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Abstract In this paper, we consider a mean–variance portfolio optimization problem
for a fuzzy discrete-time insurance risk model. The model consists of indepen-
dent, identically distributed net losses considered within successive time periods, and
incorporates investment incomes from a two-asset portfolio. More precisely, in the
beginning of each period, the surplus is invested in both a risk-free bond with fixed
interest, and a risky stock with fuzzy return rate. Our purpose is to determine the
proportion invested in the stock that maximizes the insurer’s expected wealth, while
reducing his risks. Therefore, for this fuzzy model, we formulate mean–variance opti-
mization problems that also include constraints on ruin, and we present a method for
determining the resulting optimal proportion to be invested in the risky stock. This
method is illustrated in a numerical study in which the fuzzy return rate is considered
to be an adaptive fuzzy number that generalizes the well-known trapezoidal fuzzy
number.

Keywords Fuzzy discrete-time insurance risk model · Fuzzy mean–variance
portfolio optimization · Adaptive fuzzy number · Ruin

1 Introduction

We consider the following discrete-time insurance risk model: within period j, j =
1, 2, . . . , n, we denote by X j the net insurance loss (equal to the total outcome minus
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196 R. Vernic

total premium income during period j , evaluated at the end of the period) and by x
the initial reserve of the insurance company when starting this business. Moreover,
we assume that the insurer is allowed to make investments in a two-asset portfolio
consisting of a risk-free bond with a constant interest rate r > 0, and a risky stock
with a return rate R j ∈ (−1,∞) during period j . Note that in insurance practice, the
insurer is not allowed to invest all into risky assets; therefore, we also assume that at
the beginning of every period, the insurer invests a fraction π ∈[0,1] of his current
wealth in the stock and keeps the remaining wealth in the bond. The faction π being
invariant with time, this two-asset portfolio becomes constant, which is commonly in
mathematical finance.

In a stochastic setting, X j and R j are random variables (r.v.’s), while x is constant.
An important problem related to this model consists in determining the proportion π

invested in the stock that maximizes the insurer’s expected wealth, while reducing his
risks. Since the main concern of portfolio selection consists in the allocation of capital
in different risky assets to minimize the risk and to maximize the return, this risk
model leads to a portfolio optimization problem in the insurance context. Moreover,
as solvency constraints must be imposed due to insurance regulations, a constraint
on the ruin probability can be added to the above described portfolio optimization
problem. Probabilistic solutions of this type of problem under various (and usually
restrictive) assumptions, mainly in continuous time, are given among others by Liu
andYang (2004), Tang andYuan (2012). Related discussions on portfolio optimization
with solvency constraints can be also found in Dickson and Drekic (2006), Azcue and
Muler (2009) etc.

In this paper, we restate the above model in a fuzzy framework by assuming fuzzy
return rates. Therefore, by keeping the assumption that the X j s are independent and
identically distributed (i.i.d.) r.v.’s while considering that the return rates are fuzzy
numbers, fuzziness and randomness appear simultaneously in our model, and the
corresponding optimization problem is placed in the field of fuzzy portfolio selec-
tion. Our motivation is based on the fact that even if probability theory remains the
main technique for analyzing uncertainty in such optimization problems, investors are
commonly provided with information such as high risk, high interest rate, low profit,
etc., so that they should consider also non-probabilistic factors such as vagueness and
ambiguity. This became possible once the fuzzy set theory has been introduced and
its potential has been perceived by researchers that employed it to manage portfolio
optimization problems. More motivation for considering fuzzy return rates is the lack
of historical data, and the fact that working in such a fuzzy environment avoids some
probabilistic limitations; moreover, a probability distribution can be estimated, but
there is no guarantee that the return rates really obey it.

With the purpose to determine the optimal proportion to be invested in the stock,
we restate the above portfolio optimization problem as a two-moment fuzzy decision
model subject to a constraint on the ruin. Since in economic perception, the future value
is a good criterion for evaluating fuzzy projects, the two moments that we consider are
the expected value and variance of the future value fuzzy random variable. Moreover,
we shall put a constraint on the mean chance of ruin defined on the basis of the fuzzy
present value.
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Optimal investment for a fuzzy risk model 197

Therefore, the structure of the paper is as follows: in Sect. 2, we recall some fuzzy
concepts needed in next sections, like fuzzy numbers and fuzzy random variables.
In Sect. 3, after recalling some probabilistic aspects related to the ruin probability
of the above discrete-time insurance risk model, we redefine the model in a fuzzy
environment by considering the risky stock’s return rates as fuzzy numbers, andwe also
define its mean chance of ruin. Section 4 starts with a brief review of the literature on
fuzzy portfolio selection, then, for the fuzzy risk model defined in Sect. 3, we present
three alternative mean–variance portfolio optimization problems with constraint on
ruin; after noticing the nonlinearity of these problems, we also propose a method
to solve them. We illustrate the proposed method in a numerical study in Sect. 5,
where we mainly discuss the effect of varying the parameters of the risky stock’s
accumulation factor, which, in particular, is modeled by an adaptive fuzzy number.
We conclude in Sect. 6 and we end the paper with an Appendix containing all the
proofs.

2 Preliminaries: basic fuzzy concepts

We start by recalling some basic fuzzy concepts needed in the following.

2.1 Fuzzy numbers

A fuzzy number (f.n.) A is a special fuzzy set on the real line R, with a normal,
fuzzy convex and at least piecewise continuous membership function μA : U →
[0, 1],U ⊆ R, whose highest membership values are clustered around a given real
number (themode). Forα ∈ [0, 1], theα-cut of the f.n.A is an interval

[
AL

α , AR
α

]
,where

AL
α = inf {x ∈ U |μA (x) ≥ α } and AR

α = sup {x ∈ U |μA (x) ≥ α }. If the support
of A, Supp (A) = {x ∈ U |μA (x) > 0 } ⊆ (0,∞), the f.n. A is called positive.

For two fuzzy numbers A and B, the arithmetic operation A ∗ B is defined by
the membership function μA∗B (z) = supz=x∗y min {μA (x) , μB (y)}, where ∗ ∈
{+,−,×, /}. The power of a f.n. A is recursively defined as An = A × An−1, n =
2, 3, . . . , while μA−1 (x) = μA

( 1
x

)
for any x �= 0. We shall also use the symbols∑

and
∏

to denote the multiple fuzzy sum and, respectively, product. Therefore, the
meaning of the arithmetic operators will depend on the context, but this should not be
a problem since crisp numbers are particular cases of fuzzy numbers. By convention,
an empty sum equals 0.

