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Abstract To model the uncertainty in the secondary possibility distributions, this
paper develops a new method for handling interval-valued fuzzy variables with vari-
able lower and upper possibility distributions. For a parametric interval-valued fuzzy
variable, we define its lower selection variable, upper selection variable and lambda
selection variable. The three selection variables are characterized by variable possi-
bility distributions, and their numerical characteristics like expected values and n-th
moments are important indices in practical optimization and decision-making prob-
lems. Under this consideration, we establish some useful analytical expressions of the
expected values and n-th moments for the lambda selections of parametric interval-
valued trapezoidal, normal and Erlang fuzzy variables. Furthermore, we focus on
the arithmetic about the sums of common parametric interval-valued fuzzy variables.
Finally, we apply the proposed optimization indices to a quantitative finance problem,
where the second moment is used to measure the risk of a portfolio.

Keywords Interval-valued fuzzy variable · Selection variable · Variable possibility
distribution · Moment · Portfolio optimization

1 Introduction

The concept of type-2 (T2) fuzzy set was proposed by Zadeh (1975) to generalize
type-1 fuzzy set, and the advantage of T2 fuzzy theory is its ability to model the
uncertainty in the secondary possibility distributions. In order to studyT2 fuzzy theory,
Mendel and John (2002) established some basic terms for T2 fuzzy set so that it
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could be easily understood or used in practical fuzzy logic systems. Liu and Liu
(2010) studied T2 fuzziness by fuzzy possibility theory. To reduce the uncertainty in
the secondary possibility distributions, Bai and Liu (2014) developed a value-at-risk
reduction method for type-2 fuzzy variables via possibility measure. In the recent
literature, the research on interval T2 fuzzy set becomes the focus of T2 fuzzy theory.
Since the computation associated with interval T2 fuzzy set is more manageable,
interval T2 fuzzy sets become the most widely used T2 fuzzy sets, and have been used
successfully to many application areas. Wang et al. (2004) presented an interval T2
fuzzy neural network to handle uncertainty with dynamical optimal learning. Mendel
et al. (2006) derived formulas for the union, intersection and complement about interval
T2 fuzzy sets, and used them in the interval T2 fuzzy logic system.Chen andLee (2011)
presented a fuzzy interpolative reasoning method, which can deal with the sparse
fuzzy rule-based systems in a more flexible and intelligent manner. For protecting
computer networks, Viscontia and Tahayori (2011) proposed a performance-based
artificial immune system that mimicked the workings of an adaptive immune system
on the basis of interval T2 fuzzy set paradigm. Khosravi et al. (2012) proposed the
application of interval T2 fuzzy logic systems for the problem of short term load
forecasting, and proved that the proposedmodels can approximate future load demands
with an acceptable accuracy. Mendez et al. (2012) presented an interval T2 fuzzy logic
system with intelligent controllers, and proved the feasibility of the developed system
for finishingmill thread speed set-up and control. Chen (2013) developed an interactive
method for handling multiple criteria group decision-making problems, in which the
criterion values were expressed as interval T2 trapezoidal fuzzy numbers, and the
applicability of the method was illustrated with a medical decision-making problem
of patient-centered medicine concerning basilar artery occlusion. Pagola et al. (2013)
proposed a new fuzzy thresholding algorithm, in which an expert can select multiple
membership functions to construct an interval T2 fuzzy set such that the length of the
interval represents the uncertainty of the expert. All the applications mentioned above
have demonstrated that interval T2 fuzzy sets are good at modeling the uncertainty
embedded in secondary possibility distributions. In Bustince et al. (2014), the authors
pointed out that interval type-2 fuzzy sets are generalization of interval-valued fuzzy
sets. In this sense, some researchers are actually discussing interval-valued fuzzy sets
in their works but using the concept of the interval T2 fuzzy set. In the present paper,
we will distinguish the two basic concepts.

In many application problems, because the footprint of uncertainty of an interval-
valued fuzzy set is a bounded region, some researchers often use fixed lower and upper
region boundaries as the representatives of an interval-valued fuzzy set. For example,
using the upper and lower membership functions, Wu and Mendel (2007) introduced
the centroid, cardinality, fuzziness (entropy), variance and skewness of an interval
T2 fuzzy set as measures of uncertainty. Gong (2013) proposed the lower and upper
possibility mean value of an interval T2 fuzzy set, and established an optimization
model to determine the attributes’ weights for multi-attribute group decision making
problem. In the present paper, we propose a novel method for handling the interval
T2 fuzziness, and represent an interval-valued fuzzy variable by variable lower and
upper boundaries. To characterize a parametric interval-valued fuzzy variable, we
introduce its lower selection variable, upper selection variable and lambda selection
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variable. For practical optimization and decision-making problems, it could be more
flexible and effective to take the lambda selection as the representative of a parametric
interval-valued fuzzy variable.

Numerical characteristics are usually important indices to describe uncertainty.
Among them, the expected value, variance, skewness and kurtosis are frequently used
for modeling the return and risk in financial and management problems. In addition, it
is more important to take into account the higher moments than the lower ones. In the
present paper, the lambda selection variable is characterized by parametric possibility
distributions, its numerical characteristics like the expected values and n-th moments
are important optimization indices in practical decision-making problems. We estab-
lish some useful analytical expressions of the expected values and n-th moments for
the lambda selections of the common parametric interval-valued fuzzy variables. We
employ L–S integral (Carter and Brunt 2000) to define the n-th moment, where the
L–S measure is generated by the credibility distribution of a general fuzzy variable
(Liu and Liu 2014).

The rest of this paper is organized as follows. Section 2 reviews some basic concepts
in fuzzy theory, and defines the parametric interval-valued fuzzy variable. Section 3
defines the lower selection variable, upper selection variable for parametric interval-
valued fuzzy variables. In Sect. 4, we establish the analytical expressions of the
expected value and n-th moment for the lambda selections of the common paramet-
ric interval-valued fuzzy variables and their sums. In Sect. 5, we apply the proposed
method to the portfolio selection problem, and develop a newmean-moment optimiza-
tion model. Section 6 gives our conclusions.

