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Abstract In this paper, a Mond-Weir type dual program for a nonlinear primal prob-
lem under fuzzy environment is formulated. The solution concept of primal-dual prob-
lems is inspired by the nondominated solution. We have considered ordering among
fuzzy numbers as a partial ordering and using the concept of Hukuhara difference
between two fuzzy numbers and H -differentiability, appropriate duality theorems
are established under pseudo/quasi-convexity assumptions. We have also illustrated a
numerical example which satisfies the duality relations discussed in the paper.

Keywords Fuzzy-valued function · Hukuhara difference · Fuzzy number ·
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1 Introduction

Fuzzy set theory was introduced by Prof. Lotfi Zadeh (1965). This has been applied in
different areas such as topology, graph theory, algebra, logic etc. It can be applied to
algorithms like clustering methods, control algorithms, mathematical programming
and to transportation models, inventory control models, maintenance models, and
others. Bellman and Zadeh (1970) considered the classical model of a decision and
suggested a model for decision making in a fuzzy environment.
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132 S. K. Gupta, D. Dangar

Zimmermann (1978) has first discussed fuzzy linear programming with several
objective functions. Fuzzy linear programming problem (FLPP) in which the parame-
ters are not fully known but only with some degree of precision was studied by Carlsson
and Korhonen (1986). Fang et al. (1999) have solved linear programming problems
with fuzzy coefficients in constraints. Gasimov and Yenilmez (2002) concentrated
their work on linear programming problems with fuzzy technological coefficients in
which both the right hand side and the technological coefficients are fuzzy numbers
with linear membership functions. FLPP with fuzzy coefficients, also called robust
programming was formulated by Negoita (1970). Tanaka and Asai (1984) proposed a
formulation of FLPP with fuzzy constraints and gave a method for its solution which
is based on inequality relations between fuzzy numbers.

The duality theory in FLPP was first studied by Rodder and Zimmermann (1977),
who have also discussed the economic interpretation of the dual variables. Hamacher
et al. (1978) have given some results on duality in fuzzy linear programming and
mainly devoted to sensitivity analysis. Kabbara (1982) has also dealt with the prob-
lem of duality in a formal way. On the basis of fuzzification principle, the FLPP
has been solved by Verdegay (1984). The author has also given a relationship of
duality among fuzzy constraints and fuzzy objectives. Sergei Ovchinnikov (1991)
characterized Zadeh’s extension principle in terms of the duality principle. Liu
et al. (1995) have given a constructive approach in duality of fuzzy MC2 linear
programming.

Bector and Chandra (2002) have formulated a pair of fuzzy primal-dual problems
and taking linear membership function, appropriate duality results have obtained.
This work has modified the dual formulation and results of Rodder and Zimmermann
(1977). Recently, Gupta and Mehlawat (2009) studied the same primal-dual pair as
in Bector and Chandra (2002) and proved duality relations by taking exponential
membership function. Wu (2003) has discussed the duality theory in FLPP by using
the concept of fuzzy scalar (inner) product and in (2004), the author proved duality
relations using partial ordering on the set of all fuzzy numbers in fuzzy optimization
problems.

Vijay et al. (2004) introduced a dual for linear programming problems with fuzzy
parameters and discussed two person zero sum matrix game with fuzzy pay-offs.
Zhang et al. (2005) investigated the convex fuzzy mappings and discussed the duality
theory in fuzzy mathematical programming problems with fuzzy coefficients. Later on,
Ramik (2005) has given a new concept regarding the weak and strong duality theorems
and then in (2006), the author proved duality theorems in fuzzy linear programming
with possibility and necessity relations.

Beside the above mentioned papers, many researchers have proved results related
to duality theory such as Amiri and Nasseri (2006) who have explored some dual-
ity results by using certain linear ranking function in fuzzy numbers. After that in
(2007), they have established the dual of linear programming problems with trape-
zoidal fuzzy variables and hence developed the duality results based on certain linear
ranking functions. Inuiguchi et al. (2003) defined the concept of duality and proved
usual duality relations under fuzzy environment. Wu (2007) discussed the duality the-
ory in a fuzzy optimization problem taking the concept of Hukuhara difference and
H -differentiability for Wolfe’s primal and dual pair.

123



Duality for a class of fuzzy nonlinear optimization problem 133

This paper is organized as follows. In the next section, we have discussed some
notations and basic definitions about fuzzy numbers, their arithmetic operations, limit,
continuity and differentiability of a fuzzy-valued function. In Sect. 3, we have given
nondominated solution concept and definitions of pseudo/quasiconvex functions under
fuzzy environment. Further, we have formulated a nonlinear fuzzy optimization prob-
lem, its Mond-Weir type dual and proved some duality results using the concept of
Hukuhara difference and H -differentiability of a fuzzy-valued function. To verify our
duality relations, a numerical example has also been illustrated in Sect. 4. In the final
section, we have given conclusion of the present paper.

2 Notations and preliminaries

Throughout the paper, R
n denotes the n-dimensional Euclidean space, R, the set of

all real numbers and F(R), the set of all fuzzy numbers.

2.1 Basic definitions

Definition 2.1 Let X be the universal set. Ã is called a fuzzy set in X if Ã is a set of
ordered pair

Ã = {(x, μ Ã(x)) : x ∈ X},

where μ Ã : X → [0, 1] is the membership function of x in Ã. We say that the fuzzy

subset Ã is crisp if μ Ã is a characteristic function of Ã, i.e. μ Ã : X → {0, 1}. Fuzzy
sets are an extension of the classical set theory used in Fuzzy logic.

Definition 2.2 Let Ã be a fuzzy set in X and α ∈ (0, 1]. The α-level set of the fuzzy
set Ã is the crisp set, denoted as Ãα and is defined as

Ãα = {x ∈ X : μ Ã(x) ≥ α}.