Theα-cuts canbeused to easier express fuzzy arithmetic operations.Moreprecisely,
for two fuzzy numbers A and B, we recall that

[A + B]α =
[
AL

α + BL
α , AR

α + BR
α

]
, [A − B]α =

[
AL

α − BR
α , AR

α − BL
α

]
,

[AB]α = [A × B]α =
[
min

{
AL

α B
L
α , AR

α BL
α , AL

α B
R
α , AR

α BR
α

}
,

max
{
AL

α B
L
α , AR

α BL
α , AL

α B
R
α , AR

α BR
α

}]
. (1)
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Fig. 1 Adaptive fuzzy numbers

Also based on α-cuts, the crisp expected value of a f.n. A can be defined as E [A] =∫ 1
0

(
AL

α + AR
α

)
αdα. Moreover, the defuzzification function F , defined for the f.n. A

by F (A) = 1
2

∫ 1
0

(
AL

α + AR
α

)
dα, can be used to define a crisp ordering between two

fuzzy numbers A and B as (A ≥ B ⇔ F (A) ≥ F (B)).
We illustrate some of the above fuzzy concepts on the adaptive fuzzy number

(A.f.n.), introduced by Bodjanova (2005) as an extension of the trapezoidal fuzzy
number (Tr.f.n.). The membership function of an A.f.n. A = [a1, a2, a3, a4]k , a1 <

a2 < a3 < a4, k > 0, is given by

μA (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
x − a1
a2 − a1

)k

, x ∈ [a1, a2)

1, x ∈ [a2, a3)
(
a4 − x

a4 − a3

)k

, x ∈ [a3, a4]

, (2)

having the α-cut Aα =
[
a1 + (a2 − a1) α

1
k , a4 − (a4 − a3) α

1
k

]
and crisp expected

value

E [A] = a1 + a4
2

+ k

2k + 1
(a2 − a1 − a4 + a3) .

In particular, when k = 1, the A.f.n. (2) becomes the well-known Tr.f.n. denoted
by [a1, a2, a3, a4]. If k �= 1, then the A.f.n. [a1, a2, a3, a4]k is a modification of the
Tr.f.n. [a1, a2, a3, a4] in the sense that when k > 1, we obtain a concentration, and
when 0 < k < 1, a dilatation of the corresponding Tr.f.n., see Fig. 1. Therefore, one
can keep the support and/or the core of the membership function unchanged, and, in
the same time, manipulate the parameter k to tune and adjust the shape, which makes
the A.f.n. more flexible than the Tr.f.n. Based on this flexibility, the A.f.n. has been
used by Appadoo et al. (2008) to decision making problems involving uncertainty. We
shall also use such fuzzy numbers in a mean–variance portfolio optimization problem
related to an insurance model. The following result will be useful in next section.
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Optimal investment for a fuzzy risk model 199

Proposition 1 If j is a positive integer and A = [a1, a2, a3, a4]k with a1 > 0, then

(i) F
(
A j

)
= 1

2

j∑

i=0

k

k + i

(
j

i

)[
(a2 − a1)

i a j−i
1 + (a3 − a4)

i a j−i
4

]
,

(i i)
∫ 1

0

(
AL

α A
R
α

) j
dα =

j∑

i=0

i∑

l=0

k

2( j − i) + k + l

(
j

i

)(
i

l

)
(a1a4)

i−l

× [(a2 − a1) (a3 − a4)]
j−i [(a2 − a1) a4 + (a3 − a4) a1]

l .

2.2 Fuzzy random variables

Assume that (Ω,F ,Pr) is a probability space and let B denote the collection of all
Borel subsets of R, while S denotes the set of all fuzzy numbers. Several papers
developed the concept of fuzzy random variable (f.r.v.) by combining both random
and fuzzy uncertainty. On the line of Puri and Ralescu (1986) and Wang and Zhang
(1992), we shall use the following definition of a f.r.v.

A fuzzy random variable is a function X : Ω → S such that ∀B ∈ B,∀α ∈ [0, 1],
{ω ∈ Ω |Xα (ω) ∩ B �= ∅ } ∈ F , where X (ω) is a f.n. having the α-cut Xα (ω) =[
XL

α (ω) , X R
α (ω)

]
. Note that, for fixed α, the extremes of this α-cut, XL

α , X R
α : Ω →

R, are themselves random variables; moreover, Wang and Zhang (1992) showed that
X is a f.r.v. if and only if XL

α and X R
α are both random variables for any α ∈ (0, 1].

Originally, the expected value of a f.r.v. was defined as a f.n., see, e.g., Puri and
Ralescu (1986) (note that, in a complete probability space, the α-cut of such an
expected value becomes [E[XL

α ], E[X R
α ]]). Later on, based on XL

α , X R
α , Liu and Liu

(2003) defined a scalar expected value of a f.r.v., which can be written as

E [X ] = 1

2

∫ 1

0

(
E

[
XL

α

]
+ E

[
X R

α

])
dα. (3)

Since it facilitates the decision process, a scalar expected value is more convenient
for our purpose, hence we shall use this definition in the sequel. Similarly, there are
two ways to define the variance of a f.r.v.: as a fuzzy interval and as a scalar value. As
in the case of the expected value, we preferred to measure the variance using a scalar
value; therefore, to simplify the computations, we chose the definition of Feng et al.
(2001), which is also based on the extremes XL

α , X R
α , i.e.,

Var [X ] = 1

2

∫ 1

0

(
Var

[
XL

α

]
+ Var

[
X R

α

])
dα. (4)

We shall also use the following definition of the mean chance Ch of the fuzzy random
event {X > x},

Ch {X > x} = 1

2

∫ 1

0

(
Pr
{
XL

α > x
}

+ Pr
{
X R

α > x
})

dα. (5)
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For more details on the definitions of f.r.v.’s, their expected values or variances, and
on the Chance operator, see also Sect. 3.2 in Xu and Zhou (2011).

If X is a r.v. and Y a f.n., their product Z = XY is a f.r.v. defined by Z (ω) =
X (ω) Y . Assuming that the f.n. Y is positive, (1) yields

ZL
α (ω) =

{
X (ω) Y L

α , X (ω) ≥ 0

X (ω) Y R
α , X (ω) < 0

, Z R
α (ω) =

{
X (ω) Y R

α , X (ω) ≥ 0

X (ω) Y L
α , X (ω) < 0

.

Further on, denoting by FX the cumulative distribution function (cdf) of X , these yield
the following cdf’s of ZL

α and Z R
α

FZL
α

(x) =
{
FX

(
x/Y L

α

)
, x ≥ 0

FX
(
x/Y R

α

)
, x < 0

, FZR
α

(x) =
{
FX

(
x/Y R

α

)
, x ≥ 0

FX
(
x/Y L

α

)
, x < 0

.

Similarly, if X has a probability density function (pdf) fX , then ZL
α and Z R

α have the
pdf’s

fZ L
α

(x) =
{

fX
(
x/Y L

α

)
/Y L

α , x ≥ 0

fX
(
x/Y R

α

)
/Y R

α , x < 0
, fZ R

α
(x) =

{
fX

(
x/Y R

α

)
/Y R

α , x ≥ 0

fX
(
x/Y L

α

)
/Y L

α , x < 0
.