2 Interval-valued fuzzy set and interval-valued fuzzy variable

The concept of T2 fuzzy set was given by Zadeh (1975). To understand and use T2
fuzzy set easily, Mendel and John (2002) gave the following representation for a T2
fuzzy set:

Definition 1 AT2 fuzzy set A is characterized by aT2membership functionμA(x, u),
for x ∈ X and u ∈ Jx ⊆ [0, 1], i.e. A = {((x, u), μA(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆
[0, 1]}, where 0 ≤ μA(x, u) ≤ 1.

Karnik et al. (2000) introduced the notion of an interval T2 fuzzy set. The interval
T2 fuzzy set is a special T2 fuzzy set, and Mendel et al. (2006) described its definition
as follows.

Definition 2 AT2 fuzzy set A is characterized by aT2membership functionμA(x, u).
If for ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1], μA(x, u) = 1, then A is an interval T2 fuzzy set.

The notion of an interval-valued fuzzy set was introduced by Zadeh (1975) and
Sambuc (1975), it is a particular case of interval T2 fuzzy sets. In Bustince et al.
(2014), the author used the following definition of an interval-valued fuzzy set. Let
us denote by L([0, 1]) = {[x, x] | (x, x) ∈ [0, 1]2 and x ≤ x} the set of all closed
subintervals of [0, 1].
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Definition 3 An interval-valued fuzzy set A on the universe X is a mapping A : X →
L([0, 1]) such that the membership degree of x is given by A(x) = [μ

A
(x), μA(x)] ∈

L([0, 1]), where μ
A

: X → [0, 1] and μA : X → [0, 1] define the lower and upper
bounds of the membership interval A(x), respectively.

We next recall some basic concepts in fuzzy possibility theory (Liu and Liu 2010).
Let P(�) be the power set on the universe �, and P̃os : P(�) �→ R([0, 1]) a fuzzy
possibility measure. The triplet (�,P(�), P̃os) is referred to as a fuzzy possibility
space. A map ξ = (ξ1, ξ2, . . . , ξn) : � �→ �n is called a T2 fuzzy vector. As n = 1,
the map ξ : � �→ � is usually called a T2 fuzzy variable. The secondary possibility
distribution function μ̃ξ (x) of the T2 fuzzy vector ξ is defined as

μ̃ξ (x) = P̃os{γ ∈ � | ξ(γ ) = x}, x ∈ �n, (1)

and the T2 possibility distribution function μξ (x, u) of ξ is defined as

μξ (x, u) = Pos{μ̃ξ (x) = u}, (x, u) ∈ �n × Jx , (2)

where Jx ⊂ [0, 1] is the support of μ̃ξ (x).
An interval T2 fuzzy variable is a special case of T2 fuzzy variables, and it is defined

as follows:

Definition 4 Assume that ξ is a T2 fuzzy variable with a T2 possibility distribution
function μξ (x, u). If for any x ∈ �, u ∈ Jx ⊆ [0, 1], μξ (x, u) = 1, then ξ is called
an interval T2 fuzzy variable.

If the secondary possibility distribution function μ̃ξ (x) is a subinterval of [0, 1], then
we have the following definition about a parametric interval-valued fuzzy variable.

Definition 5 Assume that ξ is a T2 fuzzy variablewith the secondary possibility distri-
bution function μ̃ξ (x). If for any x ∈ �, μ̃ξ (x) is a subinterval [μξ L (x; θl), μξU (x; θr )]
of [0, 1] with parameters θl , θr ∈ [0, 1], then ξ is called a parametric interval-valued
fuzzy variable.

Before ending this section, we give some explanations about the difference between
a parametric interval-valued fuzzy variable and an interval-valued fuzzy set.

(i) The interval-valued fuzzy set is a concept in set theory. The interval [μ
A
(x), μA

(x)] represents the membership degree that x belongs to the set A. The parametric
interval-valued fuzzy variable is a concept in possibility theory. The interval
[μξ L (x; θl), μξU (x; θr )] represents the possibility degree of an interval-valued
fuzzy variable ξ takes on the value x .

(ii) It is evident that the interval [μξ L (x; θl), μξU (x; θr )] with variable boundaries
is different from the interval [μ

A
(x), μA(x)] with fixed boundaries. In practi-

cal modeling process, the values of parameters θl and θr can be determined by
decision makers or generated randomly in some prescribed subintervals of [0, 1].
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(iii) For an interval-valued fuzzy set [μ
A
(x), μA(x)], the lower membership μ

A
(x)

and the upper membership μA(x) are often chosen as its representatives. We will
use theλ selection variable ξλ as the representative of a parametric interval-valued
fuzzy variable. Therefore, our method not only considers the lower possibility
distribution and upper possibility distribution corresponding to λ = 0 and λ = 1,
respectively, but also deals with the intermediate states corresponding to λ in the
open interval (0, 1).

3 The selections of parametric interval-valued fuzzy variables

In this section, we define the selection variables of parametric interval-valued fuzzy
variables, and give several common interval-valued fuzzy variables.

Definition 6 If ξ is a parametric interval-valued fuzzy variable with the secondary
possibility distribution μ̃ξ (x) = [μξ L (x; θl), μξU (x; θr )], then the fuzzy variable
described by the lower parametric possibility distribution μξ L (x; θl) is called the
lower selection ξ L of ξ . The fuzzy variable characterized by the upper parametric
possibility distribution μξU (x; θr ) is called the upper selection ξU of ξ .

Definition 7 Assume that ξ is a parametric interval-valued fuzzy variable with the
secondary possibility distribution μ̃ξ (x) = [μξ L (x; θl), μξU (x; θr )]. For any λ ∈
[0, 1], a fuzzy variable ξλ is called a λ selection of ξ provided that ξλ is characterized
by the following parametric possibility distribution

μξλ(x; θ) = (1 − λ)μξ L (x; θl) + λμξU (x; θr ), θ = (θl , θr ). (3)

In the following examples, we give five common parametric interval-valued fuzzy
variables, which will be used in the rest of the paper.