The 0-level set Ã0 is defined as

Ã0 = cl({x ∈ X : μ Ã(x) > 0}),

where cl denotes the closure of a set in a given topological space.

Definition 2.3 A fuzzy set Ã in R
n is said to be a convex fuzzy set if its α-cuts Ãα

are (crisp) convex sets for all α ∈ (0, 1]. Alternatively, Ã is convex if ∀ x1, x2 ∈ R
n,

μ Ã(λx1 + (1 − λ)x2) ≥ min{μ Ã(x1), μ Ã(x2)}, for all λ ∈ [0, 1].

Definition 2.4 (Bector and Chandra 2005) A fuzzy set Ã in X is said to be fuzzy
number if it satisfies the following four properties:
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134 S. K. Gupta, D. Dangar

(a) Ã is a normal fuzzy set, that is supx∈X μ Ã(x) = 1,

(b) Ã is convex,
(c) μ Ã is upper semicontinuous and
(d) the support of Ã is bounded i.e. the set S( Ã) = {x ∈ X : μ Ã(x) > 0} is

bounded.

From Zadeh (1965), the α-level set of the fuzzy set Ã is a convex subset of R for
all α ∈ [0, 1] from condition (b). Including this fact with conditions (c) and (d), the
α-level sets Ãα of Ã are compact and convex subset of R for all α ∈ [0, 1]. Therefore,
we can also write Ãα as

Ãα = [ãL
α , ã R

α ].

We say that Ã is a crisp number with value n if its membership function is given by

μ Ã(m) =
{

1 if m = n,

0 otherwise

We use the notation 1̃{n} to represent a crisp number with value n.

Definition 2.5 A fuzzy number ã is said to be a triangular fuzzy number if its mem-
bership function μã is defined as:

μã(x) =
⎧⎨
⎩

(x − al)/(a − al) if al ≤ x ≤ a,

(au − x)/(au − a) if a < x ≤ au,

0 otherwise,

where ã = (al , a, au). The α-level set (a closed interval) of ã is then

ãα = [ãl
α, ãu

α]

where

ãl
α = (1 − α)al + αa and ãu

α = (1 − α)au + αa.

2.2 Some arithmetic operations

Proposition 2.1 Let R be the universal set. Let Ã and B̃ be two fuzzy numbers. Suppose
Ãα = [ãL

α , ã R
α ] and B̃α = [b̃L

α , b̃R
α ] are the α−level set of Ã and B̃, respectively.

Then, we have

( Ã(+)B̃)α = Ãα(+)B̃α = [ãL
α + b̃L

α , ã R
α + b̃R

α ],
( Ã(+)B̃)L

α = ãL
α + b̃L

α and ( Ã(+)B̃)R
α = ã R

α + b̃R
α ,

( Ã(−)B̃)α = Ãα(−)B̃α = [ãL
α − b̃R

α , ã R
α − b̃L

α ],
( Ã(.)B̃)α = Ãα(.)B̃α =

[
min

{
ãL
α b̃L

α , ãL
α b̃R

α , ã R
α b̃L

α , ã R
α b̃R

α

}
,
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Duality for a class of fuzzy nonlinear optimization problem 135

× max
{

ãL
α b̃L

α , ãL
α b̃R

α , ã R
α b̃L

α , ã R
α b̃R

α

}]
,

If Ã is non-negative, then

( Ã(.)B̃)α =
[
min

{
ãL
α b̃L

α , ã R
α b̃L

α

}
, max

{
ãL
α b̃R

α , ã R
α b̃R

α

} ]
.

Let Ã = ( Ã1, Ã2, . . . , Ãn)T and B̃ = (B̃1, B̃2, . . . , B̃n)T then Ã(+)B̃ is defined as

( Ã(+)B̃) =
(

Ã1(+)B̃1, Ã2(+)B̃2, . . . , Ãn(+)B̃n

)T

.

From above, we obtain

( Ã(+)B̃)L
α =

(
( Ã1(+)B̃1)

L
α , ( Ã2(+)B̃2)

L
α , . . . , ( Ãn(+)B̃n)L

α

)T

=
(

( Ã1)
L
α + (B̃1)

L
α , ( Ã2)

L
α + (B̃2)

L
α , . . . , ( Ãn)L

α + (B̃n)
L
α

)T

.

( Ã(+)B̃)R
α =

(
( Ã1(+)B̃1)

R
α , ( Ã2(+)B̃2)

R
α , . . . , ( Ãn(+)B̃n)R

α

)T

=
(

( Ã1)
R
α + (B̃1)

R
α , ( Ã2)

R
α + (B̃2)

R
α , . . . , ( Ãn)R

α + (B̃n)R
α

)T

.

We define
⊕m

i=1 Ãi as

m⊕
i=1

Ãi = Ã1(+) Ã2(+), . . . , (+) Ãm .

Let Ã be a fuzzy number, then Ã is said to be nonnegative fuzzy number if μ Ã(x) = 0
for all x < 0 and Ã is called a nonpositive fuzzy number if μ Ã(x) = 0 for all x > 0. If
Ã is nonnegative then ãL

α and ã R
α are nonnegative real numbers for all α ∈ [0, 1] and

ãL
α and ã R

α are nonpositive real numbers for all α ∈ [0, 1] if Ã is nonpositive fuzzy
number.

Let Ã and B̃ be two fuzzy numbers and
⊙

be any arithmetic operation between
them. Then by using the Zadeh’s extension principle, the membership function of
fuzzy number Ã

⊙
B̃ is defined as

μ Ã
⊙

B̃(z) = sup
z=x ·y

min(μ Ã(x), μB̃(y)).

