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Abstract This paper introduces the notion of intuitionistic fuzzy geometric indices
to capture the central tendency of Atanassov’s intuitionistic fuzzy values (A-IFVs).
A ratio-based hesitation margin is defined to measure the hesitancy of an A-IFV and
used to determine the geometric mean based hesitation margin of an intuitionistic
preference relation (IPR). The paper defines geometric consistency of IPRs based
on the intuitionistic fuzzy geometric index, and puts forward some properties for
geometry consistent IPRs. A parameterized transformation formula is proposed to
convert normalization interval weights into geometry consistent IPRs. A logarithmic
least squaremodel is developed for constructing the fitted geometry consistent IPR and
deriving interval weights from an IPR. Based on the fitted consistent IPR, a method
is provided to check the acceptable geometry consistency for IPRs, and an algorithm
is further devised to solve multiple criteria decision making problems with IPRs.
Two numerical examples and comparisons with existing approaches are provided to
illustrate the performance and effectiveness of the proposed models.

Keywords Intuitionistic preference relation · Intuitionistic fuzzy geometric index ·
Geometric consistency · Logarithmic least square · Multiple criteria decision making

1 Introduction

In real-world decision problems, a decision-maker (DM) often provides his/her mem-
bership assessments on alternatives or criteriawith uncertainty (Liu 2013) or hesitancy.
To characterize this hesitation, Atanassov (1986) introduced the intuitionistic fuzzy
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sets (A-IFSs) by explicitly considering nonmembership where the sum ofmembership
and nonmembership does not necessarily add up to 1. Since its inception, A-IFSs have
been widely applied to decision modeling (Aggarwal et al. 2012; Gong et al. 2009;
Liao and Xu 2014a, b; Park et al. 2011; Parvathi et al. 2013; Szmidt and Kacprzyk
2009; Wang 2013; Wang and Li 2012; Wu and Chiclana 2012, 2014a, b; Xu 2007,
2009, 2012; Xu et al. 2011; Xu and Liao 2014; Zhang and Xu 2012). To model
DM’s pairwise comparisons with hesitancy, Xu (2007) introduced the concept of intu-
itionistic preference relations (IPRs), in which DM’s preferences are characterized
by Atanassov’s intuitionistic fuzzy values (A-IFVs), and the hesitation margin of a
preference is determined by its intuitionistic fuzzy index.

Different transitivity conditions have been put forward to define consistent IPRs,
and several approaches have been developed to derive priority weights from IPRs. By
using the feasible region idea, Xu (2009) defined additive consistency of IPRs and
proposed a linear-programming-based approach to estimating criterion weights from
IPRs.Wang (2013) adopted intuitionistic fuzzy judgments in an IPR todefinenewaddi-
tive consistency of IPRs and investigated how to derive priorityweights by establishing
goal programming models for both individual and group decision situations. Based on
the converted membership intervals and the associated interval priority weights, Gong
et al. (2009) defined multiplicative consistent IPRs and established goal programming
models to generate interval priority weights of IPRs. Xu (2007) introduced an A-IFV
based equation to define multiplicative consistent IPRs, and developed an approach
to group decision making with IPRs by employing the intuitionistic fuzzy weighted
averaging operator. Later, Xu et al. (2011) pointed out the drawback of the multiplica-
tive transitivity equation given by Xu (2007), and proposed another multiplicative
consistency definition for IPRs by extending the functional equation (Chiclana et al.
2009) of fuzzy preference relations. Based on this multiplicative consistency defini-
tion, they developed two algorithms to estimate missing values for incomplete IPRs.
Subsequently, Xu and Liao (2014) put forward a framework of the intuitionistic fuzzy
analytic hierarchy process method and applied it to handle multiple criteria decision
making (MCDM) problems with a hierarchical structure.

It is well known that the consistency plays a fundamental and important role in
MCDM with preference relations. The derivation of priority weights of preference
relations is usually based on the consistency constraint condition. A literature review
shows that the multiplicative consistency in Gong et al. (2009) is handled in an indi-
rect manner. Although the multiplicative consistency in Xu et al. (2011) is defined
by using the DM’s intuitionistic fuzzy judgments, it has flaws in non-robustness for
permutations of the original intuitionistic fuzzy judgments furnished by the DM (See
a further study in Sect. 4). In this paper, we first introduce the notion of intuitionis-
tic fuzzy geometric indices to capture the central tendency of an intuitionistic fuzzy
judgment. A ratio-based hesitation margin is defined to measure the hesitancy index
of an intuitionistic fuzzy judgment and extended to determine the geometric mean
based hesitation margin of an IPR. Then, we define geometric consistency of IPRs
based on the intuitionistic fuzzy geometric index, and put forward some properties for
geometry consistent IPRs. Subsequently, we devise a parameterized transformation
formula between normalization interval weights and geometry consistent IPRs, which
is used to develop a logarithmic least square model for deriving interval weights and
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constructing a fitted geometry consistent IPR from any IPR. Based on the geometric-
mean-based difference degree between the original IPR and the constructed geometry
consistent IPR, we introduce the notion of acceptable geometry consistent IPRs and
further put forward an algorithm for solving MCDM problems with IPRs.

The rest of the paper is organized as follows. Section 2 furnishes a brief review on
multiplicative consistent fuzzy preference relations, A-IFSs and IPRs. Section 3 shows
how to measure ratio-based amounts of A-IFVs. In Sect. 4, the geometric consistency
is defined for IPRs. Sect. 5 develops a logarithmic least square model for generating
a normalization interval weight vector from an IPR and put forward an algorithm for
MCDM with IPRs. Two numerical examples are provided in Sect. 6 to demonstrate
the performance of the proposed models, and conclusions are presented in Sect. 7.

2 Preliminaries

For an MCDM problem with a finite set of alternatives, let X = {x1, x2, . . . , xn}
be the set of n alternatives. In eliciting his/her preference over alternatives, a DM
often utilizes a pairwise comparison technique, yielding a fuzzy preference relation
R = (ri j )n×n , where ri j denotes a fuzzy preference degree of alternative xi over x j
such that

0 ≤ ri j ≤ 1, ri j + r ji = 1, rii = 0.5 for all i, j = 1, 2, . . . , n (2.1)

Definition 2.1 (Tanino 1984) Let R = (ri j )n×n be a fuzzy preference relation with
0 < ri j < 1 for all i, j = 1, 2, . . . , n. R is said to have multiplicative consistency, if
it satisfies

rik
rki

rk j
r jk

= ri j
r ji

for all i, j, k = 1, 2, . . . , n (2.2)

As ri j = 1 − r ji for all i, j =1, 2, …, n, it follows from (2.2) that

ri j
r ji

r jk
rk j

rki
rik

= rik
rki

rk j
r jk

r ji
ri j

for all i, j, k = 1, 2, . . . , n (2.3)

For a fuzzy preference relation R = (ri j )n×n , R is multiplicative consistent if and
only if there exists a weight vector ω = (ω1, ω2, . . . , ωn)

T such that

ri j = ωi

ωi + ω j
for all i, j = 1, 2, . . . , n (2.4)

where
∑n

i=1 ωi = 1 and ωi ≥ 0 for i = 1, 2, . . . , n.
Let Zbe a fixed nonempty universe set, an A-IFS A on Z is an object given by

A = {< z, μA(z), νA(z) > |z ∈ Z} (2.5)

where μA : Z → [0, 1], νA : Z → [0, 1] such that 0 ≤ μA(z) + νA(z) ≤ 1, ∀z ∈ Z .
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μA(z) and νA(z) denote, respectively, themembership and nonmembership degrees
of the element z to the set A. In addition, πA(z) = 1 − μA(z) − νA(z) is called the
intuitionistic fuzzy index of A, representing the hesitationmargin of z to A. Obviously,
0 ≤ πA(z) ≤ 1.