Example 1 Let r1 < r2 ≤ r3 < r4 be real numbers. Then a map ξ is called a paramet-
ric interval-valued trapezoidal fuzzy variable if its secondary possibility distribution
μ̃ξ (x) is the following subinterval

[
x − r1
r2 − r1

− θl min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

}
,
x − r1
r2 − r1

+ θr min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

}]

of [0, 1] for x ∈ [r1, r2], the interval [1, 1] for x ∈ [r2, r3], and the following subin-
terval
[
r4 − x

r4 − r3
− θl min

{
r4 − x

r4 − r3
,
x − r3
r4 − r3

}
,
r4 − x

r4 − r3
+ θr min

{
r4 − x

r4 − r3
,
x − r3
r4 − r3

}]

of [0, 1] for x ∈ [r3, r4], where θl , θr ∈ [0, 1] are two parameters characterizing the
degree of uncertainty that ξ takes on the value x . We denote the parametric interval-
valued trapezoidal fuzzy variable ξ with the above distribution by [r1, r2, r3, r4; θl , θr ].
If θl = θr = 0, then the corresponding secondary possibility distribution is called the
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principle possibility distribution of ξ , and the fuzzy variable characterized by the
principle possibility distribution is denoted by ξ p. Particularly, if r2 = r3, then ξ is
called a parametric interval-valued triangular fuzzy variable and usually denoted by
[r1, r2, r3; θl , θr ] with r1 < r2 < r3.

Example 2 Amap η is called a parametric interval-valued normal fuzzy variable if its
secondary possibility distribution μ̃η(x) is the following subinterval

[
exp

(
− (x − μ)2

2σ 2

)
− θl min

{
1 − exp

(
− (x − μ)2

2σ 2

)
, exp

(
− (x − μ)2

2σ 2

)}
,

exp

(
− (x − μ)2

2σ 2

)
+ θr min

{
1 − exp

(
− (x − μ)2

2σ 2

)
, exp

(
− (x − μ)2

2σ 2

)}]

of [0, 1] for any x ∈ �, where μ ∈ � and σ > 0. We denote the parametric interval-
valued normal fuzzy variable η with the above distribution by n(μ, σ 2; θl , θr ). If
θl = θr = 0, then the corresponding secondary possibility distribution is called the
principle possibility distribution of η, and the fuzzy variable characterized by the
principle possibility distribution is denoted by ηp.

Example 3 Amap ζ is called a parametric interval-valued Erlang fuzzy variable if its
secondary possibility distribution μ̃ζ (x) is the following subinterval

[(
x

κρ

)κ

exp

(
κ − x

ρ

)
− θl min

{
1 −

(
x

κρ

)κ

exp

(
κ − x

ρ

)
,

(
x

κρ

)κ

exp

(
κ − x

ρ

)}
,

(
x

κρ

)κ

exp

(
κ − x

ρ

)
+ θr min

{
1 −

(
x

κρ

)κ

exp

(
κ − x

ρ

)
,

(
x

κρ

)κ

exp

(
κ − x

ρ

)}]

of [0, 1] for any x ≥ 0, where ρ > 0 and κ ∈ N+. The parametric interval-valued
Erlang fuzzy variable ζ with the above distribution is denoted by Er(ρ, κ; θl , θr ).
If θl = θr = 0, then the corresponding secondary possibility distribution is called
the principle possibility distribution of ζ , and the fuzzy variable characterized by the
principle possibility distribution is denoted by ζ p. Particularly, if κ = 1, then ζ is
called a parametric interval-valued exponential fuzzy variable and usually denoted by
exp(ρ; θl , θr ).

4 Numerical characteristics of lambda selection variables

In this section, we establish some useful analytical expressions about the numeri-
cal characteristics of λ selections of the common parametric interval-valued fuzzy
variables.

4.1 Expected values of lambda selection variables

In the following, we derive the analytical expressions about the expected values of λ

selection variables.
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Theorem 1 Let ξ be the parametric interval-valued trapezoidal fuzzy variable
[r1, r2, r3, r4; θl , θr ], and ξλ its λ selection variable. Then the expected value of λ

selection variable ξλ is

E[ξλ] = r1 + r2 + r3 + r4
4

+ [λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)

8
.

Proof According to the definition of credibility measure (Liu and Liu 2002), we can
calculate that the λ selection variable ξλ has the following credibility distribution
function

Cr{ξλ ≥ x} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ≤ r1
2r2+[λθr−(1−λ)θl−1]r1−[1+λθr−(1−λ)θl ]x

2(r2−r1)
, r1 < x ≤ r1+r2

2
[2−λθr+(1−λ)θl ]r2−[1−λθr+(1−λ)θl ]x−r1

2(r2−r1)
, r1+r2

2 < x ≤ r2
1
2 , r2 < x ≤ r3
[λθr−(1−λ)θl−1]x−[λθr−(1−λ)θl ]r3+r4

2(r4−r3)
, r3 < x ≤ r3+r4

2
[1+λθr−(1−λ)θl ](r4−x)

2(r4−r3)
, r3+r4

2 < x ≤ r4
0, x > r4.

According to the definition of the expected value (Liu and Liu 2002), we have the
following computational result

E[ξλ] = r1 + r2 + r3 + r4
4

+ [λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)

8
,

which completes the proof of theorem. ��

Theorem 2 Letη be theparametric interval-valuednormal fuzzy variable n(μ, σ 2; θl ,

θr ), and ηλ its λ selection variable. Then the expected value of λ selection variable
ηλ is E[ηλ] = μ.

Proof By Example 2, we know that the λ selection variable ηλ has the following
parametric credibility distribution function

Cr{ηλ ≥ x} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−[1+λθr−(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)

2 , x ≤ μ − σ
√
2ln2

[2−λθr+(1−λ)θl ]−[1−λθr+(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)

2 , μ − σ
√
2ln2 < x ≤ μ

[1−λθr+(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)
+[λθr−(1−λ)θl ]

2 , μ < x ≤ μ + σ
√
2ln2

[1+λθr−(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)

2 , μ + σ
√
2ln2 < x .
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It follows from the above credibility distribution function that

E[ηλ] =
∫ +∞

0
Cr{ηλ ≥ x}dx −

∫ 0

−∞
Cr{ηλ ≤ x}dx = μ,

which completes the proof of theorem. ��
Theorem 3 Let ζ be the parametric interval-valued Erlang fuzzy variable Er(ρ,

κ; θl , θr ), and ζ λ its λ selection variable. Then the expected value of λ selection
variable ζ λ is

E[ζ λ] = κρ + ρ

κ∑
i=0

κ!
(κ − i)!κ

−i + [λθr − (1 − λ)θl ]
[(

x1 + x2
2

− κρ

)]

+ [λθr − (1 − λ)θl ]
(κ)κ(ρ)κ−1

×
[
exp

(
κ − x1

ρ

) κ∑
i=1

κ!
(κ − i)!ρ

i xκ−i
1 + exp

(
κ − x2

ρ

) κ∑
i=1

κ!
(κ − i)!ρ

i xκ−i
2

− ρκ
κ∑

i=0

κ!
(κ − i)!κ

−i

]
, (4)

where ρ > 0, κ ∈ N+, x1, x2 ∈ R+, and x1, x2 are the solutions of the equation(
x
κρ

)κ

exp
(
κ − x

ρ

)
= 1

2 .

