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Abstract In this study, we establish a bilevel electricity tradingmodel where fuzzy set
theory is applied to address future load uncertainty, system reliability as well as human
imprecise knowledge. From the literature, there have been some studies focused on
this bilevel problem while few of them consider future load uncertainty and unit com-
mitment optimization which handles the collaboration of generation units. Then, our
study makes the following contributions: First, the future load uncertainty is charac-
terized by fuzzy set theory, as the various factors that affect the load forecasting are
often assessedwith some non-statistical uncertainties. Second, the generation costs are
obtained by solving complicated unit commitment problems, rather than approximate
calculations used in existing studies. Third, this model copes with the optimizations
of both the generation companies and the market operator, where the unexpected load
risk is particularly analyzed by using fuzzy value-at-risk as a quantitative risk mea-
surement. Forth, a mechanism to encourage the convergence of the bilevel model is
proposed based on fuzzy maxmin approach, and a bilevel particle swarm optimiza-
tion algorithm is developed to solve the problem in a proper runtime. To illustrate
the effectiveness of this research, we provide a test system-based numerical example
and discuss about the experimental results according to the principle of social welfare
maximization. Finally, we also compare the model and algorithm with conventional
methods.
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List of symbols

Constants

m Index of generation company
M Number of total generation companies
j Index of each generation unit
t Index of each scheduling period
T Number of total scheduling periods
Nm Number of units in company m
APm

t,− Empirical lower bound of APm
t

SC jm Cold/hot star-up cost of unit jm
a jm , b jm , c jm Cost function coefficients of unit jm

Pmax
jm

Maximal generation capability of jm
Pmin
jm

Minimal generation constraint of jm

Pmax
m Maximal capability of company m

Tjm ,up Minimal ‘on’ hours of unit jm
Tjm ,down Minimal ‘off’ hours of unit jm
U jm Number of hours unit jm is required to be on at the start of the

planning period
Djm Number of hours unit jm is required to be off at the start of the

planning period
A jm Minimal value of Ujm and T
Bjm Minimal value of Djm and T
DRjm Maximal downward ramp rates of jm
UR jm Maximal upward ramp rates of jm
˜Lt Forecasted fuzzy load of period t
LBt Lower bound of ˜Lt

UBt Upper bound of ˜Lt
˜Em Estimated fuzzy target profit of GC m
˜LC Estimated fuzzy target cost of MO
RB Reservation budget of a MO

Functions

CT jm (G jm
t ) Cost function of unit jm with output G jm

t
F ′
m Cost function of company m

Fm Upper level objective function
f Lower level objective function

Variables

APm
t Average bidding of company m in t

HPt Higher payment for unexpected load
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G jm
t Real generation of unit jm in period t

u jm
t On/off (1/0) state of unit jm in period t

x jm
t Startup action at time t of generator jm
y jm
t Shutdown action at time t of generator jm
Pm
t Generation of company m in period t

Pt Total generation of all companies in t
˜ULt Unexpected load of period t
Rm
t Spinning reserve of m in period t

ULCt Unexpected load cost of period t
UMCPt Unified market clearing price of period t

1 Introduction

In power market, generation companies (GCs) first submit expected selling price (bid-
ding) of their production, then a grid company determines the productive task to each
GC considering future power load and the bidding of all GCs. Thus, the profit of each
GC cannot be obtained until the gird company decides the power dispatch. Problems
with such structure could be formed as bilevel programming (BP), in which a group
of GCs manage the upper level and a market operator (MO) who not only guarantees
supply system reliability, but also represents consumer’s will to minimize electricity
purchasing cost, controls the lower level.

From the literature, the designation of BP was first used by Candler et al. [4], while
its original formulation was introduced by Bracken and McGill [3]. The BP is dis-
tinguished from conventional approaches as this type of programs have a subset of
decision variables constrained to be an optimal solution of other program parame-
terized by their remaining variables. Recent years, the development of BP has been
stronglymotivated by real-world applications, and it has been applied with remarkable
success in a number of practical problems that involve a hierarchical decision making
process, e.g. the applications in transportation [1], management [12] and especially
power systems planning [2,5,24]. Zhang et al. [24] proposed a multi-leader one-
follower bilevel model for day-ahead electricity markets, where the upper level is a
game problem among every GC and the lower level is a cost minimization problem of
an MO. Then, each GC chooses the bidding to maximize its individual profit, and an
MO can find its minimal electricity purchasing fare, which is determined by the out-
put of each unit and an unified market clearing price. However, the proposed method
assumed that all of the generation units are always online and working independently,
i.e. unit commitment (UC) optimization which aims to schedule the generation units to
meet the system load at the lowest cost was not considered. Carrion et al. [5] presented
amedium-term bilevel decision-making programming for a power retailer. This model
helps the retailer decide his level of involvement in futuremarket and in the pool aswell
as the selling price offered to its potential clients. Uncertainty on future pool prices,
client demands, and rival-retailer prices is accounted for via stochastic programming.
Fernandez-Blanco et al. [2] studied a general BP framework for alternative market-
clearing procedures dependent on market-clearing prices. The bilevel formulation is
investigated through a particular instance of price-based market clearing driven by
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consumer payment minimization. However, the future load uncertainty as well as the
UC optimization were not considered.

The UC optimization which can increase the profit of a GC and more importantly,
decrease the waste of social resources, has been wildly studied in the past decades.
Generally, the UC is applied to minimize the generation cost via arranging the on/off
states and outputs of all units over the scheduling horizon. A lot of constraints such
as system power balance, reserve requirement, minimal/maximal output, initial con-
dition, and minimal on/off limits are considered during the optimization process [10].
Therefore, the UC is a complicated but realistic problem to be addressed in the opti-
mization process.

Some related studies [5,17] describe the load uncertainty by using probability
theory, then stochastic programming is applied to solve the optimization problems.
However, on the one hand, the various inputs such as precipitation, humidity, wind
speed and temperature that form the basis of load forecasting are often assessed with
some uncertainty. This type of uncertainty is usually non-statistical and involves lin-
guistic knowledge. On the other hand, the power load forecasted on historical data
needs to be adjusted by experts based on their confidence about the future. Such
human estimations can also involve imprecise information. The probability theory is
used for analyzing a great amount of data, while fuzzy logic is used for the represen-
tation and using of linguistic knowledge. Therefore, it is reasonable to apply fuzzy
set theory as an alternative tool of probability theory to handle the endogenous fuzzy
uncertainty. Recently, fuzzy set theory has been applied in power systems by some
researchers [16,19]. Besides this, study [9] also introduced a fuzzy interaction regres-
sion method to short term load forecast, which provides a possible way to address the
fuzzy load uncertainty in real applications.