For an A-IFS A and a given z, the pair (μA(z), νA(z)) is called an Atanassov’s intu-
itionistic fuzzy value (A-IFV) (Xu 2007). For convenience, the pair (μA(z), νA(z))is
often denoted by (μ, v), where μ, v ∈ [0, 1] and μ + v ≤ 1.

Definition 2.2 (Xu 2007) An IPR R̃ on X is an A-IFS on the product set X × X char-
acterized by a judgment matrix R̃ = (r̃i j )n×n with r̃i j = (μi j , vi j ), where (μi j , vi j )

indicates the intuitionistic preference degree of the alternative xi over x j such that

0 ≤ μi j + vi j ≤ 1, μi j = v j i , vi j = μ j i , μi i = vi i = 0.5 i, j = 1, 2, . . . , n

(2.6)

3 Ratio-based measure for the amount of Atanassov’s intuitionistic fuzzy values

This section discusses the problem of how tomeasure the amount of anA-IFV from the
viewpoint of using A-IFVs to express ratio-based pairwise comparisons. The notion
of intuitionistic fuzzy geometric indices is introduced to capture the central tendency
of an A-IFV, and a ratio-based hesitation margin is defined to measure the hesitancy
index of an A-IFV. A geometric mean based hesitation margin for a set of n A-IFVs
is also defined and used to measure the hesitation index of an IPR.

For an ordinary fuzzy value μF with 0 < μF < 1, If μF > 0.5, then 1
1−μF

− 1 =
μF

1−μF
> 1; ifμF = 0.5, then μF

1−μF
= 1; ifμF < 0.5, then0 <

μF
1−μF

< 1. That is,μF

gives amultiplicative index of μF
1−μF

from the viewpoint of the fuzzy ratio. On the other
hand, for anA-IFV (μ, v), itsmembership value is boundedbetweenμ and1−v, and its
nonmembership value is bounded between v and 1−μ. Therefore, the interval-valued
membership [μ, 1 − v] of the A-IFV (μ, v) gives a multiplicative reciprocal interval

ratio of
[
a−
μ , a+

μ

] =
[

μ
1−μ

, 1−v
v

]
, and the interval-valued nonmembership [v, 1 − μ]

of the A-IFV (μ, v)gives a multiplicative reciprocal interval ratio of
[
a−
v , a+

v

] =[
v

1−v
,
1−μ
μ

]
. Certainly, the denominators in

[
μ

1−μ
, 1−v

v

]
and

[
v

1−v
,
1−μ
μ

]
are assumed

to be not equal to 0. In other words, the constraint 0 < μ, v < 1 should be considered
in the multiplicative reciprocal interval ratios.

Obviously, we have 0 < a−
μ ≤ a+

μ , 0 < a−
v ≤ a+

v , a−
μ a

+
v = 1, a+

μ a
−
v = 1,

i.e.,
[
a−
μ , a+

μ

]
and

[
a−
v , a+

v

]
are multiplicative reciprocal. If (μ, v) = (0.5, 0.5),

then
[
a−
μ , a+

μ

] = [
a−
v , a+

v

] = [1, 1]. Moreover, the geometric mean of the end-
points of the interval

[
a−
μ , a+

μ

]
and that of the interval

[
a−
v , a+

v

]
are also multiplicative

reciprocal, i.e.,
√
a−
μ a

+
μ

√
a−
v a

+
v = 1. Therefore, based on the geometric mean of the

interval endpoints, the intuitionistic multiplicative geometric index of an A-IFV is
introduced as follows.
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Definition 3.1 Let α̃ = (μ, v) be an A-IFV with 0 < μ, v < 1, then the intuitionistic
multiplicative geometric index of the A-IFV α̃ is defined as

Mm
α̃ =

√
μ(1 − v)

(1 − μ)v
(3.1)

Clearly, for any A-IFV α̃ = (μ, v)with 0 < μ, v < 1, the intuitionistic multiplicative
geometric index satisfies the following properties:

(1) Mm
α̃

> 0. Especially, Mm
α̃

= 1 if α̃ = (0.5, 0.5);
(2) Mm

α̃
Mm

α̃c = 1, where α̃c is the complement of the A-IFV α̃ = (μ, v), i.e., α̃c =
(v, μ);

(3) If μ > 0.5, then Mm
α̃

> 1;
(4) If v > 0.5, then Mm

α̃
< 1;

(5) Let α̃1 = (μ1, v1)with 0 < μ1, v1 < 1 and α̃2 = (μ2, v2)with 0 < μ2, v2 < 1
be two A-IFVs, if μ1 ≥ μ2 and v1 ≤ v2, then Mm

α̃1
≥ Mm

α̃2
.

The intuitionisticmultiplicative geometric index expresses themultiplication-based
central tendency of an A-IFV. In order to capture the fuzzy central tendency of an A-
IFV, we introduce the following definition.

Definition 3.2 Let α̃ = (μ, v) be an A-IFV with 0 < μ, v < 1, then the intuitionistic
fuzzy geometric index of the A-IFV α̃ is defined as

M f
α̃

=
√

μ(1 − v)√
μ(1 − v) + √

(1 − μ)v
(3.2)

It is easy to prove that M f
α̃
satisfies the following properties for any A-IFV α̃ = (μ, v)

with 0 < μ < 1, 0 < v < 1.

(i) 0 < M f
α̃

< 1. Especially, M f
α̃

= 0.5 if α̃ = (0.5, 0.5);

(ii) M f
α̃

+ M f
α̃c = 1, where α̃c is the complement of the A-IFV α̃ = (μ, v), i.e.,

α̃c = (v, μ);
(iii) If μ > 0.5, then M f

α̃
> 0.5;

(iv) If v > 0.5, then M f
α̃

< 0.5;
(v) Let α̃1 = (μ1, v1)with 0 < μ1, v1 < 1 and α̃2 = (μ2, v2)with 0 < μ2, v2 < 1

be two A-IFVs, if μ1 ≥ μ2 and v1 ≤ v2, then M f
α̃1

≥ M f
α̃2
.

By (3.1) and (3.2), the relationship between the intuitionistic fuzzy geometric index
and the intuitionistic multiplicative geometric index is obtained as follows.

M f
α̃

= Mm
α̃

1 + Mm
α̃

, Mm
α̃ = M f

α̃

1 − M f
α̃

(3.3)

Asper the property (ii) ofM f
α̃
, from (3.3),we candirectly obtain the following theorem.
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Theorem 3.1 Let α̃ = (μ, v) be an A-IFV with 0 < μ, v < 1, and α̃c be the comple-
ment of α̃ = (μ, v), then

M f
α̃

M f
α̃c

= Mm
α̃ =

√
μ(1 − v)

(1 − μ)v
(3.4)

Theorem 3.1 reveals that the relation between the fuzzy central tendency and the
multiplication-based central tendency, i.e., the multiplication-based central tendency
of an A-IFV α̃ = (μ, v) can be determined by using the quotient of the intuitionistic
fuzzy geometric indices of the A-IFV α̃ and its complement α̃c = (v, μ).

The intuitionistic fuzzy geometric index of an A-IFV α̃ captures the geometry
central tendency of α̃. However, it is unable to snatch the hesitancy level of α̃. It is
hard to directly use theAtanassov’s intuitionistic fuzzy index to express the ratio-based
hesitation margin of α̃ because it is defined from the viewpoint of the interval width.
For instance, two A-IFVs (0.4, 0.2) and (0.5, 0.1) have the same intuitionistic fuzzy
index as per Atanassov’s hesitation margin, but their hesitation ratios are not uniform.
To capture the hesitation ratio of α̃, the ratio-based hesitation margin is introduced as
follows.

Definition 3.3 Let α̃ = (μ, v) be an A-IFV, then the ratio-based hesitation margin of
the A-IFV α̃ is defined as

πr
α̃ = 1 − μ − v

(1 − μ)(1 − v)
(3.5)

As per (3.5), we have the following results for any A-IFV α̃ = (μ, v).

