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Abstract Electric load forecasting is a fundamental business process and well-
established analytical problem in the utility industry. Due to various characteristics of
electricity demand series and the business needs, electric load forecasting is a clas-
sical textbook example and popular application field in the forecasting community.
During the past 30 plus years, many statistical and artificial intelligence techniques
have been applied to short term load forecasting (STLF) with varying degrees of suc-
cess. Although fuzzy regression has been tried for STLF for about a decade, most
research work is still focused at the theoretical level, leaving little value for practi-
cal applications. A primary reason is that inadequate attention has been paid to the
improvement of the underlying linear model. This application-oriented paper proposes
a fuzzy interaction regression approach to STLF. Through comparisons to three mod-
els (two fuzzy regression models and one multiple linear regression model) without
interaction effects, the proposed approach shows superior performance over its coun-
terparts. This paper also offers critical comments to a notable but questionable paper in
this field. Finally, tips for practicing forecasting using fuzzy regression are discussed.

Keywords Fuzzy regression · Interaction regression · Load forecasting

1 Introduction

Load forecasting is a fundamental business process and well-established analytical
problem in the electric utility industry. It can be roughly categorized into four groups
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based on the forecasting horizon: very short term (less than a day), short term (1 day
to 2 weeks), medium term (2 weeks to 3 years) and long term (3 years to 30 years or
more). A typical short term load forecasting (STLF) example is 1 day ahead hourly
load forecasting, which usually requires the forecaster to submit the load forecasts for
the 24 h of the next day. Such forecasts can be widely used by all of the four sectors
of the utility industry, from generation, transmission and distribution to retail. The
applications of STLF include operations, maintenance, demand response and energy
market activities (Hong 2010; Hong and Wang 2012).

Short term load forecasting (STLF) has several characteristics that are attractive to
the forecasting community:

(1) Large volume of time series data. Many utilities today have been storing hourly
loads at system level for at least 5 years, or over 40,000 records.

(2) High quality data. Due to the maturity of the metering technology today, many
utilities are comfortable with the data quality at the corporate level. Most outliers
are physically explainable, such as system outages, demand response activities,
etc.

(3) Multiple patterns of seasonality. Three seasonal patterns are often being investi-
gated in STLF: hours of a day, days of a week and months of a year.

(4) Load is highly dependent on several explanatory variables. For instance, electricity
consumption is highly correlated to temperature due to space heating and cooling
needs in today’s world.

(5) High accuracy requirement. Mean Absolute Percentage Error (MAPE) in 1 day
ahead hourly load forecasting at a corporate level is typically < 5 %.

(6) Societal necessity. Modern society is irreversibly dependent on electric power.
Improving STLF quality can help system reliability and energy efficiency by
bringing accuracy to a higher level than before, which means less outages, greener
environment, and reductions of costs.

As a result, dozens of techniques have been applied to short-term load forecasting,
such as regression analysis (Hong et al. 2010, 2011; Hong 2010), time series models,
artificial neural networks (ANN) (Hippert et al. 2001; Khotanzad et al. 1998), and
fuzzy regression (Al-Kandari et al. 2004; Song et al. 2005). Many of these techniques
have been progressively improved by the scientific community over the past three
decades. Several of the techniques have been adopted for production use in the utilities
(Khotanzad et al. 1998; Hong et al. 2010; Hong 2010; Fan et al. 2009; Fan and
Hyndman 2012).

Fuzzy regression is introduced to overcome some of the limitations of linear regres-
sion, such as the vague relationship between the response variable and predictor
variable(s), an insufficient number of observations, and error distributions which are
difficult to verify. The fundamental difference between the assumptions of the two
techniques is on the deviations between the observed values and the estimated values.
These values are supposed to be errors in measurement or observations that occur in
linear regression models, but are assumed to depend on the indefiniteness of the system
structure in fuzzy regression. The earliest formulation of fuzzy regression analysis was
later named as the Min problem, which minimizes the fuzziness such that the mem-
bership of every estimated interval is above a certain threshold (Tanaka et al. 1982).
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Two other formulations, the Max problem and the Conjunction problem were then
proposed (Tanaka 1987; Tanaka and Watada 1988; Tanaka et al. 1989).

