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Abstract In this paper, we study the pricing problem in a fuzzy supply chain that
consists of a manufacturer and two competitive retailers. There is a single product
produced by a manufacturer and then sold by two competitive retailers to the con-
sumers. The manufacturer acting as a leader determines the wholesale price, and the
retailers acting as the followers set their sale prices independently. Both the manu-
facturing cost and the demand for product are characterized as fuzzy variables, we
analyze how the manufacturer and the retailers make their pricing decisions with the
duopolistic retailers’ different behaviors: competition strategy and collusion strategy,
and develop the expected value models in this paper. Finally, numerical examples
illustrate the effectiveness of the proposed two-echelon models using fuzzy set theory.

Keywords Supply chain · Stackelberg game · Collusion · Competition ·
Fuzzy variable · Pricing decisions

1 Introduction

Modern supply chains are complex networks consisting of many firms working
together, each firm’s primary objective is its own profit, as a result, an important
issue is the coordination of disparate members to achieve optimal supply chain per-
formance. A considerable supply chain system in this issue is modeled as Stackerberg
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structure, in which a manufacturer acts as a Stackelberg leader, and a retailer/buyer
acts as a follower, the demand in the market is assumed that it varies with the prod-
uct’s price based on some deterministic “demand functions”, the manufacturer who
maximizes his profit by receiving orders from the retailers; While the retailer hopes
her order to match the demands of the customers, to minimize her inventory cost and
to maximize her profit, see (Jeuland and Shugan 1983, 1988; Shugan 1985) for more
details. Opposite to the manufacturer who acts as a leader, the retailers are often much
larger than the manufacturer in channel (Walmart, B&Q). Another Stackelberg struc-
ture is that the retailer acts as a Stackelberg leader, and the manufacturer acts as the
followers, see (Choi 1996; Ertek and Griffin 2003) for more details.

Other related two-echelon Stackelberg models focus on not only a single retailer
but multiple retailers, commonly, two duopolistic retailers. Choi (1991) investigated
price competition in a channel structure, in which the retailer acts as a supply chain
leader in a Stackelberg game. Ingene and Parry (1995) explored the impact of two
retailers’ Cournot behavior in the channel under the assumption that demand func-
tions are linear. Yang and Zhou (2006) analyzed the effects of the two duopolistic
retailers’ different competitive behaviors, Cournut, collusion, and Stackelberg, on the
optimal decisions of the manufacturer and the duopolistic retailers themselves. Wang
et al. (2012) extended Yang and Zhou (2006)’s work, and researched the duopolistic
retailer behavior and the non-linear demand function problem. Li and Huo (2010)
investigated the pricing and coordination decisions under a Stackelberg structure, in
which the manufacturer acting as a leader declares her wholesale price and implements
a common-replenishment epochs (CRE) schedule to competitive retailers. Raul et al.
(2011) proposed a simulation method to transform competitive supply networks into
collaborative supply networks.

All studies mentioned above assume that the customer demand is uncertain, which
involves a type of probability distribution. This assumption seems to be restrictive.
Firstly, in real world situations, there is a lack of statistical data to forecast the demand.
For example, for iphone 5, a new digital product produced by apple Inc., there is
no historical data available to the decision maker. Secondly, perhaps due to recent
changes, “probability distribution may simply not be available, or may not be easily
or accurately estimated” (Xie et al. 2006), such as strike by employees, logistics
out of control. In addition, Handfield et al. (2009) pointed out that because of time
constraints or other reasons, it is impossible to collect data on the random variables
of interests in some cases. For example, the parameters ai and θ , i.e., the measure of
sensitivity of retailer’s sales to the change of retailer’s price, whose accurate values
are time consuming and expensive to be determined.

Compared with the stochastic model, it is more time efficient to estimate the uncer-
tainty parameters by the experts or the senior managers with fuzzy linguistic form.
Fuzzy set theory proposed by Zadeh (1965) is a suitable tool to characterize the experts’
or the senior managers’ judges, which has many applications on supply chain man-
agement. Petrovic et al. (1998, 1999) firstly used fuzzy set theory in supply chain
management. Later, fuzzy set theory was applied to Supplier selection (Kumar et al.
2004; Chen et al. 2006), supply chain network design (Xu et al. 2009), supply chain
planning (Torabi and Hassini 2008; Selim et al. 2008), and supply chain coordination
(Ryu and Yücesan 2010; Sinha and Sarmah 2008), etc.
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Stackelberg game models between two competitive retailers 35

In recent supply chain two-echelon coordination work, some researchers have
already adopted fuzzy set theory to depict uncertainty of demand, cost, etc. Chen
et al. (2006) formulated a game framework to investigate the behavior of supply chain
partners based on fuzzy multi-objective programming. Ryu and Yücesan (2010) pro-
posed a fuzzy newsvendor approach for supply chain coordination. Yu and Jin (2011)
studied the return policy model with fuzzy demand and asymmetric information. Chen
and Ho (2011) proposed an analysis method for single period inventory problem with
fuzzy demands and incremental quantity discounts. Sinha and Sarmah (2008) designed
a coordination mechanism through quantity discount policy under uncertain costs and
fuzzy demands.