Proof By Example 3, we obtain the following credibility distribution function of ζ λ,

Cr{ζ λ ≥ x}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
2 [1 + λθr − (1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
, 0 ≤ x ≤ x1

1 − 1
2 [1−λθr + (1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
− λθr−(1−λ)θl

2 , x1 < x ≤ κρ

1
2 [1 + λθr − (1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
+ λθr−(1−λ)θl

2 , κρ < x ≤ x2

1
2 [1 + λθr − (1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
, x > x2,

where x1, x2 ∈ R+, and x1, x2 are the solutions of the equation ( x
ρ
)κ exp

(
κ − x

ρ

)
=

1
2 .

Since the λ selection variable ζ λ is nonnegative, we have the following computa-
tional result

E[ζ λ] =
∫ +∞

0
Cr{ζ λ ≥ x}dx = κρ + ρ

κ∑
i=0

κ!
(κ − i)!κ

−i

+[λθr − (1 − λ)θl ]
[(

x1 + x2
2

− κρ

)]
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+ [λθr − (1 − λ)θl ]
(κ)κ(ρ)κ−1

[
exp

(
κ − x1

ρ

) κ∑
i=1

κ!
(κ − i)!ρ

i xκ−i
1

+ exp

(
κ − x2

ρ

) κ∑
i=1

κ!
(κ − i)!ρ

i xκ−i
2 − ρκ

κ∑
i=0

κ!
(κ − i)!κ

−i

]
,

which completes the proof of theorem. ��

4.2 Higher moments of lambda selection variables

Let ξλ be the λ selection variable of a parametric interval-valued fuzzy variable, and
μξλ(x; θ) its parametric possibility distribution with θ = (θl , θr ). The n-th moment
of ξλ is defined as the following L–S integral,

Mn[ξλ] =
∫

(−∞,+∞)

(x − E[ξλ])nd (Cr{ξλ ≤ x}) , (5)

where Cr{ξλ ≤ x} is the credibility distribution of ξλ and computed by

Cr{ξλ ≤ x} = 1

2

(
1 + sup

t≤x
μξλ(t; θ) − sup

t>x
μξλ(t; θ)

)
,

and the credibility distribution can generate a measure using the method discussed in
Liu and Liu (2014).

In the following, we derive the analytical expressions of the n-th moments for λ

selection variables.

Theorem 4 Let ξ be the parametric interval-valued trapezoidal fuzzy variable
[r1, r2, r3, r4; θl , θr ], and ξλ its λ selection variable. Then the n-th moment of λ selec-
tion variable ξλ is

Mn[ξλ] = 1 + λθr − (1 − λ)θl

23n+2(n + 1)

{
n+1∑
i=1

[
2r1 + 2r2 − 2r3 − 2r4

−[λθr − (1 − λ)θl)(r1 − r2 − r3 + r4)
]n+1−i

×
[
6r1 − 2r2 − 2r3 − 2r4 − [λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)

]i−1

+
n+1∑
i=1

[
6r4 − 2r1 − 2r2 − 2r3 − [λθr − (1 − λ)θl)(r1 − r2 − r3 + r4)

]n+1−i

×
[
2r3 + 2r4 − 2r1 − 2r2 − [λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)

]i−1
}
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+ 1 − λθr + (1 − λ)θl

23n+2(n + 1)

{
n+1∑
i=1

[
6r2 − 2r1 − 2r3 − 2r4

−[λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)
]n+1−i

×
[
2r1 + 2r2 − 2r3 − 2r4 − [λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)

]i−1

+
n+1∑
i=1

[
2r3 + 2r4 − 2r1 − 2r2 − [λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)

]n+1−i

×
[
6r3 − 2r1 − 2r2 − 2r4 − [λθr − (1 − λ)θl ](r1 − r2 − r3 + r4)

]i−1
}

.

Proof By calculation, the credibility distribution function of λ selection variable ξλ

is the following nondecreasing function

Cr{ξλ ≤ x} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ r1
[1+λθr−(1−λ)θl ](x−r1)

2(r2−r1)
, r1 < x ≤ r1+r2

2
[1−λθr+(1−λ)θl ]x+[λθr−(1−λ)θl ]r2−r1

2(r2−r1)
, r1+r2

2 < x ≤ r2
1
2 , r2 < x ≤ r3
[1−λθr+(1−λ)θl ]x+[λθr−(1−λ)θl−2]r3+r4

2(r4−r3)
, r3 < x ≤ r3+r4

2
[1−λθr+(1−λ)θl ]r4+[1+λθr−(1−λ)θl ]x−2r3

2(r4−r3)
, r3+r4

2 < x ≤ r4
1, x > r4.

If we denote the expected value of ξλ as m, then the n-th moment of λ selection
variable ξλ is computed by

Mn[ξλ] =
∫
(
r1,

r1+r2
2

)(x − m)nd

( [1 + λθr − (1 − λ)θl ](x − r1)

2(r2 − r1)

)

+
∫
(
r1+r2

2 ,r2
)(x − m)nd

( [1 − λθr + (1 − λ)θl ]x + [λθr − (1 − λ)θl ]r2 − r1
2(r2 − r1)

)

+
∫
(
r3,

r3+r4
2

)(x − m)nd

( [1 − λθr + (1 − λ)θl ]x + [λθr − (1 − λ)θl − 2]r3 + r4
2(r4 − r3)

)

+
∫
(
r3+r4

2 ,r4
)(x − m)nd

( [1 − λθr + (1 − λ)θl ]r4 + [1 + λθr − (1 − λ)θl ]x − 2r3
2(r4 − r3)

)
,

which equals the desired result. The proof of theorem is complete. ��

Theorem 5 Letη be theparametric interval-valuednormal fuzzy variable n(μ, σ 2; θl ,

θr ), and ηλ its λ selection variable. Then the n-th moment of λ selection variable ηλ

is
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Mn[ηλ] =

⎧⎪⎨
⎪⎩

[λθr − (1 − λ)θl ]σ n

n
2∑

i=1

n!!
(n−2)!! (

√
2ln2)n−2i , if n is an even number

0, if n is an odd number.

