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Abstract The current research concerns multiobjective linear programming prob-
lems with interval objective functions coefficients. It is known that the most credible
solutions to these problems are necessarily efficient ones. To solve the problems, this
paper attempts to propose a new model with interesting properties by considering the
minimax regret criterion. The most important property of the new model is attaining a
necessarily efficient solution as an optimal onewhenever the set of necessarily efficient
solutions is nonempty. In order to obtain an optimal solution of the new model, an
algorithm is suggested. To show the performance of the proposed algorithm, numerical
examples are given. Finally, some special cases are considered and their characteristic
features are highlighted.
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1 Introduction

Most real world optimization problems are inherently characterized by multiple and
conflicting objective functions. In this context, multiobjective linear programming
(MOLP) has an important role to formulate many real world problems. Due to its
extensive usage in many fields of science, MOLP has been an important topic of
research since the 1960s (Ehrgott et al. 2007). From the numerous relevant publications
inMOLPwe justmention onebook (Ehrgott 2005),wheremost of the theoretical issues
concerningMOLP are comprehensively treated. In conventional MOLP problems, the
coefficients are assumed to be deterministic. However, there aremany situations where
the coefficients are not exactly known. Interval programming is one of the approaches
for tackling uncertainty in MOLP problems. Since interval programming does not
require the specifications or the assumptions which are needed in the other methods
such as fuzzy or stochastic programming (Oliveira and Antunes 2007), it has attracted
many researchers’ attention (Hladík 2013, 2014; Ishibuchi and Tanaka 1990). Interval
programming approach models the uncertain coefficients by closed intervals. Indeed,
determining the closed intervals for uncertain parameters is not a difficult task for the
decision maker. A survey on interval linear programming is given by Hladík (2012).

Bitran (1980) discussed MOLP problems with interval objectives coefficients and
introduced two kinds of efficient solutions, possibly and necessarily efficient solu-
tions. Inuiguchi and Kume (1991) considered optimistic and pessimistic attitudes of
the decision maker to find a compromise solution via the goal programming approach.
In this context, they formulated and solved four kinds of goal programming problems
with interval coefficients in which the target values were also assumed to be closed
intervals. Urli and Nadeau (1992) used an interactive method to solve MOLP prob-
lems with interval coefficients. Oliveira and Antunes (2007) provided an overview of
MOLP problems with interval coefficients by illustrating some numerical examples.
They also proposed an interactivemethod (Oliveira andAntunes 2009).Wu (2009) pro-
posed some solution concepts for amultiobjective programming problemwith interval
objectives coefficients. In fact, these solution concepts follow from some ordering
relationships between two closed intervals and the efficiency concept in conventional
multiobjective programming. Under these settings, Wu derived the Karush–Kuhn–
Tucker optimality condition.

Necessarily efficient solutions are the most important solutions to an MOLP prob-
lem with interval objective functions coefficients, since they are efficient for all values
within the interval data. Bitran (1980) proposed a test for recognizing such solutions.
Inuiguchi and Sakawa (1996) discussed some basic properties and theoretical foun-
dations for necessarily efficient solutions. Hladík (2010) stated some test problems
to distinguish such solutions. A sufficient condition for checking necessarily efficient
solutions was proposed in Hladík (2008). In spite of the importance of such kinds of
solutions, Hladík (2012) proved that checking necessarily efficiency is a co-NP-hard
problem. This means that it is computationally difficult problem, and we can hardly
hope for a simple method. Here we should point out a relation to robust optimization
(Ben-Tal et al. 2009) since necessarily efficient solutions can be viewed as robust
solutions.
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The concept of maximum regret has long been proposed as a criterion for making
decision under uncertainty (Mausser and Laguna 1998). Inuiguchi and Sakawa (1995)
applied the concept of maximum regret to introduce the minimax regret approach to
a linear programming problem with a single interval objective function. The concept
of maximum regret recently was used by Rivaz and Yaghoobi (2013) to deal with
MOLP problemswith interval objectives coefficients. Other researchers, also used this
approach to solve real world problems. For example, Dong et al. (2011) incorporated
interval linear programming and the minimax regret approach to support the power
management systems planning. Also, Loulou andKanudia (1999) proposed aminimax
regret strategy for greenhouse gas abatement in Canada.

The aim of this paper is to propose a new model for solving multiobjective linear
programming problemswith interval objective functions coefficients. These problems,
for simplicity reasons, are called intervalMOLP problems. The newmodel is based on
themaximum regret criterion. Actually, it is attempted to construct the newmodel such
that it yields a necessarily efficient solution whenever the set of necessarily efficient
solutions is nonempty. Moreover, the proposed model has other nice properties. For
instance, when the set of necessarily efficient solutions is empty, the newmodel attains
at least a possibly weak efficient. Further, an algorithm is suggested for solving the
new model.

