
Fuzzy Optim Decis Making (2015) 14:265–287
DOI 10.1007/s10700-014-9200-6

Multistage production distribution under uncertain
demands with integrated discrete particle swarm
optimization and extended priority-based hybrid
genetic algorithm

Thitipong Jamrus · Chen-Fu Chien ·
Mitsuo Gen · Kanchana Sethanan

Received: 31 July 2013 / Accepted: 29 December 2014 / Published online: 8 January 2015
© Springer Science+Business Media New York 2015

Abstract Production distribution systems are increasingly crucial because of short-
ened product life cycles, increasing competition, and uncertainty introduced by glob-
alization. Production distribution involves a multistage supply chain network that
consists of factories, distribution centers, retailers, and various customers. Customer
demands fluctuate and are unpredictable, thereby causing an imprecise customer quan-
tity demand in each period in the production distribution model, and increasing inven-
tory and related costs.Most studies have addressed the production distribution problem
with certain demands or a single period. To fill the gap, this study aims to integrate
the extended priority-based discrete particle swarm optimization and novel extended
priority-based hybrid genetic algorithm for solving flexible multistage production dis-
tribution under uncertain demands in multiple periods. In particular, triangular fuzzy
demands are considered for minimizing the total cost, including transportation costs,
inventory costs, shortage costs, and ordering costs, in the multistage and multi-time-
period supply chain. For validation, we designed numerical experiments to compare
the proposed approaches with LINGO computational software (for small problems)
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and conventional genetic algorithms (for normal problems) in real settings. The exper-
imental results demonstrated practical viability of the proposed approaches.

Keywords Triangular fuzzy demand · Multistage and multi-time-period (MSMT)
supply chain · Extended priority-based hybrid genetic algorithm (EP-HGA) ·
Extended priority-based discrete particle swarm optimization (EP-DPSO)

1 Introduction

Production distribution and demand fulfillment is increasingly challenging because of
shortening product life cycles, rapid technological change, increasing competition, and
uncertainty introduced by globalization (Chien et al. 2013). The manufacturing para-
digm is shifting, in which the conventional vertically integrated supply chain has been
altered by collaborations among many fragmented yet complementary and special-
ized companies in production distribution for value constellations (Chien et al. 2010).
The design of a long-term efficient production distribution network is a crucial strate-
gic decision that affects supply chain performance and the manufacturing network
(Xu et al. 2008).

The present production distribution problem with the multistage and multi-time-
period (MSMT) supply chain consists of factories, distribution centers, retailers, and
various customers. The present problem is crucial in supply chain management, in
which an optimal platform is required to solve it systemically for efficient and effec-
tive supply chain management (Lin et al. 2009). In a flexible multistage logistics
network, products can be delivered to customers from plants or distribution centers
instead of retailers, thereby decreasing delivery time and increasing customer demand
satisfaction. Customer demands in practice are typically imprecise in each period of
multi-time-period production distribution models, thus causing supplier production
distribution complexity in meeting fluctuating demands in a multi-time period. The
supply chain must be prepared for demand unpredictability, disruption, or customer
delivery delay, in which the multi-time period or infinite-horizon production distribu-
tion problem is unobtainable over the planning horizon until supply is insufficient to
meet demand. Hence, decision makers attempting to manage this problem should con-
sider uncertain situations such as the amount of inventory and production for meeting
fluctuating demands in each period and providing flexibility. However, such consider-
ation can be costly and risky (Chien et al. 2012). Indeed, the major goal is to determine
the processes to minimize maximum potential regret and risk including the total cost
(Chien and Zheng 2012).

In practice, the data in production distribution systems and supply chains are char-
acteristically fuzzy, whereas customer demand is typically uncertainly quantified in
supply chain procedures. Thus, conventional models with constant demand may not
be appropriate for managing the fuzziness of production distribution systems that
are necessary for effectively determining solutions. Thus, we addressed the MSMT
problem with uncertain demands.

This study aims to develop a flexibleMSMTproduction distribution under uncertain
demands. We propose extended priority-based discrete particle swarm optimization
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Multistage production distribution under uncertain demands 267

(EP-DPSO) and new extended priority-based hybrid genetic algorithm approach (nEP-
HGA) approach for solving uncertain demands in the flexible MSMT supply chain
model. For validation, we compared the proposed approach with both the traditional
GA approach and LINGO computational software. The approaches were solved under
triangular fuzzy demands to satisfy demandswith theminimal total cost by considering
the transportation costs, inventory costs, shortage costs, and ordering costs of the
supply chain network.