Suppose A and B are compact and convex subset of R
n . If there exists a compact and

convex subset of R
n , say C , such that A = B + C , then C is called the Hukuhara

difference of A and B. So C can be written as C = A � B (Banks and Jacobs 1970).
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136 S. K. Gupta, D. Dangar

Using this concept, in fuzzy numbers we can also define the Hukuhara difference
between two fuzzy numbers. Let Ã and B̃ be two fuzzy numbers. If there exists a
fuzzy number C̃ such that B̃ ⊕ C̃ = Ã, then C̃ is unique and C̃ is called the Hukuhara
difference of Ã and B̃ and is denoted by Ã �H B̃.

Let f̃ : R
n → F(R) be a fuzzy-valued function defined on R

n . For any x ∈
R

n, f̃ (x) ∈ F(R) therefore for all α ∈ [0, 1], we can define two real-valued functions
f̃ L
α (x) and f̃ R

α (x) such that f̃ L
α (x) = ( f̃ (x))L

α and f̃ R
α (x) = ( f̃ (x))R

α .

2.3 Limit and continuity of a fuzzy valued function

Let L , M ⊆ R
n . The Hausdorff metric is defined by

dH (L , M) = max

{
sup
l∈L

inf
m∈M

||l − m||, sup
m∈M

inf
l∈L

||l − m||
}

The metric dF on F(R) for all l̃, m̃ ∈ F(R) is define by

dF (l̃, m̃) = sup
0≤α≤1

dH (l̃α, m̃α)

Definition 2.6 (Wu 2007) Let Ã be a fuzzy number. For c ∈ R
n , we write

lim
x→c

f̃ (x) = Ã

if for every ε > 0, there exists δ > 0 such that ||x − c|| < δ ⇒ dF ( f̃ (x), Ã) < ε.

We say that f̃ is level-wise continuous at c if and only if f̃ L
α and f̃ R

α are continuous
at c for all α ∈ [0, 1] and f̃ is continuous at c if

lim
x→c

f̃ (x) = f̃ (c).

Also, if f̃ is continuous at c, then f̃ L
α and f̃ R

α are continuous at c for all α ∈ [0, 1].

Definition 2.7 Let Ã be a fuzzy number, then Ã is said to be canonical fuzzy number
if the functions γ1(α) = ãL

α and γ2(α) = ã R
α are continuous on [0,1].

2.4 Differentiation of a fuzzy valued function

We can define the differentiation of fuzzy valued function following the concept of
Hukuhara difference between two fuzzy numbers.

Definition 2.8 Let X0 be a non-empty open subset of R. A fuzzy-valued function
f̃ : X0 → F(R) is called H -differentiable at x if and only if there exists a canonical
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Duality for a class of fuzzy nonlinear optimization problem 137

fuzzy number Ã(x) such that the limits

lim
h→0+ 1̃{ 1

h }(.)
[

f̃ (x + h) �H f̃ (x)
]

and

lim
h→0+ 1̃{ 1

h }(.)
[

f̃ (x) �H f̃ (x − h)
]

both exist and are equal to Ã(x), where 1̃{ 1
h } is a crisp number with value 1

h . Here

Ã(x) is called the H -derivative of f̃ at x .

Definition 2.9 (Wu 2009) Let f̃ : Y0 → F(R) be a fuzzy-valued function defined on
an open subset Y0 of R

n and x = (x1, x2, . . . , xn) ∈ Y0 be fixed. Then

(i) f̃ is said to be level-wise differentiable at x if and only if the real valued functions
f̃ L
α and f̃ R

α are differentiable at x for all α ∈ [0, 1] (which means that all the
partial derivatives ∂ f̃ L

α /∂xi and ∂ f̃ R
α /∂xi exist at x for all α ∈ [0, 1] and all i =

1, 2, . . . , n).
(ii) f̃ is said to have i th partial H -derivative Ã(i)(x) at x if the fuzzy-valued function

h̃(xi ) = f̃ (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn) is H -differentiable at xi with
H -derivative Ã(i)(x), that is,

(∂ f̃ /∂xi )(x) = Ã(i)(x).

(iii) f̃ is said to be H -differentiable at x if one of the partial H -derivatives
∂ f̃ /∂x1, ∂ f̃ /∂x2, . . . , ∂ f̃ /∂xn exists at x and the remaining n − 1 partial
H -derivatives exist on some neighborhoods of x and are continuous at x .

Clearly, if f̃ is H -differentiable at x , then f̃ is also level-wise differentiable at x . Let
f̃ be H -differentiable at x . Then the H -gradient of f̃ at x (Wu 2007) is defined as

∇ f̃ (x) =
(

∂ f̃

∂x1
(x),

∂ f̃

∂x2
(x), . . . ,

∂ f̃

∂xn
(x)

)T

where each ∂ f̃
∂xi

(x), i = 1, 2, . . . , n is a canonical fuzzy number. The α-level set of

∇ f̃ (x) is defined as

(
∇ f̃ (x)

)
α

=
((

∂ f̃

∂x1
(x)

)
α

,

(
∂ f̃

∂x2
(x)

)
α

, . . . ,

(
∂ f̃

∂xn
(x)

)
α

)T

,

where

(
∂ f̃

∂xi
(x)

)
α

=
[(

∂ f̃

∂xi
(x)

)L

α

,

(
∂ f̃

∂xi
(x)

)R

α

]
=

[
∂ f̃ L

α

∂xi
(x),

∂ f̃ R
α

∂xi
(x)

]
for all α ∈ [0, 1].
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138 S. K. Gupta, D. Dangar

From above it is clear that,

(
∇ f̃ (x)

)L

α

=
((

∂ f̃

∂x1
(x)

)L

α

,

(
∂ f̃

∂x2
(x)

)L

α

, . . . ,

(
∂ f̃

∂xn
(x)

)L

α

)T

= ∇ f̃ L
α (x)

and

(
∇ f̃ (x)

)R

α

=
((

∂ f̃

∂x1
(x)

)R

α

,

(
∂ f̃

∂x2
(x)

)R

α

, . . . ,

(
∂ f̃

∂xn
(x)

)R

α

)T

= ∇ f̃ R
α (x).

