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Abstract Multi-dimensional uncertain differential equation is a system of uncertain
differential equations driven by amulti-dimensional Liu process. This paper first gives
the analytic solutions of two special types of multi-dimensional uncertain differential
equations. After that, it proves that the multi-dimensional uncertain differential equa-
tion has a unique solution provided that its coefficients satisfy the Lipschitz condition
and the linear growth condition.

Keywords Uncertain differential equation · Liu process · Uncertain process ·
Uncertainty theory

1 Introduction

Stochastic differential equation, since it was founded by Ito in 1940s, has been widely
used to model the evolution of dynamic stochastic system. Initially, it is a type of dif-
ferential equation driven by a Wiener process, and it can only describe the continuous
stochastic systems. However, in order to describe the evolution of discontinuous sto-
chastic systems, stochastic differential equations driven by Poisson process, by Lévy
process, and by some martingales were proposed. In addition, in order to describe a
complex stochastic system with many components which all evolute with the time,
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a multi-dimensional stochastic differential equation was also proposed and studied.
Essentially, it is a system of stochastic differential equations.

As we know, Wiener process is a type of stochastic process defined within the
framework of probability theory, which aims to model the random phenomena. In
order to model the human uncertainty which is quite different from the randomness,
an uncertainty theory was founded by Liu (2007) and refined by Liu (2009) based
on the normality, duality, subadditivity, and product axioms. A concept of uncertain
variable is used to model the quantity associated with human uncertainty, and con-
cepts of uncertainty distribution, expected value, variance and entropy are employed
to describe the uncertain variable. Peng and Iwamura (2010) first gave a sufficient
and necessary condition for a real function being an uncertainty distribution of some
uncertain variable, Liu and Ha (2010) gave a formula to calculate the expected value
of a function of uncertain variables, and Yao (2015a) derived a formula to calculate
the variance of an uncertain variable.

Uncertain process is a sequence of uncertain variables driven by the time. As a
special type of uncertain process, Liu (2009) designed a canonical Liu process within
the framework of uncertainty theory as a counterpart of standardWiener process. It has
stationary and independent increments which are normal uncertain variables, and its
almost all sample paths are Lipschitz continuous. Meanwhile, Liu (2009) established
an uncertain calculus with respect to canonical Liu process, which was generalized
by Liu and Yao (2012), and Yao (2014) later. Based on uncertain calculus, Chen and
Ralescu (2013) defined a Liu process.

Uncertain differential equation, first proposed by Liu (2008) in 2008, is a type
of differential equation driven by canonical Liu process, and it aims to describe the
evolution of dynamic uncertain systems. It has been widely applied in finance so far.
Liu (2009) assumed the stock price follows a time-homogenous uncertain differential
equation, and proposed the first uncertain stock model. Then Chen (2011) derived its
American option pricing formulas, and Yao (2015b) gave a sufficient and necessary
condition for the stock market being no-arbitrage. After that, Peng and Yao (2011)
proposed a mean-reverting stock model to describe the variation of the stock price
in long time horizon. Interest rate in the uncertain market was first studied by Chen
and Gao (2013), where they proposed three models to describe the variation of the
interest rate in different environments. After that, Jiao and Yao (2015) calculated the
price of zero-coupon bond for some uncertain interest models. Uncertain currency
model was proposed by Liu et al. (2015) to describe the currency exchange rate via
uncertain differential equation. For a detailed literature review about uncertain finance,
interested readers may refer to Liu (2013).

The solution methods of uncertain differential equation also draw much attention
from the researchers. Chen and Liu (2010) gave the analytic solution of a linear uncer-
tain differential equation, and Liu (2012) and Yao (2013b) provided some methods
to obtain the analytic solutions of some nonlinear uncertain differential equations,
respectively. In addition, Yao and Chen (2013) and Yao (2013a) provided numerical
methods to solve an uncertain differential equation. In 2010, Chen and Liu (2010) gave
a sufficient condition for an uncertain differential equation having a unique solution.
The concept of stability for uncertain differential equations was first proposed by Liu
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(2009), and a sufficient condition was given by Yao et al. (2013) for an uncertain
differential equation being stable.