(6)

In the next proposition, we give the expected values and variances of ZL
α , Z R

α and Z .
To simplify the formulas, we introduce the following notation

E
[
X−

] =
∫ 0

−∞
x fX (x) dx, E

[
X+

] =
∫ ∞

0
x fX (x) dx,

E

[
X2−

]
=
∫ 0

−∞
x2 fX (x) dx, E

[
X2+

]
=
∫ ∞

0
x2 fX (x) dx,

Var
[
X−

] = E

[
X2−

]
− E

2 [X−
]
, Var

[
X+

] = E

[
X2+

]
− E

2 [X+
]
,

K [X ] = E
[
X−

]
E
[
X+

]
.

Proposition 2 Let X be a r.v. having pdf fX , Y a positive f.n., and Z = XY . Assuming
that all the involved quantities exist and are finite, it holds that

(i) E
[
ZL

α

] = Y R
α E

[
X−

] + Y L
α E

[
X+

]
;

(ii) E
[
Z R

α

] = Y L
α E

[
X−

] + Y R
α E

[
X+

]
;

(iii) E [Z ] = E [X ]F (Y );

(iv) Var
[
ZL

α

] = (
Y R

α

)2
Var

[
X−

] + (
Y L

α

)2
Var

[
X+

] − 2Y L
α Y R

α K [X ];

(iv) Var
[
Z R

α

] = (
Y L

α

)2
Var

[
X−

] + (
Y R

α

)2
Var

[
X+

] − 2Y L
α Y R

α K [X ];

(vi) Var [Z ] = (Var [X ] + 2K [X ])F (
Y 2

) − 2K [X ]
∫ 1
0 Y L

α Y R
α dα.
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Optimal investment for a fuzzy risk model 201

If X and Y are two f.r.v.’s, then an arithmetic operation on them is straightforward
defined by (X ∗ Y ) (ω) = X (ω)∗Y (ω), where ∗ ∈ {+,−,×, /} .Again, the symbols∑

and
∏

will also denote the multiple fuzzy form of the corresponding operations
on f.r.v.’s.

The following proposition extends Proposition 1 from Ungureanu and Vernic
(2015).

Proposition 3 Let X1, . . . , Xn be r.v.’s and let Y1, . . . ,Yn be positive f.n.’s, n ≥ 1.
Then the sum Sn = ∑n

j=1 X jY j is a f.r.v.whoseα−cut extremes are given, respectively,
by

SLn,α (w) =
n∑

j=1

X j (w) Y
L j
j,α, SR

n,α (w) =
n∑

j=1

X j (w) Y
R j
j,α, (7)

where L j =
{
L , X j (w) ≥ 0
R, X j (w) < 0

and R j =
{
R, X j (w) ≥ 0
L , X j (w) < 0

.

Moreover, if the X j s are i.i.d. as the generic variable X having finite variance, then
it holds that

(i) E [Sn] = E [X ]
∑n

j=1 F
(
Y j
)
;

(ii) Var [Sn] = ∑n
j=1

[
(Var [X ] + 2K [X ])F

(
Y 2
j

)
− 2K [X ]

∫ 1
0 Y L

j,αY
R
j,αdα

]
.

3 A fuzzy risk model and its mean chance of ruin

In this section, we recall some probabilistic aspects related to the discrete-time insur-
ance risk model presented in the introduction, then we redefine it in a fuzzy framework
and present the associated mean chance of ruin.

3.1 Probabilistic aspects: the probability of ruin

In the classical risk theory, the evolution over time of the reserves of an insurance com-
pany is modeled by the risk reserve processU (t) = x+Π (t)− Z (t) , t ≥ 0, where x
is the initial capital,Π (t) represents the premium income from time0 to t , and Z (t) the
aggregate claim amount up tomoment t . In the particular discrete-timemodel, the time
is measured in integers; in this case, denoting byΠn = Π (n)−Π (n − 1) all the pre-
miums collected during periodn, and, similarly, by Zn = Z (n)−Z (n − 1) the amount
of all the claims arriving during period n, then the reserve after period n becomes

Un := U (n) = x + Π (n) − Z (n) = x −
n∑

j=1

(
Z j − Π j

) = x −
n∑

j=1

X j ,

where X j = Z j − Π j represents the net insurance loss within period j (as defined
in the Introduction). Moreover, the process

∑n
j=1 X j is called the discrete-time claim

surplus process.
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202 R. Vernic

When the discrete-time periods refer to years, the economic environment should
also be taken into consideration. In this sense, in this work we considered the invest-
ment in a two-asset portfolio as described in the Introduction. Therefore, the present
and future values of the insurer’s reserve corresponding to the stochastic discrete-time
risk model that includes investments considered over n time periods in the future are,
respectively,

PV stoch.
n = x −

n∑

j=1

X j

j∏

i=1

Q−1
i , (8)

FV stoch.
n = x

n∏

i=1

Qi −
n∑

j=1

X j

n∏

i= j+1

Qi , (9)

where Qi = π (1 + Ri ) + (1 − π) (1 + r) represents the accumulation factor during
period i .

Themain utility of thismodel is to illustrate the cash flowof an insurance business in
order to evaluate its probability of ruin. Using the present value (8), the finite-time ruin
probability by time n is ψ(x, n) = Pr( min

1≤k≤n
PV stoch.

k < 0), while the ultimate ruin

probability results by letting n → ∞. Evaluating the ruin probability is an extremely
important issue because, to comply with certain risk reserve regulations, the insurer
must hold enough risk reserve in order to meet his future obligations with a high
probability. Unfortunately, the ruin probability is difficult to evaluate, which explains
the large amount of literature on the subject. The usual probabilistic assumption related
to thismodel is that the net losses are i.i.d. and independent of the return rates. A handy-
for-calculation assumption on the return rates is also i.i.d., but unfortunately, not very
realistic. This assumption has been surpassed in various ways, often by using extra-
assumptions that can limit practical applications. For a review on ruin probabilities,
see, e.g., the book by Asmussen and Albrecher (2010).

3.2 The fuzzy risk model

As already mentioned in the introduction, to tackle the fuzziness related to the return
rates which influence the allocation of funds between a risk-free bond and a risky
stock, we shall now consider the discrete-time insurance risk model (8)–(9) in a fuzzy-
probabilistic environment described by the following assumptions:

– The X j s are i.i.d. r.v.’s as the generic r.v. X, defined for both positive and negative
values (i.e., proper losses and, respectively, proper gains), having pdf fX , finite
mean and variance, where E [X ] < 0 (i.e., in average, we expect to gain);

– x, r and the number of time periods n under study are deterministic (crisp) values;
– The accumulation factors 1+Ri corresponding to the risky stock are positive fuzzy
numbers, hence Qi = π (1 + Ri ) + (1 − π) (1 + r) are also fuzzy numbers.

Starting from the definition of the fuzzy present and future values of a fuzzy amount
with fuzzy return rate, we introduce the fuzzy aggregate discounted losses by time n
denoted by Sn = ∑n

j=1 X jY j , where Y j = ∏ j
i=1 Q

−1
i . According to Proposition 3,
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Optimal investment for a fuzzy risk model 203

Sn is a f.r.v. Then the fuzzy equivalent of the present value (8) is PVn = x − Sn .
Similarly, the fuzzy equivalent of the future value (9) is FVn = x

∏n
i=1 Qi − Tn,

where Tn = ∑n
j=1 X j

∏n
i= j+1 Qi .