Thus, so far, to our knowledge, there have been seldom studies on pricing problems
considering retailer competitive behaviors in fuzzy environment. Liang et al. (2008)
developed a new optimum output quantity decision analysis of a duopoly market under
a fuzzy decision environment. Zhao et al. (2012a,b) studied the pricing problem of
substitutable products in a supply chain with one manufacturer and two competitive
retailers, they developed one centralized pricing model and three decentralized pricing
models using game theoretic approach. However, how the supply chain members make
decisions with duopolistic retailers’ different behaviors under fuzzy environment is
an interesting issue, and as far as we know, no study has been done on it by now.

This paper extends Yang and Zhou (2006) work by characterizing the manufacturing
cost and the customer demand with fuzzy variables, proposes two-echelon supply chain
models under fuzzy environment, and solves them using credibility theory proposed
by Nahmias (1978) and Liu (2002). The rest of the paper is organized as follows: Sect.
2 introduces some preliminaries. The two expected value models are proposed under
retailers’ different behaviors in Sect. 3, and the corresponding propositions are given
under different scenarios. Numerical examples are given to illustrate the proposed
models in Sect. 4. Section 5 discusses the contributions and limitations of this paper,
and points out some further research directions.

2 Preliminaries

A possibility space is defined as a triplet, (Θ, p (Θ) , Pos), where Θ is a nonempty
set, p (Θ) is the power of Θ , and Pos is a possibility measure. Each element in p (Θ)

is called a fuzzy event. For each event A, Pos (A) indicates the possibility that A will
occur. Nahmias (1978) and Liu (2002) gave the following four axioms:

Axiom 1 Pos (Θ) = 1.

Axiom 2 Pos(φ) = 1, where φ denotes an empty set.

Axiom 3 Pos
(⋃m

i=1 Ai
) = sup1≤i≤m Pos(Ai ) , for any collection of events Ai (i =

1, 2, . . . , m) in p (Θ).

Axiom 4 Let Θi be a nonempty set, on which Posi (Θi )(i = 1, 2, . . . , n) are the
possibility measures satisfying the first three axioms, and Θ = ∏n

i=1 Θi . Then

Pos (A) = sup(θ1,θ2,...,θn)∈A {Pos1 (θ1) ∧ Pos2 (θ2) ∧ · · · ∧ Posn (θn)}
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36 S. Liu, Z. Xu

for each A ∈ p (Θ). In that case we denote Pos = ∧n
i=1Posi .

Lemma 1 (Liu 2002) Suppose that (Θi , p (Θi ) , Posi ) (i = 1, 2, . . . n) are a collec-
tion of possibility spaces. By Axiom 4,

(∏n
i=1 Θi , p

(∏n
i=1 Θi

)
,∧n

i=1Posi
)

is also a
possibility space, which is called a product possibility space.

Definition 1 (Nahmias 1978) A fuzzy variable is defined as a function from the pos-
sibility space (Θ, p (Θ) , Pos) to the set of real numbers and its membership function
is derived from

μξ (x) = Pos ({θ ∈ Θ |ξ (θ) = x }), ∀x ∈ R

Definition 2 (Liu 2002) A fuzzy variable ξ is nonnegative (or positive) if

Pos ({ξ < 0}) = 0 (or Pos ({ξ ≤ 0}) = 0)

Definition 3 (Liu 2002) Let f : Rn → R be a function, and ξi (i = 1, 2, . . . n) be a
collection of fuzzy variables defined on the possibility spaces (Θi , p (Θi ) , Posi ) (i =
1, 2, . . . n), respectively. Then ξ = f (ξ1, ξ2, . . . , ξn) is a fuzzy variable defined on
the product possibility space

(∏n
i=1 Θi , p

(∏n
i=1 Θi

)
,∧n

i=1Posi
)
.

The independence of fuzzy variable has been discussed by several researchers, such
as (Liu 2002; Nahmias 1978), and (Zadeh 1978).