In our daily life, a complex uncertain system may have many components, and
each component may follow an uncertain differential equation. In order to model such
a complex system, Yao (2014) proposed a multi-dimensional uncertain differential
equation whose solution is a multi-dimensional uncertain process. In this paper, we
will give the analytic solutions of some special types of multi-dimensional uncertain
differential equations. Most importantly, we will provide a sufficient condition to
ensure that a multi-dimensional uncertain differential equation has a unique solution,
based on which we may further study the stability of a multi-dimensional uncertain
differential equation. The rest of this paper is organized as follows. In Sects. 2 and 3,
we introduce some basic concepts about uncertain variables and multi-dimensional
canonical Liu process, respectively. Then in Sect. 4, we give the analytic solutions of
some special types of multi-dimensional uncertain differential equations. In Sect. 5,
we derive a sufficient condition for amulti-dimensional uncertain differential equation
having a unique solution. Finally, some remarks are made in Sect. 6.

2 Uncertain variable

In this section, we introduce some basic concepts about uncertain variable, including
uncertainty distribution, expected value, independence and operational law.

Definition 1 (Liu 2007) Let L be a σ -algebra on a nonempty set �. A set function
M : L → [0, 1] is called an uncertain measure if it satisfies the following axioms:

Axiom 1 (Normality Axiom) M{�} = 1 for the universal set �.
Axiom 2 (Duality Axiom) M{�} + M{�c} = 1 for any event �.
Axiom 3 (Subadditivity Axiom) For every countable sequence of events �1,�2,

. . ., we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i } .

In this case, the triple (�,L,M) is called an uncertainty space.

A product uncertain measure for a compound uncertain event was defined by Liu
(2009), which is the fourth axiom of uncertain measure.

Axiom4 (Product Axiom) Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .
Then the product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.
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As a measurable function on an uncertainty space, an uncertain variable is used to
model an uncertain quantity.

Definition 2 (Liu 2007) An uncertain variable is a measurable function ξ from an
uncertainty space (�,L,M) to the set � of real numbers, i.e., for any Borel set B of
real numbers, the set

{ξ ∈ B} = {γ | ξ(γ ) ∈ B}

is an event.

Definition 3 (Liu 2007) The uncertainty distribution � of an uncertain variable ξ is
defined by

�(x) = M{ξ ≤ x}

for any real number x .

If the inverse function �−1 exists and is unique for each α ∈ (0, 1), then it is called
the inverse uncertainty distribution of ξ . In this case, the uncertainty distribution � is
said to be regular.

Definition 4 (Liu 2007) Let ξ be an uncertain variable. Then its expected value E[ξ ]
is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

For an uncertain variable ξ with an uncertainty distribution �, we have

E[ξ ] =
∫ +∞

0
(1 − �(r))dr −

∫ 0

−∞
�(r)dr.

If the inverse uncertainty distribution �−1 exists, then

E[ξ ] =
∫ 1

0
�−1(α)dα.

Definition 5 (Liu 2009) The uncertain variables ξ1, ξ2, . . . , ξm are said to be inde-
pendent if

M

{
m⋂

k=1

(ξi ∈ Bi )

}
=

m∧
k=1

M{ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bm of real numbers.
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Theorem 1 (Liu 2010) Let ξ1, ξ2, . . ., ξn be independent uncertain variables with
uncertainty distributions �1,�2, . . ., �n, respectively. If f (x1, x2, . . . , xn) is strictly
increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect to
xm+1, xm+2, . . . , xn , then the uncertain variable ξ = f (ξ1, ξ2, . . . , ξn) has an inverse
uncertainty distribution

�−1(r) = f
(
�−1

1 (r), . . . , �−1
m (r),�−1

m+1(1 − r), . . . , �−1
n (1 − r)

)
.

3 Multi-dimensional uncertain calculus

In this section, we first introduce the canonical Liu process and the uncertain calculus.
Then as a generalization, we introduce multi-dimensional canonical Liu process and
multi-dimensional uncertain calculus.