(a) 0 ≤ πr
α̃

≤ 1;
(b) If μ + v = 1, i.e., α̃ is reduced to an ordinary fuzzy number, πr

α̃
= 0;

(c) If μ = 0 or v = 0, πr
α̃

= 1;
(d) πr

α̃
= πr

α̃c , where α̃c is the complement of α̃ = (μ, v), i.e., α̃c = (v, μ).

Eq. (3.5) can be equivalently expressed as:

πr
α̃ = 1 − μv

(1 − μ)(1 − v)
(3.6)

It can be seen from (3.6) that the closer the value ofμv is to 0, the higher the hesitation
margin of the A-IFV α̃ = (μ, v).

As per (3.2) and (3.5), for any two A-IFVs α̃1 = (μ1, v1) with 0 < μ1, v1 < 1 and
α̃2 = (μ2, v2) with 0 < μ2, v2 < 1, if M f

α̃1
= M f

α̃2
and πr

α̃1
= πr

α̃2
, then α̃1 = α̃2.

The aforesaid discussion indicates that the amount of an A-IFV can be measured
by using its intuitionistic fuzzy geometric index and ratio-based hesitation margin,
and the geometry central tendency of the A-IFV is captured by its intuitionistic fuzzy
geometric index. Therefore, an alternative way of expressing the element in an A-IFS
is to use the triple(μ, v, πr ), i.e., via the membership degree, the nonmembership
degree and the ratio-based hesitation margin.

Eq. (3.6) gives a hesitation index for an A-IFV. In order to measure the ratio-based
hesitation margin of an IPR, we need extend (3.6) to measure the hesitation index of
n A-IFVs. Thus, the geometric mean based hesitation margin of n A-IFVs is defined
as follows.
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Definition 3.4 Let α̃i = (μi , vi ) (i = 1, 2, …, n) be n A-IFVs with 0 ≤ μi , vi < 1,
then the geometric mean based hesitation margin of the n A-IFVs is defined as

πr (α̃1, α̃2, . . . , α̃n) = 1 − n

√
n
�
i=1

μivi

(1 − μi )(1 − vi )
(3.7)

As the elements along the diagonal in an IPR are not lack of information, i.e., their
ratio-based hesitation margins are always 0, the geometric mean based hesitation
margin of an IPR R̃ = (r̃i j )n×n = (

(μi j , vi j )
)
n×n can be defined as follows.

Definition 3.5 Let R̃ = (r̃i j )n×n = (
(μi j , vi j )

)
n×nbe an IPR with 0 < μi j , vi j < 1,

then the geometric mean based hesitation margin of R̃ is defined as

πr (R̃) = 1 −

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n∏

i, j = 1,
i �= j

μi jvi j

(1 − μi j )(1 − vi j )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1
n2−n

(3.8)

By the intuitionistic reciprocal property of IPRs, we have
μ j iv j i

(1−μ j i )(1−v j i )
=

vi jμi j
(1−vi j )(1−μi j )

. Therefore, (3.8) can be rewritten as

πr (R̃) = 1 −
⎛

⎝
n∏

j>i=1

μi jvi j

(1 − μi j )(1 − vi j )

⎞

⎠

2
(n2−n)

(3.9)

Obviously, 0 ≤ πr (R̃) < 1. (3.8) or (3.9) gives a way of expressing the average
ratio-based hesitation margin for IPRs. If the geometric mean based hesitation margin
πr (R̃) = 0, then the IPR R̃ is reduced to an ordinary fuzzy preference relation; if
πr (R̃) → 1, then R̃ is extremely hesitant. The larger the πr (R̃), the more hesitant
some pairwise intuitionistic judgments in R̃.

4 Geometric consistency of intuitionistic preference relations

This section uses the intuitionistic fuzzy geometric indices of original intuitionistic
fuzzy judgments to define geometric consistency for IPRs. A numerical example is
furnished to illustrate the drawback of the multiplicative consistency proposed by Xu
et al. (2011) for IPRs.

As per Definition 2.2, for an IPR R̃ = (r̃i j )n×n = (
(μi j , vi j )

)
n×n with 0 <

μi j , vi j < 1 for all i, j = 1, 2, . . . , n, we have r̃ ci j = r̃ j i ,∀i, j = 1, 2, . . . , n. Based
on the discussion in Sect. 3, the central tendency of the intuitionistic fuzzy judgment
r̃i j in R̃ can be captured by its intuitionistic fuzzy geometric index M f

r̃i j
. By (3.3),
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M f
r̃i j

/
M f

r̃ci j
= Mm

r̃i j
=
√

μi j (1−vi j )

(1−μi j )vi j
. Therefore, the geometric consistency of an IPR can

be defined as follows.

Definition 4.1 An IPR R̃ = (r̃i j )n×n = (
(μi j , vi j )

)
n×n with 0 < μi j , vi j < 1(i ,

j = 1, 2, …, n) is called geometry consistent if it satisfies
√

μi j (1 − vi j )

(1 − μi j )vi j
=
√

μik(1 − vik)

(1 − μik)vik

√
μk j (1 − vk j )

(1 − μk j )vk j
for all i, j, k = 1, 2, . . . , n

(4.1)

If all intuitionistic fuzzy judgments r̃i j = (μi j , vi j ) are reduced to fuzzy numbers,
i.e., μi j + vi j = 1 for all i , j =1, 2, …, n, then the IPR R̃ is equivalent to a fuzzy
preference relation R = (ri j )n×n with ri j = μi j and ri j + r ji = 1. In this case, Eq.
(4.1) is degraded to Tanino’s multiplicative transitivity (2.3). Therefore, the geometric
consistency generalizes the concept of the multiplicative consistency proposed by
Tanino (1984).

As μi j = v j i , vi j = μ j i for all i , j =1, 2, …, n, (4.1) is equivalent to any of the
following transitivity equations:

(
μi j

1 − v j i

)(
μ jk

1 − vk j

)(
μki

1 − vik

)

=
(

μik

1 − vki

)(
μk j

1 − v jk

)(
μ j i

1 − vi j

)

for all i, j, k = 1, 2, . . . , n (4.2)

(
μi j

1 − μi j

)(
μ jk

1 − μ jk

)(
μki

1 − μki

)

=
(

μik

1 − μik

)(
μk j

1 − μk j

)(
μ j i

1 − μ j i

)

for all i, j, k = 1, 2, . . . , n (4.3)

Xu et al. (2011) employed the following two equations to define multiplicative
consistent IPRs (See Definition 1 on page 792).

μi j =
{
0 (μik, μk j ) ∈ {(0, 1), (1, 0)}

μikμk j
μikμk j+(1−μik)(1−μk j )

otherwise for all i ≤ k ≤ j

(4.4)

vi j =
{
0 (vik, vk j ) ∈ {(0, 1), (1, 0)}

vikvk j
vikvk j+(1−vik)(1−vk j )

otherwise for all i ≤ k ≤ j

(4.5)

However, the following example illustrates that this multiplicative consistency has
flaws in non-robustness for permutations of the intuitionistic fuzzy judgments given
by the DM.

Example 1 Let us consider an investment decision problem with three alternatives: “a
car company”, “a food company” and “a computer company”. A DM compares each
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Table 1 Intuitionistic fuzzy
judgments Car company versus Food company (0.2,0.5)

Computer company (1/7,0.2)

Food company versus Car company (0.5,0.2)

Computer company (0.4,0.2)

Computer company versus Car company (0.2,1/7)

Food company (0.2,0.4)

pair of the alternatives, and furnishes his/her intuitionistic fuzzy judgments as listed
in Table 1.

