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Abstract In this paper, we investigate interval-valued fuzzy negations induced by
interval-valued t-norms, t-conorms or implications. Some properties of interval-
valued fuzzy negations induced by interval-valued sup-morphism t-norms,
inf-morphism t-conorms or R-implications are firstly obtained.We also show interval-
valued automorphisms acting on the interval-valued fuzzy negations induced by
interval-valued t-norms, t-conorms or implications. Finally, the relations among the
interval-valued fuzzy negations induced by interval-valued t-norms, t-conorms or
implications are explored.

Keywords Natural negations · Interval-valued t-norms · Interval-valued t-conorms ·
Interval-valued implications · Automorphisms

1 Introduction

In many cases, it is difficult for decision-makers to provide a preference under
inaccurate, uncertain, or incomplete information. To overcome this problem, fuzzy
sets are introduced because of their flexibility in describing uncertain information.
Today, fuzzy decision making is an important topic both in fuzzy sets theory and its

B Li Dechao
dch1831@163.com

1 School of Mathematics, Physics and Information Science, Zhejiang Ocean University,
Zhoushan 316022, China

2 Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province,
Zhoushan 316022, China

3 College of Mathematics and Information Science, Shaanxi Normal University,
Xi’an 710062, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10700-015-9214-8&domain=pdf


2 L. Dechao et al.

applications in engineering, technology, science and management and business. It is
well known that fuzzy logic plays an essential role in decision making to deal with
imprecision and uncertainty of information. It is one of the most important and inter-
esting mathematical problems to characterize and represent fuzzy logical connectives
(including fuzzy conjunction, fuzzy disjunction, fuzzy complement and fuzzy impli-
cation) in fuzzy logic. In order to apply better fuzzy sets theory in decision-making, it
is very necessary to systematical study fuzzy negations from the mathematical point
of view. There exist infinitely many approaches to define fuzzy negations such that the
behavior in their extremes is as in the classical ones. Zadeh represented the most used
fuzzy negation N (x) = 1 − x for the first time Zadeh (1965). Soon after, other dif-
ferent fuzzy negations were defined (Baczyński and Jayaram 2008; Higashi and Klir
1982; Lowen 1978; Ovchinnikov 1983; Trillas 1979). Especially, it is well known
today that the axiomatic definition of fuzzy negation can be found in Ovchinnikov
(1983). What is worth to be mentioned that the natural negations of t-norms and
t-conorms, i.e., negations generated by fuzzy connectives are a class of fuzzy nega-
tions, too (Baczyński and Jayaram 2008).

Due to the increasing complexity of environment and the vagueness of human think-
ing, it is not reasonable to describe something uncertain in many practical decision
making situations using type-1 fuzzy sets. In order to strengthen the capability of mod-
eling and manipulating inexact information in a logical manner, the concept of type-2
fuzzy implications were introduced by Zadeh (1971). In recent years, type-2 fuzzy
sets became increasingly important since they seem to provide a better framework for
the “computing with words” paradigm than classical ones (Herrera et al. 2009). As
being special type-2 fuzzy sets with intervals as truth values, the interval-valued fuzzy
sets (of which traditional [0,1]-valuedmembership degrees are replaced by intervals in
[0,1]) address intuitively not only vagueness (lack of sharp class boundaries) but also
a feature of uncertainty (lack of information). Moreover, interval-valued fuzzy sets are
considerably easier to handle in practice than the similarly inspired type-2 fuzzy sets.
To date, interval-valued fuzzy sets have been widely used to solve decision-making
problems. In spite of interval-valued fuzzy sets’ application in knowledge-based sys-
tems is widely understood and promoted, the research on interval-valued fuzzy sets
theory is not perfect. So, it is useful to characterize and represent interval-valued fuzzy
negations in interval-valued fuzzy sets theory. Several interval-valued negations have
been provided in Bedregal (2010); Deschrijver et al. (2004); Gehrke et al. (1996);
Gorzalczany (1987). In Bedregal (2010), Bedregal investigated the main properties of
representable interval-valued fuzzy negations. In Deschrijver et al. (2004), the authors
discussed the properties of involutive interval-valued negations. In addition, Wu and
Luo (Wu and Luo 2011) showed the fixed points of the involutive interval-valued
negations.

In this paper, we mainly investigate the natural negations of interval-valued
t-norms, t-conorms and implications. Having this in mind, this paper is organized
as follows. In Sect. 2, we give some definitions of basic notions and notations. Sec-
tion 3 represents the natural negations of interval-valued t-norms and t-conorms. In
Sect. 4, the natural negations of interval-valued implications are studied. In Sect. 5,
interval-valued automorphisms acting on the natural interval-valued negations are
showed. Section 6 gives the relations among some families of natural negations of
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interval-valued t-norms, t-conorms and implications based on the results from Sects. 3
and 4.

2 Preliminary

In order to make this work more self-contained, we introduce the main concepts and
properties employed in the rest of the work.

2.1 Fuzzy negation

Definition 2.1 (Bustince et al. 2003; Fodor 1993) A function N : [0, 1] → [0, 1] is a
fuzzy negation if

N1: N (0) = 1 and N (1) = 0;
N2: If x ≤ y then N (x) ≥ N (y),∀x, y ∈ [0, 1].
A fuzzy negation is strict if it satisfies the following properties:
N3: N is continuous;
N4: If x < y then N (x) > N (y),∀x, y ∈ [0, 1].
A fuzzy negation is called strong fuzzy negation if it satisfies the involutive prop-
erty, i.e.
N5: N (N (x)) = x,∀x ∈ [0, 1].

Definition 2.2 (Bustince et al. 2003; Fodor 1993) x ∈ [0, 1] is called a fixed point
(or an equilibrium point) of a fuzzy negation N if N (x) = x .

Definition 2.3 (Klement and Navara 1999) A bijective mapping ρ : [0, 1] → [0, 1]
is an automorphism if x < y then ρ(x) < ρ(y),∀x, y ∈ [0, 1].
Remark 1 An equivalent definition was given in Bustince et al. (2003), where an
automorphism is a continuous and strictly increasing function ρ : [0, 1] → [0, 1]
such that ρ(0) = 0 and ρ(1) = 1.

Remark 2 If ρ1 and ρ2 are automorphisms then ρ1 ◦ ρ2 is also an automorphism. The
inverse of an automorphism is also an automorphism. Let Aut ([0, 1]) denote the set
of all automorphisms on [0, 1], then it is not difficult to show that (Aut ([0, 1]), ◦) is
a group.

Let ρ be an automorphism and N be a fuzzy negation. The action of ρ on N , denoted
by Nρ , is defined as follows: Nρ(x) = ρ−1(N (ρ(x))).

Proposition 2.4 (Bustince et al. 2003) Let N : [0, 1] → [0, 1] be a fuzzy negation
and ρ : [0, 1] → [0, 1] be an automorphism. Then Nρ is a fuzzy negation, too.
Moreover, if N is strict (strong) then Nρ is also strict (strong).