Rest of the paper is organized as follows. In Sect. 2, an interval MOLP problem
and some preliminaries are discussed. Section 3 investigate the new model and its
properties. An algorithm is presented in Sect. 4 to obtain an optimal solution of the
proposedmodel.Moreover, a numerical example for testing the validity of the proposed
algorithm is given. Section 5 discusses a special case in an interval MOLP problem.
Finally, Sect. 6 is devoted to conclusion.

2 Preliminaries

An MOLP problem can be formulated as follows:

max Cx = (c1x, . . . , cpx)
t ,

s.t. x ∈ X = {x ∈ R
n|Ax ≤ b, x ≥ 0}, (1)

where ci x = ∑n
j=1 ci j x j is a linear real-valued objective function for i = 1, . . . , p.

Thus, C is a p × n matrix with each row of the form ci = (ci1, . . . , cin) for i =
1, . . . , p. A is anm×n matrix, b ∈ R

m is the right hand side vector, and x ∈ R
n is the

vector of variables. The superscript t over a vector or matrix denotes the transpose.
Consider two vectors A = (a1, . . . , ap)t and B = (b1, . . . , bp)t in R

p. Then:

– A � B if ai ≥ bi for i = 1, . . . , p and there is at least one 1 ≤ q ≤ p with
aq > bq .

– A � B if ai ≥ bi for i = 1, . . . , p.
– A � B if ai > bi for i = 1, . . . , p.

Definition 1 (Ehrgott 2005) For Problem (1), a solution x0 ∈ X is:

– efficient if there is no x ∈ X such that Cx � Cx0.
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240 S. Rivaz et al.

– weak efficient if there is no x ∈ X such that Cx � Cx0.
– strict efficient if there is no x ∈ X such that x �= x0 and Cx � Cx0.
– ideal (complete optimal) if ci x0 ≥ ci x for i = 1, . . . , p and for all x ∈ X .

We consider an interval MOLP problem as follows:

max Z(x) = Cx,

s.t. x ∈ X = {x |Ax ≤ b, x ≥ 0}, (2)

where C ∈ Ψ and Ψ is a set of p × n matrices, with each row of the form ci ,
whose generic elements are ci j ∈ [cli j , cui j ] for i = 1, . . . , p, j = 1, . . . , n. In fact,
by using interval arithmetic (Moore et al. 2009), Z(x) = (c1x, . . . , cpx)t where
ci x = ∑n

j=1[cli j , cui j ]x j for i = 1, . . . , p.
Problem (2) converts to a traditional MOLP problem if C is a fixed p × n matrix.

In MOLP, efficient and weak efficient solutions are the most desirable ones (Ehrgott
2005). Indeed, an efficient solution is an element of the feasible region that cannot
improve some objective functions without sacrificing others. Also, a solution that
cannot improve all the objective functions simultaneously is a weak efficient solution.
With regard to these concepts, some kinds of solutions are defined to Problem (2)
(Bitran 1980; Hladík 2010; Oliveira and Antunes 2007; Rivaz and Yaghoobi 2013).

Definition 2 (Bitran 1980; Rivaz and Yaghoobi 2013) For Problem (2), a solution
x0 ∈ X is:

– necessarily efficient if it is efficient for any C ∈ Ψ .
– possibly efficient if it is efficient for at least one C ∈ Ψ .
– possibly weak efficient if it is weak efficient for at least one C ∈ Ψ .

The set of all necessarily efficient, possibly efficient, and possibly weak efficient
solutions of Problem (2) are denoted by NE , PE , and PWE , respectively. In what
follows, the set Λi , i = 1, . . . , p, is:

Λi =
{
ci = (ci1, . . . , cin)| ci j = cli j or ci j = cui j , j = 1, . . . , n

}
. (3)

It is clear that the number of elements of Λi , |Λi | = qi , is at most 2n (qi ≤ 2n).

Theorem 1 (Rivaz and Yaghoobi 2013) Consider the following MOLP problem:

max
x∈X

(
c11x, c

2
1x, . . . , c

q1
1 x, c12x, c

2
2x, . . . , c

q2
2 x, . . . , c1px, c

2
px, . . . , c

qp
p x

)
, (4)

where cki , k = 1, . . . , qi , are all elements of Λi , i = 1, . . . , p. A solution is possibly
weak efficient to Problem (2) if and only if it is weak efficient to Problem (4).