Based on the above analysis, this study constructs aUC-based fuzzy bilevel electric-
ity tradingmodel (UC-BETM). The upper level are mixed-integer profit maximization
problems of several GCs while the lower level is an electricity purchasing fare min-
imization problem of an MO: Each GC first provides an initial bidding for each
scheduling period (usually 1h), then the MO determines the generation amount of
the GC according to the future load and the bidding. After this, the MO can obtain his
payment and the GCs are able to calculate their profits after solving the UC problem.
Such processes can be implemented repeatedly until an optimal solution is obtained.
In contrast to [19] which merely solves the UC scheduling of one GC, the proposed
model focuses on the electricity trading problem among various participants, includes
not only the UC optimization, but also the MO’s response and reliability concern. In
addition, the UC-BETM is formed as a bilevel structure, which is different from the
two-stagemodel developed in [19]. Comparedwith [2,24], we consider the upper level
problem as a collaboration of all generation units, instead of working separately, i.e.
the cost is obtained via the UC optimization. More importantly, we also take the load
uncertainty into consideration and use different distributed fuzzy variables to describe
the power loads.

The solution to UC has been studied extensively in the past several decades. Among
the existing results, some optimization methods such as priority list (PL), branch-
and-bound (BB) and Lagrangian relaxation (LR) have explicit formulations and can
lead to exact solutions [16,19], while the others are mainly meta-heuristic algorithms
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use iterative search techniques to find local optimal solutions or approximate global
optima. From solution quality perspective, the first type of methods outperform the
meta-heuristic ones, as the latter cannot guarantee a systematic exploration of the
entire solution space. However, on the one hand, the UC-BETM developed in this
study is a BP with several nonlinear sub-optimization problems: Besides a series of
classicalUCoptimizations, theUC-BETMalso includes a nonlinear costminimization
problem of a MO and a feedback process between the upper and lower levels, which
make it difficult or impossible to be solved by methods with explicit formulations.
On the other hand, research on the improvement of meta-heuristic computation shows
that well-design algorithms could mitigate local convergency during iterations and
provide reasonable assurance that the search has few overlooked promising regions.
Therefore, it could be reasonable to applymeta-heuristic algorithm to find approximate
global optima when the problem is difficult to be solved by approaches with explicit
formulations. Based on the above reasons, we develop a particle swarm optimization
(PSO)-based algorithm in this research, and some techniques proposed in previous
study are employed as well to improve the search result.

The remainder of this paper is organized as follows: Sect. 2 introduces some knowl-
edge of BP and fuzzy set theory. In Sect. 3, we describe the detailed problem of each
level and build the UC-BETM. Section 4 provides a PSO-based algorithm to solve the
proposed model. Then, the effectiveness of this study is illustrated by a test system-
based numerical example in Sect. 5. Finally, Sect. 6 summarizes our conclusions.

2 Preliminaries

2.1 Bilevel programming

The general formulation of BP is given as follows:

min
x∈X F(x, y)

s.t. G(x, y) ≤ 0,
(1)

min
y

f (x, y)

s.t. g(x, y) ≤ 0.
(2)

where Eq. (1) is the upper level problem controlled by the upper level variables x ∈
R
n1 , Eq. (2) is the lower level optimization determined by the lower level variables

y ∈ R
n2 . F : Rn1 ×R

n2 → R and f : Rn1 ×R
n2 → R are the upper and lower level

objective functions, while G : Rn1 × R
n2 → R

m1 and g : Rn1 × R
n2 → R

m2 are the
upper and lower level constraints.

The constraint region of the above BP problem is:

Ω = {

(x, y) ∈ R
n1 × R

n2 : x ∈ X, G(x, y) ≤ 0, g(x, y) ≤ 0
}

. (3)

Then, for a given solution x of the upper level, the lower level feasible solution
region is defined as:
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LR(x) = {y ∈ R
n2 : g(x, y) ≤ 0}. (4)

And, the optimal solution of the lower level is expressed as:

y∗ = {y ∈ LR(x) : argmin f (x, y)}, (5)

where y∗ is called as a rational response of x , and R(x) is normally used to denote
the reaction set of each y∗ to every feasible value of x .

Now, we can conclude the feasible region of the upper level problem as:

UR(x, y∗) = {(x, y∗) ∈ Ω : (x, y∗) ∈ R(x)}. (6)

Based on the above knowledge, Colson et al. introduced the concepts of optimistic
and pessimistic BP in [7], which provide a possible way to solve the bilevel optimiza-
tion. The readers may refer to [1,7] for more detailed information on BP.

2.2 Fuzzy set theory

In this study, fuzzy set theory is applied to address future load uncertainty, system
reliability as well as develop the solution algorithm. Therefore, we provide some
necessary concepts and features of fuzzy variables.

Suppose ξ is a fuzzy variable with membership function μξ , r is a real number.
Then, the possibility and necessity of event ξ ≥ r are:

Pos{ξ ≥ r} = sup
t≥r

μξ (t), (7)

Nec{ξ ≥ r} = 1 − sup
t<r

μξ (t), (8)

The credibility measure [13] is formed on the basis of the possibility and necessity
measures, and in the simplest case, it is taken as their average.

Cr{ξ ≥ r} = 1

2
[Pos{ξ ≥ r} + Nec{ξ ≥ r}] . (9)

Value-at-risk (VaR) of an investment is the likelihood of the greatest loss under a
given confidence level [8]. Recently, researchers have introduced the VaR in fuzzy
environment [15,21], as follows:

Suppose L is a variable that represents the fuzzy loss of one investment, then the
VaR of L under confidence level (1 − β) can be written as follows:

VaR1−β = sup{λ|Cr(L ≥ λ) ≥ β}, (10)

where β ∈ (0, 1). This equation tells us that the greatest loss of L under confidence
level 1 − β is λ.
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The fuzzy VaR has been applied to build engineering optimization models
[20–22]. In this study, we use this concept to measure the unexpected load risk and
construct the lower level objective function.

3 Mathematical modeling of the UC-BETM

In this section, we first introduce the upper and lower level optimization problems
respectively, then build the mathematical model of the UC-BETM. It is assumed that
all the GCs are mutually independent thermal power plants, and no transmission loss
is considered in this research.