Proposition 2.5 (Trillas 1979) N : [0, 1] → [0, 1] is a strict fuzzy negation if and
only if there exist automorphisms ρ1 and ρ2 such that N = ρ1 ◦ N0 ◦ ρ2, where N0
is the standard fuzzy negation N0(x) = 1 − x . Especially, N is strong if and only if
there exists automorphism ρ such that N = Nρ

0 .
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2.2 Interval-valued fuzzy negations, t-norms and t-conorms

Let L I = {[x1, x2]|x1 ≤ x2, x1, x2 ∈ [0, 1]}. For further usage, we also denote
x = [x1, x2] and the set D = {[x, x]|x ∈ [0, 1]}. Further, the first and second
projection mapping pr1 and pr2 on L I are defined as pr1x = x1 and pr2x = x2 for
all x ∈ L I . An ordering on L I as x ≤ y if x1 ≤ x2 and y1 ≤ y2 is called component-
wise order or Kulisch–Miranker order (Deschrijver 2011). It is easy to verify that the
defined ordering is a partially ordering on L I , i.e., it is reflexive, antisymmetric and
transitive. The largest and the smallest elements of L I are denoted by 1L I = [1, 1]
and 0L I = [0, 0], respectively. For any non-empty A ⊆ L I , sup A = [sup{x1|x ∈
A}, sup{x2|x ∈ A}] and inf A = [inf{x1|x ∈ A}, inf{x2|x ∈ A}] hold (Deschrijver
2011). Therefore, it can be verified that the algebraic structure (L I ,∨,∧, 0L I , 1L I ) is a
complete, bounded anddistributive lattice.Moreover, it is dense, that is, if x > y(x ≥ y
and x �= y), then there exists z such that x > z > y.

Definition 2.6 (Birkhoff 1948) Let L1 and L2 be complete lattices and A be a non-
empty subset of L1. Amapping f : L1 → L2 is called an inf-morphism if f (inf A) =
inf f (A); sup-morphism if f (sup A) = sup f (A).

Definition 2.7 (Moore metric) (Moore et al. 2009) For any x, y ∈ L I , d(x, y) =
max{|x1 − y1|, |x2 − y2|} is referred as Moore metric.

Indeed, d fulfills the following conditions:

(1) Positive definiteness. d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y.
(2) Symmetry. d(x, y) = d(y, x).
(3) Triangle inequality. d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.8 (Moore et al. 2009) In the metric space (L I , d), V (⊆ L I ) is called a
neighborhood of x0 ∈ L I if there exists an open ball B(x0, ε) = {x | d(x, x0) < ε}
such that B(x0, ε) ⊆ V .

Definition 2.9 (Moore-continuity) (Moore et al. 2009) We say that a mapping f :
L I → L I is continuous if for any neighborhood V of f (x) there exists a neighborhood
U of x such that f (U ) ⊆ V with respect to the metric d.

Remark 3 Acióly and Bedregal (1997) presented a quasi-metric dS(x, y) = max{y2−
x2, y1 − x1, 0} on L I . Moreover, they defined a dS-continuous mapping which is
said Scott-continuous, because this notion of continuity coincides with the continuity
on Domain theory (Acióly and Bedregal 1997). Obviously, a function f is Scott-
continuous iff it is order-continuous, that is, f (sup A) = sup f (A) holds for each
directed set A ∈ L I Santiago et al. (2006). However, Moore-continuity does not imply
Scott-continuity while Scott-continuity does not imply Moore-continuity (Santiago
et al. 2006). In order to discuss the connectedness, separation and compactness of L I ,
the continuity on L I means that both Moore-continuity and Scott-continuity in the
remain of this paper.
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Lemma 2.10 (Moore et al. 2009) Themetric space (L I , d) is connected and compact.

Further, an interval-valued fuzzy negation can be defined as follows:

Definition 2.11 (Deschrijver et al. 2004; Gehrke et al. 1996; Gorzalczany 1987) A
function N : L I → L I is called an interval-valued fuzzy negation if

N1: N (0L I ) = 1L I , N (1L I ) = 0L I ;
N2: N (x) ≥ N (y) if x ≤ y, ∀ x, y ∈ L I .
Further, an interval-valued fuzzy negation N is strict if it satisfies the following
properties:
N3: N is continuous;
N4: N (x) > N (y) if x < y.
An interval-valued fuzzy negation is strong if it is involutive, i.e.,
N5: N (N (x)) = x,∀ x ∈ L I .

Example 2.12 (Bedregal 2010) Let N1 and N2 be two fuzzy negations on [0, 1] and
N1 ≤ N2. It is obvious to see that the operation N ([x1, x2]) = [N1(x2), N2(x1)] is
an interval-valued fuzzy negation. In general, it is called an interval-valued negation
associated with N1 and N2.

Theorem 2.13 (Deschrijver et al. 2004) For an involutive interval-valued fuzzy nega-
tion N , there exists an involutive fuzzy negation N on [0, 1] such that N (x) =
[N (x2), N (x1)] for any x ∈ L I .

Remark 4 Similarly to Example 2.12,we can also obtain another interval-valued fuzzy
negation associated with N as N ′([x1, x2]) = [N (x1), N (x1)]. We say an interval-
valued negationN is trivial if the image of each [x1, x2] ∈ L I underN is a degenerate
interval. In this paper, we always assume that all interval-valued negations are non-
trivial.

Notice that (L I ,∨,∧,N , 0L I , 1L I ) is a soft algebra whenN is involutive, that is,
(L I ,∨,∧) is a bounded and distributive lattice and keeps De Morgan identities.

Definition 2.14 (Deschrijver et al. 2004) An associative, symmetric and isotonic
operation T : L I × L I → L I is called an interval-valued t-norm if it satisfies
T (x, 1L I ) = x for any x ∈ L I .

Example 2.15 (Deschrijver et al. 2004) Let T1 and T2 be two t-norms defined on [0, 1]
such that T1 ≤ T2 (That is, T1(x, y) ≤ T2(x, y) for all x, y ∈ [0, 1]). It is obvious that
the operation T (x, y) = [T1(x1, y1), T2(x2, y2)] satisfies the properties of interval-
valued t-norm. Such a t-norm associated with T1 and T2 is referred as t-representable.
For instance, T (x, y) = [x1 ∧ y1, x2 ∧ y2] is t-representable.
Definition 2.16 (Deschrijver et al. 2004) An associative, symmetric and isotonic
operation S : L I × L I → L I is called an interval-valued t-conorm if it satisfies
S(x, 0L I ) = x for any x ∈ L I .
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Example 2.17 (Deschrijver et al. 2004) Similarly to the case of t-norms, we call
S(x, y) = [S1(x1, x2), S2 (y1, y2)] as s-representable t-conorm associated with S1
and S2, where S1 and S2 are two t-conorms on [0, 1] and S1 ≤ S2. For instance,
S(x, y) = [x1 ∨ y1, x2 ∨ y2] is s-representable.
Remark 5 Notice that not all interval-valued t-norms (t-conorms) are t-representable
(s-representable) (Deschrijver et al. 2004).