Six IPRs may be used to express the DM’s intuitionistic fuzzy judgments by differ-
ent labeling for the three decision alternatives. If the car company, the food company
and the computer company are labeled by x1,x2 and x3, then the DM’s intuitionistic
fuzzy judgments are structured as the following IPR.

Another possible labeling for the three alternatives is x1: the computer company,
x2: the car company, and x3: the food company. In this case, the intuitionistic fuzzy
judgments in Table 1 are expressed as the following IPR.

One can verify that μ13 = μ12μ23
μ12μ23+(1−μ12)(1−μ23)

, v13 = v12v23
v12v23+(1−v12)(1−v23)

and

μ′
13 �= 1

7 = μ′
12μ

′
23

μ′
12μ

′
23+(1−μ′

12)(1−μ′
23)

, v′
13 �= 1

34 = v′
12v

′
23

v′
12v

′
23+(1−v′

12)(1−v′
23)

. That is, R̃1

satisfies (4.4) and (4.5), and R̃′
1 does not satisfy (4.4) and (4.5). As per Definition 1 in

Xu et al. (2011), R̃1 is a multiplicative consistent IPR, while R̃′
1 is not a multiplicative

consistent IPR.
Obviously, R̃′

1 is a permutation of R̃1, i.e., R̃′
1 = ((μ′

i j , v
′
i j ))3×3 = (

(μσ(i)σ ( j),

vσ(i)σ ( j))
)
3×3, where σ is a permutation of {1, 2, 3} satisfying σ(1) = 3, σ (2) = 1

and σ(3) = 2. Therefore, the multiplicative consistency given in Xu et al. (2011) is
non-robust to permutations of the original intuitionistic fuzzy judgments provided by
the DM. In other words, it is highly dependent on the alternative labels.
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By Definition 4.1, one can verify that both of R̃1 and R̃′
1 are geometry consistent

and can easily prove the following theorem.

Theorem 4.1 Let R̃ = (r̃i j )n×n = (
(μi j , vi j )

)
n×n be an IPR with 0 < μi j , vi j < 1

and σ be any of the n! permutations of {1, 2, . . . , n}, then R̃ is geometry consistent if
and only if R̃σ = (

(μσ
i j , v

σ
i j )
)
n×n = (

(μσ(i)σ ( j), vσ(i)σ ( j))
)
n×n is geometry consistent.

Theorem 4.1 reveals that the geometric consistency has good robustness for permu-
tations of the DM’s intuitionistic fuzzy judgments. It is worth noting that we can not
remove the constraint ∀i ≤ k ≤ j in (4.4) and (4.5). Ifμi j = μikμk j

μikμk j+(1−μik)(1−μk j )
for

all i, j, k = 1, 2, . . . , n, then one can obtain 0.5 = μi i = μikμki
μikμki+(1−μik)(1−μki )

⇒
μik + μki = 1. Therefore, as vik = μki ∀i, k = 1, 2, . . . , n, we have μik + vik = 1
for all i, k = 1, 2, . . . , n. This result reveals that R̃ = (

(μi j , vi j )
)
n×n is only an

ordinary fuzzy preference relation.
The following theorem shows the relationship between the geometric consistency

and the function equations (4.4) and (4.5).

Theorem 4.2 Let R̃ = (r̃i j )n×n = (
(μi j , vi j )

)
n×n be an IPR with 0 < μi j , vi j < 1,

if R̃ satisfies (4.4) and (4.5), then R̃ is geometry consistent.

Proof As μi i = 0.5 for all i = 1, 2, . . . , n, it is obvious that (4.3) always holds if
three of the indices i, j, k are equal, or the two of them.

For all i �= j �= k, we have six possible cases. If i < k < j , by (4.4) and (4.5), one
gets

μi j = μikμk j

μikμk j + (1 − μik)(1 − μk j )

⇒ 1 − μi j = (1 − μik)(1 − μk j )

μikμk j + (1 − μik)(1 − μk j )

⇒ μi j

1 − μi j
= μikμk j

(1 − μik)(1 − μk j )

vi j = vikvk j

vikvk j + (1 − vik)(1 − vk j )

⇒ μ j i = μkiμ jk

μkiμ jk + (1 − μki )(1 − μ jk)

⇒ 1 − μ j i = (1 − μki )(1 − μ jk)

μkiμ jk + (1 − μki )(1 − μ jk)

⇒ μ j i

1 − μ j i
= μkiμ jk

(1 − μki )(1 − μ jk)

Thus, (4.3) holds for i < k < j . Similarly, by exchanging the subscripts, one can
obtain (4.3) holds for the following five situations: i < j < k, j < k < i , j < i < k,
k < i < j and k < j < i . As per Definition 4.1, R̃ is geometry consistent. ��

Theorem 4.2 indicates that if R̃ satisfies (4.4) and (4.5), then it is geometry consis-
tent. However, a geometry consistent IPR does not necessarily satisfy (4.4) and (4.5).
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For instance, R̃′
1 in Example 1 is a geometry consistent IPR, but it does not satisfy

(4.4) and (4.5).
Wu and Chiclana (2014b) employed the following two Eqs. (4.6) and (4.7) to define

multiplicative consistency of IPRs. Liao and Xu (2014b) proposed another multiplica-
tive consistency definition of IPRs, where the transitivity condition is equivalent to
(4.6).

μi jμ jkμki = μikμk jμ j i for all i, j, k = 1, 2, . . . , n (4.6)

(1 − vi j )(1 − v jk)(1 − vki ) = (1 − vik)(1 − vk j )(1 − v j i ) for all i, j, k = 1, 2, . . . , n

(4.7)

It is obvious that if (4.6) and (4.7) hold, (4.2) follows. Therefore, if an IPR has multi-
plicative consistency in terms of the transitivity proposed byWu andChiclana (2014b),
then it is geometry consistent, and also multiplicative consistent under the transitivity
definition by Liao and Xu (2014b). However, one can verify that the geometry con-
sistent IPR R̃1 in Example 1 does not satisfy (4.6) and (4.7). In other words, an IPR
with geometric consistency does not necessarily satisfy (4.6) or/and (4.7).

5 A logarithmic least square model for generating interval priority weights

This section develops a logarithmic least square model to construct the fitted geometry
consistent IPR and derive normalization intervalweights from IPRs.An algorithmwith
acceptable geometry consistency checking is proposed for solving MCDM problems.

Denote a positive normalization interval fuzzy weight vector by ω̄ = (ω̄1,

ω̄2, · · · , ω̄n)
T = ([ω−

1 , ω+
1 ], [ω−

2 , ω+
2 ], . . . , [ω−

n , ω+
n ])T with

0 < ω−
i ≤ ω+

i ≤ 1,
n∑

j=1, j �=i

ω−
j + ω+

i ≤ 1, ω−
i +

n∑

j=1, j �=i

ω+
j ≥ 1 ∀i = 1, 2, . . . , n

(5.1)
There may exist a difference between the judgment in a pairwise comparison matrix
with uncertainty or hesitancy and the result obtained from an interval fuzzy weight
vector ω̄ by interval arithmetic due to the fact that we often have ω̄i

ω̄i
�= [1, 1] and

ω̄i
ω̄ j

⊗ ω̄ j
ω̄i

�= [1, 1], where “–” and “⊗” denote the interval division and multiplication
operations, respectively.