For simplicity, corresponding to the stochastic context assumption that the R j s are
identically distributed, in our fuzzy framework, we take R j = R, yielding Q j =
Q for all j . Therefore, Y j = Q− j , and hence Sn = ∑n

j=1 X j Q− j , while Tn =
∑n

j=1 X j Qn− j .
Note that being a return rate, R is usually positive, but due to crisis situations, it

can also become negative. Therefore, we assume that the support of 1+ R is (0,∞) ,

while r > 0. Then the support of Q is also (0,∞), and, from (1 ), for a positive integer
j , [Q j ]α = [(QL

α ) j , (QR
α ) j ] and [Q− j ]α = [(QR

α )− j , (QL
α )− j ]. Applying now the

results in Proposition 3, we easily obtain the α-cut extremes of Sn and of Tn as

SLn,α (w) =
n∑

j=1

X j (w)
(
Q

Rj
α

)− j
, SR

n,α (w) =
n∑

j=1

X j (w)
(
Q

L j
α

)− j
, (10)

T L
n,α (w) =

n∑

j=1

X j (w)
(
Q

L j
α

)n− j
, T R

n,α (w) =
n∑

j=1

X j (w)
(
Q

Rj
α

)n− j
. (11)

Moreover, we also have the following α-cuts of the present and future values

PV L
n,α = x − SR

n,α, PV R
n,α = x − SLn,α, (12)

FV L
n,α = x

(
QL

α

)n − T R
n,α, FV R

n,α = x
(
QR

α

)n − T L
n,α. (13)

The following result related to FVn holds.

Proposition 4 Under the above assumptions, the expected value and variance of FVn
are given by, respectively,

(i) E [FVn] = xF (Qn) − E [X ]
∑n−1

j=0 F
(
Q j

)
,

(ii) Var [FVn]=∑n−1
j=1

[
(Var [X ] + 2K [X ])F (

Q2 j
) − 2K [X ]

∫ 1
0

(
QL

α Q
R
α

) j
dα
]

+ Var [X ] .

In particular, we shall assume that the risky stock’s accumulation factor 1+ R is the
positive A.f.n. [a1, a2, a3, a4]k . Then the f.n. Q = π (1 + R)+ (1 − π) q, where q =
(1 + r) , easily results as [ã1, ã2, ã3, ã4]k with ãi = πai + (1 − π) q, i = 1, 2, 3, 4.
We now introduce some notation needed to evaluate E [FVn] and Var [FVn] in this
particular case. We let

t1 = (a2 − a1) (a3 − a4), t2 = (a2 − a1) (a4 − q) + (a3 − a4) (a1 − q),

t3 = a2 − a1 + a3 − a4, t4 = (a1 − q) (a4 − q), t5 = a1 + a4 − 2q.

Proposition 5 For Q = π (1 + R)+ (1 − π) q, where 1+ R = [a1, a2, a3, a4]k , a1
> 0, with the above notation we have

(i) F (
Q j

) = ∑ j
u=0 fu, j

(
(ai )4i=1 , k, q

)
πu,

(ii)
∫ 1
0

(
QL

α Q
R
α

) j
dα = ∑2 j

u=0 gu, j
(
(ai )4i=1 , k, q

)
πu,
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204 R. Vernic

where, with [x] denoting the floor function (or integer part) of x,

fu, j
(
(ai )

4
i=1 , k, q

) = q j−u

2

(
j

u

) u∑

i=0

k

k + i

(
u

i

)

×
[
(a2 − a1)

i (a1 − q)u−i + (a3 − a4)
i (a4 − q)u−i

]
, u ≤ j; (14)

gu, j
(
(ai )

4
i=1 , k, q

) = q2 j−u
j∑

i= j−[ u
2

]

(
j

i

)min{i,u−2( j−i)}∑

l=0

(
i

l

)min{l,u−2( j−i)−l}∑

s=max{0,u−2 j+l}

(
l

s

)

×
min{i−l,2 j+s−l−u}∑

t=max
{
0, j+

[
s−l−u

2

]}

(
i − l

t

)(
t

u − 2 ( j − t) + l − s

)

× k

2( j − i) + k + l
t j−i
1 t s2 t

l−s
3 t i−l−t

4 tu−2( j−t)+l−s
5 , u ≤ 2 j. (15)

3.3 Approximate mean chance of ruin

Note that since each X can take positive values representing proper losses, then the
f.r.v. PVn might also be defined for negative values, in which case, for these negative
values, the business is considered to be in ruin at time n. Therefore, starting from
PVn = x − Sn and the definition (5) of the mean chance Ch, Ungureanu and Vernic
(2015) defined the mean chance of ruin of the above discrete-time risk model as
follows: related to the risk of ruin at time n, the f.r.v. PVmn is introduced, defined by
theα-cut PVmn,α (ω) = [ min

1≤k≤n
PV L

k,α (ω) , min
1≤k≤n

PV R
k,α (ω)]; thenCh {PVmn < 0}

represents the mean chance of ruin after n time periods.
It is not possible in general to find analytic expressions forCh {PVmn < 0}. There-

fore, Ungureanu and Vernic (2015) suggested an algorithm based on simulation to
obtain an approximate value of the mean chance of ruin.

4 Fuzzy mean–variance portfolio optimization with a constraint on ruin

In this section, before introducingmean–variance optimization problems for the above
fuzzy risk model, we give a very brief overview of the literature on fuzzy portfolio
selection.

4.1 A brief literature overview

By combining probability theory with optimization techniques, Markowitz (1952)
created the basis of multi-objective optimization models for portfolio selection.
To describe the benefit and risk associated with an investment, Markowitz used
the expectation and variance of the return, yielding the so-called mean–variance
(M–V) approach. However, we shall not enter into details regarding the vast prob-
abilistic literature developed around this model.
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Since Markowitz’s model is exclusively probabilistic, fuzzy portfolio selection has
been developed as an alternative to tackle the uncertainty in unquantifiable factors such
as imperfect, imprecise information (e.g., data) or the knowledge of decision makers
(different people have different beliefs about the future performance of various assets).

An overview of the main progress in fuzzy portfolio selection is provided by the
book of Fang et al. (2008) or by the survey paper by Wang and Zhu (2002). Both
works identify the following approaches: models based on fuzzy decision theory,
portfolio selection using possibilistic programming (which includes the center-spread
model and models using the necessity measure) and portfolio selection using inter-
val programming (an interval number is a special f.n. whose membership function
takes value 1 over the interval, and 0 elsewhere); for details, see also the references
therein.