Theorem 2 (Rivaz and Yaghoobi 2013) A solution is possibly efficient to Problem (2)
if it is efficient to Problem (4).
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3 Main results

The minimax regret criterion tries to avoid regrets that may result from making a
non-optimal solution and is a conservative criterion. It is one of the more credible
criteria for selecting decisions under uncertainty. A treatment of linear programming
problems with an interval objective function using the minimax regret criterion was
firstly proposed by Inuiguchi and Sakawa (1995). Rivaz and Yaghoobi (2013) also
applied the minimax regret criterion to solve interval MOLP problems. Some prop-
erties of their method are investigated in Rivaz and Yaghoobi (2013). Actually, they
generalized the idea of Inuiguchi and Sakawa (1995) to deal with interval MOLPs.

In an interval MOLP problem, a suitable solution should be selected among the
elements of NE , PE , or at least PWE . Since these sets may contain infinite number of
elements, it is necessary to use a convenient method.

We suggest a minimax weighted regret criterion, in which all feasible solutions,
objective functions and uncertain coefficients are considered, as a useful approach
for dealing with interval MOLP’s. To realize more precisely the motivation for the
minimax weighted regret approach, consider a fixed C ∈ Ψ and given feasible solu-
tions x0, y0 ∈ X of the Problem (2). Suppose that Cy0 � Cx0, which means that y0

is better than x0 with respect to C . Define max1≤i≤p wi (ci y0 − ci x0) as a weighted
regret of x0 related toC and y0, wherewi is the preferential weight associated with the
i th objective function. Obviously, the weighted regret of x0 will be changed when C
changes in Ψ and y0 changes in X . Consequently, a solution can be a good candidate
to Problem (2) if it has a minimum weighted regret according to all feasible solutions
and all matrices in Ψ . This is investigated as minimax weighted regret criterion for
obtaining a reasonable solution of an interval MOLP problem.

Inwhat follows, an attempt is beingmade to explicitly propose the suggestedmethod
based onminimax weighted regret criterion. To obtain the newmodel, consider a fixed
objective functions coefficients matrix C = (c1, . . . , cp)t ∈ Ψ and a given feasible
solution x ∈ X of Problem (2). Similar to what has been done in Rivaz and Yaghoobi
(2013), the weighted regret corresponding to C and x can be stated as:

r(x,C) = max{wici (y − x)| y ∈ X, i = 1, . . . , p}, (5)

where w = (w1, . . . , wp) with wi > 0, i = 1, . . . , p, is the vector of weights
according to p objective functions.

Recall that checking x ∈ NE for a given feasible solution x ∈ X is a co-NP-
hard problem (Hladík 2012). Thus, deciding whether NE �= ∅, or even computing a
necessarily efficient solution is not less difficult problem. On the other hand, neces-
sarily efficient solutions are of interest since they remain efficient for any admissible
perturbation of coefficients in the objective functions. In order to combine positive
properties of both maximum regret and necessary efficiency approaches, we introduce
a modified weighted regret function

r ′(x,C) = max{wici (y − x)| y ∈ X,C(y − x) � 0, i = 1, . . . , p}. (6)
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For a given x ∈ X , sinceC can vary inΨ , themaximumvalue of themodifiedweighted
regret (6) is

R′(x) = max{wici (y − x)| y ∈ X,C ∈ Ψ,C(y − x) � 0, i = 1, . . . , p}. (7)

Due to the minimax weighted regret criterion, a solution with the minimum R′ is
the desirable one. Therefore, solving the following model is suggested to obtain a
convenient solution of the interval MOLP Problem (2).

V = min
x∈X R′(x) = min

x∈X max{wici (y − x)|y ∈ X,C ∈ Ψ,C(y − x) � 0,

i = 1, . . . , p}. (8)

In the sequel, some new results related to Problems (2) and (8) are presented.

Theorem 3 The set of necessarily efficient solutions of Problem (2) is nonempty
(NE �= ∅) if and only if the optimal value of Problem (8) is zero.

Proof Let V ∗ = wkc∗
k(y

∗ − x∗) be the optimal value of Problem (8). Firstly, suppose
that NE �= ∅. Thus, there exists x̂ ∈ NE which means ∀ C̄ ∈ Ψ , � x̄ ∈ X : C̄ x̄ � C̄ x̂ .
On the contrary, suppose that V ∗ �= 0. Then, V ∗ = wkc∗

k(y
∗ − x∗) > 0. Since x∗

is an optimal solution of Problem (8), it can be concluded that max{wici (y − x̂)|y ∈
X,C ∈ Ψ,C(y − x̂) � 0, i = 1, . . . , p} ≥ wkc∗

k(y
∗ − x∗) > 0. Hence, there exists

ŷ ∈ X and Ĉ ∈ Ψ with Ĉ(ŷ− x̂) � 0 such that max1≤i≤p wi ĉi (ŷ− x̂) > 0. Therefore,
Ĉ ŷ � Ĉ x̂ that means x̂ /∈ NE , which is a contradiction.