The remainder of this paper is organized as follows: Sect. 2 reviews the literature
on the production distribution problem. Section 3 introduces the uncertain function of
the triangular fuzzy number. Section 4 describes the formulation of the mathematical
model for MSMT production distribution. Section 5 describes the proposed solution
methodology of the DPSO approach combined with EP-based encoding/decoding
and the nEP-HGA. Section 6 describes the proposed adaptive auto tuning that entails
using the FLC for enhancing the evolutionary process. Section 7 presents examples of
numerical experiments of themodel for comparingEP-DPSDOand the nEP-HGAwith
LINGO and the GA. Section 8 concludes the paper with a discussion on contributions
and future research directions.

2 Literature review

Various studies have considered different time-period classifications for each complex-
ity of the problem that can be divided into two parts: a single period and a multi-time
period. Several researchers have solved single-time-period production distribution
problems. For example, Chan et al. (2005) proposed an HGA in multi-factory supply
chain models by using the analytic hierarchy process (AHP) for assigning weightings
among costs, day, and use, and combined the GA for allocating jobs into suitable pro-
duction plants. Xu et al. (2008) discussed the supply-chain network design problem
for shipping costs and customer demands by using random fuzzy variables. Using
spanning tree-based genetic algorithms (st-GAs) and applying the Prüfer number to
solve this problem, they determined multi-objectives for minimizing the total cost and
maximizing customer services. Costa et al. (2010) proposed an innovative encoding-
decoding procedure with the GA for determining the location and opening of facilities
in a single-product three-stage supply chain network. They proposed a new, efficient
chromosome representation procedure based on a parsimonious permutation decoding
of the network string representation for reducing infeasible transportation trees.

However, actual production distribution problems involve the multi-time-period
that demands period fluctuations and customer quantity demands (Chamnanlor et al.
2014). Wang and Hsu (2012) applied the possibilistic mean and mean square impreci-
sion index of the shortage and surplus for uncertain factors in the closed-loop logistics
model. Zeballos et al. (2014) proposed mixed-integer linear programming for 10 lay-
ers (five stages) of closed-loop supply chains with uncertain supply and demand.
Their objective function minimizes the expected costs of facilities, purchasing, stor-
age, transportation, and emissions, minus the expected revenue of returned products.
Sethanan et al. (2013) considered production planning, ordering, and inventory in
analyzing costs for solving the supply chain problem.
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Table 1 Related studies

Study No. of
states

Objective Demands
classification

Time
classification

Method

Chan et al. (2005) 2 Min. total cost Certainty Single period AHP and GA

Varthanan et al. (2013) 2 Min. total cost Uncertainty Multi period DPSO

Costa et al. (2010) 4 Min. total cost Certainty Single period New encoding/
decoding and GA

Xu et al. (2008) 4 Min. total cost/
Max. service level

Uncertainty Single period Spanning tree and
Prüfer number

Zeballos et al. (2014) 5 Min. expected cost Uncertainty Multi period mixed-integer
linear programming

In this study, we propose an approach integrating discrete particle swarm opti-
mization, the extended priority based-encoding/decoding (nEP-HGA), and a fuzzy
logic controller (FLC) for solving complex factor-production distribution problems
such as uncertain demands in the MSMT supply chain model. For example, Duenas
and Petrovic (2008) proposed a multi-objective genetic algorithm for single machine
scheduling under fuzziness. We formulated this problem with triangular fuzzy cus-
tomer demand to determine which customers required delivery in each period, and
selected the distribution center or retailers for each customer in the production dis-
tribution network for satisfying customer demands, and for comparing the proposed
approachwith the traditional genetic algorithm (GA) approach. The objective function
in this problem is the minimal total cost under triangular fuzzy customer demands that
involve considering transportation costs, inventory costs, and ordering costs.

Most existing studies focused on single-time-period production distribution prob-
lems that have both unpredictable and certain factors. However, the complexity of
production distribution problems includes imprecise periods and uncertain customer
demands. Several studies have proposed various approaches for solving this problem.
Table 1 lists review of related studies and their classifications. The proposed approach
aims to minimize total costs of the multistage and multi-time-period in production
distribution problems.