Proof From the expression of μηλ(x; θ) with θ = (θl , θr ), the credibility distribution
function of ηλ is the following nondecreasing function

Cr{ηλ ≤ x}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1+λθr−(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)

2 , x ≤ μ − σ
√
2ln2

[1−λθr+(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)
+[λθr−(1−λ)θl ]

2 , μ − σ
√
2ln2 < x ≤ μ

[2−λθr+(1−λ)θl ]−[1−λθr+(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)

2 , μ < x ≤ μ + σ
√
2ln2

2−[1+λθr−(1−λ)θl ] exp
(

− (x−μ)2

2σ2

)

2 , μ + σ
√
2ln2 < x .

If we denote the expected value of ηλ as m, then the n-th moment of ηλ is computed
by

Mn[ηλ] =
∫
(
−∞,μ−σ

√
2ln2

)(x − m)nd

(
1

2
[1 + λθr − (1 − λ)θl ] exp

(
− (x − μ)2

2σ 2

))

+
∫
(
μ−σ

√
2ln2,μ

)(x − m)nd

(
1

2
[1 − λθr + (1 − λ)θl ] exp

(
− (x − μ)2

2σ 2

)

+ 1

2
[λθr − (1 − λ)θl ]

)

+
∫
(
μ,μ+σ

√
2ln2

)(x − m)nd

(
1

2
[2 − λθr + (1 − λ)θl ]

− 1

2
[1 − λθr + (1 − λ)θl ] exp

(
− (x − μ)2

2σ 2

))

+
∫
(
μ+σ

√
2ln2,+∞

)(x − m)nd

(
1 − 1

2
[1 + λθr − (1 − λ)θl ] exp

(
− (x − μ)2

2σ 2

))
,

from which we have Mn[ηλ] = 0 provided that n is an odd number, and

Mn[ηλ] = [λθr − (1 − λ)θl ]σ n

n
2∑

i=1

n!!
(n − 2)!! (

√
2ln2)n−2i

provided that n is an even number. The proof of theorem is complete. ��
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Theorem 6 Let ζ be the parametric interval-valuedErlang fuzzy variableEr(ρ, κ; θl ,

θr ), and ζ λ its λ selection variable. Then the n-th moment of λ selection variable ζ λ

is

Mn[ζ λ] = [λθr − (1 − λ)θl ]
(κρ)κ

[
exp

(
κ − x1

ρ

) n∑
i=1

κ∑
s=1

n!
(n − i)! (x1 − m)n−i κ!

(κ − s)! x
κ−s
1 ρi+s

+ exp

(
κ − x2

ρ

) n∑
i=1

κ∑
s=1

n!
(n − i)! (x2 − m)n−i κ!

(κ − s)! x
κ−s
2 ρi+s

]
+ [1 − λθr + (1 − λ)θl ]

(κρ)κ

×
[

n∑
i=1

κ∑
s=1

n!
(n − i)! (κρ − m)n−i κ!

(κ − s)! (κρ)κ−sρi+s

]
,

where ρ > 0, κ ∈ N+, x1, x2 ∈ R+, x1, x2 are the solutions of the equation(
x
κρ

)κ

exp
(
κ − x

ρ

)
= 1

2 , and m = E[ζ λ] is given by Eq. (4).

Proof By the expression of μζλ(x; θ) with θ = (θl , θr ), the credibility distribution of
ζ λ is the following nondecreasing function

Cr{ζ λ ≤ x}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2 [1 + λθr − (1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
, 0 ≤ x ≤ x1

1
2 [1−λθr +(1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
+ λθr−(1−λ)θl

2 , x1 < x ≤ κρ

1 − 1
2 [1−λθr + (1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
− λθr−(1−λ)θl

2 , κρ < x ≤ x2

1 − 1
2 [1 + λθr − (1 − λ)θl ]

(
x
κρ

)κ

exp
(
κ − x

ρ

)
, x > x2.

where x1, x2 are the solutions of the equation
(

x
κρ

)κ

exp
(
κ − x

ρ

)
= 1

2 .

If we denote E[ζ λ] = m, then the n-th moment of ζ λ is computed by

Mn[ζ λ] =
∫

(0,x1)
(x − m)nd

(
1

2
[1 + λθr − (1 − λ)θl ]

(
x

κρ

)κ

exp

(
κ − x

ρ

))

+
∫

(x1,κρ)

(x − m)nd

(
1

2
[1 − λθr + (1 − λ)θl ]

(
x

κρ

)κ

exp

(
κ − x

ρ

)
+ λθr − (1 − λ)θl

2

)

+
∫

(κρ,x2)
(x − m)nd

(
1 − 1

2
[1 − λθr + (1 − λ)θl ]

(
x

κρ

)κ

exp

(
κ − x

ρ

)
− λθr − (1 − λ)θl

2

)

+
∫

(x2,+∞)

(x − m)nd

(
1 − 1

2
[1 + λθr − (1 − λ)θl ]

(
x

κρ

)κ

exp

(
κ − x

ρ

))
,

which equals the desired result. The proof of theorem is complete. ��
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4.3 Sums of parametric interval-valued fuzzy variables

In this subsection, we focus our attention on the sums or linear combinations of the
common parametric interval-valued fuzzy variables so that their numerical character-
istics can be calculated by the results obtained in Sects. 4.1 and 4.2.