Conversely, suppose that V ∗ = wkc∗
k(y

∗ − x∗) = 0 and on the contrary, NE =
∅. Thus, x∗ /∈ NE and there exists Ĉ and x̂ such that Ĉ x̂ � Ĉx∗. It implies that
max{wici (y − x∗)|y ∈ X,C ∈ Ψ,C(y − x∗) � 0, i = 1, . . . , p} > 0, which is a
contradiction. �

Corollary 1 The set of necessarily efficient solutions is empty (NE = ∅) if and only
if the optimal value of Problem (8) is positive.

The following example illustrates that a direct analogy of Theorem 3 does not hold
for the classical maximum regret approach.

Example 1 Consider the interval MOLP problem

max z1(x) = x1 + [0, 1]x2,
max z2(x) = −x1 + [0, 1]x2,
s.t. x ∈ X,

where

X = {(x1, x2)T | x1 ≥ 0, x2 ≥ 0, x1 ≤ 1, x2 ≤ 1}.

Herein, x0 = (1, 1)T is a necessarily efficient solution since the weighted sum scalar-
ization 2z1(x)+ z2(x) yields x0 as an optimal solution for each realization of interval
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coefficients, or, from another perspective, the optimal value of (8) is 0. On the other
hand, if we remove the constraint C(y − x) � 0 from the formulation of (8), then
the optimal value will be positive. Even for the realization z1(x) = x1 + x2 and
z2(x) = −x1 + x2, the maximum regret will be at least 0.5 for each feasible solution.

Theorem 4 Problem (8) is equivalent to the following problem:

V = min
x∈X max{wici (y − x)|y ∈ X,C ∈ Λ,C(y − x) � 0, i = 1, . . . , p}, (9)

where

Λ = {C = (c1, . . . , cp)t |ci ∈ Λi , i = 1, . . . , p}. (10)

Proof It is sufficient to show that v1 = v2, where

v1 = max{wici (ŷ − x̂)|C ∈ Ψ,C(ŷ − x̂) � 0, i = 1, . . . , p},
v2 = max{wici (ŷ − x̂)|C ∈ Λ,C(ŷ − x̂) � 0, i = 1, . . . , p},

when x̂, ŷ ∈ X are given. It is clear that v2 ≤ v1. On the other hand, suppose
that v1 = wk ĉk(ŷ − x̂) where Ĉ = (ĉ1, . . . , ĉp)t ∈ Ψ with Ĉ(ŷ − x̂) � 0. Since
cli j ≤ ĉi j ≤ cui j for j = 1, . . . , n, i = 1, . . . , p, we have:

{
0 ≤ wi ĉi j (ŷ j − x̂ j ) ≤ wi cui j (ŷ j − x̂ j ) if ŷ j − x̂ j ≥ 0,

0 ≤ wi ĉi j (ŷ j − x̂ j ) ≤ wi cli j (ŷ j − x̂ j ) if ŷ j − x̂ j < 0, i = 1, . . . , p.

For i = 1, . . . , p, j = 1, . . . , n, define:

c′
i j =

{
cui j if ŷ j − x̂ j ≥ 0,

cli j if ŷ j − x̂ j < 0.

It is obvious that C ′ = (c′
1 = (c′

11, . . . , c
′
1n), . . . , c

′
p = (c′

p1, . . . , c
′
pn))

t ∈ Λ. More-
over, C ′(ŷ − x̂) � 0 and v1 = wk ĉk(ŷ − x̂) ≤ wkc′

k(ŷ − x̂) ≤ v2. Hence, v1 = v2
and the proof is complete. �

Theorem 5 If x∗ is an optimal solution of Problem (8)with V ∗ = wkc∗

k(y
∗−x∗) > 0,

then x∗ ∈ PWE .

Proof On the contrary, suppose that x∗ /∈ PWE . Thus, by Theorem 1, x∗ is not a
weakly efficient solution of Problem (4), i.e.

∃ x̄ ∈ X : cki x̄ > cki x
∗, ∀ k = 1, . . . , qi , i = 1, . . . , p.

It can be concluded that for an arbitrary C = (c1, . . . , cp)t ∈ Λ we have:

ci (y − x∗) > ci (y − x̄), ∀ y ∈ X, i = 1, . . . , p.
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Therefore,

max{wi ĉi (y − x∗)| i = 1, . . . , p} > max{wi ĉi (y − x̄)| i = 1, . . . , p} ∀ y ∈ X.