Remark 6 We define an inclusion order on L I as x ⊆ y if and only if y1 ≤ x1 and
y2 ≥ x2. It is not difficult to find that interval-valued t-norms (t-conorms) T (S) are
t-representable (s-representable) iff they are ⊆-isotonic in both arguments.

Definition 2.18 (Deschrijver 2011)We say that an interval-valued t-norm T is a join-
morphism if T (x, y∨z) = T (x, y)∨T (x, z) for any x , y, z ∈ L I ; ameet-morphism if
T (x, y∧ z) = T (x, y)∧T (x, z); a sup-morphism if T (x, sup A) = sup{T (x, y)|y ∈
A(⊆ L I )}; an inf-morphism if T (x, inf A) = inf{T (x, y)|y ∈ A(⊆ L I )}.

Replacing the words t-norm by t-conorm, we can obtain the proper definitions of
join-morphism, meet-morphism, sup-morphism or inf-morphism t-conorms S.

For continuous interval-valued t-norms, we have the following fact:

Theorem 2.19 (Deschrijver 2011) Let T be a continuous interval-valued t-norm.
Then

i. T is a sup-morphism if and only if T is a join-morphism;
ii. T is an inf-morphism if and only if T is a meet-morphism.

Remark 7 It is easy to find that the above statements hold also for interval-valued
t-conorms S.

Definition 2.20 (Bedregal and Takahashi 2005) An interval-valued t-norm T is
Archimedean if for any x, y ∈ L I − {0L I , 1L I } there exists an n ∈ N such that

x (n)

T < y, where x (n)

T = T (

n
︷ ︸︸ ︷

x, . . . , x).

Theorem 2.21 (Bedregal and Takahashi 2005) Let T be a continuous interval-valued
t-norm.ThenT isArchimedean if andonly ifT (x, x) < x for any x ∈ L I−{0L I , 1L I }.
Definition 2.22 (Bedregal and Takahashi 2005) Let T be an interval-valued t-norms.
An element x ∈ L I −{0L I , 1L I } is called a nilpotent element of T if there exist some
n ∈ N such that x (n)

T = 0L I .

Definition 2.23 (Bedregal andTakahashi 2005)A continuous interval-valued t-norms
T is called nilpotent if each x ∈ L I − {0L I , 1L I } is a nilpotent element of T .

3 Natural negations of interval-valued t-(co) norms

One can associate interval-valued fuzzy negations with interval-valued t-norms or t-
conorms. In this section, we investigate interval-valued fuzzy negations generated by
interval-valued t-norms or t-conorms.
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Definition 3.1 Let T be an interval-valued t-norm and S be an interval-valued t-
conorm, respectively. A mapping NT : L I → L I defined as

NT (x) = sup{y ∈ L I |T (x, y) = 0L I } for x ∈ L I (1)

is called the natural negation of T .

The mapping NS : L I → L I defined as

NS(x) = inf{y ∈ L I |S(x, y) = 1L I } for x ∈ L I (2)

is called the natural negation of S.
It is easy to verify that NT (0L I ) = sup{y ∈ L I |T (0L I , y) = 0L I } = sup{y ∈

L I } = 1L I and NT (1L I ) = sup{y ∈ L I |T (1L I , y) = 1L I } = sup{y = 1L I } = 1L I .
Moreover, for any x, y ∈ L I s.t. x ≤ y, we have {z ∈ L I |T (x, z) = 1L I } ⊆
{z′ ∈ L I |T (y, z′) = 1L I }. So, NT (x) = sup{z ∈ L I |T (x, z) = 1L I } ≥ sup{z′ ∈
L I |T (y, z′) = 1L I } = NT (y). This implies that NT is an interval-valued fuzzy
negation. Similarly, we can prove that NS is an interval-valued fuzzy negation, too.

Lemma 3.2 If S is an inf-morphism, then

i. S(x, y) = 1L I ⇐⇒ NS(x) ≤ y for any x, y ∈ L I ;
ii. NS(x) = min{y ∈ L I |S(x, y) = 1L I };
iii. NS is an inf-morphism.

Proof i. It is sufficient to prove S(x, y) = 1L I if y ≥ NS(x). Assume that y ≥
NS(x). We have S(x, y) ≥ S(x,NS(x)) = S(x, inf{z ∈ L I |S(x, z) = 1L I }) =
inf{S(x, z)|S(x, z) = 1L I , z ∈ L I } = 1L I . Hence, y ≥ NS(x) iff S(x, y) = 1L I .

ii. SinceNS(x) ≥ NS(x), we haveS(x,NS (x)) = 1L I according to i. This implies
that NS(x) ∈ {y ∈ L I |S(x, y) = 1L I }. So, the infimum in (2) is the minimum.

iii. Assume to the contrary that NS is not an inf-morphism, that is, there exists
a nonempty set A ⊆ L I such that NS(

∧

A) �= ∧

x∈A NS(x). Since NS is non-
increasing, we have NS(

∧

A) >
∧

x∈A NS(x). By i, S(
∧

A,
∧

x∈A NS(x)) < 1L I

holds. This implies that
∧

x∈A S(x,NS(x)) < 1L I , which is a contradiction withS(x,
NS(x)) = 1L I . Therefore, NS is an inf-morphism, too. ��

Similarly, we can prove the following results.

Lemma 3.3 If T is a sup-morphism, then

i. T (x, y) = 0L I ⇐⇒ NT (x) ≥ y for any x, y ∈ L I;
ii. NT (x) = max{y ∈ L I |T (x, y) = 0L I };
iii. NT is a sup-morphism.

Theorem 3.4 Let interval-valued t-conorm S be an inf-morphism. We have the
following statements:

i. If NS is continuous, then it is strong;
ii. If NS is discontinuous, then it is not strictly antitonic.
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Proof i. Firstly, we verify thatNS is strict. Assume that there exist some x and y such
that NS(x) = NS(y). Let us consider the following three cases:

(i)NS(x) = NS(y) = 1L I . SinceNS(0L I ) = 1L I , it is sufficient to verify y = 0L I .
Suppose y �= 0L I . For arbitrary ε > 0, we have S([1 − ε, 1 − ε], y) < 1L I . Since
S is an inf-morphism, we obtain NS([1 − ε, 1 − ε]) � y. On the other hand, since
NS is continuous, limε→0 NS([1 − ε, 1 − ε]) = NS(1L I ) �< y holds. However,
NS(1L I ) = 0L I . This is a contradiction.

(ii) NS(x) = NS(y) = 0L I . Since NS(1L I ) = 0L I , it is sufficient to verify y =
1L I . Suppose y < 1L I . SinceNS(y) = inf{z ∈ L I |S(y, z) = 1L I } = 0L I , there exists
a z0 ∈ {z ∈ L I |S(y, z) = 1L I } such that z0 ≤ [ε, ε] for arbitrary ε > 0. Therefore,
S(y, [ε, ε]) ≥ S(y, z0) = 1L I holds. This implies that NS([ε, ε]) ≤ y. Since NS is
continuous, limε→0 NS([ε, ε]) = NS(0L I ) ≤ y holds. However, NS(0L I ) = 1L I .
This is a contradiction.