Definition 6 (Liu 2008) Let T be an index set, and (�,L,M) be an uncertainty space.
An uncertain process Xt is a measurable function from T × (�,L,M) to the set of
real numbers, i.e., for each t ∈ T and any Borel set B of real numbers, the set

{Xt ∈ B} = {γ | Xt (γ ) ∈ B}

is an event.

Definition 7 (Liu 2009) An uncertain process Ct is said to be a canonical Liu process
if

(i) almost all sample paths of Ct are Lipschitz continuous,
(ii) C0 = 0 and Ct has stationary and independent increments,
(iii) every increment Cs+t − Cs is a normal uncertain variable with an uncertainty

distribution

�t (x) =
(
1 + exp

(−πx√
3t

))−1

, x ∈ �.

Remark 1 Although both canonical Liu process and standard Wiener process are sta-
tionary and independent increment processes, they are two different types of processes.
The former is essentially an uncertain process defined within the framework of uncer-
tainty theory, while the latter is essentially a stochastic process defined within the
framework of probability theory.

Definition 8 (Liu 2009) Let Xt be an uncertain process and Ct be a canonical Liu
process. For any partition of closed interval [a, b]with a = t1 < t2 < . . . < tk+1 = b,
the mesh is written as


 = max
1≤i≤k

|ti+1 − ti |.
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Then uncertain integral of Xt with respect to Ct is defined by

∫ b

a
XtdCt = lim


→0

k∑
i=1

Xti · (Cti+1 − Cti )

provided that the limit exists almost surely and is finite. In this case, the uncertain
process Xt is said to be uncertain integrable.

Definition 9 (Liu 2014) Uncertain processes X1t , X2t , . . . , Xnt are said to be inde-
pendent if for any positive integer k and any times t1, t2, . . . , tk , the uncertain vectors

ξ i = (Xit1 , Xit2 , . . . , Xitk ), i = 1, 2, . . . , n

are independent, i.e., for any Borel sets B1, B2, . . . , Bn of k-dimensional real vectors,
we have

M

{
n⋂

i=1

(ξ i ∈ Bi )

}
=

n∧
i=1

M{ξ i ∈ Bi }.

Definition 10 (Zhang andChen 2013) LetCit , i = 1, 2, . . . , n be independent canon-
ical Liu processes on anuncertainty space (�,L,M). ThenC t = (C1t ,C2t , . . . ,Cnt )

T

is called an n-dimensional canonical Liu process on the uncertainty space (�,L,M).

The multi-dimensional canonical Liu process C t also possesses the property of
independent and stationary increment. In addition, almost all the sample paths of C t

are also Lipschitz continuous. Based on multi-dimensional canonical Liu process,
multi-dimensional uncertain integral was defined as follows.

Definition 11 (Yao 2014) LetC t = (C1t ,C2t , . . . ,Cnt )
T be an n-dimensional canon-

ical Liu process, and X t = [Xi jt ] be anm×n uncertainmatrix processwhose elements
Xi jt are integrable uncertain processes. Then the uncertain integral of X t with respect
to the n-dimensional canonical Liu process C t is defined by

∫ b

a
X tdC t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

∫ b

a
X1 j tdC jt

n∑
j=1

∫ b

a
X2 j tdC jt

...
n∑
j=1

∫ b

a
XmjtdC jt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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4 Multi-dimensional uncertain differential equation

In this section, we introduce the concept of multi-dimensional uncertain differential
equation, and give the analytic solutions of two special types of multi-dimensional
uncertain differential equations.

Definition 12 (Yao 2014) Let C t be an n-dimensional canonical Liu process. Suppose
f (t, x) is a vector-valued function from T ×�m to�m , and g(t, x) is a matrix-valued
function from T × �m to the set of m × n matrices. Then

dX t = f (t, X t )dt + g(t, X t )dC t (1)

is called anm-dimensional uncertain differential equation driven by an n-dimensional
canonical Liu process. A solution is anm-dimensional uncertain process that satisfied
(1) identically in each t .