Definition 4 (Liu 2002) The fuzzy variables ξi (i = 1, 2, . . . , n) are independent if
for any sets Bi (i = 1, 2, . . . , n) of R:

Pos (ξi ∈ Bi , i = 1, 2, . . . n) = min
1≤i≤n

Pos ({ξi ∈ Bi })

Lemma 2 (Liu 2002) Let ξi (i = 1, 2, . . . , n) be a collection of independent fuzzy
variables, and fi : R → R (i = 1, 2, . . . , n) be a collection of functions. Then
fi(ξi ) (i = 1, 2, . . . , n) are also the independent fuzzy variables.

Definition 5 (Liu 2002) Let ξ be a fuzzy variable on the possibility space (Θ, p (Θ) ,

Pos) and α ∈ (0, 1]. Then

ξ L
α = inf [r |Pos ([ξ ≤ r ]) ≥ α ], ξU

α = sup [r |Pos ([ξ ≥ r ]) ≥ α ]

are called the α—pessimistic value and the α —optimistic value of ξ , respectively.

Example 1 The triangular fuzzy variable ξ = (a1, a2, a3) has its α—pessimistic value
and the α—optimistic value respectively:

ξ L
α = a2α + a1 (1 − α), ξU

α = a2α + a3 (1 − α)

Lemma 3 (Wang et al. 2007) Let ξi (i = 1, 2, . . . , n) be a collection of independent
fuzzy variables defined on the possibility space (Θi , p (Θi ) , Posi ), and f : X ⊂
Rn → R be a measurable function. If f (x1, x2, . . . , xn) is monotonic with respect to
xi , respectively, then
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Stackelberg game models between two competitive retailers 37

(a) f U
α (ξ) = f (ξ V

1α, ξ V
2α, . . . , ξ V

nα), where ξ V
iα = ξU

iα , if f (x1, x2, . . . , xn) is non-
decreasing with respect to xi , then ξ V

iα = ξ L
iα; Otherwise,

(b) f L
α (ξ) = f (ξ V̄

1α, ξ V̄
2α, . . . , ξ V̄

nα), where ξ V̄
iα = ξ L

iα , if f (x1, x2, . . . , xn) is non-

decreasing with respect to xi , then ξ V̄
iα = ξU

iα , where f U
α (ξ) and f L

α (ξ) denote
the α—optimistic value and the α—pessimistic value of the fuzzy variable f (ξ),
respectively.

Definition 6 (Liu and Liu 2002) Let (Θ, p(Θ), Pos) be a possibility space and A be
a set in p(Θ). The credibility measure of A is defined as:

Cr(A) = 1

2

(
1 + Pos(A) − Pos(Ac)

)

where Ac denotes the complement of A.

Definition 7 (Liu and Liu 2002) Let ξ be a fuzzy variable, the expected value of ξ is
defined as:

E[ξ ] =
+∞∫

0

Cr(ξ ≥ x)dx−
0∫

−∞
Cr(ξ ≤ x)dx

provided that at least one of the two integrals is finite.

Example 2 The triangular fuzzy variable ξ = (a1, a2, a3) has an expected value:

E(ξ) = a1 + 2a2 + a3

4

Definition 8 (Liu and Liu 2002) Let f be a function on R → R and ξ be a fuzzy
variable, then the expected value of ξ is

E[ξ ] =
+∞∫

0

Cr( f (ξ) ≥ x)dx−
0∫

−∞
Cr( f (ξ) ≤ x)dx

provided that at least one of the two integrals is finite.

Lemma 4 (Liu and Liu 2002) Let ξ be a fuzzy variable with a finite expected value.
Then

E[ξ ] =
1∫

0

(
ξ L
α + ξU

α

)
dα

Lemma 5 (Liu and Liu 2002) Let ξ and η be two independent fuzzy variables with
the finite expected values. Then for any numbers a and b, we have

E [aξ + bη] = aE [ξ ] + bE [η]
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3 Two-echelon supply chain models

This paper focuses on the Stackelberg game models between a manufacturer and two
competitive retailers in a supply chain. The manufacturer, indexed by m, produces the
product and wholesales it to the two retailers i (i = 1, 2). The manufacturer and two
retailers make their own pricing decisions to maximize their own expected profits,
respectively. For the sake of clarity, the following notations are used to formulate the
fuzzy supply chain models:

pi : The sale price charged to customers by the retailer i, pi > 0, i = 1, 2;
c̃i : Unit cost incurred by the manufacturer, i = 1, 2;
Q̃i : The i th retailer’s quantity order, i = 1, 2;
w : Unit wholesale price that the manufacturer charges the retailers;
πri : The i th retailer’s profit, i = 1, 2;
πm : The manufacturer’s profit;