(11)

Now, suppose that:

max{wici (y − x∗)| y ∈ X,C ∈ Λ,C(y − x∗) � 0, i = 1, . . . , p}
= {wic∗

i (y
∗ − x∗)| i = 1, . . . , p}, (12)

and

max{wici (y − x̄)| y ∈ X,C ∈ Λ,C(y − x̄) � 0, i = 1, . . . , p}
= {wi c̄i (ȳ − x̄)| i = 1, . . . , p}, (13)

where C∗(y∗ − x∗) � 0 and C̄(ȳ − x̄) � 0. Indeed, (C∗, y∗) and (C̄, ȳ) are optimal
solutions of Problems (12) and (13), respectively. By considering (11) and the fact
that {C ∈ Λ| C(ȳ − x̄) � 0} ⊆ {C ∈ Λ| C(ȳ − x∗) � 0}, it can be written that:

max{wici (y − x∗)| y ∈ X,C ∈ Λ,C(y − x∗) � 0, i = 1, . . . , p}
= max{wici (y∗ − x∗)| C ∈ Λ,C(y∗ − x∗) � 0, i = 1, . . . , p}
≥ max{wici (ȳ − x∗)| C ∈ Λ,C(ȳ − x∗) � 0, i = 1, . . . , p}
> max{wici (ȳ − x̄)| C ∈ Λ,C(ȳ − x∗) � 0, i = 1, . . . , p}
≥ max{wici (ȳ − x̄)| C ∈ Λ,C(ȳ − x̄) � 0, i = 1, . . . , p}
= max{wici (y − x̄)| y ∈ X,C ∈ Λ,C(y − x̄) � 0, i = 1, . . . , p}.

Consequently,

max{wici (y − x∗)| y ∈ X,C ∈ Λ,C(y − x∗) � 0, i = 1, . . . , p}
> max{wici (y − x̄)| y ∈ X,C ∈ Λ,C(y − x̄) � 0, i = 1, . . . , p},

which is a contradiction to the fact that x∗ is an optimal solution of Problem (8). �

Theorem 6 If x∗ is a unique optimal solution of Problem (8) with V ∗ = wkc∗

k(y
∗ −

x∗) > 0, then x∗ ∈ PE .

Proof By considering Theorem 2, the proof is similar to that of Theorem 5. �


4 An algorithm

In this section, we propose an algorithm for solving Problem (8). To this end, firstly,
Problem (8) is transformed into an optimization problem with an infinite number of
constraints by use of a new variable σ as follows:
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min σ, (14)

s.t. max
1≤i≤p

wici (y − x) ≤ σ, ∀y ∈ X, ∀C ∈ Ψ if C(y − x) � 0, (15)

x ∈ X = {x |Ax ≤ b, x ≥ 0}, σ ≥ 0. (16)

This problem belongs to the class of semi-infinite programming problems (Goberna
and López 2002; López and Still 2007), however, for its very specific structure, it is
more convenient to investigate it directly.

A useful way to find a solution for Problems (14–16) is to solve a series of the
following relaxed version of the problem:

min σ, (17)

s.t. max
1≤i≤p

wichi (y
h − x) ≤ σ, h = 1, . . . , k if Ch(yh − x) � 0, (18)

x ∈ X, σ ≥ 0, (19)

where yh and Ch , h = 1, . . . , k, are some special choices in X and Ψ , respectively.

Proposition 1 Let (xk, σ k) be an optimal solution of Problems (17–19), and feasible
for Problems (14–16). Then it is optimal for Problems (14–16) and xk is an optimal
solution to the original Problem (8).

Proof It follows from the fact that the constraint (15) implies (18). �

Let (xk, σ k) be an optimal solution of Problems (17–19). If (xk, σ k) is feasible

for Problems (14–16), then xk is an optimal solution to the original Problem (8)
by Proposition 1. Otherwise, if (xk, σ k) is not feasible for Problems (14–16), then
there exists at least one constraint violated by (xk, σ k) among the infinite number of
constraints (15). In this case, the most violated constraint (i.e., the constraint giving
the maximum regret of xk) among those is generated and is added to the constraints
of the Problems (17–19). Then the updated problem, by setting k := k + 1, should
be solved. The test for feasibility (i.e. whether the optimal solution (xk, σ k) of the
Problems (17–19) is feasible for Problems (14–16) or not) and the generation of the
most violated constraint can be accomplished as:

– If max1≤i≤p wici (y − xk) ≤ σ k for all y ∈ X and for all C ∈ Ψ whenever

C(y − xk) � 0 then (xk, σ k) is feasible for constraint (15).
– If not max1≤i≤p wici (y − xk) ≤ σ k for all y ∈ X and for all C ∈ Ψ whenever

C(y − xk) � 0 then by solving max{wici (y − xk)|y ∈ X,C ∈ Ψ,C(y − xk) �
0, i = 1, . . . , p}, the most violated constraint can be obtained. The new constraint
is added to the k constraints in (18) to make the updated problem.