3 Mathematical model for multistage and multi-time-period supply chain

The indices, parameters, and decision variables are listed as follows:
Indices

i index of plants (i = 1, 2, . . . , I )
j index of distribution centers ( j = 1, 2, . . . , J )

k index of retailers (k = 1, 2, . . . , K )

l index of customers (l = 1, 2, . . . , L)

t index of time period (t = 1, 2, . . . , T )

Parameters

I number of plants
J number of distribution centers
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Multistage production distribution under uncertain demands 269

K number of retailers
L number of customers
T total time period
Pi plant i
DC j distribution center j
Rk retailer k
d̃l(t) customer uncertain demand l at time t

c1i j unit shipping cost of product from plant i to distribution center j

c2ik unit shipping cost of product from plant i to retailer k

c3jk unit shipping cost of product from distribution center j to retailer k

c4jl unit shipping cost of product from distribution center j to customer l

c5kl unit shipping cost of product from retailer k to customer l

f 1j fix charge of products transportation in distribution center j

f 2k fix charge of products transportation to retailer k

h1j unit holding cost of inventory per period at distribution center j

h2k unit holding cost of inventory per period at retailer k

pri (t) amount of products from plant i at time t

t L1i j lead time for transporting products from plant i to distribution center j

t L2ik lead time for transporting products from plant i to retailer k

t L3jk lead time for transporting products from distribution center j to retailer k

t L4jl lead time for transporting products from distribution center j to customer l

t L5kl lead time for transporting products from retailer k to customer l

u1j upper bound of capacity of distribution center j

u2k upper bound of capacity of retailer k

αx =
{
1, x �= 0
0, otherwise

αx is the step function

Decision variables

x1i j (t) amount of transporting product from plant i to distribution center j at time t

x2ik(t) amount of transporting product from plant i to retailer k at time t

x3jk(t) amount of transporting product from distribution center j to retailer k at
time t

x4jl(t) amount of transporting product from distribution center j to customer l at
time t

x5kl(t) amount of transporting product from retailer k to customer l at time t
y1j (t) amount of inventory in distribution center j at time t

y2k (t) amount of inventory in retailer k at time t
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Fig. 1 Flexible multistage logistics network model

The proposed model was formulated based on a mixed integer programming model
for a multistage supply chain network. This problem involves two deliveries—normal
delivery from the first stage to the next closing stage and direct delivery—for trans-
porting the product from distribution centers to customers instead of from retailers
(Fig. 1).

The total cost function of any of the following cost items is calculated as the sum of
an item’s costs over the planning horizon T . The objective function is tominimize costs
that consist of ordering costs, holding costs, and transportation costs. The detailed cost
items and constraints are shown as follows:

min z =
T∑
t=0

⎡
⎣ I∑

i=1

J∑
j=1

c1i j x
1
i j (t) +

I∑
i=1

K∑
k=1

c2ik x
2
ik(t) +

J∑
j=1

K∑
k=1

c3jk x
3
jk(t)

+
J∑

j=1

L∑
l=1

c4jl x
4
jl(t) +

k∑
k=1

L∑
l=1

c5kl x
5
kl(t) +

I∑
i=1

J∑
j=1

f 1j α(x1i j (t))

+
I∑

i=1

K∑
k=1

f 2k α(x2ik(t)) +
J∑

j=1

K∑
k=1

f 2k α(x3jk(t))

+
J∑

j=1

h1j y
1
j (t) +

K∑
k=1

h2k y
2
k (t)

⎤
⎦ (1)
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s. t.

y1j (t − 1) +
I∑

i=1

x1i j (t − t L3i j )−
K∑

k=1

x3jk(t − t L3jk ) = y1j (t), ∀ j, t (2)

y2k (t − 1) +
I∑

i=1

x2ik(t − t L2ik )+
J∑

j=1

x3jk(t − t L3jk )

−
L∑

l=1

x5kl(t − t L5kl ) =y2k (t), ∀k, t (3)

T∑
t=1

⎛
⎝ J∑

j=1

x1i j (t) +
K∑

k=1

x2ik(t)

⎞
⎠ ≤

T∑
t=1

pri (t), ∀i, t (4)

J∑
j=1

x4jl(t − t L4jl ) +
K∑

k=1

x5kl(t − t L5kl ) ≥ d̃l(t), ∀l, t (5)

y1j (t) ≤ u1j ∀ j, t (6)

y2k (t) ≤ u2k ∀k, t (7)

x1i j (t), x
2
ik(t), x

3
jk(t), x

4
jl(t), x

5
kl(t), y

1
j (t), y

2
k (t) ≥ 0, ∀i, j, k, l, t (8)