Despite 30 years of theoretical advancement on fuzzy regression and its applications
to forecasting (Heshmaty and Kandel 1985; Chen and Wu 2003; Nureize and Watada
2010; Parvathi et al. 2013), fuzzy regression is still not shown to be well understood
by the utility industry, nor is it properly applied to STLF. There are two representative
research branches for the application of fuzzy regression to STLF. AI-Kandari et al.
developed two fuzzy regression models for 24-h ahead forecast in summer and winter
respectively (Al-Kandari et al. 2004). The work is mainly at the proof-of-concept level
for the following two reasons: (1) the range between the forecasted upper and lower
bounds is not tight enough to be useful for utility operations; (2) the forecasted center
is not able to capture the salient features of the load curve. Song et al. used fuzzy linear
regression to forecast the loads during holidays with promising accuracy (Song et al.
2005). This approach forecasts the load based on previous load without the inputs of
weather information. The case study of the local utility is too special to be generalized,
in the sense that the load profiles of the holidays in different years remain fairly stable.
This means the case study is limited in its applicability to many other utilities.

The fuzzy regression approaches proposed for STLF in the literature focus primarily
on the “fuzzy” side, by artificially creating fuzzy inputs or producing fuzzy results.
The investigation of the “regression” side was limited (e.g., there was little attention
paid to variable selection for fuzzy regression models). In this paper, we propose a
fuzzy interaction regression approach to STLF with the models implemented in the
earliest possibilistic regression framework (Tanaka et al. 1982). We show that by
including interaction effects in the underlying linear model, the forecasting accuracy
of fuzzy regression can be significantly enhanced. Additionally, since the variables
(load, temperature and calendar variables) in this paper remain as crisp numbers, the
proposed approach can be applicable to a wide range of utilities without engaging
heuristics to create fuzzy inputs.

The paper is organized as follows: Sect. 2 reviews the theoretical background of
fuzzy regression; Sect. 3 introduces three fuzzy regression models including two with-
out interaction effects and one with interaction effects; Sect. 4 explains the exper-
iment’s procedure and shows a comparison of the results. Further comments on a
notable paper and tips about applying fuzzy regression to STLF are discussed in
Sect. 5. The paper is concluded in Sect. 6 with the discussion of the future research
direction.

2 Theoretical background

In fuzzy regression, the deviations between the observed values and the estimated
values are assumed to be dependent on the indefiniteness of the system structure. These
deviations are regarded as the fuzziness of the parameters of the system rather than the
observation errors. In this section, we briefly review Tanaka’s methodology of applying
fuzzy regression analysis to crisp data. More detailed discussions of fuzzy regression
can be found in Tanaka et al. (1982), Tanaka and Watada (1988). A possibilistic linear
function can be defined as:
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Y = A1x1 + A2x2 + . . . + An xn = Ax (1)

where xi is non-fuzzy. Ai is a symmetric fuzzy number denoted by (αi , ci )L , with αi

as the center and ci as the spread. In this paper, we assume that the reference function
L(x) = max(0, 1 − |x |). The type of fuzzy parameter Ai is a symmetrical triangular
fuzzy number:

μAi (ai ) = L ((ai − αi )/ci ) (2)

where ci > 0.
The possibilistic linear function Y = Ax is obtained by the following membership

function:

μY (y) =
⎧
⎨

⎩

L
((

y − xT ai
)
/cT |x|) , x �= 0

1, x �= 0, y = 0
0, x = 0, y �= 0

(3)

where |x| = (|x1|, |x2|, . . ., |xn|)T .
As discussed in Tanaka and Watada (1988), identification of the parameters of the

fuzzy linear regression model can be formulated as a linear programming problem:

Min
α,c

J (c) = cT |x|

s.t. yi ≤
∣
∣
∣L−1(h)

∣
∣
∣ cT |xi| − xT

i α,

−yi ≤
∣
∣
∣L−1(h)

∣
∣
∣ cT |xi| − xT

i α,

c ≥ 0,

i = 1, . . . , N ,

where h is the threshold to control the width of the spread, and 0 ≤ h < 1. In this
paper, the linear programming problem is solved in CPLEX 12.1. Since this paper is
focused on the underlying regression model, no specific methods or algorithms are
developed to solve the linear programming problem for parameter estimation.