Moreover, preference relations with uncertainty or hesitancy are allowed by such
differences. For instance, for an interval multiplicative preference relation (Saaty and

Vargas 1987) A = (
āi j
)
n×n =

(
[a−

i j , a
+
i j ]
)

n×n
, āi i = [1, 1],∀i = 1, 2, . . . , n, but we

often have ω̄i
ω̄i

�= [1, 1]. Similarly, for IPRs, μi i = vi i = 0.5 for all i = 1, 2, . . . , n.
In order to simulate the difference, the interval multiplicative reciprocal preference

intensity of xi over x j ,āi j =
[
a−
i j , a

+
i j

]
can be defined as

[
ω−
i

γi jω
+
j
,

γi jω
+
i

ω−
j

]

by introducing

a parameterγi j , where

√
ω−
i ω−

j

ω+
i ω+

j
≤ γi j ≤ 1and γ j i = γi j for all i, j = 1, 2, . . . , n.
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Obviously, If γi j =
√

ω−
i ω−

j

ω+
i ω+

j
, we have a−

i j = a+
i j , implying that āi j is degraded to a

crisp judgment and the difference between āi j and
ω̄i
ω̄ j
is maximal. If γi j = 1, then

āi j = ω̄i
ω̄ j
, indicating that āi j is determined by interval arithmetic, and āi j and

ω̄i
ω̄ j

are

indifferent. If

√
ω−
i ω−

j

ω+
i ω+

j
< γi j < 1, then āi j is obtained by not being strictly based on

interval arithmetic, and there is a difference between āi j and
ω̄i
ω̄ j
. The smaller the γi j ,

the larger the difference between āi j and
ω̄i
ω̄ j
.

On the other hand, one can easily prove that an interval multiplicative judgment

[a−
i j , a

+
i j ] can be equivalently converted to an intuitionistic judgment

(
a−
i j

1+a−
i j

, 1
1+a+

i j

)

.

Therefore, for a given interval fuzzy weight vector ω̄, the intuitionistic preference
intensity of xi over x j , t̃i j = (tμi j , t

v
i j ) is formulated as follows.

t̃i j = (tμi j , t
v
i j ) =

⎧
⎨

⎩

(0.5, 0.5) i = j(
ω−
i

ω−
i +γi jω

+
j
,

ω−
j

ω−
j +γi jω

+
i

)

i �= j
(5.2)

where γi j is a parameter such that

√
ω−
i ω−

j

ω+
i ω+

j
≤ γi j ≤ 1and γ j i = γi j for all i, j =

1, 2, . . . , n, i �= j .

Theorem 5.1 Let T̃ = (t̃i j )n×n be a matrix defined by (5.2), then T̃ is a geometry

consistent IPR and M f
t̃i j

=
√

ω−
i ω+

i√
ω−
i ω+

i +
√

ω−
j ω+

j

for all i, j = 1, 2, . . . , n.

Proof It is apparent that, for all i, j = 1, 2, . . . , n, (tμi i , t
v
i i ) = (0.5, 0.5) and

(tμj i , t
v
j i ) = (tvi j , t

μ
i j ). As 0 < ω−

i ≤ ω+
i ≤ 1, we have 0 <

ω−
i

ω−
i +γi jω

+
j

< 1 and

0 <
ω−
j

ω−
j +γi jω

+
i

< 1. Moreover, since γi j ≥
√

ω−
i ω−

j

ω+
i ω+

j
for all i, j = 1, 2, . . . , n, i �= j ,

it follows that

ω−
i ω−

j ≤ (
γi j
)2

ω+
i ω+

j ⇒ 1 + ω−
j

γi jω
+
i

≤ 1 + γi jω
+
j

ω−
i

⇒ ω−
j + γi jω

+
i

γi jω
+
i

≤ ω−
i + γi jω

+
j

ω−
i

⇒ ω−
i

ω−
i + γi jω

+
j

≤ γi jω
+
i

ω−
j + γi jω

+
i

= 1 − ω−
j

ω−
j + γi jω

+
i

⇒ tμi j + tvi j ≤ 1

Therefore, the elements in T̃ are A-IFVs and satisfy the intuitionistic reciprocal prop-
erty. As per Definition 2.2, T̃ is an IPR.
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On the other hand, for all i �= j �= k, we have

(
tμi j

1 − tμi j

)(
tμjk

1 − tμjk

)(
tμki

1 − tμki

)

=
(

ω−
i

γi jω
+
j

)(
ω−

j

γ jkω
+
k

)(
ω−
k

γkiω
+
i

)

= ω−
i ω−

j ω−
k

γi jγ jkγkiω
+
i ω+

j ω+
k

and

(
tμik

1 − tμik

)(
tμk j

1 − tμk j

)(
tμj i

1 − tμj i

)

=
(

ω−
i

γikω
+
k

)(
ω−
k

γk jω
+
j

)(
ω−

j

γ j iω
+
i

)

= ω−
i ω−

j ω−
k

γ j iγk jγikω
+
i ω+

j ω+
k

As γ j i = γi j for all i, j = 1, 2, . . . , n, i �= j , (4.3) holds for i �= j �= k. Moreover,
since T̃ is an IPR, (4.3) always holds for if three of the indices i, j, k are equal, or the
two of them. By Definition 4.1, T̃ is a geometry consistent IPR.

As per (3.2), we get

M f
t̃i j

= 1

1 +
√

(1−tμi j )t
v
i j

tμi j (1−tvi j )

= 1

1 +
√

ω−
j ω+

j

ω−
i ω+

i

=
√

ω−
i ω+

i
√

ω−
i ω+

i +
√

ω−
j ω+

j

Thus, the proof of Theorem 5.1 is completed. ��
Theorem 5.1 indicates that numerous geometry consistent IPRs can be obtained for

a given normalization interval fuzzy weight vector by setting γi j at different values.
Moreover, the intuitionistic fuzzy geometric indices of the corresponding elements
in these consistent IPRs are identical, but they have different hesitation margin. The
larger the γi j , the more hesitant the obtained A-IFV t̃i j .

Corollary 5.1 Let R̃ = (r̃i j )n×n = (
(μi j , vi j )

)
n×n be an IPR with 0 <

μi j , vi j < 1, if there exists a positive normalization interval fuzzy weight vector
ω̄ = (ω̄1, ω̄2, · · · , ω̃n)

T and γi j (i, j = 1, 2, . . . , n, i �= j) such that

r̃i j = (μi j , vi j ) =
⎧
⎨

⎩

(0.5, 0.5) i = j(
ω−
i

ω−
i +γi jω

+
j
,

ω−
j

ω−
j +γi jω

+
i

)

i �= j
(5.3)

where γi j (i, j = 1, 2, . . . , n, i �= j) satisfy γi j ≥
√

ω−
i ω−

j

ω+
i ω+

j
and γ j i = γi j , then R̃ is

geometry consistent.
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As per (5.3), we have

μi j

1 − μi j
= ω−

i

γi jω
+
j

, i �= j (5.4)

1 − vi j

vi j
= γi jω

+
i

ω−
j

, i �= j (5.5)

By logarithmizing (5.4) and (5.5), one can obtain

lnμi j − ln(1 − μi j ) = lnω−
i − lnω+

j − ln γi j , i �= j (5.6)

ln(1 − vi j ) − ln vi j = ln γi j + lnω+
i − lnω−

j , i �= j (5.7)

Eqs. (5.4)–(5.7) hold for geometry consistent IPRs. However, in real-world decision
situations, it is often a challenge for a DM to furnish a geometry consistent IPR.
In this case, (5.6) and (5.7) will not hold, and will have to be relaxed by allowing
some deviations. Based on this modeling idea, the following logarithmic least square
optimization model is established to derive interval weights from an IPR.

min J =
n∑

i=1

n∑

j �=i, j=1

(
(lnω−

i − lnω+
j − ln γi j + ln(1 − μi j ) − lnμi j )

2

+ (lnω+
i − lnω−

j + ln γi j + ln vi j − ln(1 − vi j ))
2
)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lnω−
i + lnω−

j − lnω+
i − lnω+

j ≤ 2 ln γi j ≤ 0, i �= j = 1, 2, . . . , n
ln γ j i = ln γi j , i �= j = 1, 2, . . . , n

ω+
i +

n∑

j=1
j �=i

ω−
j ≤ 1, ω−

i +
n∑

j=1
j �=i

ω+
j ≥ 1, i = 1, 2, . . . , n

0 < ω−
i ≤ ω+

i ≤ 1. i = 1, 2, . . . , n

(5.8)

where ω−
i , ω+

i (i = 1, 2, . . . , n) and γi j (i �= j = 1, 2, . . . , n) are decision variables.

