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Abstract The theory of interval type-2 fuzzy sets provides an intuitive and computa-
tionally feasible way of addressing uncertain and ambiguous information in decision-
making fields. The aim of this paper is to develop an interactive method for handling
multiple criteria group decision-making problems, in which information about crite-
rion weights is incompletely (imprecisely or partially) known and the criterion values
are expressed as interval type-2 trapezoidal fuzzy numbers. With respect to the rela-
tive importance of multiple decision-makers and group consensus of fuzzy opinions,
a hybrid averaging approach combining weighted averages and ordered weighted
averages was employed to construct the collective decision matrix. An integrated pro-
gramming model was then established based on the concept of signed distance-based
closeness coefficients to determine the importance weights of criteria and the priority
ranking of alternatives. Subsequently, an interactive procedure was proposed to mod-
ify the model according to the decision-makers’ feedback on the degree of satisfaction
toward undesirable solution results for the sake of gradually improving the integrated
model. The feasibility and applicability of the proposed methods are illustrated with
a medical decision-making problem of patient-centered medicine concerning basilar
artery occlusion. A comparative analysis with other approaches was performed to
validate the effectiveness of the proposed methodology.
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324 T.-Y. Chen

1 Introduction

Decision-making information provided by group decision-makers is often imprecise
and uncertain because of a lack of data, time pressure, or the decision-makers’ limited
attention and information-processing capabilities (Xu 2010). Accordingly, research
pertaining to multiple criteria group decision-making (MCGDM) problems has often
been performed within a fuzzy environment (Park et al. 2011). The concept of type-2
fuzzy sets (T2FSs) (Zadeh 1975) is an extension of type-1 fuzzy sets (T1FSs). T2FSs
are superior to T1FSs because they can model second-order uncertainties (Greenfield
et al. 2009). Interval type-2 fuzzy sets (IT2FSs), also known as interval-valued fuzzy
sets (Sambuc 1975; Zadeh 1975), are the most widely used type of T2FSs because
of their relative simplicity. IT2FSs are valuable for both modeling imprecision and
their ability to easily reflect the ambiguous nature of subjective judgments. There-
fore, many valuable methods have been developed to solve various decision-making
problems (Chen 2012a,b; Chen et al. 2012; Wang et al. 2012). However, the research
related to the interactive group decision-making approach within the IT2FS environ-
ment has been relatively less discussed. Many new interactive methods have been
developed and discussed in multiple criteria decision analysis (Katagiri and Sakawa
2011; Kaliszewski et al. 2012). Nevertheless, very few studies focus on interactive
MCGDM methods in the context of an IT2FS framework.

The purpose of this paper is to develop a new interactive method to handle interval
type-2 fuzzy MCGDM problems with incomplete preference information. Based on
the IT2FS framework, this paper employs a popular fuzzy number with the trapezoidal
form called an interval type-2 trapezoidal fuzzy number (IT2TrFN) (Chen 2012b) to
establish a group decision-making method and an interactive procedure using a signed
distance-based closeness coefficient approach. In this paper, we extend the concept
of closeness coefficients in the technique for order preference by similarity to ideal
solution (TOPSIS) (Hwang and Yoon 1981) to propose the signed distance-based
closeness coefficient as the core of our interactive MCGDM method.

This paper differs from the current literature in the following ways. First, we
fuse multiple IT2TrFN ratings to build a collective decision environment using a
hybrid averaging (HA) approach by combining weighted averaging (WA) and ordered
weighted averaging (OWA) operations. Next, an integrated programming model based
on the signed distance-based closeness coefficients is constructed to estimate the
importance weights of criteria from incomplete preference information. Third, an
interactive procedure is employed to gradually improve the integrated model accord-
ing to the group decision-makers’ requirements for the satisfactory solutions. The
interactive procedure can actualize the process of interactive group decision making
by providing the decision-makers with the solution results and modifying the integrated
model according to their responses based on degrees of satisfaction. To facilitate such
a procedure, we use a signed distance-based representation method for the degree
of satisfaction (defined by the signed distance-based closeness coefficient). The con-
cept of signed distances makes it easy to compare the degrees of satisfaction for the
solution result and the group member’s requirements. In the process of interaction,
the decision-makers provide and modify their preference information such that the
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Multiple criteria group decision analysis 325

unsatisfactory results can be adjusted gradually until the most preferred alternative is
obtained.