Similar to (Mcguire and Staelin 1984), the i th retailer’s demand function is defined
as a linear form of the two retailers’ prices, which is downward sloping in its own
price, increasing with respect to the competitor’s price. The demand for the retailer i
can be expressed as:

Q̃i = D̃i − ãi pi + θ̃ p j , i = 1, 2, j = 3 − i (1)

The parameters θ̃ , D̃i , ãi (i = 1, 2) are fuzzy variables, where D̃i represents the
market base of product, ãi and θ̃ denote the measures of the responsiveness of product’s
demand to its own price and to its competitor’s price, respectively.

Because the expected demand for a product should be more sensitive to the changes
in its own price than to the changes in the price of the other product, the makeup and
the consumers’ demand are nonnegative in the practical applications, thus,

Pos ({w − c̃}) = 0, Pos
({

D̃i − ãi pi + θ̃ p j < 0
})

= 0, i = 1, 2, j = 3 − i

We make the following assumptions:

A1. All activities occur within a single period.
A2. The fuzzy parameters θ̃ , D̃i , ãi (i = 1, 2) are independent and nonnegative,

the parameters ãi and θ̃ satisfy E[ãi ] > E[θ̃ ], which means that the expected
demand for product should be more sensitive to change in its retailer’s price
than to change in the competitor’s price.

A3. The manufacturer and the two retailers have the prefect information of demand
and cost structures of other members.

A4. The logistic cost components of manufactures and retailers, e.g., transportation
cost and inventory, etc., are not considered for convenience.

123



Stackelberg game models between two competitive retailers 39

Therefore, the retailer’s profit functions can be expressed as:

πri = (pi − c)Q̃i , i = 1, 2 (2)

The manufacturer’s profit function can be expressed as:

πm = (w − c)
2∑

i=1

Q̃i , i = 1, 2 (3)

3.1 Two-echelon model with two retailers’ Cournot behaviors

In this two-echelon Stackelberg game case, the manufacturer is a leader, and two
retailers are the followers. The two retailers adopt the Cournot behaviors, then the
following game model can be formulated:

maxw E
[
πm

(
w, p∗

i

)]

s.t. Pos ({w − c̃}) = 0

p∗
i (w) , i = 1, 2 are derived from solving the problem : (4)

maxpi E [πri (p1, p2)], i = 1, 2

s.t. Pos
({

D̃i − ãi pi + θ̃ p j < 0
})

= 0, i = 1, 2

pi > w, i = 1, 2

Proposition 1 If the retailers adopt the Cournot behaviors, given the wholesale prices
w made earlier by the manufacturer, then two retailers’ optimal retailer prices are

p∗
1 = A1w + B1 (5)

p∗
2 = A2w + B2 (6)

under the conditions that

Pos
({

D̃1 − ã1 (A1w + B1) + θ̃ (A2w + B2) < 0
})

= 0

Pos
({

D̃2 − ã2 (A2w + B2) + θ̃ (A1w + B1) < 0
})

= 0

where

A1 = 2E[ã1]E[ã2] + E[θ̃]E[ã2]
4E[ã1]E[ã2] − (E(θ̃))2

, B1 = 2E[ã2]E[D̃1] + E[θ̃ ]E[D̃2]
4E[ã1]E[ã2] − (E(θ̃))2

A2 = 2E[ã1]E[ã2] + E[θ̃]E[ã1]
4E[ã1]E[ã2] − (E(θ̃))2

, B2 = 2E[ã1]E[D̃2] + E[θ̃ ]E[D̃1]
4E[ã1]E[ã2] − (E(θ̃))2

Proof Note that the fuzzy variables θ̃ , D̃i , ãi (i = 1, 2) are all independent and
nonnegative, then by Lemma 3, the expected profit is

123
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E(πri ) = E((pi − w)Q̃i )

= 1

2

1∫

0

{
(pi − w)

(
D̃L

iα − α̃U
iα pi + θ̃ L p j

)

+ (pi − w)
(

D̃U
iα − α̃L

iα pi + θ̃U p j

)}
dα

= (pi − w)(E(D̃i ) − E[ãi ]pi + E(θ̃)p j ), i = 1, 2, j = 3 − i (7)

and the first-order and second-order partial derivatives of E[πri (pi , p j )] with respect
to (p1, p2) are shown as:

d E [πr1 (p1, p2)]

dp1
= E[D̃1] − 2E[ã1]p1 + E[θ̃ ]p2 + wE[ã1] (8)

d E
[
πr2

(
pi , p j

)]

dp2
= E[D̃2] − 2E[ã2]p2 + E[θ̃]p1 + wE[ã2] (9)

d2 E[πri (pi , p j )]
dp2

i

= −2E[ãi ] < 0 (10)