3.1 Upper level problem

The upper level problem involves a series of sub-optimization problems of every GC,
with the goal of maximizing the generation profit.

Objective function

max
APmt

F =
T
∑

t=1
Pm
t · UMCPt − F ′

m, (11)

where UMCPt is the unified market clearing. price determined by the maximal value
of all bidding in period t [24],

∑T
t=1 P

m
t ·UMCPt calculates the revenue of GCm and

F ′
m represents the generation cost obtained from the UC optimization.
Generally, the UC is modeled as a complicated nonlinear problem which aims to

minimize the system generation cost subject to several constraints. The following
problem is formed for the mth GC:

min F ′
m =

T
∑

t=1

Nm
∑

jm=1

u jm
t ·

[

CTjm

(

G jm
t

)

+ SC jm ·
(

1 − u jm
t−1

)]

, (12)

where CT jm (G jm
t ) is computed using the following equation:

CT jm

(

G jm
t

)

= a jm + b jm · G jm
t + c jm ·

(

G jm
t

)2
. (13)

In Eq. (13), the numerical values of a jm , b jm and c jm are determined by the attributes
of each generation unit.

Constraints

a. Power demand balance

Nm
∑

jm=1

G jm
t · u jm

t = Pm
t . (14)
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b. Spinning reserve requirement

Nm
∑

jm=1

Pmax
jm · u jm

t ≥ Pm
t + Rm

t . (15)

The spinning reserve is usually taken as a pre-specified amount of the demand,
e.g. 0.1 · Pm

t .
c. Generation constraints

Pmin
jm · u jm

t ≤ G jm
t ≤ Pmax

jm · u jm
t . (16)

d. Unit on/off limitations
The unit on/off limits can be expressed by the following Eq. [14].

t+Tjm ,up−1
∑

i=t

u jm
t ≥ x jm

t Tjm ,up

∀ jm,∀t = A jm + 1, . . . , T − Tjm ,up + 1
t+Tjm ,down−1

∑

i=t

(

1 − u jm
t

)

≥ y jm
t Tjm ,down

∀ jm,∀t = Bjm + 1, . . . , T − Tjm ,down + 1
T

∑

i=t

(

u jm
t − x jm

t

)

≥ 0

∀ jm,∀t = T − Tjm ,up + 1, . . . , T
T

∑

i=t

(

1 − u jm
t − y jm

t

)

≥ 0

∀ jm,∀t = T − Tjm ,down + 2, . . . , T
A jm
∑

i=t

u jm
t = A jm ∀ jm

B jm
∑

i=t

u jm
t = 0 ∀ jm, (17)

where A jm = min[T,Ujm ], Bjm = min[T, Djm ], Ujm and Djm are constants
determined by the initial status of each unit. The reader may refer to [14] for the
detailed explanation on this constraint.

e. Unit ramp rate constraints

− DRjm ≤ G jm
t − G jm

t−1 ≤ URjm , (18)

where DRjm and URjm are positive values that measure the maximal downward
and upward ramp rates of unit jm .
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Economic load dispatch and gray zone state problems

The unit on/off state can be decided according to the above constraints. Then, the
priority list [23] is generated to determine the exact output of each unit. This list is
calculated on the average fuel cost (measured in $/MW) of each unit at its maximal
output. Suppose α jm is a priority index, then

α jm = CT jm (Pmax
jm

)

Pmax
jm

= a jm

Pmax
jm

+ b jm + c jm · Pmax
jm . (19)

The priority list is created according to the ascending order of α jm , in which a unit
with the lowest α jm holds the highest priority to be dispatched.

Another issue in UC could be the gray zone problem caused by the difference
between cold and hot start-up costs (SC), the readers may refer to [19] for the detailed
knowledge.

3.2 Lower level problem

The goal of an MO is to minimize the purchasing cost when guaranteeing the supply
reliability. However, this object is usually hard to achieve as the future power loads
normally cannot be exactly captured. In this study, we depict those uncertain loads
as fuzzy variables and apply the following fuzzy VaR-based method to construct the
lower level problem.

3.2.1 A fuzzy VaR-based unexpected load risk measurement

Suppose in a successfully operated system where no intrinsic emergency happens,
˜Lt (t = 1, . . . , T ) are fuzzy variables denote the forecasted loads of all period. Then,
an MO will determine the total generation amount Pt of each period t and the exact
generation task (Pm

t ,m = 1, . . . , M) to every GC, based on the future load ˜Lt and
the bidding APm

t submitted previously by each GC.
For a determined Pt , the fuzzy variable describes the unexpected load of period t

is calculated as:

˜ULt = ˜Lt − Pt , for t = (1, . . . , T ). (20)

Then, for a given confidence level of 1−β, we use fuzzy VaR to calculate the maximal
power shortage of period t as:

VaR1−β(˜ULt ) = sup{λ|Cr(˜ULt ≥ λ) ≥ β}. (21)

Normally, the generation cost of a thermal unit is taken for a quadratic function of
the output, as shown in Eq. (13). Then, the marginal cost of unit jm is obtained as

[CT jm (G jm
t )]′ = b jm + 2 · c jm · G jm

t . (22)
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Obviously, the marginal cost is linearly increasing to output G jm
t [24]. Therefore,

when power shortage happens in period t , the MO has to pay a higher unit price (HPt )
than the bidding for those unexpected load. In this study, we first compute themarginal
cost of each unit at the minimal output, then select the largest one as a base to obtain
the HPt .

HPt = kt1 · max(b jm + 2 · c jm · Pmin
jm

) + kt2,
( jm = 1, . . . , Nm) and (m = 1, . . . , M)

(23)

where kt1 and kt2 are coefficients with different values regard to different periods.
Based on the above analysis, we define the cost of the unexpected load risk as:

ULCt = VaR1−β(˜ULt ) · HPt . (24)

Since the future loads are uncertain, for any Pt ∈ ˜Lt there exists possibility that
the real power load is higher than Pt . Then the above VaR1−β(˜ULt ) can be viewed as
a robust measurement of the maximal unexpected load of period t under confidence
level 1 − β.

3.2.2 Objective function of the lower level

We provide the following equation as the lower level objective function:

min
Pm
t

f =
M

∑

m=1

T
∑

t=1

Pm
t · APm

t + α ·
T

∑

t=1

VaR1−β(˜ULt ) · HPt . (25)

This function combines the power purchasing cost with the unexpected load risk,
an MO then can minimize the cost via finding optimal Pt and Pm

t values for each
scheduling period. In addition, α ∈ [0, 1] represents the risk attitude of an MO, and
LBt ≤ Pt ≤ UBt for t = (1, . . . , T ), i.e. any lower level decision should be made
within these intervals.