To demonstrate the feasibility and effectiveness of the proposed method, we investi-
gated an MCGDM problem of patient-centered medicine. Given the increasing aware-
ness of health rights, the rights of patients have drawn increasing attention. Thus, the
focus of providing healthcare has shifted from the perspective of medical personnel to
a patient-centered approach. Diseases are sources of stress for the patients, their family
members, and medical personnel. When a patient is subjected to an emergent and life-
threatening disease, selecting the most appropriate treatment is a difficult and complex
process. This process involves very complex group decision making by the medical
personnel, the patients, and their family members. Although the physician usually
provides a limited number of treatment protocols to the patient (because there are
only several treatments that have significant therapeutic effects), the decision-making
process still involves numerous, complex, and possibly contradictory assessment crite-
ria (in addition to the fuzziness, imprecision, and uncertainty of the issues). Therefore,
we studied the proposed interactive MCGDM method for handling patient-centered
group decision-making problems to validate its applicability.

The article is organized in the following manner. Section 2 briefly reviews the con-
cepts of IT2TrFNs and signed distances. Section 3 formulates an MCGDM problem
with IT2TrFNs data and constructs the collective decision matrix using hybrid aver-
ages. Section 4 develops an integrated programming model using the concept of signed
distance-based closeness coefficients under incomplete preference information. This
section also provides an interactive procedure for acquiring a satisfactory solution.
Section 5 demonstrates the feasibility and applicability of the proposed methodology
by applying it to a patient-centered medical problem and conducting a comparative
analysis with the widely used TOPSIS method. Section 6 presents our conclusions.

2 Preliminaries

Select relevant definitions and operations of IT2FSs and IT2TrFNs are briefly reviewed
in this section. The concept of signed distances in the context of IT2TrFNs is described
as well.

2.1 The concept of IT2TrFNs

Definition 1 Let X be an ordinary finite nonempty set. Let Int([0, 1]) denote a set of
all closed subintervals of [0, 1]. The mapping A: X →Int([0, 1]) is known as an IT2FS
on X . All IT2FSs on X are denoted by IT2FS(X).

Definition 2 If A ∈ IT2FS(X), let A(x) = [AL(x), AU (x)], where x ∈ X and
0 ≤ AL(x) ≤ AU (x) ≤ 1. The two T1FSs AL : X → [0, 1] and AU : X → [0, 1] are
known as the lower and upper fuzzy sets, respectively, with respect to A. If A(x) is
convex and defined on a closed and bounded interval, then A is known as “an interval
type-2 fuzzy number (IT2FN) on X”. All IT2FNs on X are denoted by IT2FN(X ).
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Definition 3 Let AL(= (aL
1 , aL

2 , aL
3 , aL

4 ; hL
A)) and AU (= (aU

1 , aU
2 , aU

3 , aU
4 ; hU

A )) be
the lower and upper trapezoidal fuzzy numbers defined on the universe of discourse
X , where aL

1 ≤ aL
2 ≤ aL

3 ≤ aL
4 , aU

1 ≤ aU
2 ≤ aU

3 ≤ aU
4 , 0 ≤ hL

A ≤ hU
A ≤ 1, aU

1 ≤ aL
1 ,

aL
4 ≤ aU

4 , and AL ⊂ AU . Let ξ ∈ {L , U }. The membership function of Aξ for each
ξ is expressed as the following:

Aξ (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

hξ
A

(
x − aξ

1

)/(
aξ

2 − aξ
1

)
for aξ

1 ≤ x ≤ aξ
2 ,

hξ
A for aξ

2 ≤ x ≤ aξ
3 ,

hξ
A

(
aξ

4 − x
)/(

aξ
4 − aξ

3

)
for aξ

3 ≤ x ≤ aξ
4 ,

0 otherwise.

(1)

An IT2TrFN A on X is represented by the following:

A = [AL , AU ] =
[
(aL

1 , aL
2 , aL

3 , aL
4 ; hL

A), (aU
1 , aU

2 , aU
3 , aU

4 ; hU
A )
]
. (2)

The extension principle (Zadeh 1975) can be employed to develop fuzzy arith-
metic defined as T2FSs (Aisbett et al. 2010; Gilan et al. 2012). Let ⊕ denote the
addition operation and let A and B denote IT2TrFNs. By using Zadeh’s extension
principle, we define an IT2TrFN for a set of all real numbers A⊕ B with the following
equation:

(A ⊕ B)(z) = sup
z=x+y

min[A(x), B(y)], (3)

where sup is the supremum. Based on interval-valued arithmetic, standard arithmetic
operations on trapezoidal-shape fuzzy numbers can be extended to IT2TrFNs.

Definition 4 Let A and B be two non-negative IT2TrFNs. A = [(aL
1 , aL

2 , aL
3 , aL

4 ; hL
A),

(aU
1 , aU

2 , aU
3 , aU

4 ; hU
A )] and B = [(bL

1 , bL
2 , bL

3 , bL
4 ; hL

B), (bU
1 , bU

2 , bU
3 , bU

4 ; hU
B )] on X .