Algorithm 4.1:

Input An instance of an interval MOLP problem and the weights of objective
functions wi , i = 1, . . . , p.
Step 1 Solve the linear programming problems maxx∈X cui x where cui =
(cui1, . . . , c

u
in), i = 1, . . . , p. Suppose an optimal solution of the i th problem
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is xi∗, i = 1, . . . , p, and cui0x
i0∗ = max1≤i≤p cui x

i∗. Then choose y1 and C1 as

xi0∗ and Cu = (cu1, . . . , c
u
p)

t , respectively.
Step 2 Set k = 2, σ 1 = 0 and x1 = y1.
Step 3 Solve the following problem:

max
{
wici (y − xk−1)|y ∈ X,C ∈ Ψ,C(y − xk−1) � 0, i = 1, . . . , p

}
.

(20)

Suppose (yk,Ck) and Φk−1 are an optimal solution and the optimal value of
Problem (20), respectively.
Step 4 If Φk−1 ≤ σ k−1, then stop. In this case, xk−1 is an optimal solution of
Problem (8).
Step 5 Solve the following problem:

min σ,

s.t. max
1≤i≤p

wichi (y
h − x) ≤ σ, h = 1, . . . , k, if Ch(yh − x) � 0,

x ∈ X, σ ≥ 0. (21)

Let (xk, σ k) be an optimal solution of Problem (21). Set k := k + 1 and return to
Step 3.
Output An optimal solution of Problem (8).

In Algorithm 4.1, after solving p linear programming problems, y1 and C1 are easily
determined in Step 1. To solve Problem (20) in Step 3, we suggest solving p mixed
integer programming problems when X is nonempty and bounded. By Hladík (2012)
and Hladík (2013), the i th problem of (20),

max
{
wici (y − xk−1)|y ∈ X,C ∈ Ψ,C(y − xk−1) � 0

}
,

is equivalent to

max
{
wicci (y − xk−1) + wic�

i |y − xk−1| : y ∈ X,Cc(y − xk−1)

+C�|y − xk−1| � 0
}

, (22)

where cci = 1
2 (c

l
i +cui ) and c

�
i = 1

2 (c
u
i −cli ) (cui = (cui1, . . . , c

u
in), c

l
i = (cli1, . . . , c

l
in))

are the center and the radius of ci , respectively. Moreover, Cc = (cc1, . . . , c
c
p)

t and
C� = (c�

1 , . . . , c�
p )t . Considering newvariablesui = |y−xk−1|, (22) can be rewritten

as:

max
{
wicci (y − xk−1) + wic�

i u
i | y ∈ X,Cc(y − xk−1) + C�ui � 0,

ui = |y − xk−1|
}

.
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Thus, according to the i th problem, the following model should be solved:

max zi = wicci (y
i − xk−1) + wic�

i u
i ,

s.t. cci (y
i − xk−1) + c�

i u
i ≥ 0, i = 1, . . . , p, (23)

uij ≤ (yij − xk−1
j ) + bij M, j = 1, . . . , n,

uij ≤ −(yij − xk−1
j ) + (1 − bij )M, j = 1, . . . , n,

uij ≥ 0, j = 1, . . . , n,

bij ∈ {0, 1}, j = 1, . . . , n,

yi ∈ X,

where M is a sufficiently large constant. Since (23) is a maximization problem, uij ,

j = 1, . . . , n, tends to be as large as possible. Whenever yij ≥ xk−1
j , the largest value

for uij is y
i
j−xk−1

j . In this case, bij = 0.On the other hand,when yij < xk−1
j , the largest

value for uij is −(yij − xk−1
j ). In this case, bij = 1. Now, suppose zi∗ is the optimal

value of Problem (23). Let zt = max1≤i≤p zi∗, then in Step 3 consider yk = yt ,
Φk−1 = zt , and Ck = (ck1, . . . , c

k
p)

t where for every i = 1, . . . , p, j = 1, . . . , n,

cki j =
⎧
⎨

⎩

cui j if ykj − xk−1
j ≥ 0,

cli j if ykj − xk−1
j < 0.

Actually, the optimal value of Problem (20),Φk−1, is the maximum value of the modi-
fied weighted regret of the feasible solution xk−1. Now, suppose max1≤i≤p wicki (y

k −
xk−1) = Φk−1. Then the maximum value of the modified weighted regret of xk−1 can
be obtained by choosing Ck ∈ Ψ and yk ∈ X .

For solving the i th Problem of (20), the method proposed by Mausser and Laguna
(1998), can also be used. But our suggested method is more efficient because it needs
less variables.