3.2.3 Constraint caused by unit ramp rate

Equation (18) introduces the unit ramp rate constraints which influence the UC
scheduling of the upper level problem. These constraints meanwhile, are also effects to
the lower level decision, since an extreme changing of the generation amount between
two contiguous periods may lead to infeasible UC planning or unexpected wear and
tear of the units. Therefore, we use the following equation to handle the above prob-
lems, where γm ∈ (0, 1) are coefficients given by eachGC after evaluating the intrinsic
cost of generation unit wear.

− γm ·
Nm
∑

jm=1

DRjm ≤ Pm
t+1 − Pm

t ≤ γm ·
Nm
∑

jm=1

URjm . (26)
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The above equation is essential to the bilevel electricity trading problem, however
also changes the lower level optimization to be nonlinear.

3.3 Mathematical model of the UC-BETM

Based on the above knowledge, we introduce the mathematical model of the UC-
BETM, as shown in Eq. (27).

The proposed model forms the electricity trading problem between the GCs and
the MO as a bilevel programming. The UC optimization, the future load uncertainty
as well as the unexpected load risk are addressed in this multi-leader one-follower
model.
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for m = 1, . . . , M

max
APmt

Fm =
T

∑

t=1

Pm
t · UMCPt − F

′
m

Subject to
Nm
∑

jm=1

G jm
t · u jm

t = Pm
t

Nm
∑

jm=1

Pmax
jm · u jm

t ≥ Pm
t + Rm

t

Pmin
jm · u jm

t ≤ G jm
t ≤ Pmax

jm · u jm
t

− DRjm ≤ G jm
t − P jm

t−1 ≤ URjm

HPt = kt1 · max(b jm + 2 · c jm · Pmin
jm ) + kt2

kt1, k
t
2 > 0

APm
t ∈ (APm

t,−,HPt )

where Pm
t solves

min
Pm
t

f =
M

∑

m=1

T
∑

t=1

Pm
t · APm

t + α ·
T

∑

t=1

VaR1−β(˜ULt ) · HPt

Subject to

− γm ·
Nm
∑

jm=1

DRjm ≤ Pm
t+1 − Pm

t ≤ γm ·
Nm
∑

jm=1

URjm

Pm
t + Rm

t ≤ Pmax
m

Pt =
M

∑

m=1

Pm
t

LBt ≤ Pt ≤ UBt

0 ≤ α, β, γm ≤ 1

(27)
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3.4 A fuzzy maxmin-based convergence mechanism of the UC-BETM

As we know, the BP is always difficult to solve and there is no classical method for
the proposed UC-BETM. Moreover, it is even hard to define the global optimal solu-
tion of the UC-BETM for two reasons: First, the upper level problem includes more
than one decision-maker which makes it difficult to achieve an unified upper level
solution. Second, the concept of the optimistic/pessimistic BP introduced in [7] can-
not be employed directly to solve the problem due to the intrinsic conflict between
the upper and lower levels. For example, if we use the global optimistic solution
as the final decision, then the decision-making process will lead to the monopoly
of the GCs, i.e. all of the GCs will increase their bidding more and more to obtain
high profits. Conversely, the monopoly of the MO happens when we use global pes-
simistic solution principle. In real-life applications however, such monopolies are not
realistic.

To overcome the above difficulties and direct the convergence of BP, [24] applied
game theory to build the mathematical model and developed generalized Nash
equilibrium-based solution. However, this type of approach has some drawbacks in
real applications especially in the proposed UC-BETM: First, they define the Nash
equilibrium solution as the choices from all the GCs are close enough to their cor-
responding rational reactions, which requires each GC knows the exact bidding of
the others. In most applications however, it is difficult to achieve this object as they
cannot have perfect information about each other’s decisions, and in a simplified but
realistic case, the GCs only focus on personal profit. Second, the final solution in Nash
equilibrium is mainly determined by the GCs themselves, as theMO can only dispatch
the power based on the offered bidding. This is not consistent with the real applica-
tion, since the electricity market structure is more akin to grid company oligopoly
than perfect competition, due to special features of the electricity supply industry
e.g. transmission monopoly which isolates consumers from the GCs. Therefore, the
MO’s behavior such as cost control should be an affect on the final result. Third, even
though the GCs will share information with each other, it is quite time-consuming
to find the Nash equilibrium solution (basically, an additional heuristic algorithm is
required, thus increase the computation time of the problem exponentially). Since
the proposed model has been a BP with nonlinear upper and lower optimizations,
it may not be reasonable to use game theory to solve a day-ahead UC-BETM
problem.

On account of the above reasons, we apply a fuzzy maxmin approach [25], which
only requires some straightforward assignments to the goal of each participant. Con-
sidering the GCs and the MO may have imprecise knowledge toward future trading
such as the higher the better or the smaller the better, we use fuzzy variables and related
membership functions to describe these goals and develop the following approach to
solve the UC-BETM.

Step 1. Consider a MO’s decision Pm
t and the corresponding upper and lower level

objective values are Fm and f . Then, (Pm
t , APm

t ) and (Fm, f ) compose the possible
solution set SS and the result set RS.
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Step 2. For the upper level problem, we assume each GC has an individual target
profit (˜Em) towards future trading, denoted as a fuzzy variable with the following
membership function:

μ
˜Em

(Fm) =

⎧

⎪

⎨

⎪

⎩

0, Fm ≤ El
m

(Fm − El
m)/(Eh

m − El
m), El

m < Fm < Eh
m

1, Fm ≥ Eh
m

(28)

where El
m means the lowest expected return that GC m can accept and Eh

m is the
satisfied return. Obviously, for each upper level participant, it is expected that Fm
maximizes μ

˜Em
(Fm).

Step 3. For the lower level problem, the MO has a reservation budget RB and an
expected payment EP of the trading, where these two values can be exactly estimated
as the electricity market price is open and accurate. Then, we define the local feasible
solutions of the UC-BETM as:

(Pm
t ,APm

t ) ∈ FS, iff f ≤ RB, (29)

where FS is an aggregation of the local feasible solutions.
Moreover, we use fuzzy variable ˜LC to measure the membership degree of each

solution to the lower level goal:

μ
˜LC ( f ) =

{

1, f < EP

(RB − f )/(RB − EP), EP ≤ f ≤ RB
(30)

Step 4. For each local feasible solution, we calculate μ
˜Em

(Fm) and μ
˜LC( f ) by using

Eqs. (28) and (30), then obtain a unified membership degree as minm=1,...,M μ
˜Em

(Fm) ∧ μ
˜LC( f ).