It follows from Eq. (10) that the expected profit E[πri (pi , p j )] of the retailer i is a
concave function of pi . Let Eqs. (8) and (9) be equal to zero, then we get the first
conditions:

E[D̃1] − 2E[ã1]p1 + E[θ̃ ]p2 + wE[ã1] = 0 (11)

E[D̃2] − 2E[ã2]p2 + E[θ̃ ]p1 + wE[ã2] = 0 (12)

solving Eqs. (11) and (12), we can easily have Eqs. (5) and (6). ��
Knowing the two retailers’ reaction functions, the manufacturer sets the optimal

wholesale price to maximize his expected profit E
[
πm

(
w, p∗

1 (w) , p∗
2 (w)

)]
.

Proposition 2 With the two retailers’ Cournot behaviors, the manufacturer’s optimal
wholesale price is

w∗ = A1 E[(θ̃−ã1)c̃]+ A2 E[(θ̃ − ã2)c̃]−(E[θ̃]−E[ã1])B1−(E[θ̃]−E[ã2])B2 − E[D̃1]−E[D̃2]
2{(E[θ̃] − E[ã2])A1+(E[θ̃] − E[ã2])A2}

(13)

under the condition that

Pos

⎛

⎜⎜⎜⎜
⎝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A1 E[(θ̃ − ã1)c̃] + A2 E[(θ̃ − ã2t)c̃] − (E[θ̃] − E[ã1])B1

2{(E[θ̃] − E[ã2])A1 + (E[θ̃ ] − E[ã2])A2}

− −(E[θ̃ ] − E[ã2])B2 − E[D̃1] − E[D̃2]
2{(E[θ̃] − E[ã2])A1 + (E[θ̃] − E[ã2])A2}

− c̃ < 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎞

⎟⎟⎟⎟
⎠

= 0
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Stackelberg game models between two competitive retailers 41

Proof By Lemma 3, we can get the manufacturer’s expected profit as follows:

E[πm(w)] = E[(w − c̃)(Q̃1 + Q̃2)]

= −1

2

1∫

0

(
θ̃ L
α − ãU

1α

)
c̃U
α +

(
θ̃U
α − aL

1α

)
c̃L
α dα (A1w + B1)

−1

2

1∫

0

(
θ̃ L
α − ãU

2α

)
c̃U
α +

(
θ̃U
α − aL

2α

)
c̃L
α dα (A2w + B2)

+{(E[θ̃ ] − E[ã1])A1 + (E[θ̃] − E[ã2])A2}w2

+ (E[D̃1] + E[D̃2])w + {(E[θ̃] − E[ã1])B1

+(E[θ̃ ] − E[ã2])B2}w

−1

2

⎛

⎝
1∫

0

(D̃L
1α + D̃L

2α)c̃U
α dα −

1∫

0

(D̃U
1α + D̃U

2α)c̃L
α dα

⎞

⎠ (14)

The first-order and second-order partial derivatives of E[πm(w, p∗
1(w), p∗

2(w))]
with respect to w can be shown as:

∂ E[πm(w)]
∂w

= 2{(E[θ̃] − E[ã1])A1 + (E[θ̃] − E[ã2])A2}w
+ (E[D̃1] + E[D̃2]) + (E[θ̃ ] − E[ã1])B1

+ (E[θ̃ ] − E[ã2])B2 − A1

2

1∫

0

(
θ̃ L
α − ãU

1α

)
c̃U
α

+
(
θ̃U
α − aL

1α

)
c̃L
α dα − A2

2

1∫

0

(
θ̃ L
α − ãU

2α

)
c̃U
α +

(
θ̃U
α − aL

2α

)
c̃L
α dα

(15)

∂2 E[πm(w)]
∂2w

= 2{(E[θ̃] − E[ã1])A1 + (E[θ̃] − E[ã2])A2} (16)

According to the assumption A2, E[θ̃ ] < E[ã1], and E[θ̃] < E[ã2], we can

get ∂2 E[πm(w)]
∂2w

< 0. It follows from Eq. (16) that the expected profit
E

[
πm

(
w, p∗

1 (w) , p∗
2 (w)