According to Step 4, if Φk−1 ≤ σ k−1 then xk−1 is an optimal solution of Prob-
lem (8) since all constraints in (15) are satisfied and the minimum objective value is
attained. Otherwise, if Φk−1 > σ k−1, then all constraints in (15) are not satisfied by
the computed solution (xk−1,σ k−1). In other words, (xk−1,σ k−1) is not feasible for
Problems (14–16). Therefore, Problems (17–19) has to be updated.More explicitly, yk

and Ck obtained in Step 3 are added to Problem (18). Thus, the number of constraints
in the relaxed version of Problems (14–16), i.e., Problems (17–19), is increased. The
new constraint is

max
1≤i≤p

wicki (y
k − x) ≤ σ, if Ck(yk − x) � 0,

which is named as the most violated constraint.
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Finally, Problem (21) in Step 5 is discussed. In order to solve Problem (21), we
suggest solving a mixed integer linear program. To do that, let h be fixed. From (21),
we need the following implication:

chi (y
h − x) � 0 ∀ i = 1, . . . , p ⇒ wichi (y

h − x) ≤ σ ∀ i = 1, . . . , p, (24)

which is equivalent to

(∃ 1 ≤ i ≤ p : chi (y
h − x) < 0) ∨ (wichi (y

h − x) ≤ σ ∀ i = 1, . . . , p), (25)

where a∨b means a or b. We can rewrite (25) as:

(
(ch1(y

h − x) < 0)∨ · · · ∨(chp(y
h − x) < 0)

)
∨ (wichi (y

h − x)

≤ σ ∀ i = 1, . . . , p). (26)

Next, (26) is linearized by using p binary variables bhi , i = 1, . . . , p, as follows:

chi (y
h − x) < Kbhi , i = 1, . . . , p, (27)

wichi (y
h − x) ≤ σ + K

⎛

⎝p −
p∑

j=1

bhj

⎞

⎠ , i = 1, . . . , p, (28)

where K is a sufficiently large constant. If bhi = 0 for some i = 1, . . . , p, chi (y
h −

x) < 0 holds true [by (27)]. When bhi = 1 for all i = 1, . . . , p, then from (28),
wichi (y

h−x) ≤ σ , i = 1, . . . , p, must be satisfied. To get ride of the strict inequalities,
(27) can be written as:

chj (y
h − x) ≤ Kbhj − ε′,

where ε is a sufficiently small positive number. Thus, the final mixed integer linear
program for solving Problem (21) in Step 5 of Algorithm 4.1 is:

min σ,

s.t. chi (y
h − x) − Kbhi ≤ −ε, h = 1, . . . , k, i = 1, . . . , p, (29)

wichi (y
h − x) ≤ σ + K

(

p −
p∑

i=1

bhi

)

, h = 1, . . . , k, i = 1, . . . , p,

bhi ∈ {0, 1}, h = 1, . . . , k, i = 1, . . . , p,

x ∈ X, σ ≥ 0.
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4.1 Numerical example

In this subsection, to illustrate Algorithm 4.1, a numerical example is given.

Example 2 Consider the following interval MOLP problem:

max z1(x) = [1, 2]x1 + [2.5, 6]x2,
max z2(x) = [2, 5]x1 + [2, 2.5]x2,
s.t. x ∈ X, (30)

where

X = {(x1, x2)t | x1 + 2x2 ≤ 50, −x1 + x2 ≤ 12, 5x1 + 2x2 ≤ 96, 2x1 − 2x2 ≤ 22,

x1 ≤ 16, x2 ≤ 20, x1, x2 ≥ 0}.

Considering w = (1, 1), Algorithm 4.1 proceeds as follows:

Iteration 1:

Step 1 y1 = (10, 20)t , C1 =
(
2 6
5 2.5

)

.

Step 2 k = 2, σ 1 = 0 and x1 = y1.

Step 3 y2 = (11.5, 19.25)t , Φ1 = 6, C2 =
(
2 2.5
5 2

)

.

Step 4 Since Φ1 = 0.15 � σ 1 = 0, the algorithm must be continued.
Step 5 x2 = (11.5, 19.25)t , σ 2 = 0. Set k = 3 and return to Step 3.

Iteration 2:

Step 3 y3 = (11.5, 19.25)t , Φ2 = 0, C3 =
(
2 6
5 2.5

)

.

Step 4 Since Φ2 = 0 ≤ σ 2 = 0, the algorithm terminates.

Therefore, xk−1 = x2 = (11.5, 19.25)t is the optimal solution of Problem (8)
according to (30). Theorem 3 implies that (11.5, 19.25)t is a necessarily efficient
solution.

5 Special case

In interval MOLP Problem (2) the objective functions coefficients are not determined
precisely, they are given as intervals. However, sometimes the decision maker is eager
to study the problem with fixed values as objective coefficients. For this reason, he
or she assigns fixed values, within the intervals, to the coefficients. Accordingly, the
calculation of the Problem (8) for fixed objective functions coefficients is worthwhile.
Consequently, we are interested in investigating Problem (31):

ν = min
x∈X max{wic0i (y − x)|y ∈ X,C0(y − x) � 0, i = 1, . . . , p}, (31)
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where C0 ∈ Ψ is a fixed matrix given by the decision maker for solving the following
MOLP:

max C0x

s.t. x ∈ X. (32)

It should be noted that the optimal value of Problem (31) is always equal or greater
than zero.