Step 5. Finally, the global optimal solution GS of the UC-BETM is defined as the
element in FS that maximizes the unified membership degree as:

GS −→ max min
m=1,...,M

μ
˜Em

(Fm) ∧ μ
˜LC ( f ). (31)

The above method is easier to be realized than conventional approaches and it can
prevent the monopoly problems from occurring in the optimization process. Addition-
ally, the MO’s cost control behavior is also addressed.

4 Solution method

Based on the above knowledge, we develop a bilevel PSO algorithm to solve the
UC-BETM, named B-PSO.
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The PSO algorithm was introduced by Kennedy et al. [11] in 1995. Suppose that
S particles search in a K -dimensional space for IT iterations, the position of parti-
cle s is denoted as Pis = (Pis,1, . . . ,Pis,k, . . . ,Pis,K ), (s = 1, 2, . . . , S and k =
1, 2, . . . , K ), then the velocity and position of each particle are updated as follows:

vs,k = w · vs,k + c1 · Rand · (Pbests,k − Pis,k)

+ c2 · Rand · (Gbestt,k − Pis,k), (32)

Pis,k ← Pis,k + vs,k . (33)

where vs,k is the velocity of particle s at dimension k with an upper bound Vmax and
a lower bound Vmin, w is an inertia weight, c1 and c2 are the learning rates, Rand
is a randomly generated value in (0,1), Pbests,k is the personal best which means the
best position of particle s itself in the past iterations, and Gbestt,k is the global best
which denotes the best position of all particles after t iterations. Recently, the PSO
algorithm has been applied to solve the UC optimization problems [18,19].

The UC-BETM proposed in this study contains two related optimization processes:
The upper level problem includes a bidding optimization and a series of mix-integer
nonlinear UC problems to maximize the profit of each GC, while the lower level
determines the total generation amount and each GC’s involvement. Hence, to solve
the proposedmodel, a B-PSO employs different particle swarms in the upper and lower
levels is designed, in which the parameters, such as the maximal/minimal velocity,
the inertia weight and the iteration number are assigned independently to each swarm.
In contrast to the algorithm developed in [19], the B-PSO is in a bilevel structure
and it solves not only the conventional UC, but also the market trading problem. We
summarize the B-PSO as follows:

Step 1. Initialize particle swarm �, where each particle includes T ∗ M randomly
generated values APm

t in (APm
t,−,HPt ), denotes the initial bidding of all GCs over the

scheduling horizon:

� →

⎡

⎢

⎢

⎢

⎣

AP1
1 AP

2
1 · · · · · APM

1

AP1
2 AP

2
2 · · · · · APM

2

· · · · · · APm
t · · · ·

AP1
T AP2

T · · · · · APM
T

⎤

⎥

⎥

⎥

⎦

. (34)

Step 2. Optimize the lower level problem based on each particle in �, detailed as
follows:

Step 2.1. Initialize particle swarmA: the sth particle PisA has T ∗M randomly generated
nonnegative values Pm

t .

PisA →

⎡

⎢

⎢

⎢

⎣

P1
1 P2

1 · · · · · PM
1

P1
2 P2

2 · · · · · PM
2

· · · · Pm
t · ··

P1
T P2

T · · · · · PM
T

⎤

⎥

⎥

⎥

⎦

. (35)
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Step 2.2. Each PisA must satisfy the following constraints:

a. The power dispatch to each GC should not exceed its generation capacity.
Check each Pm

t in PisA, if Pm
t + Rm

t ≥ Pmax
m , order Pm

t = Pmax
m /1.1 (suppose

that Rm
t equals 0.1 · Rm

t ) and revise matrix PisA.

b. For each t, LBt ≤ ∑M
m=1 P

m
t ≤ UBt .

Calculate
∑M

m=1 P
m
t , if there is a violation, for example

∑M
m=1 P

m
t < LBt , we first

compute their difference as

Δ1 = LBt −
M

∑

m=1

Pm
t . (36)

Then, select a GC randomly and calculate

Δ2 = Pmax
m − Pm

t . (37)

If Δ2 > 0 and Δ2 < Δ1, then

temp = Rand · Δ2
Pm
t = Pm

t + temp
Δ1 = Δ1 − temp,

(38)

where temp is a temporary variable.
If Δ2 > 0 and Δ2 ≥ Δ1, then

Pm
t = Pm

t + Δ1
Δ1 = 0.

(39)

Repeat the above process until Δ1 = 0. Similar approach can be developed as well
to revise PisA when

∑M
m=1 P

m
t > UBt .

c. For each t and GC m, −γm · ∑Nm
jm=1DRjm ≤ Pm

t+1 − Pm
t ≤ γm · ∑Nm

jm=1 URjm .

For a specified GCm∗, calculate the generation amount variation of each t (t > 1).

Δ3 = Pm∗
t − Pm∗

t−1. (40)

If Δ3 < −γm∗ · ∑Nm∗
jm∗=1 DRjm∗ , calculate

Δ4 = −γm∗ ·
Nm∗
∑

jm∗=1

DRjm∗ − Δ3. (41)

Then, randomly generate m (m ≤ M , m �= m∗) and compute

Δ5 = Pm
t − Pm

t−1 + γm ·
Nm
∑

jm=1

DRjm . (42)
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If Δ5 > 0 and Δ5 < Δ4,

temp = Rand · Δ5

Pm∗
t = Pm∗

t + temp

Pm
t = Pm

t − temp

Δ4 = Δ4 − temp.

(43)

If Δ5 > 0 and Δ5 ≥ Δ4,

Pm∗
t = Pm∗

t + Δ4

Pm
t = Pm

t − Δ4

Δ4 = 0.

(44)

Repeat the above process until Δ4 = 0. Similar approach can be developed to
handle Δ3 > γm∗ · ∑Nm∗

jm∗=1 URjm∗ .

Step 2.3. For each PisA, calculate the lower level objective value based on fuzzy VaR
and �.

Step 2.4. For each particle in swarmA, repeat Steps 2.2–2.3 to obtain different lower
level responses and the corresponding objective values.