3 Fuzzy regression models for STLF

3.1 Fuzzy regression models without interaction effects

Both the summer and winter fuzzy regression models proposed by Al-Kandari et al.
(2004) have the temperatures of the past 3 h and the 3rd ordered polynomial of the
current hour temperature. In addition, the summer model includes humidity factors of
the current hour and the past 2 h, while the winter model includes wind cooling factors
of the current hour and the past 2 h. In practice, many utilities do not use humidity
and wind cooling factors in their load forecasting process due to several reasons, such
as (1) these two factors are not as easy to predict as temperature; (2) they may not
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be a significant driving factor of electricity demand for many utilities. To establish a
generic model, denoted as M1, for comparison purpose, we remove the humidity and
wind cooling factor terms and use the following model altered based on Al-Kandari’s
for both summer and winter:

Load(t) = A1 + A2T (t) + A3T 2(t) + A4T 3(t) + A5T (t − 1) + A6T (t − 2)

+ A7T (t − 3) (4)

Al-Kandari’s models do not include any calendar variables. However, it is well-known
in load forecasting practices that electricity consumption varies due to human activities,
which can be modeled by calendar variables, such as hour of the day, day of the week
and month of the year. In this paper, we add Hour, Weekday and Month to M1 to obtain
the second fuzzy regression model M2 as shown below. This model includes class
variables but not interaction effects. Hour, Weekday and Month are class variables with
24, 7 and 12 levels respectively. Consequently, there are totally 50 fuzzy parameters
to be estimated in M2.

Load(t) = A1 + A2T (t) + A3T 2(t) + A4T 3(t) + A5T (t − 1) + A6T (t − 2)

+ A7T (t − 3) + A8,Hour Hour + A9,W eekday W eekday

+ A10,Month Month (5)

To demonstrate the effectiveness of our proposed Fuzzy Interaction Regression
approach, we also add a Multiple Linear Regression (MLR) model for comparison.
This MLR model has the same variables as M2:

Load(t) = β1 + β2T (t) + β3T 2(t) + β4T 3(t) + β5T (t − 1) + β6T (t − 2)

+β7T (t − 3) + β8,Hour Hour + β9,W eekday W eekday

+β10,Month Month (6)

where the β’s are crisp parameters. While parameter estimation of the fuzzy regression
models are performed by solving the linear programming problems in CPLEX, para-
meter estimation of this MLR model (M3) is done through the ordinary least square
method in SAS 9.3.

3.2 Fuzzy interaction regression model

In a MLR model, when the independent variables are not independent of each other,
interaction effects should be considered. In this paper, we consider the following
interactions:

(1) Temperature and hour of the day: temperature is high during the day and low at
night;

(2) Temperature and month of the year: temperature is high in the summer and low
in the winter;
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(3) Hour of the day and day of the week: the hourly electricity consumption of
the customers (residential, commercial and industrial) varies due to business
schedule.

Therefore, we include the above three interaction effects to obtain the fuzzy inter-
action regression model (M4) below:

Load(t) = A1 + A2,Month Month + A3,Hour W eekday Hour∗W eekday

+ A4,Month T (t)∗Month + A5,Month T 2(t)∗Month

+ A6,Month T 3(t)∗Month + A7,Month T (t − 1)∗Month

+ A8,Month T (t − 2)∗Month + A9,Month T (t − 3)∗Month

+ A10,Hour T (t)∗Hour + A11,Hour T 2(t)∗Hour

+ A12,Hour T 3(t)∗Hour + A13,Hour T (t − 1)∗Hour

+ A14,Hour T (t − 2)∗Hour + A15,Hour T (t − 3)∗Hour (7)

If a quantitative variable, e.g., T (t), interacts with a class variable, e.g., Month, the
quantitative variable does not have to appear as the main effect. If a class variable, e.g.,
Hour, interacts with a class variable, e.g., Weekday, neither of them need to appear
as the main effects. Therefore, the temperature variables, Hour and Weekday are not
showing as main effects in (7).

4 Experiment

4.1 Data

In this paper, we use 3 years (2005–2007) of hourly load and temperature data from
ISO New England to conduct the experiment. Figure 1 shows the line plot of the hourly
loads, where we can observe that the demand is high in winter and summer but low
in spring and fall. This is primarily due to the usage of HVAC (heating, ventilation,
and air conditioning) systems. The annual peaks of this utility in these 3 years are over
25 GW, while the minimum load level is around 10 GW.

To further investigate the load series at hourly interval, we number the 168 h of a
week from 1 to 168. We then use the loads of 2005 to create a group of box plots
(Fig. 2), which shows the weekly load profile starting from Sunday on the left to
Saturday on the right. Each box plot contains high and low extremes, 1st, 2nd and
3rd quartiles. As shown in Fig. 2, the daily load profiles are more or less differ-
ent from each other, while the profiles of weekends are lower than those of week-
days.