Remark 2 The multi-dimensional uncertain differential Eq. (1) is equivalent to the
multi-dimensional uncertain integral equation

Xs = X0 +
∫ s

0
f (t, X t )dt +

∫ s

0
g(t, X t )dC t .

Theorem 2 Let C t be an n-dimensional canonical Liu process, U t be an m-
dimensional integrable uncertain process, and V t be an m × n integrable uncertain
matrix process. Then the m-dimensional uncertain differential equation

dX t = U tdt + V tdC t

has a solution

X t = X0 +
∫ t

0
U sds +

∫ t

0
V sdCs .

Proof Consider the k-th element of the solution process X t , denoted by Xkt . It is a
solution of the uncertain differential equation

dXkt = Uktdt + Vk1tdC1t + . . . + VkntdCnt (2)

according to the definition of multi-dimensional uncertain differential equation. Obvi-
ously, the uncertain differential Eq. (2) has a solution

Xkt = Xk0 +
∫ t

0
Uksds +

∫ t

0
Vk1sdC1s + . . . +

∫ t

0
VknsdCns .
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As a result, we have

X t =

⎛
⎜⎜⎜⎝

X1t
X2t
...

Xmt

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X10 +
∫ t

0
U1sds +

∫ t

0
V11sdC1s + . . . +

∫ t

0
V1nsdCns

X20 +
∫ t

0
U2sds +

∫ t

0
V21sdC1s + . . . +

∫ t

0
V2nsdCns

...

Xm0 +
∫ t

0
Umsds +

∫ t

0
Vm1sdC1s + . . . +

∫ t

0
VmnsdCns

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the form of matrix, we have

X t = X0 +
∫ t

0
U sds +

∫ t

0
V sdCs .

The proof is completed. 	

Example 1 Let C t = (C1t ,C2t )

T be a 2-dimensional canonical Liu process. Consider
a 2-dimensional uncertain differential equation

dX t =
(
u1t
u2t

)
dt +

(
v11t v12t
v21t v22t

)
dC t

with an initial value X0 = (x10, x20)T . According to Theorem 2, it has a solution

X t =
(
X1t
X2t

)
=

⎛
⎜⎜⎝
x10 +

∫ t

0
u1sds +

∫ t

0
v11sdC1s +

∫ t

0
v12sdC2s

x20 +
∫ t

0
u2sds +

∫ t

0
v21sdC1s +

∫ t

0
v22sdC2s

⎞
⎟⎟⎠ .

In other words, the system of uncertain differential equations

{
dX1t = u1tdt + v11tdC1t + v12tdC2t , X10 = x10
dX2t = u2tdt + v21tdC1t + v22tdC2t , X20 = x20

has a solution⎧⎪⎪⎨
⎪⎪⎩

X1t = x10 +
∫ t

0
u1sds +

∫ t

0
v11sdC1s +

∫ t

0
v12sdC2s,

X2t = x20 +
∫ t

0
u2sds +

∫ t

0
v21sdC1s +

∫ t

0
v22sdC2s .

Theorem 3 Let Ct be a canonical Liu process, and U and V be two m ×m matrices
satisfying UV = VU . Then the m-dimensional uncertain differential equation

dX t = UX tdt + VX tdCt (3)
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has a solution

X t = exp(tU + CtV ) · X0.

Proof The m-dimensional uncertain process X t can also be written as

X t =
∞∑
n=0

1

n! (tU + CtV )n · X0.

We will show that it satisfies the form (3). Since UV = VU , taking differentiation
operations on both sides, we have

dX t = U
∞∑
n=1

1

(n − 1)! (tU + CtV )n−1 · X0dt

+ V
∞∑
n=1

1

(n − 1)! (tU + CtV )n−1 · X0dCt

= U
∞∑
n=0

1

n! (tU + CtV )n · X0dt + V
∞∑
n=0

1

n! (tU + CtV )n · X0dCt

= U exp(tU + CtV ) · X0dt + V exp(tU + CtV ) · X0dCt

= UX tdt + VX tdCt .