Further on, the above approaches have been extended by capturing additional and
alternative decision criteria like: the semivariance (Huang 2008), the skewness (Bhat-
tacharyya et al. 2011), the VaR and TVaR risk measures (Wang et al. 2011; Ning et al.
2012), fuzzy cross-entropy (Qin et al. 2009) etc. Other papers consider more complex
computing techniques like genetic algorithms (Bermúdez et al. 2012), fuzzy neural
systems (Wong et al. 1992), or hybrid algorithms integrating different such techniques
(Li et al. 2009). Most of these works are based on fuzzy variables, while fuzzy random
variables are used by Hao and Liu (2009), Li and Xu (2013) etc. We shall also present
a M–V optimization problem based on f.r.v.’s, in an insurance context.

For other approaches and more references see also the survey by Huang (2009) or
the book by Huang (2010).

4.2 A mean–variance two-asset portfolio optimization problem related
to the fuzzy risk model

In the following, we consider a M–V portfolio optimization problem related to the
fuzzy risk model presented in Sect. 3, in which we aim to determine the proportion π

invested in the risky stock subject to a constraint on the mean chance of ruin. We shall
use the expected value and variance of the f.r.v. future value FVn as measures of the
investment return and investment risk, respectively. Thus, the classical M–V portfolio
model yields the following multi-objective optimization model to be solved for π

M–V1

⎧
⎪⎪⎨

⎪⎪⎩

min Var [FVn]

subject to E [FVn] ≥ δ1 and Ch {PVmn < 0} ≤ p

π ∈ [0, 1]
,

where δ1 is the minimum accepted expected value of FVn, while p is a small value
representing our ruin tolerance level (say 5%).

Since the objective of portfolio optimization is either to minimize the risk of the
portfolio for a given level of return, or, alternatively, to maximize the expected level
of return for a given level of risk, we can reformulate this optimization model as
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M–V2

⎧
⎪⎪⎨

⎪⎪⎩

maxE [FVn]

subject to Var [FVn] ≤ δ2 and Ch {PVmn < 0} ≤ p

π ∈ [0, 1]
.

According to Li and Huang (1996), a portfolio with a relatively high variance can
also be relatively safe if its expected value is sufficiently high. Therefore, the above
constraints can be replaced with the requirement that the ratio of the expected value
and variance of the portfolio should be equal to or greater than a preset level, or,
equivalently, with

M–V3

⎧
⎪⎪⎨

⎪⎪⎩

max (E [FVn] − δ3Var [FVn])

subject to Ch {PVmn < 0} ≤ p

π ∈ [0, 1]
.

Clearly, the choice of the parameter δ3 strongly influences the optimal solution. Related
to M–V3, Carlsson et al. (2002) proposed to take δ3 = 0.005 × A, where A is the
investor’s risk aversion index (for the average investor in USA, they mentioned the
value A 
 2.46), while the scaling factor 0.005 is used to express the expected value
and standard deviation as percentages; the higher δ3 (or A) is, the more risk-averse is
the investor.

Note that these optimization models are all nonlinear in π . For example, based on
the formulas in Proposition 4, M–V1 becomes

M–V′
1⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

Var [X ] +
n−1∑

j=1

[
(Var [X ] + 2K [X ])F (

Q2 j
) − 2K [X ]

∫ 1
0

(
QL

α Q
R
α

) j
dα

])

subject to

(

xF (Qn) − E [X ]
n−1∑

j=0
F (

Q j
)
)

≥ δ1 and Ch {PVmn < 0} ≤ p

π ∈ [0, 1]

,

where we recall that Q = π (1 + R) + (1 − π) q, with R a f.n.
If, in particular, the risky stock’s accumulation factor 1 + R is the positive A.f.n.

[a1, a2, a3, a4]k , then, fromProposition 5, the nonlinearity of the optimizationmodels
is obvious. For example, in this case, the expected value and variance involved by M–
V1 yield, after an easy calculation, the following polynomials in π

Eπ [FVn] =
n∑

u=0

πu

⎡

⎣x fu,n

(
(ai )

4
i=1 , k, q

)
− E [X ]

n−1∑

j=u

fu, j

(
(ai )

4
i=1 , k, q

)
⎤

⎦ ,

Varπ [FVn] = Var [X ] +
2(n−1)∑

u=0

πu
n−1∑

j=max{1,[ u2 ]}
[(Var [X ] + 2K [X ])

× fu,2 j

(
(ai )

4
i=1 , k, q

)
− 2K [X ] gu, j

(
(ai )

4
i=1 , k, q

)]
.
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Therefore, to solve these optimization problems for π , we suggest the following
method:

1. First, determine the interval [π1, π2] , 0 ≤ π1 ≤ π2 ≤ 1, for which the restriction
Ch {PVmn < 0} ≤ p is satisfied.

2. Then, for M–V1 or M–V2, reduce the solution interval to
[
π ′
1, π

′
2

]
based on the

restriction Eπ [FVn] ≥ δ1 or Varπ [FVn] ≤ δ2, respectively.
3. Finally, decide on the solution by considering the quantity to be minimized or

maximized as a function of π.

Note that for the first step, one can use the algorithm described by Ungureanu and
Vernic (2015), while, since at Steps 2 and 3 we deal with polynomials, we should
study their monotonicity; however, for large n, an alternative way consists of plotting
the quantity to be minimized or maximized as a function of π and graphically decide
on the solution. Special mathematical software like Matlab and Mathematica can be
used to this purpose.

5 Numerical study

We shall now illustrate the above method to solve the optimization problem M–V1
for π when 1 + R is a positive A.f.n. More precisely, we fix the distribution of the
loss r.v. X as normal N

(−10, 102
)
and vary mainly the parameters of the A.f.n. risky

stock’s accumulation factor, 1 + R; for simplicity, we replace the notation δ1 with
δ. In the first example, we concentrate on the polynomial aspects of the optimization
problem, while in the other examples, we directly present the solution and note how
the parameters affect it.

We start by noting that from all our numerical results, the restriction
Ch {PVmn < 0} ≤ p yields an interval of the form [0, π2], i.e., π1 = 0.

Example 1 Let us consider the following values of the parameters: x = 9, q =
1.05, 1 + R = [0.08, 1.07, 1.1, 1.2], i.e., a Tr.f.n, while n ∈ {3, 5, 10}.

When n = 3, the polynomials involved in M–V1 are

Eπ [FV3] = 41.944 − 11.394π + 6.100π2 − 1.000π3,

Varπ [FV3] = 231.801 − 126.197π + 100.151π2 − 37.053π3 + 7.204π4.