Step 2.5. Initialize personal best and global best of swarm A: The personal best and
global best of each particle PA are determined by the lower level objective function
f . Then, we update the position of each particle in swarmA using Eqs. (32) and (33).

Step 2.6. Repeat Steps 2.2–2.5 until all the iterations of swarm A are accomplished.
Among the iterations, the escape speed and particle restart position techniques [20]
are employed to mitigate the local convergence problem. Finally, we can obtain the
lower level optimal value f and related decision on Pm

t regards to the bidding matrix
�.

Step 3. Return the optimal Pm
t to the upper level, then solve the UC optimization

to maximize the profit of each GC. This step is similar to the solution developed in
our previous study [19], except that the ramp rate constraint is also considered in
this research. Therefore, in what follows, we only provide the ramp rate realization
method, the readers may refer to [19] for other knowledge of this step.

The ramp rate constraints actually represent the maximal increment or decrement
of the output of unit jm in a unit time (usually 1h). Then, the following approach is
used to avoid any illegal output variation:

Step 3.1. Set t = 1, find the committed units of period 1, and check the output of these
unit jm at the initial states (t = 0).
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Step 3.2. Each of the committed unit are first assigned to a minimal output as G jm
t =

max[G jm
t−1 − DRjm, Pmin

jm
].

Step 3.3. Calculate Δ = Pm
t − ∑Nm

jm
G jm

t · u jm
t .

Step 3.4. Then, we use the priority list-based method to disperse the Δ value to each
committed unit, while the largest output of unit jm is min[G jm

t−1 + URjm, Pmax
jm

].
Step 3.5. Repeat the above process until t = T .

Step 4. Execute Step 3 for M times to obtain the optimal schedules and profit Fm (m =
0, . . . , M) of all the GCs.

Step 5. The bidding matrix � and the lower level response Pm
t (determined in Step 2)

can be taken as a feasible solution of the UC-BETM if f ≤ RB. Then, we record this
solution in FS and calculate min

m=1,...,M
μ

˜Em
(Fm) ∧ μ

˜LC( f ) as the fitness value.

Step 6. Use PSO strategy again, we revise each particle in �, thus construct a swarm
of new bidding matrix.

Step 7. Repeat Steps 1–6 for a given iterations IT, and record all the feasible solutions
and related fitness values in FS.

Step 8. For eachmember inFS, we compare the fitness value and select the onewith the
highest unified membership degree as the global optimal solution of the UC-BETM.

5 Computational experience

The performance of this study is illustrated by using a test system-based three-GC
one-MO day-ahead electricity trading problem.

5.1 Problem description

We first introduce the test system data of each GC based on [10]. Table 1 lists the
detailed attributes of 10 generation units, which forms the base of the upper level UC
problems. Suppose each upper level GC has 8 different units among Table 1, e.g. GC
1 holds units 1–4, 6–7, 9–10.

In the lower level problem, the future load of each period is described as triangular or
trapezoidal fuzzy variable, as these distributions are frequently used and can simulate
lots of uncertainties. Of course, variables with Gaussian distribution or some other
irregular distributions can be applied as well to describe the future load in different
environment. For the sake of convenience in computation, we assume the future loads
as deviations on the exact data provided in [10,23], as listed in Table 2 below, where
(x, y, z) denotes a triangular fuzzy variable, (x, yl , yr , z) represents a trapezoidal
fuzzy variable, and the spinning reserve Rm

t equals 0.1 · Pm
t .
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Table 1 Attributes of the generation units in GCs

Unit 1 2 3 4 5
GC 1, 2, 3 1, 2 1, 2, 3 1, 2 2, 3

Pmax 455 455 130 130 162

Pmin 150 150 20 20 25

a 1000 970 700 680 450

b 16.19 17.26 16.6 16.50 19.70

c 0.00048 0.00031 0.002 0.00211 0.00398

Tup 8 8 5 5 6

Tdown 8 8 5 5 6

UR 200 200 85 80 90

DR 200 200 85 80 90

Hot SC 4500 5000 550 560 900

Cold SC 9000 10,000 1100 1120 1800

Cold start hrs 5 5 4 4 4

Initial status 8 8 −5 −5 −6

Unit 6 7 8 9 10

GC 1, 3 1, 2, 3 2, 3 1, 3 1, 2, 3

Pmax 80 85 55 55 55

Pmin 20 25 10 10 10

a 370 480 660 665 670

b 22.26 27.74 25.92 27.27 27.79

c 0.00712 0.00079 0.00413 0.00222 0.00173

Tup 3 3 1 1 1

Tdown 3 3 1 1 1

UR 50 50 30 35 30

DR 50 50 30 35 30

Hot SC 170 260 30 30 30

Cold SC 340 520 60 60 60

Cold start hrs 2 2 0 0 0

Initial status −3 −3 −1 −1 −1

Other parameter settings, such as the target profit ˜Em , the empirical lower bound
APm

t,− and the reservation budget RB are listed in Table 3.

5.2 Experimental results

The fuzzy maxmin-based B-PSO is applied to solve the UC-BETM, where all of
the experiments were implemented with C code on a Dell 3.40-GHz CPU personal
computer. Table 4 gives the parameter settings of the B-PSO and the iteration times
IT (introduced in Step 7) is assigned as 600 while the particle number of swarm � is
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Table 2 Day-ahead forecasted loads ˜Lt (MW) of the supply system

Period Power demands Period Power demands

1 (1260, 1400, 1540) 13 (2520, 2760, 2840, 3080)

2 (1350, 1500, 1650) 14 (2340, 2560, 2640, 2860)

3 (1530, 1700, 1870) 15 (2160, 2360, 2440, 2640)

4 (1710, 1900, 2090) 16 (1890, 2100, 2310)

5 (1800, 2000, 2200) 17 (1800, 2000, 2200)

6 (1980, 2200, 2420) 18 (1980, 2200, 2420)

7 (2070, 2300, 2530) 19 (2160, 2360, 2440, 2640)

8 (2160, 2360, 2440, 2640) 20 (2520, 2760, 2840, 3080)

9 (2340, 2560, 2640, 2860) 21 (2340, 2560, 2640, 2860)

10 (2520, 2760, 2840, 3080) 22 (1980, 2200, 2420)

11 (2610, 2860, 2940, 3190) 23 (1620, 1800, 1980)

12 (2700, 2960, 3040, 3300) 24 (1440, 1600, 1760)

Table 3 Parameter settings of
the UC-BETM

Upper level GC no. (m)

1 2 3

Em :El
m ($) 4.5 × 104 5.0 × 104 1.0 × 104

Em :Eh
m ($) 8.5 × 104 9.0 × 104 4.0 × 104

kt1 1.0 1.0 1.0

kt2 (t < 13) 0.1 0.1 0.1

kt2 (t > 12) −0.1 −0.1 −0.1

APmt,− ($/MW) 23 23 23

Pmax
m (MW) 1445 1527 1077

γm (MW) 0.3 0.3 0.3

Lower level MO

α 0.8 β 0.1

RB 1.70 × 106 EP 1.55 × 106

20. Then, the following Table 5 provides the global optimal solution of this problem
which includes the profit of each GC, the payment of the MO and the maximal unified
membership degree. Table 6 lists the final bidding and the MO’s decision on power
dispatch. This solution satisfies every participant most in the proposed electricity
trading problem.

