t y = a1a2(b1 ∨ b2) + a1(1 − a2)b1 + (1 − a1)a2b2.

Example 4.4 (Bridge System) Consider a simple bridge system in Fig. 3 contain-
ing independent random components ξ1, ξ2 with reliabilities a1, a2, respectively, and
independent uncertain components η1, η2, η3 with reliabilities b1, b2, b3 respectively.

Note that the structure function is

f (ξ1, ξ2, η1, η2, η3) = (ξ1 ∧ η3) ∨ (η1 ∧ ξ2) ∨ (ξ1 ∧ η2 ∧ ξ2) ∨ (η1 ∧ η2 ∧ η3).

It follows from Theorem 4.1 that the reliability index is

Reliabili t y

= Ch{(ξ1 ∧ η3) ∨ (η1 ∧ ξ2) ∨ (ξ1 ∧ η2 ∧ ξ2) ∨ (η1 ∧ η2 ∧ η3)}
= Pr{ξ1 = 1, ξ2 = 1} · Z(1, 1) + Pr{ξ1 = 1, ξ2 = 0} · Z(1, 0)

+ Pr{ξ1 = 0, ξ2 = 1} · Z(0, 1) + Pr{ξ1 = 0, ξ2 = 0} · Z(0, 0)

= a1a2 · Z(1, 1) + a1(1 − a2) · Z(1, 0) + (1 − a1)a2 · Z(0, 1)

+ (1 − a1)(1 − a2) · Z(0, 0)
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where

Z(1, 1) = M{(1 ∧ η3) ∨ (η1 ∧ 1) ∨ (1 ∧ η2 ∧ 1) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 ∨ η1 ∨ η2 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 ∨ η1 ∨ η2 = 1}
= b1 ∨ b2 ∨ b3,

Z(1, 0) = M{(1 ∧ η3) ∨ (η1 ∧ 0) ∨ (1 ∧ η2 ∧ 0) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 ∨ 0 ∨ 0 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η3 = 1}
= b3,

Z(0, 1) = M{(0 ∧ η3) ∨ (η1 ∧ 1) ∨ (0 ∧ η2 ∧ 1) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{0 ∨ η1 ∨ 0 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η1 = 1}
= b1,

Z(0, 0) = M{(0 ∧ η3) ∨ (η1 ∧ 0) ∨ (0 ∧ η2 ∧ 0) ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{0 ∨ 0 ∨ 0 ∨ (η1 ∧ η2 ∧ η3) = 1}
= M{η1 ∧ η2 ∧ η3 = 1}
= b1 ∧ b2 ∧ b3.

Thus, the reliability index of the series–parallel system is

Reliabili t y = a1a2(b1 ∨ b2 ∨ b3) + a1(1 − a2)b3 + (1 − a1)a2b1
+ (1 − a1)(1 − a2)(b1 ∧ b2 ∧ b3).

5 Conclusion

This paper mainly proposed the concept of reliability index in uncertain random
systems. A reliability index theorem was derived to calculate the reliability index.
Moreover, some special common systems in uncertain random environment such as
k-out-of-n system, parallel–series system, series–parallel system and bridge system
were discussed.
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