3 Mond-Weir type duality

3.1 General optimization problem under crisp and fuzzy environment

Consider the following nonlinear optimization problem:

(NLP) Minimize f (x) = f (x1, x2, . . . , xn)

s.t. gi (x) ≤ 0, i = 1, 2, . . . , m
x ∈ X0,

where f : R
n → R, gi : R

n → R, i = 1, 2, . . . , m are real valued functions and
X0 ⊆ R

n with non empty open interior.
Let Ã and B̃ be two fuzzy numbers. Then Ãα = [ãL

α , ã R
α ] and B̃α = [b̃L

α , b̃R
α ] are

closed intervals in the real line for all α ∈ [0, 1].
Consider “ �” as a partial ordering on F(R). Then B̃ � Ã if and only if b̃α ≤ ãα

for all α ∈ [0, 1]. Now we write Ã ≺ B̃ if and only if ãα ≤ b̃α for all α ∈ [0, 1] and
there exists β ∈ [0, 1] such that ãβ < b̃β , i.e.,

⎧⎨
⎩

ã L
β < b̃ L

β

ã U
β ≤ b̃ U

β

or

⎧⎨
⎩

ã L
β ≤ b̃ L

β

ã U
β < b̃ U

β

or

⎧⎨
⎩

ã L
β < b̃ L

β

ã U
β < b̃ U

β .

The fuzzy version of above (NLP) is as follows:

(FNP) Minimize f̃ (x) = f̃ (x1, x2, . . . , xn)

s.t. g̃ j (x) � 0, j = 1, 2, . . . , m
x ∈ X0,

where f̃ : R
n → F(R) and g̃ j : R

n → F(R) ( j = 1, 2, . . . , m) are fuzzy valued
functions with respect to objective functions and constraints of (FNP), repectively.

Let X1 = {x ∈ R
n : x ∈ X0 and g̃ j (x) � 0 for j = 1, 2, . . . , m} be the set of

feasible points of (FNP) and let f̃ (X1) = { f̃ (x) : x ∈ X1} be the set of objective
values of (FNP).
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Duality for a class of fuzzy nonlinear optimization problem 139

3.2 Nondominated solutions

Definition 3.1 A feasible solution x∗ of (FNP) is said to be a nondominated solution
if there exists no x ( �= x∗) ∈ X1 such that f̃ (x) ≺ f̃ (x∗).

f̃ (x∗) is called the nondominated objective value of f̃ . Let us denote (NDP) f̃ (X1),
the set of all nondominated objective values of (FNP) i.e.

(NDP) f̃ (X1) = { f̃ (x∗) : x∗is a nondominated solution of f̃ in (FNP)}.

3.3 Convexity, pseudoconvexity and quasiconvexity

Suppose f : Y → R is a differentiable function on a non-empty open convex subset
Y of R

n . At x1 ∈ Y , the function f is said to be

• convex if for all x2 ∈ Y , f (x2) − f (x1) ≥ ∇ f (x1)
T (x2 − x1).

• pseudoconvex, if for all x2 ∈ Y , ∇ f (x1)
T (x2 − x1) ≥ 0 ⇒ f (x2) ≥ f (x1); or

equivalently if f (x2) < f (x1) then ∇ f (x1)
T (x2 − x1) < 0.

• quasiconvex if for all x2 ∈ Y , f (x2) ≤ f (x1), then ∇ f (x1)
T (x2 − x1) ≤ 0.

Definition 3.2 (Wu 2009) Let f̃ : Y → F(R) be a fuzzy valued function on Y . The
function f̃ is said to be convex at x∗ if and only if f̃ L

α and f̃ U
α are convex at x∗ for all

α ∈ [0, 1].
Definition 3.3 Let f̃ : Y → F(R) be a fuzzy valued function on Y . The function f̃
is said to be pseudoconvex at x∗ if and only if f̃ L

α and f̃ U
α are pseudoconvex at x∗ for

all α ∈ [0, 1].
Definition 3.4 Let f̃ : Y → F(R) be a fuzzy valued function on Y . Then f̃ is said to
be quasiconvex at x∗ if and only if f̃ L

α and f̃ U
α , are quasiconvex at x∗ for all α ∈ [0, 1].

The function f̃ is convex/pseudoconvex/quasiconvex over Y if f̃ is convex/
pseudocon-vex/quasiconvex for all x∗ ∈ Y .

3.4 Dual formulation

Mond-Weir (1981–1983) introduced the following dual to (NLP) (called as Mond-
Weir dual):

(MWD) Maximize f (y) = f (y1, y2, . . . , yn)

s.t. ∇ f (y) +
m∑

i=1

ui∇gi (y) = 0,

m∑
i=1

ui gi (y) ≥ 0,

y ∈ Y0 ⊆ R
n, ui ≥ 0, i = 1, 2, . . . , m,
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140 S. K. Gupta, D. Dangar

where Y0 is a nonempty open subset of R
n , and proved the duality theorems by

weakening the convexity assumptions of f to pseudoconvexity and g to quasiconvexity
of g. They also discussed duality results for the problems involving both equality and
inequality constraints.

