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Abstract This note provides a counterexample to illustrate the incorrectness of the
proof of Proposition 3.3 that was presented by Wu (Fuzzy Optim Decis Mak 2:61-73,
2003). The original proof of Proposition 3.3 by Wu can only be correct when the extra
assumption p3; (0) = 11is added. The correct proof of Proposition 3.3 is also presented
in this note.
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1 Introduction

The original proof of Proposition 3.3 by Wu (2003) can only be correct when the extra
assumption uy; (0) = 1 is added. A counterexample for the case of uy; (0) # 1is
given below.
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Fig.1 7,51 and 3~ of Example

Example Let y = (—4, —2,2,4) be trapezoidal fuzzy number and its membership

function be

r+6)/2, if r <-4,

1, if rel[—4, -2],
WO =N 0 pya it r s -2,

0, otherwise.

We see that trapezoidal fuzzy number y is not a nonnegative or nonpositive fuzzy
number. As shown in Fig. 1, 7)Y =2 —4da <0 = 3L and GHY =0 #
2 —4a =3V ifa € (0.5, 1]. Tt implies that, foralla € [0, 1], )L =0= F)Y
and 3HY =3V, (37)L = FL is incorrect, if ¥ be not a nonnegative or nonpositive
fuzzy number.

2 The correct proof of Proposition 3.3

Now, we propose the correct proof of Proposition 3.3.
Proposition 3.1 Let X be in F"(R). If X is nonnegative or nonpositive, then

(X)) = (XY o (x.¥)). (D
Proof LetX = (X1,..., %), Y = (31, ..., ¥n) € F"(R) and y be not a nonnegative

or nonpositive fuzzy number vector. By Propositions 3.1 and 3.2 in Wu (2003), we
just need to show that, for any « € [0, 1],

(X e =(EITNB(ET M = (EF e+ (KT N,
i.e., for any o € [0, 1],

(EINE = (XN + (@I NEAEY = (& TN +(®F NG,
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which also says that

@ OVDE+ -+ @ @t
=@ e ), + -+ @on), | +[E eF) -+ @ o5),]

=[@e)+@eF) ]+ +[@mei)+ @ed)L].

o

and

G OYY + -+ @ @)Y
=[@ e, ++@Een). |+ [@en), ++@eF), ]

U

=@ e, +@eF)y |+ +[E@ e, +Eew), |

In order to prove (1), it suffices to show that, forall € [0, 1]andi =1, 2, ..., n,

GOl = e+ e )"
@ el =Fey)’

’

W T EST), @)

o

We shall prove (2) by considering the three cases below. Without loss of generality,
let X be nonnegative. The proof is similar if X is nonpositive.

Case 1 For the case of uy(0) = 1, it implies that ()71.4')5 =0 = @_)iLa and
()7{*')3 = ﬂé ()71._)5 = )71171 for all « € [0, 1]. The result follows immediately from
Propositions 2.1 and 3.2 in Wu (2003).

Case 2 For the case of 415 (0) # 1 and aV = max{r|uy(r) = 1} < 0, letal =
min{r|uy, (r) = 1}. Then, there exists some «p € [0, 1] such that fg < 0ifa > ap,
otherwise, 3¢ > 0. It is obvious that y* = (3;,)F < 0, G;HE = 0. If a > «,
then 3V = (5,)Y and (5;)V = 0, otherwise, 3¢ = (3;)V and (5;)Y = 0. For all
o € [0, 1], we have )'c“llé > )7,% > 0 since X; is a nonnegative fuzzy number. So, we
can obtain

& ® WL =72k,

~ o~h\L |~ o~ \L _~L (=+\L | ~U=L _ ~U=L
F®F ), + @@V )y =%ie (577 )y + XiaTie = Xia Vi

~L ~U .
~ ~\U XiaYiar if > Qo
X ®YVida =1 pyy .
Xio Viess if o < ag,
i >
(35,- ®§.+)U _ 0, if @ > wo,
L U3V ifa < ag
i’ ’
N 3511;137[%, if @ > ap,
(Xl®yi)a_ 0 if ¢ <«
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This implies that (2) holds forall « € [0, 1]andi = 1,2, ..., n.

Case 3 For the case of uy;(0) # 1 and al = min{r|uy, (r) = 1} > 0, the similar
proof of case 2 is still valid.
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