(iii) NS(x) = NS(y) = a, 0L I < a < 1L I . We further consider the following
three cases:

(a) x < y. For any z which satisfies that x ≤ z < y, by the definition of NS
we can obtain S(z, [(a1 + ε) ∧ 1, (a2 + ε) ∧ 1]) = 1L I and S(z, [(a1 − ε) ∨
0, (a2 − ε)∨ 0]) < 1L I , where arbitrary ε > 0 and a = [a1, a2]. This implies that
NS([(a1+ε)∧1, (a2+ε)∧1]) ≤ z andNS([(a1−ε)∨0, (a2−ε)∨0]) � z. Since
NS is continuous, limε→0 NS([(a1 + ε)∧ 1, (a2 + ε)∧ 1]) = limε→0 NS([(a1 −
ε) ∨ 0, (a2 − ε) ∨ 0]) = NS(a) = z. This is a contradiction.

(b) x ≮ y. This case implies that x ⊆ y or x ⊇ y. Without loss of generality, we
assume x ⊆ y. For any z satisfying x ⊆ z � y, we have NS(z) = a as NS is
Scott continuous. In a similar way as for case (a), we have NS(a) = z. This is a
contradiction.

(c) y ≮ x . It can be proven in a similar way as for case (iii)-(b). ��

Thus, NS is strict.
Next, we verify thatNS is strong. SinceNS is strict, for arbitrary x ∈ L I and ε > 0

we have [(x1 − ε) ∨ 0, (x2 − ε) ∨ 0] ≤ x ≤ [(x1 + ε) ∧ 1, (x2 + ε) ∧ 1]. Further,
NS(NS([(x1−ε)∨0, (x2−ε)∨0])) ≤ NS(NS(x)) ≤ NS(NS([(x1+ε)∧1, (x2+ε)∧
1])) holds. Notice that S(x,NS([(x1−ε)∨0, (x2−ε)∨0]) = S(x, inf{y|S(y, [(x1−
ε)∨0, (x2−ε)∨0]) = 1L I } = inf{S(x, y)|S(y, [(x1−ε)∨0, (x2−ε)∨0]) = 1L I } =
1L I . By the definition of NS , we obtain x ≥ NS(NS([(x1 − ε) ∨ 0, (x2 − ε) ∨ 0])).
Therefore, NS(x) ≤ NS(NS(NS([(x1 − ε) ∨ 0, (x2 − ε) ∨ 0]))). This means that
NS(x) ≤ limε→0 NS(NS(NS([(x1 − ε) ∨ 0, (x2 − ε) ∨ 0]))) = NS(NS(NS(x))).
On the other hand, sinceNS(NS(x)) ≤ NS(NS([(x1+ε)∧1, (x2+ε)∧1])), we have
S(NS(x),NS( NS([(x1 + ε)∧1, (x2 + ε)∧1]))) ≥ S(NS(x),NS(NS(x))) = 1L I .
Thus, NS(x) ≥ NS(NS(NS([(x1 + ε) ∧ 1, (x2 + ε) ∧ 1]))). Once again, by the
continuity ofNS , we obtainNS(x) ≥ limε→0 NS(NS(NS([(x1 + ε) ∧ 1, (x2 + ε) ∧
1]))) = NS(NS(NS(x))). From the above inequalities,NS(x) = NS(NS(NS(x))).
By Lemma 4.6 from [16], it is not difficult to see that NS is involutive.

ii. Assume that NS is discontinuous at x0. We define b = ∧

x<x0 NS(x) and
a = ∨

x>x0 NS(x). By the definition ofNS , we always have a < b. Now we consider
the following two cases:

123



Natural negation of interval-valued t-(co) norms and. . . 9

(i)NS(x0) = a. For any c which satisfies a < c < b,NS(x0) < c holds obviously.
This implies that S(x0, c) < 1L I . And then NS(c) � x0, that is, NS(c) ≥ x0,
NS(c) ⊆ x0 or x0 ⊆ NS(c). Let us consider the above three cases in detail.

(a) If NS(c) ≥ x0. For any x ≤ x0, we have NS(x) ≥ b. This means that
S(x, b) < 1L I . Thus, S(x, c) < 1L I . By Lemma 3.2, we have NS(c) � x , which is
a contradiction to the fact that x ≤ x0.

(b) If NS(c) ⊆ x0. For any x ⊇ x0, we have NS(x) � b. This means that
S(x, b) < 1L I . Thus, S(x, c) < 1L I . By Lemma 3.2, NS(c) � x holds. Then,
x � NS(c) ⊆ x0. This contradicts to the fact that x ⊇ x0.

(c) If x0 ⊆ NS(c). For any x ⊆ x0, we have NS(x) � b. This means that
S(x, b) < 1L I . Thus, S(x, c) < 1L I . By Lemma 3.2, NS(c) � x holds. Then,
x � NS(c) ⊇ x0, which is a contradiction to the fact that x ⊆ x0.

In a word, we can always obtain NS(c) = x0. This implies that NS is constant on
the set A = {x |a ≤ x ≤ b}.

(ii) NS(x0) = d with a < d ≤ b. For any c which satisfies a < c < d, we have
NS(x0) > c. Thismeans thatS(x0, c) < 1L I . Thus,NS(c) � x0, that is,NS(c) ≥ x0,
NS(c) ⊆ x0 or NS(c) ⊇ x0. We can prove that NS(c) = x0 in a similar way as for
case (i). Therefore, NS is constant on the set B = {x |a ≤ x ≤ d}.

Thus, NS is strictly antisotonic.

Corollary 3.5 Let interval-valued t-conorm S be an inf-morphism. The following
statements are equivalent:

i. NS is strictly antitonic;
ii. NS is continuous;
iii. NS is strict;
iv. NS is strong.

Proof By Theorem 3.4, i �⇒ ii �⇒ iii, iv. Obviously, iii �⇒ i and iv �⇒ iii. ��
Similarly, one can prove the following facts.

Theorem 3.6 Let interval-valued t-norm T be a sup-morphism. We have

i. If NT is continuous, then it is strong;
ii. If NT is discontinuous, then it is not strictly antisotonic.

Corollary 3.7 For an interval-valued t-norm T as a sup-morphism, the following
statements are equivalent:

i. NT is strictly antitonic;
ii. NT is continuous;
iii. NT is strict;
iv. NT is strong.

Definition 3.8 Let S be an interval-valued t-conorm and N be an interval-valued
fuzzy negation. We say that the pair (S,N ) satisfies the law of excluded middle
(LEM) if S(N (x), x) = 1L I for any x ∈ L I .
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Lemma 3.9 If the pair (S,N ) satisfies LEM, then

i. N ≥ NS ;
ii. (NS ◦ N )(x) ≤ x for any x ∈ L I .