The theorem is thus proved. 	

Example 2 Let Ct be a canonical Liu process. Consider a 2-dimensional uncertain
differential equation

dX t =
(

0 1
−1 0

)
X tdCt (4)

with an initial value X0 = (1, 0)T . In this case, we have U = 0 and

V =
(

0 1
−1 0

)
.

Since UV = VU = 0, the multi-dimensional uncertain differential Equation (4) has
a solution

X t = exp(CtV ) · X0 = exp

(
0 Ct

−Ct 0

)
·
(
1
0

)

=
(

cos(Ct ) sin(Ct )

− sin(Ct ) cos(Ct )

)
·
(
1
0

)
=

(
cos(Ct )

− sin(Ct )

)
.

In other words, the system of uncertain differential equations

{
dX1t = X2tdCt , X10 = 1
dX2t = −X1tdCt , X20 = 0
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has a solution {
X1t = cos(Ct )

X2t = − sin(Ct ).

Example 3 Let Ct be a canonical Liu process. Consider a 2-dimensional uncertain
differential equation

dX t =
(
1 0
0 1

)
X tdt +

(
1 1

−1 1

)
X tdCt (5)

with an initial value X0 = (0, 1)T . In this case, we have

U =
(
1 0
0 1

)
, V =

(
1 1

−1 1

)
.

Since UV = VU = V , the multi-dimensional uncertain differential Equation (5) has
a solution

X t = exp(tU + CtV ) · X0

= exp

(
t 0
0 t

)
· exp

(
Ct Ct

−Ct Ct

)
·
(
0
1

)

=
(
exp(t) 0

0 exp(t)

)
·
(

exp(Ct ) cos(Ct ) exp(Ct ) sin(Ct )

− exp(Ct ) sin(Ct ) exp(Ct ) cos(Ct )

)
·
(
0
1

)

=
(
exp(t + Ct ) sin(Ct )

exp(t + Ct ) cos(Ct )

)
.

In other words, the system of uncertain differential equations

{
dX1t = X1tdt + (X1t + X2t )dCt , X10 = 0
dX2t = X2tdt + (−X1t + X2t )dCt , X20 = 1

has a solution {
X1t = exp(t + Ct ) sin(Ct )

X2t = exp(t + Ct ) cos(Ct ).

5 Existence and uniqueness theorem

In this section, we consider the existence and uniqueness of the solution of a multi-
dimensional uncertain differential equation. For simplicity, we employ the infinite
norm, and write

|x| = max
1≤i≤m

|xi |, |A| = max
1≤i≤m

n∑
j=1

|ai j |
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for an n-dimensional vector x = (x1, x2, . . . , xm) and an m × n matrix A = [ai j ],
respectively.

Lemma 1 Let X t be an m-dimensional integrable uncertain process on [a, b]. Then
∣∣∣∣
∫ b

a
X t (γ )dt

∣∣∣∣ ≤
∫ b

a
|X t (γ )|dt

for each γ ∈ �.

Proof It follows from the definition of the infinite norm that

∣∣∣∣
∫ b

a
X t (γ )dt

∣∣∣∣ = max
1≤i≤m

∣∣∣∣
∫ b

a
Xit (γ )dt

∣∣∣∣ ≤ max
1≤i≤m

∫ b

a
|Xit (γ )|dt

≤
∫ b

a
max
1≤i≤m

|Xit (γ )|dt =
∫ b

a
|X t (γ )|dt

for each γ ∈ �. The lemma is proved.

Lemma 2 Let C t be an n-dimensional canonical Liu process, and let Y t be an m × n
integrable uncertain matrix process. Then

∣∣∣∣
∫ b

a
Y t (γ )dC t (γ )

∣∣∣∣ ≤ K (γ )

∫ b

a
|Y t (γ )|dt

where K (γ ) is the Lipschitz constant of the sample path C t (γ ).