Theorem 7 Suppose that ξ j = [r1 j , r2 j , r3 j , r4 j ; θl j , θr j ] are parametric interval-
valued trapezoidal fuzzy variables, and a j real numbers for j = 1, 2, . . . ,m.
If the principle possibility distributions of ξ j ’s are mutually independent, then
ξ = ∑m

j=1 a jξ j is the parametric interval-valued trapezoidal fuzzy variable
[r1, r2, r3, r4; θl , θr ], where the parameters θl = max1≤ j≤m θl j , θr = min1≤ j≤m θr j ,
and

r1 =
m∑
j=1

(a+
j r1 j − a−

j r4 j ), r2=
m∑
j=1

(a+
j r2 j − a−

j r3 j ), r3=
m∑
j=1

(a+
j r3 j − a−

j r2 j ),

r4 =
m∑
j=1

(a+
j r4 j − a−

j r1 j ) (6)

with a+
j = max{a j , 0}, and a−

j = max{−a j , 0}.
Proof By the definition of ξ j , its principle possibility distribution corresponds to
the trapezoidal fuzzy variable ξ

p
j = (r1 j , r2 j , r3 j , r4 j ). Since fuzzy variables ξ

p
j ’s

are mutually independent in the sense of (Liu and Gao 2007), their linear combina-
tion

∑m
j=1 a jξ

p
j also follows trapezoidal possibility distribution (r1, r2, r3, r4), where

r1, r2, r3 and r4 are determined by Eq. (6). Note that (r1, r2, r3, r4) is the principle pos-
sibility distribution of the parametric interval-valued fuzzy variable ξ = ∑m

j=1 a jξ j .
We next derive the secondary possibility distribution of ξ . For any x ∈ [r1, r2], there
exist real numbers x j ’s such that x =∑m

j=1 a j x j , and

P̃os{ξ = x} = [μ(a1ξ1)L (x1; θ1) ∧ · · · ∧ μ(amξm )L (xm; θm),

μ(a1ξ1)U (x1; θ1) ∧ · · · ∧ μ(amξm )U (xm; θm)],

where θ j = (θl j , θr j ). By the secondary possibility distribution ξ j , we have the fol-
lowing result

P̃os{ξ = x} =
[
x − r1
r2 − r1

− θl min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

}
,
x − r1
r2 − r1

+ θr min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

}]

where θl = max1≤ j≤m θl j and θr = min1≤ j≤m θr j . The proof of theorem is
complete. ��
Theorem 8 Suppose that η j = n(μ j , σ

2
j ; θl j , θr j ) are parametric interval-valued

normal fuzzy variables, and a j real numbers for j = 1, 2, . . . ,m. If the principle

123



268 Y. Liu, Y.-K. Liu

possibility distributions of η j ’s are mutually independent, then η =∑m
j=1 a jη j is the

parametric interval-valued normal fuzzy variable n(μ, σ 2; θl , θr )with the parameters
μ =∑m

j=1 aiμ j , σ =∑m
j=1 a jσ j , θl = max1≤ j≤m θl j and θr = min1≤ j≤m θr j .

Proof By the definition of η j , its principle possibility distribution corresponds to the
normal fuzzy variableη

p
j = n(μ j , σ

2
j ). Since fuzzy variables n(μ j , σ

2
j )’s aremutually

independent, their sum
∑m

j=1 a jη
p
j also follows normal distribution n(μ,σ

2), where
the parameters are determined by μ = ∑m

j=1 a jμ j , σ = ∑m
j=1 a jσ j . Note that the

normal distribution n(μ,σ
2) is the principle possibility distribution of the parametric

interval-valued fuzzy variable η =∑m
j=1 a jη j . In the following, we continue to derive

the secondary possibility distribution of η. For any x ∈ �, there exist real numbers
x j ’s such that x =∑m

j=1 a j x j , and

P̃os{η = x} = [μ(a1η1)L (x1; θ1) ∧ · · · ∧ μ(amηm )L (xm; θm),

μ(a1η1)U (x1; θ1) ∧ · · · ∧ μ(amηm )U (xm; θm)
]
,

where θ j = (θl j , θr j ). By the the secondary possibility distribution of η j , we have the
following result

P̃os{η = x} =
[
exp

(
− (x − μ)2

2σ 2

)
− θl min

{
1 − exp

(
− (x − μ)2

2σ 2

)
, exp

(
− (x − μ)2

2σ 2

)}
,

exp

(
− (x − μ)2

2σ 2

)
+ θr min

{
1 − exp

(
− (x − μ)2

2σ 2

)
, exp

(
− (x − μ)2

2σ 2

)}]
,

where θl = max1≤ j≤m θl j and θr = min1≤ j≤m θr j . The proof of theorem is
complete. ��
Theorem 9 Suppose that ζ j = Er(ρ j , κ; θl j , θr j ) are nonnegative parametric
interval-valued Erlang fuzzy variables, and a j nonnegative real numbers for j =
1, 2, . . . ,m. If the principle possibility distributions of ζ j ’s are mutually indepen-
dent, then ζ̃ = ∑m

j=1 a j ζ̃ j is the parametric interval-valued Erlang fuzzy variable
Er(ρ, κ; θl , θr ) with the parameters ρ = ∑m

j=1 a jρ j , θl = max1≤ j≤m θl j and
θr = min1≤ j≤m θr j .

Proof By the definition of ζ j , its principle possibility distribution corresponds to
the Erlang fuzzy variable ζ

p
j = Er(ρ j , κ). By the supposition of theorem, fuzzy

variables ζ
p
j ’s are mutually independent. Thus, for any nonnegative real numbers a j ,

the sum
∑m

j=1 a jζ
p
j also follows Erlang distribution Er(ρ, κ), where the parameter

ρ =∑m
j=1 a jρ j . Note that the Erlang distribution Er(ρ, κ) is the principle possibility

of the parametric interval-valued fuzzy variable ζ = ∑m
j=1 a jζ j . We next derive the

secondary possibility distribution of ζ . For any x ≥ 0, there exist real numbers x j ’s
such that x =∑m

j=1 a j x j , and

P̃os{ζ = x} = [μ(a1ζ1)L (x1; θ1) ∧ · · · ∧ μ(amζm )L (xm; θm),

μ(a1ζ1)U (x1; θ1) ∧ · · · ∧ μ(amζm )U (xm; θm)
]
,
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where θ j = (θl j , θr j ). By the secondary possibility distribution of ζ j , we have the
following result

P̃os{ζ = x} =
[(

x

κρ

)κ

exp

(
κ − x

ρ

)
− θl min

{
1 −

(
x

κρ

)κ

exp

(
κ − x

ρ

)
,

(
x

κρ

)κ

exp

(
κ − x

ρ

)}
,

(
x

κρ

)κ

exp

(
κ − x

ρ

)
+ θr min

{
1 −

(
x

κρ

)κ

exp

(
κ − x

ρ

)
,

(
x

κρ

)κ

exp

(
κ − x

ρ

)}]
,

where θl = max1≤ j≤m θl j and θr = min1≤ j≤m θr j . The proof of theorem is
complete. ��

5 Application of the proposed optimization indices

In this section, we apply the proposed optimization indices to a quantitative finance
problem.