The arithmetic operations on A and B are defined as follows (Wei and Chen 2009):

(i) Addition operation:

A ⊕ B =
[(

aL
1 + bL

1 , aL
2 + bL

2 , aL
3 + bL

3 , aL
4 + bL

4 ; min
{

hL
A, hL

B

})
,

(
aU

1 + bU
1 , aU

2 + bU
2 , aU

3 + bU
3 , aU

4 + bU
4 ; min

{
hU

A , hU
B

})]
. (4)

(ii) Multiplication by an ordinary number:

q · A = A · q

=
{[(

q × aL
1 , q × aL

2 , q × aL
3 , q × aL

4 ; hL
A), (q × aU

1 , q × aU
2 , q × aU

3 , q × aU
4 ; hU

A

)]
if q ≥ 0,

[(
q × aL

4 , q × aL
3 , q × aL

2 , q × aL
1 ; hL

A), (q × aU
4 , q × aU

3 , q × aU
2 , q × aU

1 ; hU
A

)]
if q ≤ 0.

(5)
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(iii) Division by an ordinary number (q is a nonzero number):

A/q =

⎧
⎪⎪⎨

⎪⎪⎩

[(
aL

1
q ,

aL
2
q ,

aL
3
q ,

aL
4
q ; hL

A

)

,

(
aU

1
q ,

aU
2
q ,

aU
3
q ,

aU
4
q ; hU

A

)]

if q > 0,
[(

aL
4
q ,

aL
3
q ,

aL
2
q ,

aL
1
q ; hL

A

)

,

(
aU

4
q ,

aU
3
q ,

aU
2
q ,

aU
1
q ; hU

A

)]

if q < 0.

(6)

2.2 The concept of signed distances

In this paper, we use a simple procedure based on signed distances to define ordering,
which means we can use both positive and negative values. The concept of signed
distances, also referred to as oriented distances or directed distances, can be used to
determine the rankings of IT2TrFN values (Chen 2011, 2012a). In general, the rank-
ing of fuzzy numbers can be performed using many methods, such as the coefficient
of variation (i.e., CV index) and distance metric between fuzzy sets. However, some
limitations have been found when ranking fuzzy numbers with the CV index, dis-
tance between fuzzy sets, centroid point and original point, and weighted mean value
(Yao and Wu 2000; Abbasbandy and Asady 2006). Conversely, the ranking method
that employs signed distances can effectively rank various fuzzy numbers and their
images (Yao and Wu 2000). Additionally, calculating the signed distance method is
far simpler than calculating other approaches (Abbasbandy and Asady 2006). Notice
that the signed distance method can use both positive and negative values to define
the ordering of fuzzy numbers. This approach is considerably different from the ordi-
nary distance measures (Yao and Wu 2000) because this study employed a signed
distance-based approach for the comparison with IT2TrFN values. For the proof of
the following proposition and properties, see Chen (2011, 2012a).

Proposition 1 Let A be an IT2TrFN defined in the universe of discourse X and
A = [AL , AU ] = [

(aL
1 , aL

2 , aL
3 , aL

4 ; hL
A), (aU

1 , aU
2 , aU

3 , aU
4 ; hU

A )
]
, where 0 < hL

A ≤
hU

A ≤ 1. Let the level 1 fuzzy numbers 0̃1 and 1̃1 map onto the y-axis at x = 0 and
at x = 1, respectively. The signed distances from A to 0̃1 (y-axis at x = 0) or to 1̃1
(y-axis at x = 1) are the following:

d(A, 0̃1) = 1

8

(

aL
1 + aL

2 + aL
3 + aL

4 + 4aU
1 + 2aU

2 + 2aU
3 + 4aU

4

+ 3(aU
2 + aU

3 − aU
1 − aU

4 )
hL

A

hU
A

)

, (7)

d(A, 1̃1) = 1

8

(

aL
1 + aL

2 + aL
3 + aL

4 + 4aU
1 + 2aU

2 + 2aU
3 + 4aU

4

+ 3(aU
2 + aU

3 − aU
1 − aU

4 )
hL

A

hU
A

− 16

)

. (8)
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Property 1 Let A be an IT2TrFN defined on X and A = [
(aL

1 , aL
2 , aL

3 , aL
4 ; hL

A),

(aU
1 , aU

2 , aU
3 , aU

4 ; hU
A )
]
.

(i) d(A, 0̃1) − d(A, 1̃1) = 2.
(ii) A is located at 1̃1 (i.e., aL

1 = aL
2 = aL

3 = aL
4 = aU

1 = aU
2 = aU

3 = aU
4 = 1) if

and only if d(A, 1̃1) = 0 and d(A, 0̃1) = 2.
(iii) A is located at 0̃1 (i.e., aL

1 = aL
2 = aL

3 = aL
4 = aU

1 = aU
2 = aU

3 = aU
4 = 0) if

and only if d(A, 0̃1) = 0 and d(A, 1̃1) = −2.