The expected value polynomial has only one real root and, as it can be seen from
Table 1a, it is positive and decreasing for π ∈ [0, 1]. This remark enables us in
finding the solution

[
0, π ′

2

]
corresponding to both restrictions. Moreover, the variance

polynomial has no real root, takes only positive values, has one minimum at π =1.134
and decreases on [0,1]. In conclusion, in this case, the solution of M–V1 is given by
π ′
2,which strongly depends on p and δ.
If n = 5, as it can be seen from Table 1b, Eπ [FVn] has a minimum in π =0.824,

which belongs to [0,1]. As before, Varπ [FVn] takes only positive values, but this
time has a minimum in π =0.588, which makes the final solution dependent on p, δ
and possibly on this π =0.588.
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Table 1 Variation of Eπ [FVn ] for the parameters in Example 1

(a) n = 3 π

−∞ 0 1 1.454 2.611 5.423 +∞
d
dπ

Eπ [FV3] − − − 0 + 0 − − −
Eπ [FV3] ↘ min

35.199
↗ max ↘ 0 ↘

(b) n = 5 π

−∞ 0 0.824 1 2.963 4.251 +∞

dEπ [FV5]
dπ

− − 0 + 0 − − −
Eπ

[
FV5

] ↘ min
56.764

↗ max ↘ 0 ↘

(c) n = 10 π

−∞ 0 0.384 1 +∞

dEπ [FV10]
dπ

− − 0 + +
Eπ [FV10] ↘ min

120.392
↗

For n = 10, Eπ [FVn] has no real root, takes only positive values and has a
minimum in π = 0.384 (see Table 1c). Similarly, Varπ [FVn] takes only positive
values and has one minimum at π = 0.248, hence the final solution depends on p, δ
and on this value. For example, taking p = 5%, we obtain π2 
 0.16 for which
E0.16 [FVn] = 125.790; if δ ≤ 125.790, then the final solution is 0.16, otherwise, the
final solution is the solution in π (smaller than 0.16) of the equation Eπ [FVn] = δ,
and the minimum of Varπ [FVn] has no influence in this case. However, if we take
p = 8%, this gives π2 
 0.28; then, noting that E0.248 [FVn] = 122.178, the final
solution depends on the fact if δ ≤ 122.178, in which case it equals π =0.248 (having
the global minimum variance); or, if δ > 122.178, the solution of Eπ [FVn] = δ

(smaller than 0.248) is the final solution.
To conclude, the nonlinearity of our model consists of some polynomials that can

be handled without considerable difficulties.

Example 2 Using the same parameters values as in Example 1, i.e., x = 9, 1 + R =
[0.08, 1.07, 1.1, 1.2]k , we first varied k and the periods number n for a fixed q=1.05,
and obtained the results in Table 2a (see also Fig. 2). Then, for k = 1, we varied both
q and n in Table 2b, and, finally, in Table 2c, fixing k = 1, q = 1.05, we varied n and
δ (δ varies between minE [FVn] and maxE [FVn]). In all these examples, p = 5%,
and, Table 2c excepted, the values of δ are chosen approximately proportional to n
(except for n ≥ 20, where we have to take a larger δ). In each table, the final optimal
solutions are displayed in italics; in Table 2a–b we also present some intermediary
solutions.

From Fig. 2 and Table 2a, we note that the optimal fraction to be invested in the
risky stock increases with k, which generates the increasing of the crisp expected value
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Table 2 Optimal π -solutions of M–V1 for x = 9 and 1+ R = [0.08, 1.07, 1.1, 1.2]k when varying k and
n

(a) q = 1.05 n = 3 n = 5 n = 10 n = 15 n = 20 n = 25

k = 0.5 δ 40 64 134 210 299.437 428.872

E [1 + R] =0.862 π2 0.25 0.17 0.13 0.12 0.11 0.10

π-solution 0.1328 0.0693 0.0377 0.0670 0.0968 0.0741

k = 1 δ 40 64 134 210 309.770 443.663

E [1 + R] =0.937 π2 0.35 0.20 0.16 0.14 0.13 0.12

π-solution 0.1891 0.0987 0.0541 0.1037 0.1080 0.0827

k = 2 δ 40 64 134 215 323.267 462.987

E [1 + R] =0.996 π2 0.46 0.28 0.21 0.18 0.15 0.14

π-solution 0.3274 0.1711 0.0951 0.1469 0.1199 0.0919

(b) k = 1

n/δ q = 1.03 q = 1.05 q = 1.07

n = 5, δ = 62 π2 0.15 0.20 0.23

π-solution 0.0625 0.1885 0.2300

n = 10, δ = 120 π2 0.12 0.16 0.19

π-solution 0.0767 0.1600 0.1900

(c) k = 1, q = 1.05

n = 5 δ 61.78 62 64 66 66.71

π2 = 0.20 π-solution 0.2000 0.1885 0.0987 0.0246 0.0010

n = 10 δ 120.39 125 130 135 140 140.30

π2 = 0.16 π-solution 0.1600 0.1600 0.0978 0.0446 0.0222 0.0010

n = 20 δ 304.03 310 320 330 340 353.80

π2 = 0.13 π-solution 0.1080 0.1067 0.0670 0.0415 0.0222 0.0010

of 1+ R, also displayed in the table (note that the concentration of an A.f.n. by n = 2
is often interpreted as the “very” linguistic hedge, while the dilatation by n = 0.5 is
usually interpreted as the linguistic hedge “more or less”; this corresponds with our
numerical results, “very” meaning a higher expected return). From both Table 2a–b
and Fig. 2, it can be seen that the optimal π tends to decrease with n, while Table 2b
shows that it increases with q. Table 2c shows a significant decrease of π with the
increasing of δ, meaning that, for these data, to obtain a larger expected final value
with a minimum risk, one should invest less in the risky stock.

Example 3 In this example, we compare the optimal solutions of M–V1 for two
different accumulation factors, 1 + R1 = [0.05, 1.05, 1.1, 1.2] and 1 + R2 =
[0.05, 1.06, 1.2, 1.3], the second one having a larger crisp expected value, i.e.,
E [1 + R1] =0.925 and E [1 + R2] =0.978. The other parameters are fixed at x =
10, q = 1.05, p = 5%. As expected, the results in Table 3 (optimal solutions in ital-
ics) support the idea that, for the same δ, a larger expected value of the risky return rate
generates a larger fraction invested in the risky stock. Interestingly, it seems that, at
least for these data, when n increases, the solutions corresponding to the two different
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Fig. 2 The optimal solution as a function of n for the parameters from Table 2a and different values of k

Table 3 Optimal π -solutions comparison for two different risky investments

1 + R n = 5, δ = 64 n = 10, δ = 135 n = 20, δ = 336

[0.05, 1.05, 1.1, 1.2] π2 0.290 0.210 0.147

π -solution 0.1370 0.0548 0.0316

[0.05, 1.06, 1.2, 1.3] π2 0.305 0.207 0.145

π -solution 0.2523 0.0946 0.0496

risky returns become closer. As it can be seen from Fig. 2, this result is also supported
by the solutions in Example 2.