)]
of manufacturer is a concave function of w. Let Eq. (14)

be equal to zero, similar to Proposition 1, the wholesale price w∗ can easily be solved
as Eq. (13). ��
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3.2 Two-echelon model with two retailers’ Collusion behaviors

In this two-echelon stackelberg game case, the manufacturer is a leader, and the two
retailers are the followers. The two retailers adopt the collusion behaviors, and then
the following game model can be formulated:

maxw E
[
πm

(
w, p∗

i

)]

s.t. Pos ({w − c̃}) = 0

p∗
i (w) , i = 1, 2 are derived from solving the problem: (17)

max
pi

2∑

i=1

E [πri (p1, p2)], i = 1, 2

s.t. Pos
({

D̃i − ãi pi + θ̃ p j < 0
})

= 0, i = 1, 2

pi > w, i = 1, 2.

Proposition 3 If the retailers adopt collusion behaviors, given the wholesale prices
w made earlier by the manufacturer, then two retailers’ optimal retailer prices are

p∗∗
1 = 0.5w + B3 (18)

p∗∗
2 = 0.5w + B4 (19)

under the conditions that

Pos
({

D̃1 − ã1 (0.5w + B3) + θ̃ (0.5w + B4) < 0
})

= 0

Pos
({

D̃2 − ã2 (0.5w + B4) + θ̃ (0.5w + B3) < 0
})

= 0

where

B3 = E[ã2]E[D̃1] + E[θ̃ ]E[D̃2]
2(E[ã1]E[ã2] − (E(θ̃)))2

, B4 = E[ã1]E[D̃2] + E[θ̃ ]E[D̃1]
2(E[ã1]E[ã2] − (E(θ̃))2)

Proof Note that the fuzzy variables θ̃ , D̃i , ãi (i = 1, 2) are all independent and
nonnegative, then by Lemma 3, the expected profit is

2∑

i=1

E(πri (pi , p j )) = (p1 − w)(E[D̃1] − E[ã1]p1 + E[θ̃]p2)

+(p2 − w)(E[D̃2] − E[ã2]p2 + E[θ̃]p1) (20)

The first-order and partial derivatives
∑2

i=1 E(πri (pi , p j )) with respect to (p1, p2)

can be shown as:
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∂
∑2

i=1 E[πri (p1, p2)]
∂p1

= E[D̃1] − 2E[ã1]p1 + E[θ̃ ]p2 + w(E[ã1] − E[θ̃ ])
(21)

∂
∑2

i=1 E[πr1(pi , p j )]
∂p2

= E[D̃2] − 2E[ã2]p2 + E[θ̃ ]p1 + w(E[ã2] − E[θ̃ ])
(22)

The second-order partial derivatives of
∑2

i=1 E(πri (pi , p j )) with respect to
(p1, p2) can be shown as:

∂2 ∑2
i=1 E[πri (pi , p j )]

∂p2
1

= −2E[ã1] (23)

∂2 ∑2
i=1 E[πri (pi , p j )]

∂p2
2

= −2E[ã2] (24)

∂2 ∑2
i=1 E[πri (pi , p j )]

∂p1∂p2
= −2E[θ̃ ] (25)

then the hessian matrix

H2 =
[−2E[ã1] 2E[θ̃ ]

2E[θ̃] −2E[ã2]
]

is negative definite, so the expected profit
∑2

i=1 E[πri (pi , p j )] is a concave function
with respect to (p1, p2). Let Eqs. (21) and (22) be equal to zero, then we can get the
first conditions:

E[D̃1] − 2E[ã1]p1 + E[θ̃]p2 + w(E[ã1] − E[θ̃]) = 0 (26)

E[D̃2] − 2E[ã2]p2 + E[θ̃]p1 + w(E[ã2] − E[θ̃]) = 0 (27)

solving Eqs. (26) and (27), we can easily have Eqs. (18) and (19). ��

Knowing the two retailers’ reaction functions, the manufacturer sets the optimal
wholesale price to maximize his expected profit E

[
πm

(
w, p∗∗

1 (w) , p∗∗
2 (w)

)]
.