The dual of the (FNP), which is a fuzzy version of (MWD), is as follows

(FND) Maximize f̃ (y) = f̃ (y1, y2, . . . , yn)

s.t. ∇ f̃ (y)(+)

( m⊕
j=1

1̃{u j }(.)∇ g̃ j (y)

)
= 0,

m⊕
j=1

1̃{u j }(.)g̃ j (y) � 0,

y ∈ Y0, u j ≥ 0, j = 1, 2, . . . , m.

Take Y1 =

⎧⎪⎪⎨
⎪⎪⎩

(y, u) ∈ R
n × R

m : ∇ f̃ (y)(+)

( ⊕m
j=1 1̃{u j }(.)∇ g̃ j (y)

)
= 0,⊕m

j=1 1̃{u j }(.)g̃ j (y) � 0,

y ∈ Y0, u j ≥ 0, j = 1, 2, . . . , m,

⎫⎪⎪⎬
⎪⎪⎭

where 1̃{u j } is a crisp number with the value u j , j = 1, 2, . . . , m. That is, Y1 be the
set of all feasible solutions of (FND). The set

f̃ (Y1) = { f̃ (y) : y ∈ Y1},

contains all the objective values of (FND). Now, let (NDD) f̃ (Y1) is the set of all
nondominated objective values of (FND) i.e.

(NDD) f̃ (Y1) = { f̃ (y∗): (y∗, u∗) is a nondominated solution of the problem (FND)}.
3.5 Duality results

Now, we will prove appropriate duality relations for dual pair (FNP) and (FND).

Theorem 3.1 Let f̃ and g̃ j ( j = 1, 2, . . . , m) be H-differentiable on an open sub-
set Y0 of Rn. Suppose that x is a feasible solution of primal problem (FNP) and
(y, u) is a feasible solution of dual problem (FND). If f̃ is pseudoconvex at y and⊕m

j=1 1̃{u j }(×)g̃ j is quasiconvex at y. Then

f̃ (x) � f̃ (y).

Proof Since x and (y, u) are feasible solutions of (FNP) and (FND), respectively, we
see that

(g̃ j )
L
α (x) ≤ 0 and (g̃ j )

U
α (x) ≤ 0, j = 1, 2, . . . , m (1)

∇ f̃ L
α (y) +

m∑
j=1

u j∇(g̃ j )
L
α (y) = 0, (2)
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Duality for a class of fuzzy nonlinear optimization problem 141

∇ f̃ U
α (y) +

m∑
j=1

u j∇(g̃ j )
U
α (y) = 0, (3)

m∑
j=1

u j (g̃ j )
L
α (y) ≥ 0, (4)

m∑
j=1

u j (g̃ j )
U
α (y) ≥ 0, (5)

u j ≥ 0, j = 1, 2, . . . , m. (6)

for all α ∈ [0, 1]. ��
Now, inequalities (1), (4) and (6) implies

m∑
j=1

u j (g̃ j )
L
α (x) ≤ 0 ≤

m∑
j=1

u j (g̃ j )
L
α (y)

i.e.
m∑

j=1

u j (g̃ j )
L
α (x) ≤

m∑
j=1

u j (g̃ j )
L
α (y).

This follows from the quasiconvexity of
⊕m

j=1 1̃{u j }(×)g̃ j at y that

m∑
j=1

u j∇(g̃ j )
L
α (y)(x − y) ≤ 0

which using (2) yields

∇( f̃ )L
α (y)(x − y) ≥ 0.

This further from the pseudoconvexity of f̃ at y gives

( f̃ )L
α (x) ≥ ( f̃ )L

α (y).

Similarly,

( f̃ )U
α (x) ≥ ( f̃ )U

α (y).

Thus, we have

f̃ (x) � f̃ (y).

Hence the result. ��
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Corollary 1 Let f̃ and g̃ j ( j = 1, 2, . . . , m) be H-differentiable on Y0. Let f̃ be
pseudoconvex and

⊕m
j=1 1̃{u j }(×)g̃ j be quasiconvex on Y0. If x∗ is a feasible solution

of primal problem (FNP) and f̃ (x∗) ∈ f̃ (Y1). Then x∗ solves (FNP) that is f̃ (x∗) ∈
(NDP) f̃ (X1).

Proof Suppose that x∗ is not a nondominated solution of the primal problem (FNP).
Then, there exists an x ( �= x∗) ∈ X1 such that

f̃ (x) ≺ f̃ (x∗).

i.e. f̃ L
α (x) ≤ f̃ L

α (x∗) and f̃ U
α (x) ≤ f̃ U

α (x∗) for all α ∈ [0, 1] and there exists
β ∈ [0, 1] such that

⎧⎨
⎩

f̃ L
β (x) < f̃ L

β (x∗)

f̃ U
β (x) ≤ f̃ U

β (x∗)
or

⎧⎨
⎩

f̃ L
β (x) ≤ f̃ L

β (x∗)

f̃ U
β (x) < f̃ U

β (x∗)
or

⎧⎨
⎩

f̃ L
β (x) < f̃ L

β (x∗)

f̃ U
β (x) < f̃ U

β (x∗).

Hence, either f̃ L
β (x) < f̃ L

β (x∗) or f̃ U
β (x) < f̃ U

β (x∗).
Since f̃ (x∗) ∈ f̃ (Y1), there exists (y, u), a feasible point of dual problem (FND)

such that

f̃ (x∗) = f̃ (y). (7)

Now, let f̃ L
β (x) < f̃ L

β (x∗). Then from (7), we have

f̃ L
β (y) = f̃ L

β (x∗) > f̃ L
β (x) or f̃ L

β (y) > f̃ L
β (x)

which contradicts Theorem 3.1. Similarly, a contradiction can be obtained when
f̃ U
β (x) < f̃ U

β (x∗). This completes the proof. ��

Corollary 2 Let f̃ and g̃ j ( j = 1, 2, . . . , m) be H-differentiable on Y0. Suppose
that f̃ is pseudoconvex and

⊕m
j=1 1̃{u j }(×)g̃ j is quasiconvex on Y0. If (y∗, u∗) is a

feasible solution of dual problem (FND) and f̃ (y∗) ∈ f̃ (X1), then (y∗, u∗) solves
dual problem (FND) that is f̃ (y∗) ∈ (N DD) f̃ (Y1).