In what follows, we denote the efficient and weak efficient solutions sets of Prob-
lem (32) by XE and XWE , respectively.

Theorem 7 The set of efficient solutions of Problem (32) is nonempty (XE �= ∅) if
and only if the optimal value of Problem (31) is zero.

Proof It follows directly from Theorem 3. �

Corollary 2 The set of efficient solutions of Problem (32) is empty (XE = ∅) if and
only if the optimal value of Problem (31) is positive.

Proposition 2 Suppose that the optimal value of Problem (31) is ν∗ = wkc0k(y
∗ −

x∗) = 0, where x∗ is the unique optimal solution. Then x∗ is a strict efficient solution
of Problem (32).

Proof Suppose that x∗ is not a strict efficient solution of Problem (32). Thus, there
exists x̂ ∈ X such that x̂ �= x∗ and C0 x̂ � C0x∗. Two cases can be occurred as
follows:

– C0 x̂ � C0x∗. In this case,

max{wic0i (y − x∗)|y ∈ X,C0(y − x∗) � 0, i = 1, . . . , p} > 0,

which is a contradiction.
– C0 x̂ = C0x∗. In this case,

max{wic0i (y − x∗)|y ∈ X,C0(y − x∗) � 0, i=1, . . . , p}=wkc0k(x̂ − x∗)=0.

Thus, x̂ is an optimal solution of Problem (31), which is a contradiction with the
uniqueness of x∗.

�

Theorem 8 If x∗ is an optimal solution of Problem (31) with V ∗ = wkc0k(y

∗ − x∗) >

0, then x∗ ∈ XWE .

Proof It follows directly from Theorem 5. �

In order to solve Problem (31), an algorithm similar to Algorithm 4.1 can be used.

The changes are as follows:
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1. Step 1 of Algorithm 4.1 should be replaced by:
Step 1 Solve the linear programming problems maxx∈X c0i x , i = 1, . . . , p.
Suppose an optimal solution of the i th problem is xi∗, i = 1, . . . , p, and
c0t x

t∗ = max1≤i≤p c0i x
i∗. Then choose y1 as xt∗.

2. The problem of Step 3 is:

max{wic0i (y − xk−1)|y ∈ X,C0(y − xk−1) � 0, i = 1, . . . , p}. (33)

3. The problem of Step 5 is:

min σ,

s.t. max
1≤i≤p

wic0i (y
h − x) ≤ σ, h = 1, . . . , k, if C0(yh − x) � 0,

x ∈ X, σ ≥ 0. (34)

It should be noted that in modified Algorithm 4.1 for the special case, solving the
problem of Step 3 is much easier. In fact, the optimal value of Problem (33) could be
obtained by solving p linear programs.

5.1 Numerical example

Problem (31) is used to deal with an MOLP problem in the following example.

Example 3 Consider the following MOLP problem which is taken from Ehrgott
(2005):

max z1(x) = x1 + 2x2,

max z2(x) = x1 − 2x3,

max z3(x) = −x1 + x3,

s.t. x ∈ X = {x1 + x2 ≤ 1, x2 ≤ 2, x1 − x2 + x3 ≤ 4, xi ≥ 0, i = 1, 2, 3} .

(35)

Considering w = (1, 1), the modified Algorithm 4.1 proceeds as follows:

Iteration 1:
Step 1 y1 = (0, 1, 5)t .
Step 2 k = 2, σ 1 = 0 and x1 = y1.
Step 3 y2 = (0, 1, 5)t , Φ1 = 0.
Step 4 Since Φ1 ≤ σ 1 = 0, the algorithm terminates.

After solving Problem (35) by using (31), an optimal solution x∗ = (0, 1, 5)t is
achieved and the optimal value is zero. By Theorem 7, x∗ = (0, 1, 5)t is an efficient
solution which was also shown in Ehrgott (2005).
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6 Conclusion

This paper focused on multiobjective linear programming problems with interval
objective functions coefficients. In order to solve such problems, the minimax regret
criterion was used which is a credible criterion for dealing with uncertainty. A new
model based on the minimax regret criterion was suggested which has nice properties.
One of the important properties of the new model is obtaining a necessarily efficient
solution as an optimal one whenever the set of necessarily efficient solutions is non-
empty. Moreover, an optimal solution of the model is at least possibly weak efficient.
An algorithm is proposed for obtaining an optimal solution of the newmodel. A numer-
ical example is given to illustrate the algorithm and present its performance. Finally,
the model for fixed objective functions coefficients, as a special case, is discussed.
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