The objective function (1) is to minimize total costs, which are shipping trans-
portation costs (1st through 5th terms), fixed charge of product transportation costs
(6th through 8th terms), and holding costs (9th through 10th terms). Constraint (2)
specifies the balanced inventory of distribution centers, and Constraint (3) specifies
the balanced inventory of retailers. Constraint (4) ensures that the total quantities of
transporting products do not exceed the production limit of the plant. Constraint (5) is
the demand satisfaction constraint. Constraints (6) and (7) ensure that the distribution
centers and retailer do not exceed their capacities. Finally, Constraint (8) is the variable
domain constraint.

4 Fuzzy numbers

Fuzzy theory (Zadeh, 1965) proposes mathematical techniques for deriving particular
solutions. Chien et al. (2011) developed a comprehensivemodular framework to derive
various configurations of fuzzy numbers for fuzzy ranking. Kumar (2012) summarized
the definitions of the arithmetic operations of fuzzy numbers as follows:

If X is a collection of objects, then the fuzzy subset ã of X is defined as a set of
ordered pairs:

ã = {(x), μã(x)|x ∈ X}

whereμã(x) is the membership function for the fuzzy set ã. The membership function
maps each element of X to a membership grade or membership value between 0
and 1.
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A real fuzzy number ã = [aL aM aU ], when defined as a triangular fuzzy number
when aL ≤ aM ≤ aU , is a fuzzy subset of the set of real numbers R, with membership
function μã satisfying the following conditions:

μã is continuous from R to the closed interval [0,1];
μã is strictly increasing and continuous [aL aM ].

The membership function μã is strictly decreasing and continuous [aM aU ], where
aM and aU are real numbers.

Let [ã = aL aM aU ] and b̃ = [bL bM bU ] be two triangular fuzzy numbers; then,
define the arithmetic operations of ã and b̃ as

Addition: ã + b̃ = {[aL + bL ][aM + bM ][aU + bU ]}
Subtraction: ã − b̃ = {[aL − bL ][aM − bM ][aU − bU ]}

The triangular fuzzy number is frequently used for practical purposes (Li et al.
1996, 2014). Chien et al. (2011) developed a comprehensive modular fuzzy ranking
framework that can derive various configurations of fuzzy numbers for fuzzy ranking.
In particular, the membership function μã(x) of the triangular fuzzy number ã is
expressed as follows:

μã(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for x ≤ aL
(x − aL)/(aM − aL) for aL ≤ x ≤ aM
1 for x = aM
(aU − x)/(aU − aM ) for aM ≤ x ≤ aU
0 for x ≥ aU

According to t definition of a triangular fuzzy number as show in Fig. 2, let ã =
(aL(r), aU(r)), (0 ≤ r ≤ 1) be a fuzzy number. Then, calculate the average value of
the triangular fuzzy number ā0 as follows:

ā0 = 1

2

1∫
0

{aL(r) + aU (r)}dr = 1

4
[2aM + aL + aU ]

If āω = (aL(r), aU(r)) = {aL+ r(aM− aL)/ω, aU+ r(aM− aU)/ω} is an arbitrary
triangular fuzzy number at a decision level higher than “α” for α,ω ∈ [0, 1], the value
āω can be calculated as follows:

Fig. 2 A triangular fuzzy
number
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Fig. 3 Procedure for initialization by using new extended priority-based encoding

If ω > α, then

āω = 1

2

ω∫
α

{aL(r) + aU (r)} dr = 1

4ω

[
2aM (ω2 − α2) + (aL + aU )(ω − α)2

]

5 Discrete particle swarm optimization and extended priority-based hybrid
genetic algorithm

5.1 Extended priority-based hybrid genetic algorithm

The priority-based GA is an indirect approach for solving some network problems
(Gen and Cheng 2000; Gen et al. 2008; Chou et al. 2014). This study proposed a
chromosome consisting of two types of information: the locus, the position of the
gene within the chromosome structure, and the allele, the value the gene takes (Lin
et al. 2009). The position of a gene is used to represent the value that is used to
represent the priority of the source depot for constructing candidates. The second part
of the chromosome consists of two parts: the first part assigns retailers to a plant or
distribution center, in which each locus is denoted as an integer ranging from 0 to
1. The second part involves a customer assigning a distribution center or retailer, for
which each locus is denoted as an integer ranging from 1 to 2. The encoding and
decoding procedures of the chromosome are shown in Figs. 3 and 4, respectively.