5.3 Discussions on the experiment results

Based on the above experimental results, we provide the following discussions to illus-
trate the effectiveness of the UC optimization and the fuzzy maxmin-based algorithm.
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Table 4 Parameter settings of the B-PSO

Particle Vmax Vmin Iteration ω c1 c2

Upper level 20 4.0 −7.0 100 1.0 2 2

Lower level 10 990.0 −990.0 100 1.0 2 2

Table 5 Global optimal solution of the UC-BETM ($)

GC/MO GC1 GC2 GC3 MO Degree

Profit/pay 80,543.8 80,855.1 32,691.1 15,908,44.7 0.728

Table 6 Market operator’s
decision on Pm

t (MW) and the
final bidding of generation
companies ($/MW)

Hrs GC

1 2 3 1 2 3

1 437.1 361.4 644.0 23.0 25.7 27.0

2 383.9 777.8 438.0 23.2 23.0 23.4

3 318.5 763.6 731.7 27.2 26.0 23.2

4 550.3 687.5 700.2 23.0 24.1 26.2

5 874.7 271.1 925.3 25.3 27.4 23.7

6 961.1 687.5 631.6 23.2 23.0 23.3

7 963.0 1006.3 337.9 23.9 23.0 27.6

8 1015.2 1232.2 209.8 27.7 23.1 27.5

9 919.6 1388.0 403.5 27.8 27.3 27.5

10 1313.0 1043.8 478.0 23.0 23.2 23.0

11 1313.0 927.5 771.7 27.1 27.2 27.0

12 974.5 1193.1 979.0 24.9 23.0 23.2

13 612.1 1388.0 979.0 28.0 24.5 25.9

14 626.3 1388.0 685.3 23.7 23.0 27.8

15 921.4 1215.2 391.6 26.6 26.1 26.5

16 714.2 798.8 685.3 23.2 23.4 23.1

17 443.9 1215.2 391.6 23.8 23.0 25.2

18 794.5 798.8 685.3 27.5 27.4 26.3

19 1075.3 382.4 979.0 23.5 26.5 26.1

20 1313.0 615.3 979.6 26.2 26.4 23.1

21 919.1 824.9 979.0 27.1 27.2 26.1

22 1145.5 408.5 685.3 23.6 25.1 27.0

23 921.4 535.45 391.6 23.0 26.2 27.0

24 905.7 615.3 154.2 23.6 23.1 23.3

1. In this study, the global optima of the UC-BETM is defined as the solution in FS
that maximizes the unified membership degree. Then, Table 7 lists some of the local
feasible solutions obtained by B-PSO, where No. 1 is the global optima.
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Table 7 Some local feasible
solutions of the UC-BETM ($)

GC1 GC2 GC3 MO

No. 1 80,543.8 80,855.1 32,691.1 15,908,44.7

No. 2 70,676.6 57,620.6 14,509.3 15,915,17.5

No. 3 77,795.6 65,804.8 22,710.7 15,957,27.8

No. 4 78,316.2 54,341.3 24,788.8 15,908,36.5

No. 5 73,964.7 57,602.5 13,529.7 15,818,94.8

No. 6 85,395.9 52,894.6 19,888.6 15,795,65.6

No. 7 87,695.1 70,811.7 14,949.7 15,795,79.4

Comparing the global optima with solutions No. 2 and 3, we find that higher MO
payment does not mean higher profit of each GC, e.g. the total/individual profit of
all GCs of No. 1 are higher than the others, even though its payment is the lowest.
The reason lies in the differences of the power dispatch Pm

t to each GC: A small
increment (decrement) of the Pm

t alters the GC’s revenue little, but may lead to a
different UC scheduling, e.g. a de-committed(committed) unit need to be commit-
ted (de-committed), thus increases (decreases) the generation cost by a relative high
value. Then, an optimal power dispatch will lead to not only a lower MO payment
but also proper UC scheduling of all GCs, thus increases their profits. Nevertheless,
such conclusion cannot be achieved if we only use some approximate calculations
of the generation cost. Therefore, we can say that, it is essential to include the UC
optimization in electricity trading problem and theMO’s decision on Pm

t is significant
to be investigated.

In view of No. 4–7, these solutions provide either higher profit of some GC or
lower MO payment than that of No. 1. However, in this study, we only search for the
solution that satisfies all participants most when the MO’s payment is lower than the
reservation budget.

2. To test the performance of the B-PSO, we set IT = 1500 and 5 trials were carried
out. Figure 1 depicts the optimal results to different iteration times (also different
runtime costs) of each trial, while Table 8 analyzes their average value and standard
deviation.

In the case of trial 1, a total of 13,642 local feasible solutions were found, while the
largest fitness value is 0.728. According to the knowledge provided in Fig. 1 and Table
8, we can conclude that the B-PSO is robust to different trials as the deviations of the
final optima are small, and 600 is the most suitable iteration times for our problem
while the related runtime cost is also appropriate for solving a day-ahead UC-BETM
problem.