6 Conclusions

Under various stochastic assumptions, several works studied portfolio optimization
problems in the insurance field, which aim of determining the proportion invested
in a risky stock that maximizes the expected wealth subject to a solvency constraint
usually related to the ruin probability. Following this line, in this paper, we considered
a classical discrete-time insurance risk model for which we assumed that the surplus
can be invested in both a risk-free bond with constant interest, and in a risky stock
with fuzzy return rate. The novelty of our approach consists in replacing the traditional
probabilistic return rate assumption with the fuzzy one, and, hence, in reformulating
the portfolio optimization problem in a fuzzy framework. The motivation of using
fuzzy return rates comes from the fact that fuzziness may impact the asset returns
since it is difficult to reflect unquantifiable factors such as the knowledge of experts or
the trend of public opinion. In this context, a return rate is often modeled using a fuzzy
number, which is a powerful tool to describe the uncertain environment. In particular,
the A.f.n. considered in our study generalizes the well-known trapezoidal fuzzy num-
ber widely used in the literature to model fuzzy return rates, this A.f.n. having in the
same time more flexibility generated by the parameter k which influences its shape
(see also the comments from the numerical Example 2).
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Since in our risk model the net losses are assumed to be i.i.d. r.v.’s, the model con-
sists of a combination of both fuzzy set and probability theory, from where the present
and future values become fuzzy random variables. With the purpose to determine the
optimal proportion invested in the risky stock, we formulated alternative optimization
problems in which we replaced the probabilistic mean and variance with the possi-
bilistic ones. Moreover, we also included a constraint on the mean chance of ruin,
corresponding to the probabilistic solvency constraint on the ruin probability. There-
fore, based on the concept of f.r.v., we transformed a probabilistic two-asset portfolio
optimization insurance problem into a fuzzy one, which can be regarded as a contribu-
tion that relies fuzzy portfolio optimization with insurance risk models. Moreover, our
approach avoids some restrictive assumptions usually imposed in the stochastic setting.

On the other hand, the model proposed here is a comprehensive and practical one
that could be constructed from real data, while the methodology presented is quite
general and can be extended tomore complexmodels and portfolio selection problems
in hybrid and uncertain environments.

Acknowledgments The author gratefully acknowledges the two anonymous referees for insightful ques-
tions and suggestions that helped to revise and significantly improve the paper.

7 Appendix

Proof of Proposition 1 (i) We shall use the following formula for a, b �= 0, k > 0 and
j a positive integer,

∫ 1

0

(
a + bα

1
k

) j
dα =

j∑

i=0

(
j

i

)
a j−i bi

∫ 1

0
α

i
k dα =

j∑

i=0

(
j

i

)
a j−i bi

k

k + i
.

Since A is a positive f.n. and j > 0, from (1) we have
[
A j

]
α

=
[(
AL

α

) j
,
(
AR

α

) j]
.

Then, using the above formula,

F
(
A j

)
= 1

2

∫ 1

0

((
AL

α

) j +
(
AR

α

) j
)
dα

= 1

2

∫ 1

0

[(
a1 + (a2 − a1) α

1
k

) j +
(
a4 + (a3 − a4) α

1
k

) j
]
dα

= 1

2

⎛

⎝
j∑

i=0

(
j

i

)
a j−i
1 (a2 − a1)

i k

k + i
+

j∑

i=0

(
j

i

)
a j−i
4 (a3 − a4)

i k

k + i

⎞

⎠ ,

from where formula (i) is immediate.
(ii) For a, b, c �= 0, k > 0 and j a positive integer, we obtain the formula

∫ 1

0

(
a + bα

1
k + cα

2
k

) j
dα =

j∑

i=0

(
j

i

)∫ 1

0

(
a + bα

1
k

)i (
cα

2
k

) j−i
dα

123



212 R. Vernic

=
j∑

i=0

i∑

l=0

(
j

i

)(
i

l

)
c j−i blai−l

∫ 1

0
α

l+2( j−i)
k dα

=
j∑

i=0

i∑

l=0

(
j

i

)(
i

l

)
kc j−i blai−l

2( j − i) + k + l
,

that we shall use into

∫ 1

0

(
AL

α A
R
α

) j
dα =

∫ 1

0

[(
a1 + (a2 − a1) α

1
k

) (
a4 + (a3 − a4) α

1
k

)] j
dα

=
∫ 1

0

[
a1a4 + (a4 (a2 − a1) + a1 (a3 − a4)) α

1
k

+ (a2 − a1) (a3 − a4) α
2
k

] j
dα,

which easily yields formula (ii). ��

Proof of Proposition 2 (i) Using the density of fZ L
α
from (6), we have

E

[
ZL

α

]
=
∫ 0

−∞
x

Y R
α

fX

(
x

Y R
α

)
dx +

∫ ∞

0

x

Y L
α

fX

(
x

Y L
α

)
dx .

Changing now the variable y = x/Y R
α in the first integral and y = x/Y L

α in the
second one, we easily obtain formula (i ). Formula (ii) results in a similar way, while
(iii) immediately results by inserting (i) and (ii) into (3) written for Z , and noting that
E
[
X−

] + E
[
X+

] = E [X ].
To prove formula (iv), by changing the same variables, we fist evaluate

E

[(
ZL

α

)2] =
∫ 0

−∞
x2

Y R
α

fX

(
x

Y R
α

)
dx +

∫ ∞

0

x2

Y L
α

fX

(
x

Y L
α

)
dx

=
(
Y R

α

)2 ∫ 0

−∞
y2 fX (y) dy +

(
Y L

α

)2 ∫ ∞

0
y2 fX (y) dy

=
(
Y R

α

)2
E

[
X2−

]
+
(
Y L

α

)2
E

[
X2+

]
.

Therefore, using Var
[
ZL

α

] = E

[(
ZL

α

)2] − E
2
[
ZL

α

]
, we easily obtain formula (iv),

and then (v) in a similar way. Using now (iv), (v) and (4), we obtain

Var [Z ] = 1

2

(
Var

[
X−

] + Var
[
X+

]) ∫ 1

0

((
Y L

α

)2 +
(
Y R

α

)2)
dα

−2K [X ]
∫ 1

0
Y L

α Y R
α dα.
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Noting that
∫ 1
0

((
Y L

α

)2 + (
Y R

α

)2)
dα = F (

Y 2
)
and that

Var
[
X−

] + Var
[
X+

] = E

[
X2−

]
+ E

[
X2+

]
− E

2 [X−
] − E

2 [X+
]

= E

[
X2

]
− (

E
[
X−

] + E
[
X+

])2 + 2E
[
X−

]
E
[
X+

]

= E

[
X2

]
− E

2 [X ] + 2K [X ] = Var [X ] + 2K [X ] ,

yields formula (vi). ��
Proof of Proposition 3 The first part of this proposition is proved in Ungureanu and
Vernic (2015). For the second part, considering that the X j s are i.i.d. with generic
variable X , formulas (i ) and (ii) immediately result from (iii) and (vi) in Proposition 2
(taking also into consideration the fact that the variance of a sum of independent r.v.’s
is the sum of their individual variances). ��
Proof of Proposition 4 Like in the proof of Proposition 3, the expected value and
variance of Tn easily result from ( iii) and (vi) in Proposition 2 as

E [Tn] =
n∑

j=1

E

[
X j Q

n− j
]

= E [X ]
n∑

j=1

F
(
Qn− j

)
= E [X ]

n−1∑

j=0

F
(
Q j

)
,

Var [Tn] =
n∑

j=1

Var
[
X j Q

n− j
]

=
n∑

j=1

[
(Var [X ] + 2K [X ])F

(
Q2(n− j)

)
− 2K [X ]

∫ 1

0

(
QL

α Q
R
α

)n− j
dα

]

= Var [X ] +
n−1∑

j=1

[
(Var [X ] + 2K [X ])F

(
Q2 j

)
− 2K [X ]

∫ 1

0

(
QL

α Q
R
α

) j
dα

]
.