Proposition 4 With the two retailers’ collusion behaviors, the manufacturer’s optimal
wholesale price is

w∗ = 0.5(E[(θ̃ − ã1)c̃]+E[(θ̃ − ã2)c̃])−(E[θ̃ ]−E[ã1])B3−(E[θ̃] − E[ã2])B4 − E[D̃1] − E[D̃2]
2E[θ̃] − E[ã1] − E[ã2]

(28)
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under the condition that

Pos

⎛

⎜⎜⎜
⎝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5(E[(θ̃ − ã1)c̃] + E[(θ̃ − ã2)c̃]) − (E[θ̃] − E[ã1])B1

2E[θ̃ ] − E[ã1] − E[ã2]

−−(E[θ̃ ] − E[ã2])B2 − E[D̃1] − E[D̃2]
2E[θ̃ ] − E[ã1] − E[ã2]

− c̃ < 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

= 0

Proof Similar to the proof of Proposition 2, the wholesale price w∗ can easily be
solved as Eq. (28). ��

4 Numerical examples

In this section, we examine a manufacturer that produces a certain new precision
instrument face to the aged, has two retailers working for customers in east China, the
manufacturer has no historical statistic data to make wholesale pricing decision, so
the manufacturer calls for experts and senior managers as a team, and the relationship
between the linguistic expressions and the triangular fuzzy variables for the manufac-
turing cost, market bases, and price elastic coefficients are determined by the experts’
experiences (see Table 1).

There are many types of fuzzy membership functions, such as the triangular mem-
bership function, the trapezoidal fuzzy function, and the Gaussian fuzzy function, etc.
The triangular distribution is one of the most commonly used in fuzzy field, “Because
of their simplicity, trigonometric shaped, and simplified versions, are widely used”
(Pedrycz 1994). Based on the above analysis, we assume that the demands and the
costs obey the triangular distributions.

Table 1 Relations between linguistic expressions and triangular fuzzy variables

Scenarios Linguistic expressions Triangular fuzzy variables

Manufacturing cost c̃ Low (about 3) (2, 3, 4)

Medium (about 4.5) (3, 4, 5)

High (about 5) (4, 5, 6)

Market base D̃1 Large (about 400) (360, 400, 440)

Small (about 300) (240, 300, 360)

Market base D̃2 Large (about 360) (320, 360, 400)

Small (about 200) (160, 200, 240)

Price elastic coefficient ã1 Very sensitive (about 20) (18, 20, 22)

Sensitive (about 15) (13, 15, 17)

Price elastic coefficient ã2 Very sensitive (about 18) (16, 18, 20)

Sensitive (about 12) (10, 12, 14)

Price elastic coefficient θ̃ Very sensitive (about 15) (10, 15, 20)

Sensitive (about 10) (8, 10, 12)

123



Stackelberg game models between two competitive retailers 45

Table 2 The optimal value of price and the expected profits with fuzzy variables

Scenarios w∗ p∗
1 p∗

2 E[π∗
m ] E[π∗

r1] E[π∗
r2]

Cournot 23.5505 29.2493 29.9011 4,104 649.8041 725.7044

Collusion 23.5370 32.5377 33.3070 3,003 740.9016 838.7643

Consider the case that the manufacturing cost c̃ in the higher level is about 5,
the market base D̃1 and D̃2 are in large level, (D̃1 is about 400, D̃2 is about 360),
the price elastic coefficients ã1, ã2, θ̃ are in sensitive level, (ã1 is about 15, ã2 is
about 12, θ̃ is about 10), then through Table 1, the corresponding triangular fuzzy
variables are c̃ = (4, 5, 6), D̃1 = (360, 400, 440), D̃2 = (320, 360, 400), ã1 =
(18, 20, 22), ã2 = (16, 18, 20), and θ̃ = (8, 10, 12), respectively.

Moreover, the α—pessimistic values and the α—optimistic values of c̃, θ̃ , D̃i , and
ãi (i = 1, 2) are c̃L

α = 4 + α, c̃U
α = 6 − α, D̃L

1α = 360 + 40α, D̃U
1α = 440 − 40α,

D̃L
2α = 320 + 40α, D̃U

2α = 400 − 40α, ãL
1α = 18 + 2α, ãU

1α = 22 − 2α, ãL
2α =

16 + 2α, ãU
2α = 20 − 2α, θ̃ L = 8 + 2α, and θ̃U = 12 − 2α. The expected values of

parameters are

E[c̃] = 4 + 2 × 5 + 6

4
= 5, E[D̃1] = 360 + 2 × 400 + 440

4
= 400

E[ã2] = 16 + 2 × 18 + 20

4
= 18, E[D̃2] = 320 + 2 × 360 + 400

4
= 360

E[ã1] = 18 + 2 × 20 + 22

4
= 20, E[θ̃ ] = 8 + 2 × 10 + 12

4
= 10

From Lemmas 3 and 4, we get

E[(θ̃ − ã1)c̃1] = −48.6667, E[(θ̃ − ã2)c̃2] = −38.6667

The optimal prices and the expected profits are shown in Table 2.
In the above example, we select the fuzzy linguistic expressions:

c̃ = (4, 5, 6), D̃1 = (360, 400, 440), D̃2 = (320, 360, 400)

ã1 = (18, 20, 22), ã2 = (16, 18, 20), θ̃ = (8, 10, 12)

If we take c = 5, D1 = 400, D2 = 360, a1 = 20, a2 = 18, and θ = 10, then our
model can be simplified as that of Yang and Zhou (2006), and then the corresponding
results according to Yang and Zhou (2006)’s method, are shown in Table 3.