The first two line constraints come from the logarithmic expressions of

√
ω−
i ω−

j

ω+
i ω+

j
≤

γi j ≤ 1and γi j = γ j i , and the remaining constraints ensure that the derived weights
constitute a normalization interval weight vector ω̄.

Since μ j i = vi j , v j i = μi j and γ j i = γi j for all i �= j = 1, 2, . . . , n, we have

lnω−
j − lnω+

i − ln γ j i + ln(1 − μ j i ) − lnμ j i

= −(lnω+
i − lnω−

j + ln γi j + ln vi j − ln(1 − vi j )), i �= j (5.9)

lnω+
j − lnω−

i + ln γ j i + ln v j i − ln(1 − v j i )

= −(lnω−
i − lnω+

j − ln γi j + ln(1 − μi j ) − lnμi j ), i �= j (5.10)
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Thus, (5.8) can be simplified as:

min J =
n−1∑

i=1

n∑

j=i+1

(
(lnω−

i − lnω+
j − ln γi j + ln(1 − μi j ) − lnμi j )

2

+ (lnω+
i − lnω−

j + ln γi j + ln vi j − ln(1 − vi j ))
2
)

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lnω−
i + lnω−

j − lnω+
i − lnω+

j ≤ 2 ln γi j ≤ 0, i = 1, 2, . . . , n − 1, j = i + 1, i + 2, . . . , n

ω+
i +

n∑

j=1
j �=i

ω−
j ≤ 1, ω−

i +
n∑

j=1
j �=i

ω+
j ≥ 1, i = 1, 2, . . . , n

0 < ω−
i ≤ ω+

i ≤ 1 i = 1, 2, . . . , n

(5.11)

Solving (5.11) yields an optimal normalization interval weight vector ω̄∗ =
(ω̄∗

1, ω̄
∗
2, . . . , ω̄

∗
n)

T = ([ω−∗
1 , ω+∗

1 ], [ω−∗
2 , ω+∗

2 ], . . . , [ω−∗
n , ω+∗

n ])T and the optimal
solutions γ ∗

i j (i = 1, 2, . . . , n − 1, j = i + 1, . . . , n).
Let γ ∗

i j = γ ∗
j i for all i > j = 1, 2, . . . , n, by plugging ω̄∗ and γ ∗

i j (i �= j =
1, 2, . . . , n) into (5.2), the fitted geometry consistent IPR is determined as R̃∗ =
(r̃∗
i j )n×n =

(
(μ∗

i j , v
∗
i j )
)

n×n
, where

r̃∗
i j = (μ∗

i j , v
∗
i j ) =

⎧
⎨

⎩

(0.5, 0.5) i = j(
ω−∗
i

ω−∗
i +γ ∗

i jω
+∗
j

,
ω−∗
j

ω−∗
j +γ ∗

i jω
+∗
i

)

i �= j
(5.12)

Clearly, if the value of the optimal objective function in (5.11) is equal to 0, i.e.,
J ∗ = 0, then R̃ can be expressed as (5.6) and (5.7) by the derived interval fuzzy weight
vector ω̄∗ and the optimal solutions γ ∗

i j . By Corollary 5.1, R̃ is geometry consistent.

However, if J ∗ �= 0, then R̃ �= R̃∗. In order to measure their difference, we introduce
the notion of the geometric mean based difference degree.

Definition 5.1 Let R̃1 = (r̃ (1)
i j )n×n = ((μ

(1)
i j , v

(1)
i j ))n×nand R̃2 = (r̃ (2)

i j )n×n =
((μ

(2)
i j , v

(2)
i j ))n×nbe two IPRs with 0 < μ

(1)
i j , v

(1)
i j < 1, 0 < μ

(2)
i j , v

(2)
i j < 1, then

the geometric mean based difference degree between R̃1 and R̃2 is defined as

GMDD(R̃1, R̃2) = 1 −
⎛

⎝
∏

i �= j

(
min{μ(1)

i j , μ
(2)
i j }

max{μ(1)
i j , μ

(2)
i j }

)(
min{v(1)

i j , v
(2)
i j }

max{v(1)
i j , v

(2)
i j }

)⎞

⎠

1
2(n2−n)

(5.13)
Obviously, 0 ≤ GMDD(R̃1, R̃2) < 1 and GMDD(R̃1, R̃2) = GMDD(R̃2, R̃1).

The smaller the geometric mean based difference degree GMDD(R̃1, R̃2), the closer
R̃1 is toR̃2. Especially, if GMDD(R̃1, R̃2) = 0, then one can obtain R̃1 = R̃2.

Definition 5.2 Let R̃ = (r̃i j )n×n = (
(μi j , vi j )

)
n×n be an IPR with 0 < μi j , vi j < 1,

then R̃ is called an acceptable geometry consistent IPR, if

GMDD(R̃, R̃∗) ≤ t (5.14)
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where R̃∗ is the fitted geometry consistent IPR defined by (5.12), and t (0 ≤ t < 1) is
an acceptable geometry consistency threshold given by the DM.

Based on the aforesaid analyses, an algorithm for solving MCDM problems with
IPRs is now developed as follows.

Algorithm 1

Step1. Solve themodel (5.11), andderive the optimal normalization intervalweight
vector ω̄∗ = (ω̄∗

1, ω̄
∗
2, · · · , ω̄∗

n)
T and the optimal solutions γ ∗

i j (i = 1, 2, . . . , n −
1, j = i + 1, . . . , n).
Step 2. Calculate the fitted geometry consistent IPR R̃∗ as per (5.12).
Step 3. Determine the geometric mean based difference degree between R̃ and R̃∗,
GMDD(R̃, R̃∗), as per (5.13).
Step 4. If GMDD(R̃, R̃∗) ≤ t , i.e., R̃ is an acceptable geometry consistent IPR,
then go to next step; otherwise, ask the DM to adjust his/her evaluations and go to
step 7.
Step 5. Construct the possibility degree matrix P = (P(ω̄∗

i ≥ ω̄∗
j ))n×nas per the

following formula.

P(ω̄∗
i ≥ ω̄∗

j ) = max

{

1 − max

(
ω+∗

j − ω−∗
i

ω+∗
i − ω−∗

i + ω+∗
j − ω−∗

j

, 0

)

, 0

}

(5.15)

Step 6. Add up all elements in each row of P , one gets θi = ∑n
j=1 pi j (i =

1, 2, . . . , n). According to the decreasing order of the values θi (i = 1, 2, . . . , n),
a ranking of decision alternatives is determined, and the alternativexi is preferred

to x j to the possibility degree of P(ω̄∗
i ≥ ω̄∗

j ), denoted by xi
P(ω̄∗

i ≥ω̄∗
j ))� x j .

Step 7. End.

6 Numerical examples

This section presents two numerical examples and comparisons with existing
approaches to illustrate the performance and validity of the proposed models.

Example 2 Assume that a DM provides the following IPR, which has been examined
by Xu and Liao (2014).

R̃ = (r̃i j )4×4 = ((μi j , vi j )4×4 =

⎡

⎢
⎢
⎣

(0.5, 0.5) (0.2, 0.6) (0.3, 0.4) (0.6, 0.2)
(0.6, 0.2) (0.5, 0.5) (0.5, 0.4) (0.6, 0.4)
(0.4, 0.3) (0.4, 0.5) (0.5, 0.5) (0.3, 0.2)
(0.2, 0.6) (0.4, 0.6) (0.2, 0.3) (0.5, 0.5)

⎤

⎥
⎥
⎦

By plugging R̃ into (5.11), one can obtain the optimal interval fuzzy weight vector ω̄∗
and the optimal solutions γ ∗

i j as
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ω̄∗ = (ω̄∗
1, ω̄

∗
2, ω̄

∗
3, ω̄

∗
4)

T

= ([0.2213, 0.2232], [0.2104, 0.5562], [0.1346, 0.4733], [0.0880, 0.2859])T ,

γ ∗
12 = 1, γ ∗

13 = 0.9933, γ ∗
14 = 0.9016, γ ∗

23 = 0.4016, γ ∗
24 = 0.3411, γ ∗

34 = 0.9036.