5.2 Proposed chromosome encoding procedure

The encoding representation designed in this paper consists of the number of plants,
distribution centers, retailers, and customers. Figure 5 shows an example of encoding
new extended priority-based initialization with two plants, three distribution centers,
three retailers, and five customers, based on the random permutation, in which the
priority of each gene is to allocate each stage so that the total number of genes is 13 in
chromosome part 1. Chromosome part 2 is composed of chromosome part 2.1, which
assigns retailers to a plant or distribution center that has three genes. The value is 0 in
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Fig. 4 Procedure for new extended priority-based decoding
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Fig. 5 Example of the new extended priority-based encoding

Fig. 6 Example of the flexible multistage logistics network chromosome encoding/decoding (t = 1)

the first gene (k1) in chromosome part 2.1, which means a direct shipment from plant
i to the first retailer, and the value of 1 in the second and third gene means a direct
delivery from distribution center j to k2 and k3. The final part of this chromosome is
part 2.2, which allocates customers from the distribution center or retailer, so that two
integer numbers range from 1 to 2.
In this example, the gene value of the first, second, and fifth customers are 1, which
means a direct delivery from distribution center j to the first, second, and fifth cus-
tomers. The third and fourth customers are 2, which means allocating a direct delivery
from retailer k to them.

5.3 Proposed chromosome decoding procedure

The proposed three-stage decoding procedure (Fig. 6) is described as follows: The first
stage (Step 1–2 in Fig. 4) is the retailer or distribution center that delivers products
for customer demand allocation in the period of triangular fuzzy customer demands;
the values are obtained according to the proposed Sect. 4 (ω = 1 and α = 0). Table 2
presents examples of fuzzy demands. The allocation among retailers, distribution
centers, and customers is obtained by decoding chromosome part 1 and part 2.2,
which follows a priority-based procedure: Select the customer with the highest priority
in chromosome part 1 and determine delivery from retailers or distribution centers
according to chromosome part 2.2. A gene number of 1 means a direct delivery from
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Table 2 Example triangular
fuzzy demands for the test
problem

L t = 1 t = 2

d̃l (1) d̄l (1) d̃l (2) d̄l (2)

1 (10,15,16) 14 (10,11,16) 12

2 (9,10,15) 11 (11,16,17) 15

3 (9,12,15) 12 (11,16,17) 15

4 (10,11,16) 12 (8,9,14) 10

5 (8,10,16) 11 (9,10,15) 11

distribution center j to customer l, whereas a gene number of 2 means a direct delivery
from retailer k to customer l; the highest priority of the customer corresponds to the
minimum transportation cost; the customer allocation t continues until the maximum
capacity has been reached and all customers are allocated; then, the throughput of
each retailer is calculated.

The retailer allocation from the distribution center or plant is presented in Steps 3–4,
a stage at which each retailer lost stock from allocating demand; however, this stage is
similar to the first stage, except that different retailers are positioned according to the
chromosome and gene number. The allocation among plants, distribution centers, and
retailers is obtained by decoding chromosome parts 1 and 2.1, in which chromosome
part 1 follows a priority-based procedure: Select the retailer with the highest priority in
chromosome part 1 and determine delivery from plants or distribution centers accord-
ing to chromosome part 2.1, in which a gene number equal to 0 means a direct delivery
from plant i to retailer k; then, select a suitable transportation cost to minimize costs;
allocation continues until the maximum capacity has been reached and all retailers are
allocated; then, calculate the throughput of each distribution center.

At the final stage (Steps 5–6), the plants delivers direct shipment products to each
distribution center that causes each distribution center to lose stock from allocating
demands and retailers. This step entails selecting the distribution j with the highest
priority in chromosome part 1 and involves determining a direct shipment from plant
i to DC j , in which plant i has sufficient capacity and the lowest transportation cost
until all distribution centers have been assigned to the equal upper bound of distrib-
ution center capacity; then, the total cost from the encoding procedure is calculated.
Finally, in the first period of this flexible multistage logistics network problem, the
number of products of each stage is presented, as shown in Table 3, and the allocation,
transportation cost, inventory cost, and total cost of each stage (Table 4) are traced as
an example of Periods 1 and 2. Customers in the next period allocate the total number
products of each stage from the first period in a continuous decoding procedure.