Proof i. Assume that there exist some x0 such thatN (x0) � NS(x0). This implies that
S(N (x0), x0) < 1L I . This is a contradiction to the fact that the pair (S,N ) satisfies
LEM.

ii. Since the pair (S,N ) satisfies LEM, we have x ∈ {y|S(N (x), y) = 1L I } for all
x ∈ L I . By the definition of NS , (NS ◦ N )(x) ≤ x holds for any x ∈ L I . ��
Lemma 3.10 Let an interval-valued t-conorm S be an inf-morphism and N be an
interval-valued fuzzy negation, the following statements are equivalent:

i. The pair (S,N ) satisfies LEM;
ii. N ≥ NS .

Proof It is sufficient to prove ii �⇒ i. SinceN (x) ≥ NS(x) for any x ∈ L I , we have
S(N (x), x) ≥ S(NS(x), x) = 1L I by Lemma 3.2. Thus, the pair (S,N ) satisfies
LEM. ��
Lemma 3.11 Let S be a continuous interval-valued t-conorm such that

(i) S is Archimedean;
(ii) S is nilpotent;
(iii) S is a join-morphism;
(iv) S(D, D) ⊆ D.

andN be a strong interval-valued fuzzy negation, the following statements are equiv-
alent:

i. the pair (S,N ) satisfies LEM;
ii. There exists an automorphism ρ on [0, 1] such that

S(x, y) = [ρ−1(1 ∧ (ρ(x2) + ρ(y1)) ∧ (ρ(y2) + ρ(x1))),

ρ−1(1 ∧ (ρ(x2) + ρ(y2)))]

and N (x) ≥ NS(x) = [ρ−1(1 − ρ(x2)), ρ−1(1 − ρ(x1))].
Proof i�⇒ ii. SinceN is strong,N ([0, 1]) = [0, 1] holds according to Ref. Deschri-
jver et al. (2004). So,S([0, 1], [0, 1]) = S(N ([0, 1]), [0, 1]) = 1L I . ByTheorem9.12
in Ref. Deschrijver et al. (2004), there exists an automorphism ρ on [0, 1] such that
S(x, y) = [ρ−1(1∧ (ρ(x2)+ρ(y1))∧ (ρ(y2)+ρ(x1))), ρ−1(1∧ (ρ(x2)+ρ(y2)))].
In this case, for any fixed x = [x1, x2] ∈ L I , the natural negation of S has the form
as follows:

NS(x) = inf{y = [y1, y2] ∈ L I |S(x, y) = 1L I } = inf{y ∈ L I |[ρ−1(1∧ (ρ(x2)+
ρ(y1)) ∧ (ρ(y2) + ρ(x1))), ρ−1(1 ∧ (ρ(x2) + ρ(y2)))] = 1L I } = inf{y ∈ L I |1 ∧
(ρ(x2) + ρ(y1)) ∧ (ρ(y2) + ρ(x1)) = 1 and 1 ∧ (ρ(x2) + ρ(y2)) = 1} = inf{y ∈
L I |ρ(x2)+ρ(y1) = 1 and ρ(y2)+ρ(x1) = 1} = [ρ−1(1−ρ(x2)), ρ−1(1−ρ(x1))].
Moreover, N (x) ≥ NS(x) holds by Lemma 3.10.

ii �⇒ i. The proof in this direction is immediate. ��
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Definition 3.12 Let T be an interval-valued t-norm,S be an interval-valued t-conorm
and N be a strict interval-valued fuzzy negation, we say the triple (T ,S,N ) is a De
Morgan triple if for each x, y ∈ L I ,

T (x, y) = N (S(N (x),N (y))), S(x, y) = N (T (N (x),N (y)))

Lemma 3.13 Let an interval-valued t-norm T be a sup-morphism and S be an
interval-valued t-conorm. If (T ,S,NT ) is a De Morgan triple, then

i. NS = NT ;
ii. S is an inf-morphism.

Proof i. Assume that there exist some x0 such thatNS(x0) �= NT (x0). Let us consider
the following three cases:

(i) NT (x0) < NS(x0). There exists an a ∈ L I such that NT (x0) < a < NS(x0).
Since (T ,S,NT ) is a DeMorgan triple,NT is strong, and then it is a bijection. There-
fore, there exists a y ∈ L I such thatNT (y) = a, that is,NT (x0) < NT (y) < NS(x0).
This implies that T (x0,NT (y)) ≥ T (x0,NT (x0))) = T (x0, sup{z ∈ L I |T (x0, z) =
0L I } = sup{T (x0, z)|T (x0, z) = 0L I } = 0L I and S(x0,NT (y)) < 1L I . So,
NT (T (NT (x0),NT (NT (y)))) < 1L I holds. And then T (NT (x0), y) > 0L I . This
means that NT (x0) � NT (y), a contradiction as our assumption.

(ii) NT (x0) > NS(x0). Similarly, we can find a y ∈ L I such that NT (x0) >

NT (y) > NS(x0). This implies that S(x0,NT (y)) = 1L I , and thenNT (T (NT (x0),
NT (NT (y)))) = 1L I . Thus, T (NT (x0), y) = 0L I holds. This means thatNT (x0) ≤
NT (y), a contradiction on our assumption.

(iii) NT (x0) ⊆ NS(x0) or NS(x0) ⊆ NT (x0). Without loss of generality, we
only consider the case NT (x0) ⊆ NS(x0). In this case, there exists an a ∈ L I

such that NT (x0) � a � NS(x0). Since NT is a bijection, we can find a y ∈ L I

such that NT (y) = a, i.e., NT (x0) � NT (y) � NS(x0). By the monotonicity
of S and T , S being the NT -dual of T and the definitions of NT , NS we have
S(x0,NT (y)) < 1L I . This implies that NT (T (NT (x0),NT (NT (y)))) < 1L I ,
i.e., T (NT (x0), y) > 0. By Lemma 3.2 in Ref. Deschrijver (2011), there exists a
t-norm T on [0, 1] such that pr1(T (NT (x0), y)) = T (N (pr2x0)), y1). Thus, we
have T (N (pr2x0)), y1) > 0. This implies that y > pr2x0 according to Theorem 2.13.
This contradicts with NT (x0) � NT (y) � NS(x0).

ii. Since S is an inf-morphism t-conorm and NT is strong, the t-norm T , as an
NS -dual of S, is a sup-morphism. ��
Lemma 3.14 Let an interval-valued t-conorm S be an inf-morphism and T be an
interval-valued t-norm. If (T ,S,NS) is a De Morgan triple, then

i. NT = NS ;
ii. T is a sup-morphism.

Proof This proof can be obtained similarly to that of Lemma 3.13. ��
In the last part of this section, we discuss the natural negations of representable

t-norms and t-conorms.
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Definition 3.15 (Deschrijver et al. 2004) We say that an interval-valued fuzzy nega-
tion N is representable if there exist fuzzy negations N1, N2 on [0, 1] such that
N1 ≤ N2 and N (x) = [N1(x2), N2(x1)].
Proposition 3.16 An interval-valued fuzzy negationN is representable if and only if
it is ⊆-isotonic.

Proof Straightforward. ��
Theorem 3.17 Let interval-valued t-norm T be representable, i.e., there exist t-
norms T1, T2 on [0, 1] such that T1 ≤ T2 and T (x, y) = [T1(x1, y1), T2(x2, y2)].
Then the natural negationNT is representable, too. Moreover,NT (x) = [NT1(x1) ∧
NT2(x2), NT2(x2)] for all x ∈ L I .