Proof It follows from the definition of the infinite norm that

∣∣∣∣
∫ b

a
Y t (γ )dC t (γ )

∣∣∣∣= max
1≤i≤m

∣∣∣∣∣∣
n∑
j=1

∫ b

a
Yi j t (γ )dC jt (γ )

∣∣∣∣∣∣≤ max
1≤i≤m

n∑
j=1

∣∣∣∣
∫ b

a
Yi j t (γ )dC jt (γ )

∣∣∣∣
≤ max

1≤i≤m

n∑
j=1

K (γ )

∫ b

a

∣∣Yi jt (γ )
∣∣dt=K (γ ) max

1≤i≤m

∫ b

a

n∑
j=1

∣∣Yi jt (γ )
∣∣ dt

≤ K (γ )

∫ b

a
max
1≤i≤m

n∑
j=1

∣∣Yi jt (γ )
∣∣ dt = K (γ )

∫ b

a
|Y t (γ )|dt.

The lemma is thus proved. 	

Theorem 4 The multi-dimensional uncertain differential equation

dX t = f (t, X t )dt + g(t, X t )dC t (6)

with an initial value X0 has a unique solution if the coefficients f (t, x) and g(t, x)

satisfy the Lipschitz condition

| f (t, x) − f (t, y)| + |g(t, x) − g(t, y)| ≤ L|x − y|, ∀x, y ∈ �m, t ≥ 0
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and the linear growth condition

| f (t, x)| + |g(t, x)| ≤ L(1 + |x|), ∀x ∈ �m, t ≥ 0

for some constant L .

Proof We first prove that there exists a solution of (6) by means of successive approx-
imation. For simplicity, we just consider the solution on [0, T ] for any given real
number T . For each γ ∈ �, define

X(0)
t =X0, X(n+1)

t (γ )=X0 +
∫ t

0
f
(
s, X (n)

s (γ )
)
ds +

∫ t

0
g

(
s, X (n)

s (γ )
)
dC t (γ )

and

Q(n)
t (γ ) = max

0≤s≤t

∣∣∣X(n+1)
s (γ ) − X(n)

s (γ )

∣∣∣
for n = 1, 2, . . . We will prove by induction method that

Q(n)
t (γ ) ≤ (1 + |X0|) L

n+1(1 + K (γ ))n+1

(n + 1)! tn+1 (7)

for almost every γ ∈ � and for every nonnegative integer n. Since the right term of
(7) satisfies

∞∑
n=0

(1 + |X0|) L
n+1(1 + K (γ ))n+1

(n + 1)! tn+1 < +∞,

it follows from Weierstrass criterion that X(n)
t (γ ) converges uniformly on [0, T ],

whose limit is denoted by X t (γ ). Then we have

X t (γ ) = X0 +
∫ t

0
f (s, Xs(γ ))ds +

∫ t

0
g(s, Xs(γ ))dCs(γ ).

Therefore, the uncertain process X t is just the solution of multi-dimensional uncertain
differential Eq. (6). The inequality (7) is proved as follows. For n = 0, we have

Q(0)
t (γ ) = max

0≤s≤t

∣∣∣∣
∫ s

0
f (u, X0)du +

∫ s

0
g(u, X0)dCu(γ )

∣∣∣∣
≤ max

0≤s≤t

∣∣∣∣
∫ s

0
f (u, X0)du

∣∣∣∣ + max
0≤s≤t

∣∣∣∣
∫ s

0
g(u, X0)dCu(γ )

∣∣∣∣
≤ max

0≤s≤t

∫ s

0
| f (u, X0)| du + K (γ ) max

0≤s≤t

∫ s

0
|g(u, X0)| du
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≤
∫ t

0
| f (u, X0)| du + K (γ )

∫ t

0
|g(u, X0)| du

≤ (1 + |X0|)L(1 + K (γ ))t

by Lemmas 1 and 2. Assume the inequality (7) holds for the integer n, i.e.,

Q(n)
t (γ ) = max

0≤s≤t

∣∣∣X(n+1)
s (γ )−X (n)

s (γ )

∣∣∣ ≤ (1+|X0|) L
n+1(1+K (γ ))n+1

(n + 1)! tn+1.