The scatter plot in Fig. 3 shows the relationship between load and temperature,
which is an asymmetric U shape. The comfortable zone is around 50◦–65◦, where the
load is at the lowest level. As the temperature goes towards the two extremes, the load
is getting high.
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Fig. 1 Three years of hourly loads (2005–2007)

Fig. 2 Weekly load profile (2005)

4.2 Forecasting process

Typically, a short term load forecaster needs to submit the hourly load forecast
of the next day before a certain time of the current day. If the deadline for fore-
cast submission is 8 am, the forecaster may only have access to actual loads and
temperatures up to Hour Ending (HE) 7. To evaluate the forecasting accuracy of
the fuzzy regression models, this paper emulates the 1 day ahead load forecasting
process for the year of 2007. The models with the variables mentioned in Sect. 3
are run on a rolling basis for 365 times to forecast the hourly loads for each day
of 2007. The parameters are being updated on daily basis using load and tempera-
ture data available by hour ending 7 of each day. A fixed length (2 years) of moving
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Fig. 3 Relationship between load and temperature (2005)

Table 1 Parameter estimation
results of M1

Parameter Variable Winter peak day Summer peak day

Center
(αi )

Spread
(ci )

Center
(αi )

Spread
(ci )

A1 Intercept 17462.141 5437.94 17536.967 5549.244

A2 T 30.133 0 5.663 0

A3 T 2 −5.128 0 −5.234 0

A4 T 3 0.062 0 0.064 0

A5 T (t − 1) 25.306 0 23.535 0

A6 T (t − 2) 25.953 0 107.164 0

A7 T (t − 3) −48.795 4.47 −105.170 1.446

window is used to estimate the model parameters. Actual temperatures are used for
the forecasted days. The experiment is conducted on a PC with 1.66 GHz CPU and
3G RAM. The entire experiment, running 4 models, 365 times each, takes about 5 h.
In other words, running each model once only takes less than a minute on aver-
age. The run time is short enough to be negligible in day ahead forecasting opera-
tions.

4.3 Results and comparison

Table 1 shows the parameter estimation results using M1 for both winter and summer
peak days. Due to usage of dummy variables, both M2 and M3 have over 30 parameters.
With interaction effects, M4 has over 250 parameters to be estimated. Instead of listing
their parameter estimation results, we will show the accuracy statistics of the forecasts
and line plots of the forecasted loads during these two peak days.
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Table 2 MAPE values of the
four models

MAPE (%) M1 M2 M3 M4

Hourly load 14.21 5.16 4.63 3.68

Daily peak 9.70 6.57 5.46 4.28

Daily energy 5.63 3.70 2.84 2.81

Annual peak day 7.33 5.89 5.02 2.42

Winter peak day 13.71 5.11 4.32 4.85

Fig. 4 Model comparison for the annual peak of 2007 (Friday, Aug 3rd, Peak at Hour Ending 15,
25785 MW)

Mean Absolute Percentage Error (MAPE) is one of the most commonly used error
measures to evaluate forecasting accuracy in the utility industry. We first compare
the accuracy of the three fuzzy regression models using their forecasted centers. In
addition to MAPE of 8760 hourly loads in 2007, we also calculate the MAPE of
daily peak, daily energy, annual peak day which falls in the summer, and winter
peak day. As shown in Table 2, for each of the five measures, M4 is more accurate
than M2, which is more accurate than M1. M4 outperforms M3 in most measures
other than the MAPE of winter peak day. Figures 4 and 5 are showing the actual
and forecasted loads for annual and winter peak days respectively. The conclusion
based on these figures is consistent with the one based on MAPE values in Table 2.
In addition, although M4 does not result in as low MAPE as M3 in the winter peak
day, it does better than all the other three models in capturing the actual loads dur-
ing the peak period, as shown in Fig. 5 with hour ending 18–20. Overall, the fuzzy
interaction regression model (M4) shows superior accuracy over the other three mod-
els.

It should be noticed that the behavior of M1 for the winter peak day is similar to the
ones shown in Al-Kandari et al. (2004): the forecasted values are close to the mean of
actual loads. This can be due to (1) the model does not include all the effects that can
capture all of the salient features of the load profile; (2) the slope of load temperature
scatter plot below the comfortable temperature zone is less steep than the one above
the comfortable zone (Fig. 3).
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Fig. 5 Model comparison for the winter peak of 2007 (Monday, Feb 5th, Peak at Hour Ending 19,
21321 MW)

Table 3 Spreads generated by the three fuzzy regression models for annual and winter peak days

Spread M1 M2 M4

Annual peak day Average (MW) 5667 3901 1928

Average percentage (%) 28.49 19.82 8.98

Winter peak day Average (MW) 5489 1851 1370

Average percentage (%) 31.85 11.08 7.93

Other than comparing the estimated centers, we also compare the spreads generated
by the three fuzzy regression models for the annual and winter peak days. Table 3
shows the average spread and the average percentage spread, which is equal to the
spread divided by center, for each model during each of the two selected days. We can
observe that the more accurate the model is, the narrower the spread is. In other words,
the salient features, which are not captured by M1, are being treated as the fuzziness
of the system, which is represented through a wide spread. As the salient features
are being modeled by a more advanced system with the parameters such as calendar
variables and their interactions with temperature variables, the estimated spread is
getting narrower.