Proof For any x ∈ L I , let A be the set: A = {y ∈ L I |T (x, y) = 0L I }. Since
∀ y ∈ A, T1(x1, y1) = 0 and T2(x2, y2) = 0, we have sup{z1|T1(x1, z1) =
0} ≥ y1 and sup{z2|T2(x2, z2) = 0} ≥ y2. Therefore, [sup{z1|T1(x1, z1) = 0} ∧
sup{z2|T2(x2, z2) = 0}, sup{z2|T2(x2, z2) = 0}] = [NT1(x1) ∧ NT2(x2), NT2(x2)] ≥
z for all z ∈ A. This implies that [NT1(x1) ∧ NT2(x2), NT2(x2)] is an upper bound of
A. Let us show that it is the least upper bound of A. Suppose that a is another upper
bound of A such that a � [NT1(x1)∧NT2(x2), NT2(x2)]. Let us consider the following
two cases:

i. a1 < NT1(x1) ∧ NT2(x2). This implies that a1 < sup{z1|T1(x1, z1) = 0} and
a1 < sup{z2|T2(x2, z2) = 0}. Therefore, there exist z1 > a1 and z2 > a1 such that
T1(x1, z1) = 0 and T2(x2, z2) = 0, respectively. Let b = z1 ∧ z2. It is not difficult
to verify that [b, b] ∈ A. However, [b, b] � a, which contradicts to the fact that a is
another upper bound of A.

ii. a1 ≥ NT1(x1) and a2 < NT2(x2). For any z1 such that T1(x1, z1) = 0 we
have a1 ≥ z1. Moreover, a2 < NT2(x2) implies that there exists a z2 > a2 such that
T2(x2, z2) = 0. Thus, we have z1 ≤ a1 ≤ a2 < z2. Consequently, [z1, z2] ∈ A, which
contradicts to the fact that a be another upper bound of A. ��
Theorem 3.18 If an interval-valued t-conorm S is representable, i.e., there exist t-
conorms S1, S2 on [0, 1] such that S1 ≤ S2 and S(x, y) = [S1(x1, y1), S2(x2, y2)].
Then the natural negation NS is representable, too. Moreover, NS(x) = [NS1(x1) ∧
NS2(x2), NS2(x2)] for all x ∈ L I .

Proof This proof can be obtained similarly to that of Theorem 3.17. ��

4 Natural negations of interval-valued implications

In this section, our goal is to present the interval-valued fuzzy negations generated
by interval-valued R- or (S,N )-implications. In order to achieve this goal, we firstly
recall the definition of interval-valued implications and some axioms for interval-
valued implications to satisfy.

Definition 4.1 (Cornelis et al. 2004) An interval-valued fuzzy implication I is
a mapping from L I × L I to L I satisfying I(0L I , 0L I ) = 1L I , I(0L I , 1L I ) =
1L I , I(1L I , 1L I ) = 1L I , I(1L I , 0L I ) = 0L I .
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In this paper, we take the extension of the axioms which stand as a milestone to
test the suitability of fuzzy implications on [0,1] to the interval-valued case (Cornelis
et al. 2004):

A1. Antitonic in the first variable, ∀ x , y, z ∈ L I , I(x, z) ≤ I(y, z) if x ≥ y,
A2. Isotonic in the second variable, ∀ x, y, z ∈ L I , I(x, y) ≤ I(x, z) if y ≤ z,
A3. Left and right boundary conditions, I(0L I , x) = 1L I , I(x, 1L I ) = 1L I ,

∀ x ∈ L I ,

A4. Left neutrality property, I (1L I , x) = x,∀ x ∈ L I ,

A5. Identity principle, I (x, x) = 1L I ,∀ x ∈ L I ,

A6. Exchange principle, I(x, I(y, z)) = I(y, I(x, z)), ∀ x , y, z ∈ L I ,

A7. Law of contraposition with a negation N , I(x, y) = I(N (y), N (x)), ∀ x,
y ∈ L I ,

A8. Ordering property, I(x, y) = 1L I ⇔ x ≤ y,∀ x, y ∈ L I ,

A9. Continuity, I is a continuous function on L I .

Definition 4.2 Let an interval-valued fuzzy implication I fulfill A1. The mapping
NI , defined by NI(x) = I(x, 0L I ) for any x ∈ L I , is called a natural negation of
interval-valued implication I.

Remark 8 It is easy to see that NI(1L I ) = I(1L I , 0L I ) = 0L I , NI(0L I ) =
I(0L I , 0L I ) = 1L I , and then NI is an interval-valued fuzzy negation.

Lemma 4.3 (Li and Li 2012) Let I : L I ×L I → L I be an interval-valued implication
and N be an interval-valued fuzzy negation. We have the following statements:

i. A4 ∧ A7�⇒ N = NI is involutive.
ii. A4 ∧ A7′ �⇒ NI ◦ N = i , where i is an identity mapping on L I . Moreover, N

is one-to-one, where A7′ is the law of left contraposition withN in Ref. Li and Li
(2012).

Lemma 4.4 If a mapping I : L I × L I → L I satisfies A6 and A8, then the following
statements are equivalent:

i. NI is continuous;
ii. NI is strong.

Proof It is sufficient to show that i �⇒ ii. Since I satisfies A8, it also satisfies A5.
Therefore, we have I(NI(x),NI(x)) = 1L I , that is, I(I(x, 0L I ), I(x, 0L I )) = 1L I .
By A6, I(x, I(I(x, 0L I ), 0L I )) = 1L I holds. This implies that x ≤ NI(NI(x))
according to A8. By the definition of NI , we obtain NI(x) ≥ NI(NI(NI(x))).

On the other hand, I(NI(NI(x)),NI(NI(x))) = 1L I . By A6, we have
I(I(x, 0L I ), I(NI( NI(x)), 0L I )) = 1L I , which means that NI(x) ≤ NI(NI(NI
(x))). Thus,NI(NI(NI(x))) = NI(x). SinceNI is continuous and onto, there exists
a y ∈ L I such that y = NI(x) for any x ∈ L I . Notice thatNI(NI(y)) = NI(x) = y.
Therefore, NI is strong.

Next, we investigate the natural negations of interval-valued R-implications or
(S,N )-implications. ��

123



14 L. Dechao et al.

Definition 4.5 (Deschrijver et al. 2004) A mapping IR : L I × L I → L I is called an
interval-valued R-implication if there exists an interval-valued t-norm T such that

IRT (x, y) = sup{z ∈ L I |T (x, z) ≤ y}, ∀ x, y ∈ L I (3)

Lemma 4.6 For an interval-valued t-norm T , the following statements are equiva-
lents:

i. T is a sup-morphism;
ii. T satisfies the residuation principle, i.e., T (x, z) ≤ y ⇔ z ≤ IRT (x, y);
iii. The supremum in (3) is themaximum, i.e., IRT (x, y) = max{z ∈ L I |T (x, z) ≤ y}

for all x, y ∈ L I .