Proof Suppose (y∗, u∗) be not a nondominated solution of the dual problem (FND).
Then, there exists (y, u) ( �= (y∗, u∗)) ∈ Y1 such that

f̃ (y∗) ≺ f̃ (y) i.e. f̃ L
α (y∗) ≤ f̃ L

α (y) and f̃ U
α (y∗) ≤ f̃ U

α (y) for all α ∈ [0, 1]

and there exists β ∈ [0, 1] such that

f̃ L
β (y∗) < f̃ L

β (y) or f̃ U
β (y∗) < f̃ U

β (y).
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Since f̃ (y∗) ∈ f̃ (X1) therefore there exists a feasible point x in (FNP) such that

f̃ (x) = f̃ (y∗). (8)

Now, if f̃ L
β (y∗) < f̃ L

β (y), then from (8), we have

f̃ L
β (x) = f̃ L

β (y∗) < f̃ L
β (y).

This contradicts Theorem 3.1. Similarly, the proof can be obtained if f̃ U
β (y∗) <

f̃ U
β (y). Hence the result. ��

Corollary 3 Let f̃ and g̃ j ( j = 1, 2, . . . , m) be H-differentiable on Y0. Suppose that
f̃ is pseudoconvex and

⊕m
j=1 1̃{u j }(×)g̃ j is quasiconvex on Y0. If x∗ is a feasible

solution of the primal problem (FNP) and (y, u) is a feasible solution of dual problem
(FND) and f̃ (x∗) = f̃ (y), then x∗ and (y, u) solves primal and dual problems,
respectively.

Proof The proof can be obtained by contradiction. Suppose x∗ is not a nondominated
solution of the primal problem (FNP). Therefore there exists a feasible point x ( �= x∗)
of (FNP) such that

f̃ (x) ≺ f̃ (x∗)

i.e. f̃ L
α (x) ≤ f̃ L

α (x∗) and f̃ U
α (x) ≤ f̃ U

α (x∗) for all α ∈ [0, 1] and there exists
β ∈ [0, 1] such that

f̃ L
β (x) < f̃ L

β (x∗) or f̃ U
β (x) < f̃ U

β (x∗).

Now, since f̃ (x∗) = f̃ (y). Therefore, f̃ L
β (y) = f̃ L

β (x∗) > f̃ L
β (x).

This contradicts Theorem 3.1. Similarly, the proof for the other case can be obtained.
��

Now, we present the strong duality theorem by taking (N D P) f̃ (X1) and
(N DD) f̃ (Y1) have at least one point in common, that is, there exist f̃ (x∗) ∈
(N D P) f̃ (X1) and f̃ (x̄) ∈ (N DD) f̃ (Y1) such that f̃ (x∗) = f̃ (x̄).

Definition 3.5 (Wu 2007) Two types of concepts about duality gap between primal
and dual problems are discussed below:

(i) We say that the primal problem (FNP) and the dual problem (FND) have no
duality gap in the weak sense if and only if (N D P) f̃ (X1) and (N DD) f̃ (Y1)

have at least one point in common.
(ii) We say that the primal problem (FNP) and the dual problem (FND) have no

duality gap in the strong sense if and only if there exists f̃ (x∗) ∈ (N D P) f̃ (X1)

and f̃ (x∗) ∈ (N DD) f̃ (Y1).
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It may be noted that in the above definition (i i) implies (i). But the converse will be
true if x∗ = x̄ .

Theorem 3.2 (Strong duality theorem in weak sense) Let f̃ and g̃ j ( j = 1, 2, . . . , m)

be H-differentiable on Y0. Suppose that f̃ is pseudoconvex and
⊕m

j=1 1̃{u j }(×)g̃ j is
quasiconvex on Y0. If one of the following conditions is satisfied:

(i) there exists a feasible solution x∗ of primal problem (FNP) such that f̃ (x∗) ∈
f̃ (Y1).

(ii) there exists a feasible solution (x∗, u∗) of dual problem (FND) such that f̃ (x∗) ∈
f̃ (X1).

Then there will be no duality gap in the primal problem (FNP) and the dual problem
(FND) in the weak sense.

Proof Suppose the condition (i) holds, then, after using Corollary 1 we just need
to show that f̃ (x∗) ∈ (N DD) f̃ (Y1). Since f̃ (x∗) ∈ f̃ (Y1), there exists a feasible
solution (y, u) of dual problem (FND) such that

f̃ (x∗) = f̃ (y).

Now, we have to show that f̃ (y) ∈ (N DD) f̃ (Y1). As Corollary 1 gives f̃ (x∗) ∈
(N D P) f̃ (X1). Therefore, from above equation, we have

f̃ (y) ∈ (NDP) f̃ (X1)

which implies f̃ (y) ∈ f̃ (X1). Hence, by using Corollary 2, we obtain that f̃ (y) ∈
(NDD) f̃ (Y1).

Next, let condition (i i) be true, then, from Corollary 2, it remains to show that
f̃ (x∗) ∈ (NDP) f̃ (X1). Since f̃ (x∗) ∈ f̃ (X1), there exists a feasible solution x of
primal problem (FNP) such that

f̃ (x) = f̃ (x∗).