We compare our results with those of Yang and Zhou (2006), and find that our
wholesale prices are lower, sale prices are higher, the profits of the manufacture are
lower, and the profits of the retailers are higher.

It’s very interesting to compare our results with those of Zhao et al. (2012a), which
also use fuzzy variables to characterize the parameters in the pricing problem for
substitutable products. We find that our results are completely reversed. In the model
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Table 3 The optimal value of price and profits with Yang and Zhou (2006)’s model

Scenarios w∗ p∗
1 p∗

2 E[π∗
m ] E[π∗

r1] E[π∗
r2]

Cournot 23.6491 29.3166 29.9680 4,235 642.4020 718.7218

Collusion 23.6111 32.5748 33.3440 3,177 734.5234 832.7041

Table 4 The change of optimal solutions with the fuzzy degree of the parameter ã1

Scenarios ã1 w∗ p∗
1 p∗

2 E[π∗
m ] E[π∗

r1] E[π∗
r2]

Cournot (18, 20, 22) 23.551 29.2493 29.9011 4,104 649.804 725.704

(19, 29, 21) 23.560 29.256 29.908 4,139.2 649.093 725.024

(19.5, 20, 20.5) 23.565 29.259 29.911 4,144.1 648.750 724.696

Collusion (18, 20, 22) 23.537 32.538 33.307 3,003 740.907 838.764

(19, 29, 21) 23.546 32.542 33.312 3,013.7 740.101 838.002

(19.5, 20, 20.5) 23.551 32.545 33.314 3,019.1 739.702 837.623

Table 5 The change of optimal solutions with the fuzzy degree of the parameter θ̃

Scenarios θ̃ w∗ p∗
1 p∗

2 E[π∗
m ] E[π∗

r1] E[π∗
r2]

Cournot (8, 10, 12) 23.551 29.249 29.901 4,104 649.804 725.704

(9, 10, 11) 23.569 29.262 29.914 4,149.2 648.392 724.353

(9.5, 10, 10.5) 23.565 29.269 29.921 4,156.1 647.630 724.623

Collusion (8, 10, 12) 23.537 32.538 33.307 3,003 740.902 838.764

(9, 10, 11) 23.556 32.547 33.307 3,003 739.304 837.243

(9.5, 10, 10.5) 23.565 32.552 33.321 3,036 738.507 836.485

of Zhao et al. (2012a), the manufacturers’ profits are higher than those with crisp
parameters, and the retailer’s profits are lower than those with crisp parameters.

We have also examined the fuzzy degrees of the parameters ã1 and θ̃ with the change
of pricing and the expected profits, the results are shown in Tables 4, 5. As we can see,
as the lower limits of fuzzy degrees of the parameters ã1 and θ̃ , the manufacturer’s
profits are increasing, and the retailers’ profits are decreasing. Thus, the manufacturer
should pursue as low fuzzy degrees of the parameters as possible.

5 Conclusions

The main contribution of this paper is to characterize the pricing decisions under
duopolistic retailers’ different behaviors in a fuzzy environment. Two different Stack-
elberg optimization models have been developed with fuzzy demands and fuzzy costs,
which extend Yang and Zhou (2006)’s deterministic model. By mean of fuzzy set
theory and Stackelberg game theoretic approach, the equilibrium solutions of two-
echelon fuzzy optimization problems have been deduced. Some analyses about the
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results have been examined, which can provide some insights for supply chain incen-
tive mechanism design.

Our models are developed for a single product between a manufacturer and two
retailers for analytical convenience, and the demand function is linear. Topics for future
studies include the use of other fuzzy membership functions, such as S-curve member-
ship function and Gaussian membership function to model the customer demands and
the manufacturing costs. Beside, the pricing problem addressed in this paper can be
extended to the situations with multiple manufacturers, multiple retailers and multiple
periods. Fuzzy set theory and fuzzy logic, as a flexible tool, can be effectively applied
to tackle complicated supply chain problems.
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