Proof By Theorem 7.7 in Ref. Deschrijver et al. (2004), we have i ⇐⇒ ii. Therefore,
it is sufficient to prove ii ⇐⇒ iii.

ii �⇒ iii. Since IRT (x, y) ≤ IRT (x, y), T (x, IRT (x, y)) ≤ y hods by ii. This
implies that IRT (x, y) ∈ {z ∈ L I |T (x, z) ≤ y}. Thus, the supremum in (3) is the
maximum.

iii �⇒ ii. Assume T (x, z) ≤ y. Obviously, z ∈ {u ∈ L I |T (x, u) ≤ y} holds.
And then we obtain z ≤ IRT (x, y) according to iii. On the other hand, for any
z ≤ IRT (x, y), we have T (x, z) ≤ T (x, IRT (x, y)) ≤ y. Thus, T (x, z) ≤ y ⇔ z ≤
IRT (x, y) ��
Theorem 4.7 (Cornelis et al. 2004) Let T be an interval-valued t-norm (not necessary
to be a sup-morphism). Then IRT is an interval-valued implication. Moreover, IRT
satisfies A1, A2, A4 and A5.

However, without additional assumptions on an interval-valued t-norm T , the
interval-valued implication IRT may not satisfy other axioms.

Lemma 4.8 (Cornelis et al. 2004) For an interval-valued t-norm T , the following
statements are equivalent:

i. IRT satisfies A8.
ii. Tx (·) = T (x, ·) is continuous.
Theorem 4.9 Let IRT be an interval-valued R−implication andNIRT

be its natural
negation. If IRT satisfies A6 and A8, then NIRT

is strong.

Proof This proof is deduced by Lemma 4.4 and Lemma 4.8. ��
Definition 4.10 (Cornelis et al. 2004) A mapping IS,N : L I × L I → L I is called an
interval-valued (S,N )-implication if there exist an interval-valued t-conorm T and
an interval-valued fuzzy negation such that

IS,N (x, y) = S(N (x), y), ∀ x, y ∈ L I (4)

If N is strong, then IS,N is called an interval-valued S-implication. ��
Lemma 4.11 For an interval-valued t-conorm S and an interval-valued fuzzy nega-
tion N , the following statements are equivalent:
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i. IS,N satisfies A5.
ii. The pair (S,N ) satisfies LEM.

Proof i �⇒ ii. If IS,N satisfies A5, then S(N (x), x) = IS,N (x, x) = 1L I for all
x ∈ L I . This means that the pair (S,N ) satisfies LEM.

ii �⇒i. Assume that the pair (S,N ) satisfies LEM. We have IS,N (x, x) =
S(N (x), x)) = 1L I for all x ∈ L I . This implies that IS,N satisfies A5. ��

By Lemma 3.11 and 4.11, we can obtain the following results:

Lemma 4.12 Let S be a continuous interval-valued t-conorm such that

(i) S is Archimedean;
(ii) S is nilpotent;
(iii) S is a join-morphism;
(iv) S(D, D) ⊂ D.

and N be a strong interval-valued fuzzy negation. Then the following statements are
equivalent:

i. IS,N satisfies A5.
ii. There exists an automorphism ρ on [0, 1] such that

S(x, y)=[ρ−1(1 ∧ (ρ(x2)+ρ(y1)) ∧ (ρ(y2)+ρ(x1))), ρ
−1(1 ∧ (ρ(x2)+ρ(y2)))]

and N (x) ≥ NS(x) = [ρ−1(1 − ρ(x2)), ρ−1(1 − ρ(x1))].
Lemma 4.13 Let interval-valued t-conorm S be an inf-morphism and N be an
interval-valued fuzzy negation. The following statements are equivalent:

i. IS,N satisfies A8.
ii. N = NS is strong and the pair (S,NS) satisfies LEM.

Proof i �⇒ ii. If IS,N satisfies A8, then it satisfies A5. According to Lemma 4.11,
the pair (S,N ) satisfies LEM. This implies thatN (x) ≥ NS(x) andNS(N (x)) ≤ x
hold for any x ∈ L I by Lemma 3.9. We can assert that NS(N (x)) ≥ x . Assume
that there exist some x0 ∈ L I such that NS(N (x0)) � x0, that is, NS(N (x0)) < x0,
NS(N (x0)) ⊆ x0 or x0 ⊆ NS(N (x0)). Let us consider these cases in detail. ��
(i) NS(N (x0)) < x0. Then there exists a y ∈ L I such that NS(N (x0)) < y < x0.

This implies that S(N (x0), y) = 1L I . By A8, we have x0 ≤ y, which is a
contradiction.

(ii) NS(N (x0)) ⊆ x0. Similarly, there exists a y ∈ L I such thatNS(N (x0)) � y �

x0. This means that S(N (x0), y) = 1L I . However, IS,N (x0, y) = 1L I implies
x0 ≤ y from A8. This is a contradiction.

(iii) NS(N (x0)) ⊇ x0. It can be proven in a similar way as for case (ii).

Hence, NS(N (x)) = x for all x ∈ L I . It is not difficult to verify that NS is onto,
and then it is continuous. Further, since NS is an interval-valued negation, we have
NS(NS(x)) ≥ NS(N (x)) = x for all x ∈ L I . By the monotonicity ofNS , we obtain
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NS(NS(NS(x))) ≤ NS(x). On the other hand,NS(NS(x)) ≥ x holds for all x ∈ L I .
Therefore,NS(NS(NS(x))) ≥ NS(x). This means thatNS(NS(NS(x))) = NS(x).
Since NS is continuous and onto, there exists an x ∈ L I such that y = NS(x) for
any y ∈ L I . Notice that NS(NS(y)) = NS(NS(NS(x))) = NS(x) = y. Thus, NS
is strong. Moreover, it is obvious to find that N = NS .

ii �⇒ i. Assume thatNS is strong and the pair (S,NS) satisfies LEM. Let x ≤ y.
By the monotonicity of S, we can obtain IS,N (x, y) = S(N (x), y) ≥ S(N (x), x) =
1L I . On the other hand, IS,N (x, y) = 1L I implies S(N (x), y) = 1L I . According to
the definition of NS , we have NS(NS(x)) = x ≤ y. Hence, IS,N satisfies A8.

In Ref. Li and Li (2012), the authors presented an expression of interval-valued R-
implication generated by a representable t-norm. The following theorem shows that
the representable R-implications only are generated by representable t-norms.

Theorem 4.14 The interval-valued R-implication IRT generated by a sup-morphism
t-norm T has the form

IRT (x, y) = [IRT1
(x1, y1) ∧ IRT2

(x2, y2), IRT2
(x2, y2)] (5)

if and only if T is representable, where IRT1
and IRT2

are the R-implications generated
by the left-continuous t-norms T1 and T2 such that T1 ≤ T2, respectively.