Now, Corollary 2 gives

f̃ (x∗) ∈ (NDP) f̃ (X1).

This follows from above equation that

f̃ (x) ∈ (NDD) f̃ (Y1) i.e. f̃ (x) ∈ f̃ (Y1).

Therefore, using the result of Corollary 1, we have

f̃ (x∗) ∈ (NDP) f̃ (X1)

which completes the proof. ��
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Theorem 3.3 (Strong duality theorem in strong sense) Let f̃ and g̃ j ( j = 1, 2, . . . , m)

be H-differentiable on Y0. Suppose that f̃ is pseudoconvex and
⊕m

j=1 1̃{u j }(×)g̃ j is
quasiconvex on Y0. Suppose x∗ and (x∗, u∗) are feasible solutions of primal (FNP) and
dual (FND), respectively. Then x∗ and (x∗, u∗) solves primal and the dual problems,
respectively; or the primal problem (FNP) and the dual problem (FND) have no duality
gap in the strong sense.

Proof Proof follows immediately from Corollary 3. ��

4 Numerical illustration

Let m = 2. Suppose that the fuzzy valued objective function f̃ : R → F(R) and
system constraints g̃ j : R → F(R) ( j = 1, 2) are as follows:

f̃ (x) =
(

3̃(×)1̃{x2}
)

(+)1̃,

g̃1(x) = 6̃(×)1̃{x3}, g̃2(x) =
(

4̃(×)1̃{x}
)

(+)(−1̃),

where

3̃ = (1, 3, 4), 1̃ = (0, 1, 3), 6̃ = (4, 6, 7),

−1̃ = (−2,−1, 0), 4̃ = (2, 4, 6).

are triangular fuzzy numbers. The primal (FNP) and the dual (FND) become:

(MP) Minimize f̃ (x)

subject to g̃1(x) � 0, g̃2(x) � 0,

(MD) Maximize f̃ (u)

subject to ∇ f̃ (y)(+)

2⊕
j=1

∇
(

1̃{u j }(×)g̃ j (y)

)
= 0,

2⊕
j=1

1̃{u j }(×)g̃ j (y) � 0,

u1, u2 ≥ 0.

Using Proposition 2.1 and Definition 2.5, we obtain

f̃ L
α (x) = (1 + 2α)x2 + α, f̃ U

α (x) = (4 − α)x2 + 3 − 2α,

(g̃1)
L
α (x) = (4 + 2α)x3, (g̃1)

U
α (x) = (7 − α)x3,

(g̃2)
L
α (x) = (2 + 2α)x + α − 2, (g̃2)

U
α (x) = (6 − 2α)x − α,
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∇ f̃ L
α (x) =

(
d f̃ (x)

dx

)L

α

= 2(1 + 2α)x, ∇ f̃ U
α (x) =

(
d f̃ (x)

dx

)U

α

= 2(4 − α)x,

(
∇ g̃(x)

)L

α

=
((

dg̃1(x)

dx

)L

α

,

(
dg̃2(x)

dx

)L

α

)
and

(
∇ g̃(x)

)U

α

=
((

dg̃1(x)

dx

)U

α

,

(
dg̃2(x)

dx

)U

α

)
,

where

(
dg̃1(x)

dx

)L

α

= 3(4 + 2α)x2,

(
dg̃2(x)

dx

)L

α

= 2 + 2α,

(
dg̃1(x)

dx

)U

α

= 3(7 − α)x2 and

(
dg̃2(x)

dx

)U

α

= 6 − 2α.

We first prove that the functions f̃ and g̃ j ( j = 1, 2) defined above satisfy all the
assumptions of weak duality theory (Theorem 3.1). For any real numbers x1, x2 andα ∈
[0, 1], the expression ( f̃ )L

α (x1) < ( f̃ )L
α (x2) yields (1 + 2α)x2

1 +α < (1 + 2α)x2
2 +α

and hence x2
1 − x2

2 < 0.

Now,

∇( f̃ )L
α (x2)(x1 − x2)

= 2(1 + 2α)(x1x2 − x2
2 )

≤ (1 + 2α)(x2
1 − x2

2 ) (as 2x1x2 ≤ x2
1 + x2

2 )

< 0 (since x2
1 − x2

2 < 0).

Hence ( f̃ )L
α is pseudoconvex for all α ∈ [0, 1]. Similarly, one can prove that ( f̃ )U

α is
pseudoconvex for all α ∈ [0, 1]. Therefore, the function f̃ is pseudoconvex.
Next, we will show that u1(g̃1)

L
α (x)+ u2(g̃2)

L
α (x) is quasiconvex. This holds trivially

if u1 = u2 = 0. If (u1, u2) �= (0, 0), then from

u1(g̃1)
L
α (x1) + u2(g̃2)

L
α (x1) ≤ u1(g̃1)

L
α (x2) + u2(g̃2)

L
α (x2),

we obtain

u1(4 + 2α)x3
1 + u2(2 + 2α)x1 ≤ u1(4 + 2α)x3

2 + u2(2 + 2α)x2.

This further yields

(x1 − x2){u1(4 + 2α)((x1 + 1

2
x2)

2 + 3

4
x2

2 ) + u2(1 + 2α)} ≤ 0,
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Hence

x1 − x2 ≤ 0.

Therefore,

{u1∇(g̃1)
L
α (x2) + u2∇(g̃2)

L
α (x2)}(x1 − x2) = {3u1(4 + 2α)x2

2 + u2(1 + 2α)}
× (x1 − x2) ≤ 0 (as x1 − x2 ≤ 0).