As per (5.12), the fitted geometry consistent IPR is determined as

R̃∗ =

⎡

⎢
⎢
⎣

(0.5, 0.5) (0.2846, 0.4852) (0.3201, 0.3778) (0.4619, 0.3042)
(0.4852, 0.2846) (0.5, 0.5) (0.5254, 0.3760) (0.6833, 0.3169)
(0.3778, 0.3201) (0.3760, 0.5254) (0.5, 0.5) (0.3425, 0.1707)
(0.3042, 0.4619) (0.3169, 0.6833) (0.1707, 0.3425) (0.5, 0.5)

⎤

⎥
⎥
⎦

By (5.13), the geometric mean based difference degree between R̃ and R̃∗ is deter-
mined as GMDD(R̃, R̃∗) = 0.1629.

If the DM expects acceptable geometry consistency threshold to be less than or
equal to 0.2, then t=0.2 and R̃ is an acceptable geometry consistent IPR. As per
the comparison method described in Sect. 5, the four interval weights are ranked as

ω̄∗
2
61.59%� ω̄∗

3
73.99%� ω̄∗

1
67.67%� ω̄∗

4.
Next, the priority methods developed by Xu and Liao (2014), Xu (2012) and Gong

et al. (2009) will be applied to the same IPR R̃ and the obtained interval priority
weights will be compared with our proposed approach.

According to Eq. (25) in Xu and Liao (2014), an interval weight vector is obtained
as

ω̄xl = (ω̄xl
1 , ω̄xl

2 , ω̄xl
3 , ω̄xl

4 )T

= ([0.1720, 0.3433], [0.2366, 0.3731], [0.1720, 0.3731], [0.1398, 0.2985])T .

Xu (2012) presented an error-analysis-basedmethod to obtain interval priorityweights.
By employing (13) and (15) in Xu (2012), the expected priority weight vector and the
corresponding error vector are determined as (0.2458, 0.2792, 0.2542, 0.2208)T and
(0.0172, 0.0093, 0.0247, 0.0224)T , respectively. Thus, the interval weight vector is
derived as

ω̄xu = (ω̄xu
1 , ω̄xu

2 , ω̄xu
3 , ω̄xu

4 )T

= ([0.2286, 0.2630], [0.2699, 0.2885], [0.2295, 0.2789], [0.1984, 0.2432])T

Gong et al. (2009) proposed a linear program to derive an interval weight vector.
Using the model (21) in Gong et al. (2009), the optimal normalization interval weight
vector is obtained as ω̄g = (ω̄

g
1 , ω̄

g
2 , ω̄

g
3 , ω̄

g
4 )

T = ([0.1, 0.1333], [0.2333, 0.2667],
[0.2, 0.2333], [0.4, 0.4])T .

In Xu and Liao (2014), the obtained interval weights is first converted into A-IFVs,
and then the following measure function proposed by Szmidt and Kacprzyk (2009) is
used to rank alternatives.

ϕ(α̃) = 0.5(1 + πα̃)(1 − μ) (6.1)
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Table 2 A comparative study for ranking interval weights

Interval
weight
vector

Model

Possibility degree (5.15) Measure
function (6.1)

Score function based
method (Xu 2007)

ω̄∗ ω̄∗
2
61.59%� ω̄∗

3
73.99%� ω̄∗

1
67.67%� ω̄∗

4 ω̄∗
1 � ω̄∗

2 � ω̄∗
4 � ω̄∗

3 ω̄∗
2 � ω̄∗

3 � ω̄∗
1 � ω̄∗

4

ω̄xl ω̄xl
2

59.57%� ω̄xl
3

54.00%� ω̄xl
1

61.67%� ω̄xl
4 ω̄xl

2 � ω̄xl
1 � ω̄xl

3 � ω̄xl
4 ω̄xl

2 � ω̄xl
3 � ω̄xl

1 � ω̄xl
4

ω̄xu ω̄xu
2

86.76%� ω̄xu
3

60.02%� ω̄xu
1

81.57%� ω̄xu
4 ω̄xu

2 � ω̄xu
1 � ω̄xu

3 � ω̄xu
4 ω̄xu

2 � ω̄xu
3 � ω̄xu

1 � ω̄xu
4

ω̄g ω̄
g
4
100%� ω̄

g
2
100%� ω̄

g
3
100%� ω̄

g
1 ω̄

g
4 � ω̄

g
2 � ω̄

g
3 � ω̄

g
1 ω̄

g
4 � ω̄

g
2 � ω̄

g
3 � ω̄

g
1

where α̃ = (μ, v), and πα̃ = 1−μ−v is the Atanassov’s hesitation margin of α̃. The
smaller the ϕ(α̃), the larger the A-IFV α̃. Therefore, the four interval weights in ω̄xl

are ranked as ω̄xl
2 � ω̄xl

1 � ω̄xl
3 � ω̄xl

4 .
In Xu (2012), (5.15) is applied to rank the four interval weights inω̄xu . The ranking

order is determined as ω̄xu
2

86.76%� ω̄xu
3

60.02%� ω̄xu
1

81.57%� ω̄xu
4 . In Gong et al. (2009), the

derived interval weights is also first converted into A-IFVs, and then the score function
based comparison method (Xu 2007) is employed to rank decision alternatives. The
four interval weights in ω̄g are ranked as ω̄

g
4 � ω̄

g
2 � ω̄

g
3 � ω̄

g
1 .

The ranking results of the four interval weight vectors ω̄∗, ω̄xl , ω̄xu, ω̄g based on
different comparison methods are summarized in Table 2.

Table 2 clearly indicates that different ranksmay be obtained from the same interval
weight vector based on different comparison approaches. The ranks of interval weights
derived by Xu and Liao (2014) , Xu (2012) and this article are identical based on the
possibility degree comparison approach, but the values of the possibility degree are
not uniform. If the interval weights are converted into A-IFVs, they are ranked as
different orders based on the score function and (6.1). Although the ranking orders
of the interval weights obtained by Gong et al. (2009) are uniform based on the
three different comparison approaches, the rank is much inconsistent with the results
obtained by Xu and Liao (2014), Xu (2012) and this article. Moreover, the further
comparative study (See Table 3) reveals that the interval weight vector ω̄g cannot
properly reflect the original intuitionistic fuzzy judgments in R̃.

Szmidt and Kacprzyk (2009) gave a counter-intuitive example for ranking two
Atanassov’s intuitionistic fuzzy alternatives by using the score function, and proposed
the function (6.1) to measure the amount of an A-IFV for ranking decision alternative.
However, for the A-IFVs converted from interval fuzzy weights, the function (6.1)
seems to be not a reasonable measure. For instance, for two interval fuzzy weights
ω̄1 = [0.2, 0.2] and ω̄2 = [0.2, 0.3], the converted A-IFVs are determined as α̃ω̄1 =
(0.2, 0.8) and α̃ω̄2 = (0.2, 0.7), respectively. By (6.1), one can obtain ϕ(α̃ω̄1) =
0.4 and ϕ(α̃ω̄2) = 0.44, and thus α̃ω̄1 > α̃ω̄2 , implying ω̄1 > ω̄2, which seems
counterintuitive. This drawback results in an inappropriate ranking of ω̄∗

1 � ω̄∗
2, .i.e,

the interval weights in ω̄∗ are ranked as ω̄∗
1 � ω̄∗

2 � ω̄∗
4 � ω̄∗

3 counter-intuitively.
As the interval fuzzy weight vectors obtained by the four different approaches are

all assumed to be additive, an appropriate rank method for the obtained interval fuzzy
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Table 3 A comparative study for the fitted IPRs

Model Reference IPR Difference degree
GMDD(R̃, .)