5.1 A new portfolio optimization model

Every investor, from the individual to the professional fundmanager,must decide on an
appropriate mix of assets to include his investment portfolio. Given a set of potential
securities indexed from 1 to m, let ξ j denote the return in the next time period on
security j, j = 1, . . . ,m. In general, due to the impacts of the economic environment
and political factors, the return ξ j is uncertain and often modeled as a fuzzy variable
with a fixed possibility distribution. In many situations, however, the exact possibility
distribution of ξ j is unavailable due to the lack of historical data. In the present paper,
the return ξ j is described by a parametric interval-valued fuzzy variable with variable
lower and upper possibility distributions.

A portfolio is a set of nonnegative numbers x j , j = 1, . . . ,m, that sum to one.
The return one would obtain using a portfolio is represented as

∑m
j=1 x jξ j , and its λ

selection variable is denoted as (
∑m

j=1 x jξ j )
λ. The reward associated such a portfolio

is defined as the expected return E[(∑m
j=1 x jξ j )

λ]. Since investmentswith high reward
typically also carry a high level of risk, it is necessary to give an appropriate way to
define risk. We will define the risk associated with a portfolio of investments to be the
second moment M2[(∑m

j=1 x jξ j )
λ].

In the following, we assume that the return ξ j is the parametric interval-valued
triangular fuzzy variable [r1 j , r2 j , r3 j ; θl j , θr j ]. Given a portfolio x = (x1, . . . , xm)T ,
it follows from Theorem 7 that the sum

∑m
j=1 x jξ j is also a parametric interval-valued

triangular fuzzy variable. Thus, the expected value is computed by

E

⎡
⎢⎣
⎛
⎝ m∑

j=1

x j ξ j

⎞
⎠

λ
⎤
⎥⎦=

m∑
j=1

x j (r1 j +2r2 j +r3 j )

4
+

[λθr −(1 − λ)θl ]
m∑
j=1

x j (r1 j − 2r2 j + r3 j )

8
,

and the second moment is M2[(∑m
j=1 x jξ j )

λ] = 1
2r

T Qr , where r = (
∑m

j=1 x jr1 j ,∑m
j=1 x jr2 j ,

∑m
j=1 x jr3 j )

T , and the matrix Q is
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⎡
⎢⎢⎢⎣

−[λθr−(1−λ)θl ]2
32 + [λθr−(1−λ)θl ]

8 + 5
24

[λθr−(1−λ)θl ]2
16 − 1

12 −[λθr−(1−λ)θl ]2
32 − [λθr−(1−λ)θl ]

8 − 1
8

[λθr−(1−λ)θl ]2
16 − 1

12 −[λθr−(1−λ)θl ]2
8 + 1

6
[λθr−(1−λ)θl ]2

16 − 1
12

−[λθr−(1−λ)θl ]2
32 − [λθr−(1−λ)θl ]

8 − 1
8

[λθr−(1−λ)θl ]2
16 − 1

12 −[λθr−(1−λ)θl ]2
32 + [λθr−(1−λ)θl ]

8 + 5
24

⎤
⎥⎥⎥⎦ ,

with the parameters θl = max1≤ j≤m θl j and θr = min1≤ j≤m θr j .
It is easy to check that the matrix Q is positive semidefinite, so the second moment

M2[(∑m
j=1 x jξ j )

λ] is a parametric quadratic convex function with respect to r ∈ R3.
If we denote

R =
⎛
⎝ r11 r12 · · · r1m
r21 r22 · · · r2m
r31 r32 · · · r3m

⎞
⎠ ,

r = Rx and P = RT QR, then the second moment can be represented as 1
2 x

T Px .
In our portfolio selection problem, if an investor is looking for a portfolio with

minimum risk in the sense of moment, under prescribing a minimum acceptable level
φ of the expected return, then he may build the portfolio selection problem as a mean-
moment model. Based on the above analysis, the mean-moment model can be turned
into the following equivalent parametric quadratic convex programming problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min 1
2 x

T Px

s.t : 1
4

m∑
j=1

x j (r1 j + 2r2 j + r3 j ) + [λθr−(1−λ)θl ]
8

m∑
j=1

x j (r1 j − 2r2 j + r3 j ) ≥ φ

m∑
j=1

x j = 1

x j ≥ 0, j = 1, 2, . . . ,m,

(7)
where φ is the minimum expected return level that the investor can accept.

5.2 Computational results under interval-valued fuzzy returns

Solving model (7) requires knowledge of the possibility distributions of the returns ξ j
for j = 1, 2 . . . ,m. However, these possibility distributions are not known theoreti-
cally but instead should be estimated by the experts in the related fields. Assume that
the exact possibility distributions of security returns are unavailable and represented
by the interval-valued triangular fuzzy variables with variable lower and upper pos-
sibility distributions. Table 1 provides the variable possibility distributions about the
estimated returns of sixteen candidate securities.

In our numerical experiments, we first assume the decision makers prefer to set the
values of λ as 0, 0.5 and 1, and the values of parameters θl j and θr j , ( j = 1, 2, . . . , 16)
as

(θl1, θl2, . . . , θl16) = (0.8326, 0.2169, 0.3579, 0.9997, 0.7532, 0.5864, 0.4293,

0.6548, 0.8066, 0.1079, 0.6089, 0.3629, 0.5763, 0.3824, 0.7489, 0.4651),

123



The lambda selections of parametric interval-valued fuzzy… 271

Table 1 The variable possibility distributions of sixteen interval-valued fuzzy returns

Security j Interval-valued fuzzy return Security j Interval-valued fuzzy return

1 [0.850,1.199,1.439; θl1, θr1] 9 [1.105,1.464,1.777; θl9, θr9]

2 [0.856,1.195,1.455; θl2, θr2] 10 [1.108,1.482,1.780; θl10, θr10]

3 [0.889,1.288,1.489; θl3, θr3] 11 [1.105,1.489,1.785; θl11, θr11]

4 [1.033,1.322,1.658; θl4, θr4] 12 [1.124,1.591,1.793; θl12, θr12]

5 [1.021,1.326,1.663; θl5, θr5] 13 [1.207,1.543,1.889; θl13, θr13]

6 [1.067,1.356,1.692; θl6, θr6] 14 [1.192,1.576,1.874; θl14, θr14]

7 [1.035,1.384,1.690; θl7, θr7] 15 [1.195,1.588,1.884; θl15, θr15]

8 [1.073,1.412,1.745; θl8, θr8] 16 [1.249,1.564,1.981; θl16, θr16]

and

(θr1, θr2, . . . , θr16) = (0.3568, 0.8159, 0.2019, 0.6348, 0.3122, 0.0005, 0.3278,

0.1589, 0.7062, 0.059, 0.4128, 0.096, 0.1790, 0.4827, 0.1923, 0.088).