Proof (⇐�) the proof comes from Theorem 3 in Ref. Liu and Wang (2006). ��
(�⇒) Since IRT1

and IRT2
are R-implications, IRT formed as Eq.(5) satis-

fies A1, A2 and is an inf-morphism for the second variable. This implies that
T (x, y) = inf{z ∈ L I |x ≤ IRT (y, z)} = inf{z ∈ L I |x ≤ [IRT1

(y1, z1) ∧
IRT2

(y2, z2), IRT2
(y2, z2)]}. Notice that x1 ≤ IRT1

(y1, z1) and x2 ≤ IRT2
(y2, z2) ⇐⇒

T1(x1, y1) ≤ z1 and T2(x2, y2) ≤ z2. Thus, T (x, y) = inf{z ∈ L I |x ≤ IRT (y, z)} =
[T1(x1, y1), T2(x2, y2)] with T1 ≤ T2.

Theorem 4.15 LetN be a continuous representable negation and (S,N )-implication
IS,N satisfies A1, A4 and A6. Then IS,N has the form

IS,N (x, y) = [IS1,N1(x1, y1) ∧ IS2,N2(x2, y2), IS2,N2(x2, y2)]. (6)

if and only if S and N are representable, where IS1,N1 and IS2,N2 are the (S, N )-
implications associated to the t-conorms S1, S2 and negations N1, N2, respectively.

Proof (⇐�) Straightforward. ��
(�⇒) Notice that S(x, y) = IS,N (N (x), y) = [IS1,N1(N1(x1), y1) ∧ IS2,N2

(N2(x2), y2), IS2,N2 (N2(x2), y2)]. Since IS1,N1 and IS2,N2 satisfy A1, A2 and A6
(See Ref. Klement and Navara 1999 in detail), S(x, y) = [S1(x1, y1), S2(x2, y2)]
holds with S1 ≤ S2.

By Theorem 4.14, we can obtain the following result:
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Corollary 4.16 Assume the interval-valued R-implication IRT is generated by a sup-
morphism t-norm T . Then its natural negation NIRT

is representable if and only if

T is representable. Moreover, for all x ∈ L I ,

NIRT
(x) = [NIRT1

(x2) ∧ NIRT2
(x1), NIRT2

(x1)]. (7)

5 Automorphisms acting on the interval-valued natural negations

In this section, we will analyze the effects of interval-valued automorphisms acting
on the natural negations of interval-valued t-norms, t-conorms or R-implications.

Definition 5.1 (Gehrke et al. (1996)) A mapping � : L I → L I is called an interval-
valued automorphism if it is bijective and satisfies that �(x) ≤ �(y) if and only if
x ≤ y for any x, y ∈ L I .

The set of all interval-valued automorphisms is denoted by Aut (L I ). Obviously,
(Aut (L I ), ◦) is a group, too.

Proposition 5.2 (Bedregal and Takahashi 2005) If � is an interval-valued automor-
phism then � is ⊆-isotonic, that is, if x ⊆ y then �(x) ⊆ �(y).

Lemma 5.3 If � is an interval-valued automorphism then �(D) = D.

Proof Straightforward. ��
Lemma 5.4 Let S be an interval-valued t-conorm and � ∈ Aut (L I ). Then S� is also
an interval-valued t-conorm.

Proof Straightforward. ��
Lemma 5.5 Let T be an interval-valued t-norm and � ∈ Aut (L I ). Then T � is an
interval-valued t-norm, too.

Proof Obviously. ��
Lemma 5.6 (Bedregal 2010) LetN be an interval-valued (strict, strong) fuzzy nega-
tion and � ∈ Aut (L I ). Then N � is an interval-valued (strict, strong) fuzzy negation,
too.

Lemma 5.7 Let I be an interval-valued implication and � ∈ Aut (L I ). Then T � is an
interval-valued implication, too. Moreover, if I satisfies A1-A9, then I� also satisfies
A1-A9.

Proof Straightforward. ��
Lemma 5.8 Let IT be an interval-valued R-implication generated by T and � ∈
Aut (L I ). Then I�

T is also an interval-valued R-implication. Moreover, I�

T = IT � .

Proof Straightforward. ��
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Lemma 5.9 Let IS,N be an (S,N )-implication and � ∈ Aut (L I ). Then I�

S,N is

also an (S,N )-implication. Moreover, I�

S,N = IS�,N � .

Proof Straightforward. ��
By the above lemmas, we can immediately obtain the following statements:

Theorem 5.10 Let NT be a natural negation of interval-valued t-norm T and � ∈
Aut (L I ). ThenN �

T is also an interval-valued fuzzy negation. Moreover,N �

T = NT � .

Theorem 5.11 LetNS be a natural negation of interval-valued t-conorm S and � ∈
Aut (L I ). Then N �

S is also an interval-valued fuzzy negation. Moreover, N �

S = NS� .

Theorem 5.12 Let NIT be a natural negation of interval-valued R-implication IT
and � ∈ Aut (L I ). Then N �

IT is also an interval-valued fuzzy negation. Moreover,

N �

IT = NIT � .

6 Relationships among families of interval-valued natural negations

In this section, we investigate the relationships among the families of natural negations
of interval-valued t-norms, t-conorms or implications. Let us denote the different
families of the natural negations of interval-valued t-norms, t-conorms or implications
as follows:

• N—family of all interval-valued fuzzy negations;
• CN—family of all interval-valued continuous negations;
• SN—family of all interval-valued strong negations;
• NT —family of all natural negations of interval-valued t-norms;
• NTsup—family of all natural negations of interval-valued t-norms which are
sup-morphisms;

• NS—family of all natural negations of interval-valued t-conorms;
• NSinf—family of all natural negations of interval-valued t-conorms which are
inf-morphisms;

• NI—family of all natural negations of interval-valued implications which
satisfies A1 and A2;

• NIRT
—family of all natural negations of interval-valued R-implications;

• NIS,T —family of all natural negations of interval-valued (S,N )-implications.

Obviously, we have the following statements:
N = NIS,T = NI ;
NT ∩ NS �= ∅;
NT = NIR ⊆ NI .
From Corollary 3.5 and 3.7, we obtain
CNTsup = SNTsup , CNSinf

= SNSinf
.

By Lemma 3.13, if (T ,S,NS) satisfies LEM, then
NTsup = NSinf . In this case, neither NS nor NT is necessary involutive.
By Lemma 4.4, if I satisfies A6 and A8, then
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Fig. 1 Interactions among the subfamilies of interval-valued natural negations

CNI = SNI .
Finally, we can summarize the relationships among the above subfamilies which

are diagrammatically represented in Fig. 1.

7 Conclusion

In this paper, we present some new results considering interval-valued fuzzy negations,
mainly natural negations obtained from interval-valued t-norms, t-conormsor implica-
tions. These results may serve to develop new families of interval-valued fuzzy logic
systems. Also, we show how interval-valued automorphisms act on interval-valued
natural negations in order to generate new interval-valued fuzzy negations. Finally,
general relationships among natural negations induced by interval-valued t-norms,
t-conorms and implications are obtained.

In a future paper, we wish to investigate the natural negations generated from
interval-valuednon-sup-morphism t-norms andnon-inf-morphism t-conorms.Wewill
also study some other properties such as equilibrium, etc.
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