Then we have

Q(n+1)
t (γ ) = max

0≤s≤t

∣∣∣X(n+2)
s (γ ) − X (n+1)

s (γ )

∣∣∣
= max

0≤s≤t

∣∣∣∣
∫ s

0
f
(
u, X (n+1)

u (γ )
)

− f
(
u, X (n)

u (γ )
)
du

+
∫ s

0
g

(
u, X (n+1)

u (γ )
)

− g
(
u, X (n)

u (γ )
)
dCu(γ )

∣∣∣∣
≤ max

0≤s≤t

∣∣∣∣
∫ s

0
f
(
u, X (n+1)

u (γ )
)

− f
(
u, X (n)

u (γ )
)
du

∣∣∣∣
+ max

0≤s≤t

∣∣∣∣
∫ s

0
g

(
u, X (n+1)

u (γ )
)

− g
(
u, X (n)

u (γ )
)
dCu(γ )

∣∣∣∣
≤

∫ t

0

∣∣∣ f (
u, X (n+1)

u (γ )
)

− f
(
u, X (n)

u (γ )
)∣∣∣ du

+ K (γ )

∫ t

0

∣∣∣g (
u, X (n+1)

u (γ )
)

− g
(
u, X (n)

u (γ )
)∣∣∣ du

≤ L
∫ t

0

∣∣∣X(n+1)
u (γ )−X (n)

u (γ )

∣∣∣du+K (γ )L
∫ t

0

∣∣∣X(n+1)
u (γ )−X (n)

u (γ )

∣∣∣ du
≤ L(1 + K (γ ))

∫ t

0
(1 + |X0|) L

n+1(1 + K (γ ))n+1

(n + 1)! un+1du

= (1 + |X0|) L
n+2(1 + K (γ ))n+2

(n + 2)! tn+2.

It means the inequality (7) also holds for the integer n + 1. Thus the inequality (7)
holds for all nonnegative integers.

Next, we prove the uniqueness of the solution under the given conditions. Assume
that X t and X∗

t are two solutions of themulti-dimensional uncertain differential Eq. (6)
with the same initial value X0. Then for almost every γ ∈ �, we have

|X t (γ ) − X∗
t (γ )| =

∣∣∣∣
∫ t

0
f (s, Xs(γ )) − f (s, X∗

s (γ ))ds

+
∫ t

0
g(s, Xs(γ )) − g(s, X∗

s (γ ))dCs(γ )

∣∣∣∣
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≤
∣∣∣∣
∫ t

0
f (s, Xs(γ )) − f (s, X∗

s (γ ))ds

∣∣∣∣
+

∣∣∣∣
∫ t

0
g(s, Xs(γ )) − g(s, X∗

s (γ ))dCs(γ )

∣∣∣∣
≤

∫ t

0

∣∣ f (s, Xs(γ )) − f (s, X∗
s (γ ))

∣∣ ds
+ K (γ )

∫ t

0

∣∣g(s, Xs(γ )) − g(s, X∗
s (γ ))

∣∣ ds
≤ L

∫ t

0

∣∣Xs(γ ) − X∗
s (γ )

∣∣ ds + K (γ )L
∫ t

0

∣∣Xs(γ ) − X∗
s (γ )

∣∣ ds
= L(1 + K (γ ))

∫ t

0

∣∣Xs(γ ) − X∗
s (γ )

∣∣ ds.
By Gronwall inequality, we obtain

|X t (γ ) − X∗
t (γ )| ≤ 0 · exp (L(1 + K (γ ))t) = 0.

That means Xt = X∗
t almost surely. The uniqueness of the solution is verified. 	


6 Conclusions

Multi-dimensional uncertain differential equation, as a generalization of uncertain dif-
ferential equation, aims to model a multi-dimensional dynamic uncertain system. This
paper gave the analytic solutions of two special types of multi-dimensional uncertain
differential equations. Besides, it gave a sufficient condition for a multi-dimensional
uncertain differential equation having a unique solution. We will work toward weak-
ening the conditions in the future.
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