5.4 Particle swarm optimization

PSO is based on the simulation of social iterations proposed by Kennedy and Eberhart
(1995), and is initialized with a population of random candidate solutions as particles.
The position of each kth particle xk(t) is a potential result (potential solution) of
the problem under study. Each particle remembers the best position that it has found
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Table 3 Total number of products at each stage in Steps 1–6 (t = 1)

Step Total number

Demand
(l = 1, 2, 3, . . . , 5)

Retailer
(k = 1, 2, 3)

Distribution center
( j = 1, 2, 3)

Plant (i = 1, 2)

Initialization (14,11,12,12,11) (50,50,50) (50,50,50) (300,300)

1–2 (0,0,0,0,0) (26,50,50) (39,50,25) (300,300)

3–4 (0,0,0,0,0) (50,50,50) (39,50,25) (276,300)

5–6 (0,0,0,0,0) (50,50,50) (50,50,50) (251,289)

thus far during the search process hbest(t) and knows the global best position of swarm
gbest(t).We can calculate the particle’s fitness by inputting its position into a designated
objective function that is expressed according to the following equations:

vk (t + 1) = vk (t) + b1r1 (hbest (t) − xk (t)) + b2r2 (gbest (t) − xk (t)) (9)

xk(t + 1) = xk (t) + vk (t + 1) (10)

where vk(t) is the kth particle’s flying velocity at the t th iteration; b1 and b2 are positive
constants, called the acceleration constants; and r1, r2 ∈ [0, 1] are uniform random
numbers. The PSO procedure is summarized in Fig. 7:

5.5 Genetic algorithm operators

5.5.1 Crossover

The crossover operator is exchanged between two chromosomes from one generation
to the next generation. In this research, we used one cut-point crossover that randomly
selects a locus and exchanges the subsequences before and after the locus between two
parent chromosomes to two new offspring chromosomes that cut one point of each
chromosome part, as shown in Fig. 8.

After the crossover operation, improving chromosomes/offspring is necessary by
checking and repairing the number of sequence constraints if the genes in chromosome
part 1 are the same number. Subsequently, the first number must be selected and the
lacking number in chromosome part 1 must be replaced.

5.5.2 Mutation

The mutation operator is applied to each child solution resulting from the crossover
operator. In this study,weused twomutation operators,which are swapping and inverse
mutations, as shown in Fig. 9. The swapping mutation operates in chromosome part
1 that selects a substring and swap within this chromosome to decrease the checking
and repairing process of the offspring chromosome and to modify the gene. We also
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Fig. 7 Procedure for particle swarm optimization

Fig. 8 Crossover operation

selected a string in chromosome Parts 2.1 and 2.2 at random for inverse mutation, and
inversed them into another number with a randomly selected locus.

5.6 Discrete particle swarm operator

Most PSO applications involve using continuous function value optimization, but few
studies have considered using DPSO. The displacement of each particle depends on
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Fig. 9 Mutation operation

Fig. 10 Example of discrete particle swarm operator

its hbest and gbest, in which the particle velocity represents the probability of a parti-
cle to change toward hbest and gbest. The particle velocity is similarly dependent. In
the proposed algorithm, the similarity between two positions is based on the Ham-
ming distance proposed by Shao et al. (2013). The Hamming distance between two
particle positions is the number of corresponding components that are different. The
displacement operator is summarized as follows (Fig. 10).

6 Adaptive auto tuning by using the fuzzy logic controller

The conventional GA approach cannot guarantee an optimal platform in all cases
because the GA uses unknown genetic parameters such as the crossover rate and
mutation rate. Adaptive autotuning can adaptively regulate genetic parameters during
GA search processes. Yun and Gen (2003) proposed a heuristic updating strategy
for crossover and mutation rates to consider changes of average fitness in the GA
population of two continuous generations. For example, in the minimization problem,
we can set the change of the average fitness at generation t,� favg(t) as follows:

� favg(t)= fpopSize(t) − foffSize(t)= 1

popSize

popSize∑
k=1

f k(t) − 1

offSize

offSize∑
k=1

fk(t)

(11)
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Fig. 11 Procedure for adaptive auto tuning by using FLCs

Fig. 12 Overall nEP-HGA procedure for the MSMT problem

where popSize is the population size that satisfies constraints, and offSize is the off-
spring size that satisfies constraints. The adaptive auto-tuning process using FLCs is
shown in Fig. 11.