Hence u1(g̃1)
L
α (x) + u2(g̃2)

L
α (x) is quasiconvex for all α ∈ [0, 1]. Similarly, one can

prove that u1(g̃1)
U
α (x) + u2(g̃2)

U
α (x) is quasiconvex for all α ∈ [0, 1]. Therefore, the

function 1̃{u1}(×)(g̃1) + 1̃{u2}(×)(g̃2) is quasiconvex.
Hence, the assumptions of Theorem 3.1 has been verified.
Further, we will show that this example satisfy Theorem 3.1. Since x and (y, u) are

feasible solutions of primal and dual problems, respectively. Then, we have

(4 + 2α)x3 ≤ 0, (9)

(7 − α)x3 ≤ 0, (10)

(2 + 2α)x + α − 2 ≤ 0, (11)

(6 − 2α)x − α ≤ 0, (12)

2(1 + 2α)y + 3u1(4 + 2α)y2 + u2(2 + 2α) = 0, (13)

2(4 − α)y + 3u1(7 − α)y2 + u2(6 − 2α) = 0, (14)

u1(4 + 2α)y3 + u2{(2 + 2α)y + α − 2} ≥ 0, (15)

u1(7 − α)y3 + u2{(6 − 2α)y − α} ≥ 0, (16)

u1, u2, ≥ 0, α ∈ [0, 1]. (17)

If (u1, u2) = (0, 0), then (13) implies y = 0 and hence obviously f̃ L
α (x) ≥ f̃ L

α (y).
Now, if (u1, u2) �= (0, 0), then from (9), (11), (15) and u1, u2 ≥ 0, we have

(4 + 2α)x3u1+{(2 + 2α)x + α − 2}u2 ≤ u1(4 + 2α)y3 + u2{(2 + 2α)y + α − 2}
or u1(4 + 2α)(x3 − y3) + u2(2α + 2)(x − y) ≤ 0.

This implies

(x − y)

{
(4 + 2α)

{(
x + y

2

)2

+ 3

4
y2

}
u1 + (2α + 2)u2

}
≤ 0

and hence using (17), we have x ≤ y.
This from (17) follows that

(x − y){3(4 + 2α)y2u1 + (2α + 2)u2} ≤ 0. (18)
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Using (13) in (18), we get

(x − y)[(1 + 2α)y] ≥ 0 or x2 − y2 ≥ 0 (since 2xy ≤ (x2 + y2)),

which gives

(1 + 2α)x2 + α ≥ (1 + 2α)y2 + α or f̃ L
α (x) ≥ f̃ L

α (y).

Similarly, f̃ U
α (x) ≥ f̃ U

α (y). Hence the result.
Next, we will illustrate that the same example also justify the strong duality theory

in strong sense (Theorem 3.3). Since x∗ = 0 and (x∗, u∗) = (0, 0) satisfied the con-
straints (9)–(12) and (13)–(17), respectively. Therefore these are the feasible solutions
of the primal (MP) and dual (MD), respectively. We will prove that x∗ and (x∗, u∗)
are nondominated solutions of (MP) and (MD), respectively. On the contrary suppose
x∗ = 0 is not a nondominated solution of (MP). Then there exists x ( �= 0) ∈ X1 (the
set of all feasible solutions of (MP)) such that

f̃ (x) ≺ f̃ (0).

or f̃ L
α (x) ≤ f̃ L

α (0) and f̃ U
α (x) ≤ f̃ U

α (0) for all α ∈ [0, 1]

and there exists some β ∈ [0, 1] such that

f̃ L
β (x) < f̃ L

β (0) or f̃ U
β (x) < f̃ U

β (0).

Let f̃ L
β (x) < f̃ L

β (0). Then, we have

(2β + 1)x2 < 0

which is a contradiction as β ∈ [0, 1] and x2 ≥ 0 for all x . Similarly, f̃ U
β (x) ≮ f̃ U

β (0).
Hence x∗ = 0 is a nondominated solution of (MP).

Further, let (x∗, u∗) = (0, 0) is not a nondominated solution of (MD). Then there
exists (y, u) ( �= (0, 0)) ∈ Y1 (the set of all feasible solutions of (MD)) such that

f̃ (0) ≺ f̃ (y)

i.e. f̃ L
α (0) ≤ f̃ L

α (y) and f̃ U
α (0) ≤ f̃ U

α (y) for all α ∈ [0, 1]

and there exists some β ∈ [0, 1] such that

f̃ L
β (0) < f̃ L

β (y) or f̃ U
β (0) < f̃ U

β (y).

Let f̃ L
β (0) < f̃ L

β (y). Therefore, we get

(2β + 1)y2 > 0. (19)
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From (13) and (17), we have

y ≤ 0.

Now, to contradict inequality (19), we just need to show that y ≮ 0. Suppose y < 0,
then using (17), we have

u1(4 + 2α)y3 + u2{(2 + 2α)y + α − 2} ≤ 0

This further follows from (15) that

u1(4 + 2α)y3 + u2{(2 + 2α)y + α − 2} = 0

with each term in the expression non-positive. This means u1(4 + 2α)y3 = 0, u2(2 +
2α)y = 0 and u2(α−2) = 0. Hence, u1 = u2 = 0. Therefore, (13) yields y = 0, which
contradicts our supposition. Similarly, f̃ U

β (0) ≮ f̃ U
β (y). Hence (x∗, u∗) = (0, 0) is

a nondominated solution of (MD). ��

5 Conclusions

In this paper, we have formulated Mond-Weir type primal and dual problems with
the fuzzy-valued objective function and system constraints. Further, usual duality
theorems are established considering a partial ordering on the set of all fuzzy numbers
and following the concept of α-level set, Hukuhara difference and H -differentiability.
We have also discussed a numerical example to verify duality relations obtained in the
paper.
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