5 Discussion

5.1 Comments on the approach proposed in (Al-Kandari et al. 2004)

There are three major defects that make (Al-Kandari et al. 2004) misleading to prac-
titioners:

(1) Questionable parameter estimation. In Table 1 of (Al-Kandari et al. 2004), all the
centers and spreads of the parameters to the temperature variables are estimated
to be zero. This means that the load has no relationship to the temperature, which
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can hardly be reasonable for the Nova Scotia Power case study presented in that
paper. The result is very likely due to incorrect parameter estimation. As shown
in Table 1 of this paper, the nonzero parameter estimates for the temperature
variables help capture the relationship between the load and temperature.

(2) Flat centers and wide spreads. Take Fig. 1 of (Al-Kandari et al. 2004) for example,
the forecasted centers are around 740 ± 50 MW, while all of the spreads are
335.7 MW. Each spread is over 40 % of the center. Although the upper and lower
bounds cover the actual loads, the flat centers and wide spreads can hardly assist
the decision making process in utility daily operations.

(3) It is concluded in Al-Kandari et al. (2004) that three parameters are adequate to
represent the load for the crisp case and ten parameters are enough to model the
type of load. This is a false statement and can be quite misleading to the practi-
tioners in the field. On the other hand, in this paper, the comparison among M1,
M2 and M4 shows that the seven parameters are far from adequate to capture the
salient features of the load profile. It’s crucial to improve the underlying linear
model in order to improve the forecasting accuracy of the fuzzy regression model.

5.2 Tips for fuzzy regression based load forecasting

This paper offers the following four tips for fuzzy regression based forecasting:

(1) Select variables. Practitioners can follow similar variable selection approach as
MLR analysis to select the variables for fuzzy regression models. As the under-
lying linear models are being improved, the fuzzy regression models can usually
be improved.

(2) Determine threshold h. As long as the threshold h is < 1 and greater than or equal
to zero, the estimated center based on the same set of data should stay the same.

(3) Interpret the resulting spread. When h is equal to 0, it is assumed that the range of
system output based on the historical observations is the largest possible range in
the history. When h is > 0, it is assumed that the range of system output based on
the historical observations is the largest possible range in the history multiplied
by 1–h. It is not guaranteed that all of the future loads will be covered by the
forecasted upper and lower bounds. The higher h is, the wider the spread will
be, and the higher possibility that the actual loads in the future will be within
the bounds. For instance, Figs. 6 and 7 show the forecasting results of M4 in the
winter and summer peak days. Actual loads of the annual peak day are all within
the forecasted upper and lower bounds in Figs. 6, while HE 20 of the winter peak
day is outside the upper bound in Fig. 7.

(4) Fuzzify the crisp inputs. Unless there are physical implications that the metered
loads or recorded temperatures are not enough to represent the actual situation,
we do not recommend fuzzifying the crisp inputs at the first stage. Arbitrarily
fuzzifying the inputs as shown in Al-Kandari et al. (2004) is subjective and lack
of defensibility. Instead, it should be encouraged to try to improve the underlying
linear model. This does not imply that we should not fuzzify the inputs at all. If
the utility has been practicing load control without proper records of load control
activities, fuzzifying the inputs can be considered.
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Fig. 6 Forecasting results of M3 during annual peak day of 2007 (h = 0.1)

Fig. 7 Forecasting results of M3 during winter peak day of 2007 (h = 0.1)

6 Conclusion

Although the theoretical framework of fuzzy regression has been studied for decades,
the technique has not been understood by the utility industry to properly apply it to
STLF. This paper points out the lack of effort in improving the underlying linear
models for fuzzy regression. We propose a fuzzy interaction regression approach to
STLF. Through comparisons to two fuzzy regression models and one MLR model, the
proposed approach shows significant improvement over its counterparts. This paper
also offers three critical comments to a notable but questionable paper on its para-
meter estimation, forecasting results and conclusion. Finally, four tips on practicing
fuzzy regression for forecasting are discussed. Future work on this topic includes:
(1) modeling special effects using fuzzy regression models, such as weekend and
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holiday effects; (2) a comprehensive comparison between fuzzy regression models
with MLR models for STLF.
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