Thus, we present the nEP-HGA that combines adaptive autotuning with FLCs. We
also propose the EP-DPSO for priority-based encoding and decoding with DPSO that
involves using theHamming distance for solving the flexibleMSMT supply chain. The
overall procedure for the proposed nEP-HGA and EP-DPSO is outlined in Figs. 12
and 13, respectively.

7 Numerical experiment and experimental design

To demonstrate the efficiency and effectiveness of the nEP-HGA in the fuzzy demand
environment, the GA parameters are designed tuning parameters according to the
adaptive autotuning routine for pC (t), pM (t). The numerical experiments are 10 times
the popSize = 50 and maxGen = 500. The DSPO parameters for numerical experi-

123



282 T. Jamrus et al.

Fig. 13 Overall EP-DPSO procedure for the MSMT problem

Table 5 Size of tested problems
Problem
No.

No. of
plants I

No. of
DCs J

No. of
retailers K

No. of
customers L

Total
planning
time T

1 2 3 3 5 8

2 3 4 5 18 12

3 3 5 8 30 15

ments are the number of particles= 50 andmax I ter = 500. The proposed algorithms
were run using MatLab on a 2.10 GHz PC, with 8 G-Byte of RAM, for testing and
evaluation. For illustration, we generated three problems (Table 5) involving the var-
ious numbers of plants, distribution centers, retailers, customers, and planning times.
Uncertain demands generated in the aL and aU fuzzy values interval are [10, 20] for
each problem. We assumed the fixed charge of product transportation and the unit
holding cost of inventory per period at each node to be equal to 1. Table 6 provides
information on the unit shipping cost for each node of a small-scaled MSMT problem
(Problem 1).

We formulated the problems as a mixed-integer programming model for a multi-
stage supply chain network, as shown in Table 7. The results of tested problems for
deriving an optimal solution were followed, generating three problems presented as
the number of constraints, decision variables, and the objective function results of
each problem. Problem 3 yielded a high number of variables, in which the location-
allocation problem was NP-hard and highly complex. Therefore, we propose that the
EP-DPSOand nEP-HGAcan determine delivery to customers in each period and select
the distribution center or retailers for each customer in the production-distribution net-
work for satisfying customer demands and solving both small and large problems.

We tested the EP-DPSO and nEP-HGA performance using three sizes of test prob-
lems. The computational test compared the best and average total cost of each solution
for solving each problem, and the results of the optimal solution, traditional GA, the
nEP-HGA, andEP-DPSOfor flexiblemultiple stages andmulti-timeperiods are shown
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Table 6 Unit shipping cost of
each node ($/unit) C1

i j 1 2 3

1 9 2 6

2 1 4 8

C2
ik 1 2 3

1 5 8 10

2 15 4 17

C3
jk 1 2 3

1 4 7 5

2 15 3 12

3 2 8 9

C4
jl 1 2 3 4 5

1 7 2 8 3 9

2 6 4 5 10 7

3 3 18 11 6 5

C5
kl 1 2 3 4 5

1 10 8 4 2 7

2 11 3 6 8 13

3 12 17 9 5 3

Table 7 Results of tested
problems by applying optimal
solution (LINGO)

Problem
no.

No. of
constraints

No. of
decision variables

Objective
function (K$)

1 153 456 1,094

2 469 2,616 4,428

3 886 7,230 Exceed capacity

Table 8 Comparison of the best and average total cost of each solution from solving each problem [K·$]
Solutions
problem
no.

Optimal
solution
By LINGO

Traditional
MSMT by
GA

Flexible
MSMT by
nEP-HGA

Flexible
MSMT by
EP-DPSO

Best
solution

Best
solution

AV.
solution

Best
solution

AV.
solution

Best
solution

AV.
solution

1 094 094 1,094.0 094 094.0 094 094.0

2 4,428 4,887 4,987.9 4,428 4,473.9 4,428 4,443.0

3 Exceed capacity 9,323 9,460.6 8,416 8,601.9 8,416 8,506.7
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Fig. 14 Comparison of the results of using the nEP-HGA and EP-DPSO for Problem 2