5.4 Social welfare maximization

In this part, we analyze the above solutions from social welfare perspective [6]. The
inherence relationship between the unified membership degree and social welfare is
illustrated below.
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Fig. 1 Optimal result to different iteration and runtime cost of 5 trials

Table 8 Average value and standard deviation of 5 trials ($)

Iteration Trial

1 2 3 4 5 Average Deviation

500 0.726 0.712 0.723 0.720 0.714 0.719 0.0053

600 0.728 0.726 0.723 0.720 0.714 0.722 0.0049

1500 0.728 0.726 0.723 0.720 0.714 0.722 0.0049

If we only consider the electricity trading between GCs and MO (no power con-
sumers), social welfare can be measured from two aspects: one is the total profit of
all participants in the trading (SW-P), in this case GCs and MO; another is the cost
of the commodity (SW-C), i.e. the negative value of all money paid for the power
generation. Then, we use the summation of all GCs’ profits minus the MO’s payment
∑M

m=1 Fm − f as the measurement from the first aspect and the total generation cost
of the GCs

∑M
m=1 F

′
m as an estimation from another perspective. Figures 2 and 3 show

their relationship with the unified membership degree reflected by all of the solutions
in FS, where the point in asterisk is the global optima.

From Fig. 2, we can find that the growth of
∑M

m=1 Fm − f basically keep identical
with the increasing of the unified membership degree, which means that the B-PSO
guides the bidding and the power dispatch toward social welfare maximization. Figure
3 shows that the increasing of the unified membership degree generally results in the
decreasing of

∑M
m=1 F

′
m , which also proves the effectiveness of the UC: the power

dispatch optimized during the iteration process becomes more and more proper for
all GCs to generate nearly the same quality of electricity at a relatively low cost, thus
reduce social resource waste.

123



A unit commitment-based fuzzy bilevel electricity trading... 125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1.5

−1.48

−1.46

−1.44

−1.42

−1.4

−1.38
x 106

Unified membership degree

E
st

im
at

io
n 

of
 s

oc
ia

l w
el

fa
re

: t
ot

al
 p

ro
fit

s

Solutions obtained by B−PSO
Global optimal solution

Fig. 2 Social welfare and unified membership degree: SW-P
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Fig. 3 Social welfare and unified membership degree: SW-C

However, it is also noticed that, a global optima that satisfies all the participantsmost
does not with the highest social welfare, as reflected by the dash line in these figures.
Ideally, the structure and management mechanisms or rules in an electricity market
could be sufficiently well designed to direct the operation towards social welfare
maximization. Nevertheless, as explained before, the electricity market structure is
more akin to oligopoly and most of the participants are profit-push, which hamper
the realization of the above objective. Based on the knowledge revealed in Figs. 2
and 3, we suggest that a trading which balances the satisfaction of each participant
and social welfare, for example the one with maximal social welfare when the unified
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Table 9 Comparisons with conventional method ($)

Result Method name

UC-BETM
and B-PSO

Crisp load
and B-PSO

UC-BETM and
Nash equilibrium

GC 1 profit 80,543.8 62,478.1 73,687.5

GC 2 profit 80,855.1 61,300.4 75,556.1

GC 3 profit 32,691.1 29,917.9 41,129.9

GC 1 cost 433,193.5 416,401.0 408,506.0

GC 2 cost 438,568.9 454,195.4 470,615.8

GC 3 cost 348,487.2 394,985.7 366,992.3

MO payment 15,908,44.7 15,946,39.5 16,004,08.4

Social welfare (profit) −13,967,54.7 −14,409,43.1 −14,100,34.9

Social welfare (cost) 12,202,49.5 12,655,82.1 12,461,14.1

Runtime cost (s) 1.12 × 104 1.09 × 104 5.42 × 105

membership degree is larger than a predefined value, can be selected as the final
decision.

5.5 Comparisons with conventional methods

The main contribution of this study exists in the application of fuzzy set theory to
describe the load uncertainty, measure the unexpected load risk and develop the fuzzy
maxmin-based algorithm. Therefore, in this portion, we compare the performance of
the UC-BETM as well as the B-PSO with conventional methods.

From future load uncertainty perspective: Existing studies [2,24] ignore the UC
optimization and most of the traditional UC problems are solved based on exact future
demands [10,23], which are considered to be a special decision made on the interval
data provided in Table 2. Therefore, we first compare the experimental result of the
crisp load-based method, i.e. the expected value of the fuzzy variables, with the global
optima of the UC-BETM. From solution algorithm perspective: As we mentioned, a
generalized Nash equilibrium-based solution algorithm [24] was developed to solve
such problem. Therefore, we also discuss about the experimental results as well as
the runtime cost of the B-PSO with the existing algorithm, where the swarm used to
find the rational reaction in [24] is considered as 10 particles with 100 iterations. We
conducted 5 trials for each method and the best results after 600 iterations are listed in
Table 9 while the same type of parameters are set as uniform values in each algorithm.

Table 9 shows that the solution of the proposed UC-BETM dominates that of the
crisp load-based model, as the profits, the cost as well as the social welfare are better.
For example, from social welfare aspect, the total profit is increased by 3.07% while
the generation cost of all GCs is decreased by 3.58%. Therefore, it can be proven that
the operation on load uncertainty is of important to the electricity trading problems.
When comparing the B-PSO with the Nash equilibrium-based algorithm, we find that
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both of the two approaches lead to profit maximization of each GC while minimizing
the MO’s payment. However, the solution of B-PSO shows advantages in most of
the evaluations, especially the payment and the social welfare. More importantly, the
runtime cost of the latter one is quite huge (almost 50 times of the B-PSO), which
makes it infeasible to solve a day-ahead UC-BETM problem. Therefore, it can be
concluded that the fuzzy maxmin-based B-PSO is better than the existing method
when solving this complicated optimization.

We also noticed that, there have been a number of studies applied stochastic theory
to address the load uncertainty, whereas none of them focus on our topic due to the
inherent complexity of the bilevel model itself. Therefore, in this research, we only
compare the UC-BETM with the crisp load-based method. However, our future work
may work on the stochastic model and investigate its difference from the UC-BETM.

6 Conclusions

This study introduced a unit commitment-based bilevel electricity trading model.
Experimental and comparison results show that the UC is essential when calculating
the generation cost of a series of collaborated units, and fuzzy set theory is effective to
address the imprecise knowledge and develop the algorithm.We also prove that a trad-
ing better satisfies all participants basically leads to higher social welfare. Moreover,
the using of fuzzy value-at-risk to measure the supply reliability and the construc-
tion of the bilevel model provide researchers and market operators with effective
approaches when analyzing the electricity trading problems in real industry. However,
due to the complexity of the optimization problem and the high runtime cost of the
algorithm, the parameter settings of the B-PSO were not sufficiently analyzed in this
paper. Our future work will focus on the application of some tuning process to derive
well-working parameters, when the solution algorithm can be implemented within a
reasonable period of time..
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