Thus θl = max1≤ j≤16 θl j = 0.9997, and θr = min1≤ j≤16 θr j = 0.0005.
We employ Lingo software to solve model (7). To further identify the influence of

parameter φ, several numerical experiments are conducted with various values of φ.
The computational results are reported in Tables 2, 3 and 4, respectively, from which
we observe that model (7) can provide a diversified investment to securities under
different values of model parameters θ , λ and φ.

In the modeling process, if decision makers cannot identify the values of model
parameters θ and λ, they may generate randomly the values of model parameters
from some subintervals in the interval [0, 1]. To demonstrate the influence of model
parameters in this case, we perform some new numerical experiments, in which the
parameter λ is generated randomly from the interval [0, 1], the parameters θl j are
generated randomly from the interval [0.2, 0.4], while the parameters θr j are generated
randomly from the interval [0.6, 0.8]. Table 5 reports the computational results, from
which we observe that model (7) can also provide a diversified investment to securities
with the values of model parameters are generated randomly.

5.3 Computational results under fuzzy returns

For the sake of comparison, we take the fixed possibility distributions as the principle
possibility distributions of the interval-valued fuzzy variables, which are obtained by
setting θl j = θr j = 0 in parametric possibility distributions collected in Table 1.

We solve our problem by Lingo software. To identify the influence of the expected
return level φ, we set the values of φ as 1.198, 1.268, 1.310, 1.346, 1.407, 1.482,
1.570 and 1.579. Table 6 summarizes the computational results about the optimal
allocations.
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5.4 Discussions

From the computational results in Sects. 5.2 and 5.3, we obtain the following obser-
vations.

(i) When the exact (fixed) possibility distributions of returns are available, we can
build our portfolio selection problem as a fuzzy optimization model. In this sit-
uation, the computational results reported in Table 6 may help the investor to
decide his optimal investments. For example, if the investor sets his expected
return level as 1.310, then the investor should allocate his asset to securities 1, 3,
6. If he desires to increase the expected return level as 1.570, then the investor
should select the securities 13, 15, and 16 as his optimal portfolio. However, if
the investor cannot obtain the exact possibility distributions of returns, then we
advise he not to adopt the obtained solutions to make his investments.

(ii) In the case that the exact (fixed) possibility distributions of returns are unavailable
in the modeling process, we presented a new robust fuzzy optimization method
to model the portfolio selection problem, where the returns are characterized by
variable possibility distributions. There are two types of parameters embedded
in variable possibility distributions. The parameter θ determines the lower bound
and upper bound of the variable possibility distribution and it characterizes the
degree of uncertainty of the returns take on their values, while the parameter λ

determines the location of the variable possibility distribution between the lower
and upper bounds. Given the values θl = 0.9997 and θr = 0.0005, Tables 2,
3 and 4 summarize the influence of location parameter λ as it takes the values
0, 0.5 and 1, respectively. From the computational results, we observe that the
optimal allocation proportions in our portfolio selection problem depend on the
values of λ. For example, when the expected return level φ is 1.346, the invested
securities corresponding to λ = 0 are 3 and 6; while the invested securities cor-
responding to λ = 0.5 and 1 become 3, 6 and 12. In some cases, even though the
invested securities are same, the investment proportions to them are different. As
a consequence, the computational results demonstrate the advantages of variable
possibility distributions over fixed possibility distributions.

(iii) In our variable possibility distributions, the variable lower and upper possibility
distributions are determined by the parameters θl j and θr j , respectively. After the
values of θl j and θr j are known, the location of the variable possibility distribution
is determined by the value of parameter λ. If decision makers cannot identify the
values of model parameters θl j , θr j and λ, theymay assume themodel parameters
follow uniform distributions in some prescribed subintervals of [0, 1], and gener-
ate their values randomly from the intervals. Thus, the variable boundaries in our
possibility distributions share some random characteristics. The computational
results reported in Table 5 support our arguments. From the above analysis, we
may conclude that our parametric optimization method is flexible for decision
makers to make their informed investment portfolio.
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6 Conclusions

In this paper, we studied T2 fuzzy theory from a new viewpoint by using variable
upper and lower possibility distributions. The major new results are summarized as
follows.

First, we defined the concept of parametric interval-valued fuzzy variable, where
the variable lower and upper possibility distributions are characterized by parameters.
For a parametric interval-valued fuzzy variable, we introduced its lower selection,
upper selection and λ selection variables.

Second, the proposed selection variables are characterized by parametric possibil-
ity distributions, their numerical characteristics are important optimization indices in
practical decision-making problems. We established some useful analytical expres-
sions of the expected values and n-th moments for the λ selections of the parametric
interval-valued trapezoidal, normal and Erlang fuzzy variables.

Third, we focused on the arithmetic of the parametric interval-valued trapezoidal
fuzzy variables, normal fuzzy variables and Erlang fuzzy variables. Based on the
obtained results, we can derive the analytical expressions about the numerical charac-
teristics of λ selections for the sums of the common parametric interval-valued fuzzy
variables.

Finally, we applied the proposed optimization indices to a portfolio selection prob-
lem, where the second moment is used to measure the risk of a portfolio. In the case
that the exact (fixed) possibility distributions of returns are unavailable in themodeling
process, the proposed parametric optimization method is flexible for decision makers
to make their informed investment portfolio. The computational results supported our
arguments and demonstrated the advantages of variable possibility distributions over
fixed possibility distributions.
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