Inserting (13) and these formulas into

E [FVn] = 1

2

∫ 1

0

(
E

[
FV L

n,α

]
+ E

[
FV R

n,α

])
dα

= 1

2

[
x
∫ 1

0

((
QL

α

)n +
(
QR

α

)n)
dα −

∫ 1

0

(
E

[
T L
n,α

]
+ E

[
T R
n,α

])
dα

]

= xF (
Qn) − E [Tn] ,

and into

Var [FVn] = 1

2

∫ 1

0

(
Var

[
FV L

n,α

]
+ Var

[
FV R

n,α

])
dα

= 1

2

∫ 1

0

(
Var

[
x
(
QL

α

)n − T R
n,α

]
+ Var

[
x
(
QR

α

)n − T L
n,α

])
dα
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= 1

2

∫ 1

0

(
Var

[
T L
n,α

]
+ Var

[
T R
n,α

])
dα = Var [Tn] ,

we easily obtain the stated formulas. ��
Proof of Proposition 5 Note that since ãi = πai + (1 − π) q, we have ã2 − ã1 =
π (a2 − a1) and ã3 − ã4 = π (a3 − a4).
(i) Then, from Proposition 1 (i), we obtain

F
(
Q j

)

= 1

2

j∑

i=0

k

k + i

(
j

i

)
π i

[
(a2 − a1)

i (π (a1 − q) + q) j−i + (a3 − a4)
i (π (a4 − q) + q) j−i

]

= 1

2

j∑

i=0

k

k + i

(
j

i

) j−i∑

l=0

(
j − i

l

)
π i+lq j−i−l

[
(a2 − a1)

i (a1 − q)l + (a3 − a4)
i (a4 − q)l

]

= 1

2

j∑

i=0

k

k + i

(
j

i

) j∑

u=i

(
j − i

u − i

)
πuq j−usi,u

= 1

2

j∑

u=0

πuq j−u
u∑

i=0

k

k + i

(
j

i

)(
j − i

u − i

)
si,u,

where

si,u = (a2 − a1)
i (a1 − q)u−i + (a3 − a4)

i (a4 − q)u−i .

Since

(
j

i

)(
j − i

u − i

)
=
(
j

u

)(
u

i

)
, we have

F
(
Q j

)
= 1

2

j∑

u=0

πuq j−u
(
j

u

) u∑

i=0

k

k + i

(
u

i

)
si,u =

j∑

u=0

fu, j

(
(ai )

4
i=1 , k, q

)
πu,

with fu, j
(
(ai )4i=1 , k, q

)
given by ( 14) for u ≤ j .

(i i) Using (i i) from Proposition 1 and the notation introduced above Proposition 5,
we get

∫ 1

0

(
QL

α Q
R
α

) j
dα

=
j∑

i=0

i∑

l=0

k

2( j − i) + k + l

(
j

i

)(
i

l

)
π2( j−i)+l [(π (a1 − q) + q) (π (a4 − q) + q)]i−l

× [(a2 − a1) (a3 − a4)]
j−i [(a2 − a1) (π (a4 − q) + q) + (a3 − a4) (π (a1 − q) + q)]l

=
j∑

i=0

i∑

l=0

k

2( j − i) + k + l

(
j

i

)(
i

l

)
π2( j−i)+l t j−i

1

(
π2t4 + πqt5 + q2

)i−l
(π t2 + qt3)

l
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=
j∑

i=0

i∑

l=0

k t j−i
1 π2( j−i)+l

2( j − i) + k + l

(
j

i

)(
i

l

)[
l∑

s=0

(
l

s

)
(π t2)

s (qt3)
l−s

]

×
[

i−l∑

t=0

(
i − l

t

)
t i−l−t
4

t∑

u=0

(
t

u

)
(qt5)

u q2(t−u)π2(i−l−t)+u

]

.

In this expression, π appears at the power 2 ( j − t) − l + s + u that we renote by u′
and, considering only the last sum, we obtain

t∑

u=0

(
t

u

)
(qt5)

u q2(t−u)π2( j−t)−l+s+u

=
2( j−t)−l+s+t∑

u′=2( j−t)−l+s

(
t

u′ − 2 ( j − t) + l − s

)
tu

′−2( j−t)+l−s
5 q2 j+s−u′−lπu′

,

yielding for the last two sums

i−l∑

t=0

(
i − l

t

)
t i−l−t
4

t∑

u=0

(
t

u

)
(qt5)

u q2(t−u)π2( j−t)−l+s+u

=
2 j−l+s∑

u=2( j−i)+l+s

πuq2 j+s−u−l
min{i−l,2 j+s−l−u}∑

t=max
{
0, j+

[
s−l−u

2

]}
bt ,

where

bt =
(
i − l

t

)(
t

u − 2 ( j − t) + l − s

)
t i−l−t
4 tu−2( j−t)+l−s

5 .

We now include the sum with index s, i.e.,

l∑

s=0

(
l

s

)
t s2 (qt3)

l−s

⎡

⎢⎢
⎣

2 j−l+s∑

u=2( j−i)+l+s

πuq2 j+s−u−l
min{i−l,2 j+s−l−u}∑

t=max
{
0, j+

[
s−l−u

2

]}
bt

⎤

⎥⎥
⎦

=
2 j∑

u=2( j−i)+l

πuq2 j−u
min{l,u−2( j−i)−l}∑

s=max{0,u−2 j+l}
cs,

with

cs =
(
l

s

)
t s2 t

l−s
3

min{i−l,2 j+s−l−u}∑

t=max
{
0, j+

[
s−l−u

2

]}
bt .
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Inserting this into the above expression of
∫ 1
0

(
QL

α Q
R
α

) j
dα yields

∫ 1

0

(
QL

α Q
R
α

) j
dα

=
j∑

i=0

i∑

l=0

k t j−i
1

2( j − i) + k + l

(
j

i

)(
i

l

) 2 j∑

u=2( j−i)+l

πuq2 j−u
min{l,u−2( j−i)−l}∑

s=max{0,u−2 j+l}
cs

=
j∑

i=0

(
j

i

) 2 j∑

u=2( j−i)

πuq2 j−u
min{i,u−2( j−i)}∑

l=0

k t j−i
1

2( j − i) + k + l

(
i

l

)min{l,u−2( j−i)−l}∑

s=max{0,u−2 j+l}
cs

=
2 j∑

u=0

gu, j
(
(ai )

4
i=1 , k, q

)
πu,

where gu, j
(
(ai )4i=1 , k, q

)
is given by (15) for u ≤ 2 j . ��
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