in Table 8. Thus, the nEP-HGA and EP-DPSO determined that total costs equal the
optimal solution and have enhanced results comparedwith the traditional GA,whereas
in the comparison results between the nEP-HGA and EP-DPSO for each problem, the
EP-DPSO spends fewer number of iterations than the number of generations in the
nEP-HGA for finding the best solution for large problems (Problems 2 and 3; Fig. 14).
The proposed EP-DPSO outperforms the traditional GA and nEP-HGA, particularly
for large problems. Time is the CPU time in seconds for every run, and the example of
the EP-DPSO experiment facilitated determining the best solution at 35.9 s at the 21st
iteration in Problem 2. However, the CPU time of EP-DPSO found a solution that is
less than the nEP-HGA, in which the best solution is at 54.5 s at the 32nd iteration. The
result of EP-DPSO outperformed the nEP-HGA in Problem 3. As shown in Fig. 15, the
CPU time and times for EP-DPSO and nEP-HGA runs are 272.4 s (80 iteration) and
619.9 s (179th generation), respectively. However, in small problems such as Problem
1, the results of EP-DPSO and nEP-HGA are similar. However, they can determine
which real world demands must be optimized for long-term efficient operation of the
entire supply chain.

The developed heuristics were compared to the solutions from the traditional proce-
dures,whichwere based on factorial design according to fuzzy customer demands. The
combination experiments were conducted in quintuplicate. The parameters included
the number of problems (Table 5) and the fluctuation of fuzzy aL and aU customer
demands (20, 40, and 60% of customer demands, which were an average of āω).
The samples totaled 45 and the results are shown in the percentage of improvement
presented in Eq. (12), where R_GA is the result of the traditional MSMT that entails
using the GA, and R_DPSO is the result of the flexible MSMT that involves using
EP-DPSO.

%improvement = (R_DPSO − R_GA)

R_GA
× 100 (12)
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Fig. 15 Comparison of the results of using the nEP-HGA and EP-DPSO for Problem 3

Table 9 Experimental design and results

No. Factor Average total cost (K$) Percentage of
improvement

Problem % uncertain
demands

TraditionalMSMT
by GA

FlexibleMSMTby
EP-DPSO

1–5 1 20 1,095.7 1,092.4 0.3

6–10 1 40 1,412.5 1,410.5 0.1

11–15 1 60 1,798.1 1,708.6 4.8

16–20 2 20 4,995.9 4,362.2 12.7

21–25 2 40 5,698.2 5,125.6 10.0

26–30 2 60 7,014.2 6,280.5 10.5

31–35 3 20 9,546.0 8,444.1 11.5

36–40 3 40 11,498.7 10,082.9 12.3

41–45 3 60 13,633.1 12,108.5 11.2

Average 6,299.2 5,623.9 8.2

Table 9 shows an 8.2% improvement from the flexible multistage network model
when the data were analyzed using ANOVA. The percentage improvement differed
significantly from actual situation practices at the 95% reliability level and p < 0.05.
The parameter explaining this difference was the fluctuation of demand at 60% of an
average of āω, which yielded the highest average improvement.

8 Conclusion

Because globalization has introduced increased competition and unpredictable fac-
tors, customer demands are typically imprecise in each period and customer quantity
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demands in production-distribution models affect inventory costs and related costs,
causing unsatisfactory planning. In this research, we formulated aMSMT supply chain
network problem under uncertain demands as a mixed-integer programming model.
However, the location-allocation sub-problem in the formulated model is NP-hard
and highly complex. The DPSO approach combined with the EP-HGA using a fuzzy
number is frequently used for practical purposes and is relatively easy to employ with
triangular fuzzy numbers for solving large-scale problems with reasonable computa-
tional time, compared with the LINGO computational software.

Using uncertain customer demands in a flexible MSMT supply chain model, we
combined the DPSO with the encoding/decoding nEP-HGA to determine delivery to
customers in each period by using a triangular fuzzy number of customer demands.
We selected the distribution center and retailers for each customer in the production-
distribution network for satisfying uncertain customer demands. The experimental
results prove that the EP-DPSO and nEP-HGA can be applied for solving all problem
types with the best solution under uncertain customer demands. The proposed EP-
DPSO outperforms the traditional GA and nEP-HGA in large problems and improves
the traditional priority-basedMSMT. This research can extend to various supply chain
environment problems by providing an enhanced method with large echelons.
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