Hesitation
margin πr (.)

Algorithm I Xu and Liao (2014) R̃X L 0.1879 0.7305

(14) and (16) Gong et al. (2009) R̃GO 0.3630 0.2500

(5.12) This article R̃∗ 0.1629 0.6228

weights seems to use the possibility degree formula (5.15), and then yields a ranking
order with possibility degrees. In this situation, however, it is also difficult to identify
which one priority weight derivation method performs better due to the fact that the
same ranking order is derived by the approaches in Xu and Liao (2014), Xu (2012) and
this article. Therefore, we need to determine which the obtained interval fuzzy weight
vector is the most accurate result of capturing the features of the original intuitionistic
fuzzy judgments provided by the DM.

Next, the multiplicative consistent IPRs obtained from the methods in Xu and Liao
(2014) and Gong et al. (2009) will be used in the further analysis by comparing their
geometricmean based hesitationmargins and difference degrees (Note that the priority
method (Xu 2012) does not consider the consistency, hence, is omitted here for the
further comparative study).

Xu and Liao (2014) employ (4.4) and (4.5) to develop an algorithm for constructing
a perfect multiplicative consistent IPR. By applyingAlgorithm I inXu and Liao (2014)
to R̃, the perfect multiplicative consistent IPR is determined as

R̃XL =

⎡

⎢
⎢
⎣

(0.5, 0.5) (0.2, 0.6) (0.3333, 0.5) (0.2079, 0.2899)
(0.6, 0.2) (0.5, 0.5) (0.5, 0.4) (0.3956, 0.2899)
(0.5, 0.3333) (0.4, 0.5) (0.5, 0.5) (0.3, 0.2)
(0.2899, 0.2079) (0.2899, 0.3956) (0.2, 0.3) (0.5, 0.5)

⎤

⎥
⎥
⎦

By plugging ω̄g into (14) and (16) in Gong et al. (2009), the fitted IPR with Gong
et al.’s multiplicative consistency is obtained as

R̃GO =

⎡

⎢
⎢
⎣

(0.5, 0.5) (0.2727, 0.6364) (0.3, 0.6001) (0.2, 0.75)
(0.6364, 0.2727) (0.5, 0.5) (0.5, 0.4285) (0.3684, 0.6)
(0.6001, 0.3) (0.4285, 0.5) (0.5, 0.5) (0.3333, 0.6316)
(0.75, 0.2) (0.6, 0.3684) (0.6316, 0.3333) (0.5, 0.5)

⎤

⎥
⎥
⎦

As per (5.13), the geometric mean based difference degrees between R̃ and the
fitted IPRs are determined and listed in Table 3.

By (3.9), the geometricmean based hesitationmargin of the original IPR is obtained
as πr (R̃) = 0.6230. Similarly, the geometric mean based hesitation margins of the
others are determined and shown in the last column in Table 3.

Table 3 demonstrates that the difference degree GMDD(R̃, R̃∗) is the smallest
among the three difference degrees, and the hesitation margin πr (R̃∗) is the closest
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to that of the original IPR R̃. This result implies that the features of the original
intuitionistic fuzzy judgments are accurately captured by the proposed models in this
article and the obtained interval fuzzy weights in ω̄∗ may be employed to exactly
reflect the importance degrees of decision alternatives.

Example 3 With the developing trend of the supply chain management, a core enter-
prise has to generate a weighting scheme for the selection of supply chain partners.
There are four main criteria: product quality (c1), cost and delivery time (c2), supplier
flexibility and responsiveness (c3), and trust and financial status (c4). Assume that a
senior executive is asked to determine importance weights for the four criteria. The
executive compares each pair of the criteria and furnishes his/her judgments by means
of the following IPR.

R̃ = (r̃i j )4×4 = ((μi j , vi j )4×4 =

⎡

⎢
⎢
⎣

(0.5, 0.5) (1/3, 2/3) (1/5, 4/5) (1/4, 3/4)
(2/3, 1/3) (0.5, 0.5) (1/3, 2/3) (2/5, 3/5)
(4/5, 1/5) (2/3, 1/3) (0.5, 0.5) (4/7, 3/7)
(3/4, 1/4) (3/5, 2/5) (3/7, 4/7) (0.5, 0.5)

⎤

⎥
⎥
⎦

By plugging R̃ into (5.11) and solving this model, one can obtain the optimal objec-
tive value J ∗ = 0, i.e., R̃ is a geometry consistent IPR, and the optimal solutions
as γ ∗

i j = 1 (i, j = 1, 2, 3, 4, i < j) and ω̄∗ = (ω̄∗
1, ω̄

∗
2, ω̄

∗
3, ω̄

∗
4)

T = ([0.1, 0.1],
[0.2, 0.2], [0.4, 0.4], [0.3, 0.3])T .

Next, the priority method in Xu and Liao (2014) is applied to the same IPR R̃. The
interval weight vector is determined as

ω̄xl = (ω̄xl
1 , ω̄xl

2 , ω̄xl
3 , ω̄xl

4 )T

= ([0.1604, 0.1604], [0.2375, 0.2375], [0.3173, 0.3173], [0.2848, 0.2848])T .

By employing (13) and (15) in Xu (2012), an interval weight vector is obtained as:

ω̄xu = (ω̄xu
1 , ω̄xu

2 , ω̄xu
3 , ω̄xu

4 )T

= ([0.1903, 0.1903], [0.2417, 0.2417], [0.2948, 0.2948], [0.2732, 0.2732])T

On the other hand, since μi j + vi j = 1 for all i, j =1, 2, 3, 4, R̃ is equivalent to
the following ordinary fuzzy preference relation R = (ri j )4×4 = (μi j )4×4. As per
Definition 2.1, one can verify that R is Tanino’s multiplicative consistent. It is obvious
that the obtained three interval weight vectors ω̄∗, ω̄xl and ω̄xu are all reduced to
crisp weight vectors and normalized. However, ω̄xl , ω̄xu do not satisfy (2.4), which is
the relationship between Tanino’s multiplicative consistent fuzzy preference relations
and crisp priority weights. This result implies that inaccurate results may be obtained
when the priority weight derivation methods in Xu and Liao (2014) and Xu (2012)
are applied to the reduced IPR, which is equivalent to an ordinary fuzzy preference
relation with Tanino’s multiplicative consistency. In other words, the priority methods
inXu and Liao (2014) andXu (2012) seem difficult to determine an appropriate weight
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vector for the criteria{c1, c2, c3, c4}. One can verify that ω̄∗ satisfies (2.4), implying
that the obtainedweight vector ω̄∗ can be used to exactly reflect the importance degrees
of the four criteria.

7 Conclusions

The research is concerned with the ratio-based measure for the amounts of A-IFVs
and geometric consistency of IPRs as well as how to derive an interval weight vector
from an IPR. We have defined the concepts of the intuitionistic fuzzy geometric index
and the ratio-based hesitation margin for an A-IFV. Based on the intuitionistic fuzzy
geometric indices, we have introduced geometric transitivity to define consistent IPRs.
A numerical example has been provided to illustrate the drawback of the multiplica-
tive consistency definition by Xu et al. (2011). We have developed a logarithmic least
square model for constructing the fitted geometry consistent IPR and deriving interval
priority weights from IPRs. By employing the constructed consistent IPR, we have
devised an approach to check the acceptable geometry consistency for IPRs and pro-
posed an algorithm to solve MCDM problems with IPRs. The validity of the proposed
models has been shown by two numerical examples and comparisons with existing
approaches.
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