Property 2 Let A, B, C , and D be four IT2TrFNs defined in the universe
of discourse X , where A = [(aL

1 , aL
2 , aL

3 , aL
4 ; hL

A), (aU
1 , aU

2 , aU
3 , aU

4 ; hU
A )], B =

[(bL
1 , bL

2 , bL
3 , bL

4 ; hL
B), (bU

1 , bU
2 , bU

3 , bU
4 ; hU

B )], C = [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)],
and D = [(0, 0, 0, 0; 1), (0, 0, 0, 0; 1)].
(i) A is closer to C than B if and only if d(A, 1̃1) > d(B, 1̃1).

(ii) A is farther from D than B if and only if d(A, 0̃1) > d(B, 0̃1).

The concept of linguistic variables provides a means for approximate character-
ization of phenomena that are complex or ill-defined to be amenable to description
in conventional quantitative terms (Zadeh 1975; Yuen 2012). In many decision sit-
uations, ratings cannot be measured precisely as decision-makers may express their
assessments or judgments using linguistic terms (Li et al. 2012). Thus, linguistic
variables that can be represented by membership functions are suitable for most
decision models (Yuen 2012). Several studies have provided the linguistic rating
system that contains a nine-point (Wei and Chen 2009; Chen 2012a,b) or seven-
point (Chen et al. 2012; Wang et al. 2012) linguistic rating scale and the correspond-
ing IT2TrFNs to measure alternative ratings. Furthermore, most of the IT2TrFNs
associated with linguistic terms are bounded within the interval [0, 1]. Let A and B be
two IT2TrFN associated with linguistic terms. By applying Property 1, it follows that
the signed distances are d(A, 0̃1) ∈ [0, 2] and d(A, 1̃1) ∈ [−2, 0]. In addition to the
boundary conditions, the signed distances also satisfy the law of trichotomy. Because
d(A, 0̃1) and d(B, 0̃1) are real numbers, they satisfy linear ordering. That is, one of the
following three conditions must be true: d(A, 0̃1) > d(B, 0̃1), d(A, 0̃1) = d(B, 0̃1),
or d(A, 0̃1) < d(B, 0̃1). Similarly, d(A, 1̃1) and d(B, 1̃1) also satisfy linear order-
ing. Accordingly, the signed distance-based procedure can be employed to rank the
IT2TrFN values.

3 Collective decision-making context with incomplete information

Consider an MCGDM problem. Assume that E = {E1, E2, . . . , EK } is the set of
decision-makers involved in the decision process. Let π = (π1, π2, . . . , πK ) be
the weight vector of the decision-makers, where πk ≥ 0 for k = 1, 2, . . . , K and∑K

k=1 πk = 1. An alternative set A = {A1, A2, . . . , Am} consists of m non-inferior
decision alternatives and a criterion set X = {x1, x2, . . . , xn}. The criterion set X can
be generally divided into two sets, Xb and Xc, where Xb denotes a collection of benefit
criteria, Xc denotes a collection of cost criteria, Xb ∩Xc = ∅, and Xb ∪Xc = X . In the
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following, we present an HA approach to aggregate the IT2TrFN data for constructing
a collective decision-making context in the MCGDM analysis.

3.1 Collective decision environment

Based on a WA operation and a signed distance-based OWA operation, we employ
the HA operation to aggregate IT2TrFN information and to build a collective deci-
sion matrix. The operation of hybrid averages can reflect the importance degrees of
each decision-maker and the agreement of individual opinions via the WA and OWA
operations, respectively.

Let an IT2TrFN Ak
i j =

[
AkL

i j , AkU
i j

]
be a criterion value of alternative Ai ∈ A

with respect to criterion x j ∈ X provided by the kth decision-maker, where

k = 1, 2, . . . , K . In addition, AkL
i j =

(
akL

1i j , akL
2i j , akL

3i j , akL
4i j ; hkL

Ai j

)
, AkU

i j =
(

akU
1i j , akU

2i j , akU
3i j , akU

4i j ; hkU
Ai j

)
, and AkL

i j ⊂ AkU
i j . We consider the relative importance

of each decision-maker and incorporate the WA operation into the HA operation.
Additionally, it is essential to obtain group consensus ratings. Thus, the HA opera-
tion aggregates individual weighted ratings to form a common rating using the signed
distance-based OWA operation. The OWA operation requires reordering all of the
given arguments in descending order and then weighting these ordered arguments
(Chen 2012a). Because the signed distance based on IT2TrFNs satisfies the law of
trichotomy, in this paper, a comparison of the IT2TrFN values has been drawn via the
signed distance from 0̃1.

Many methods can be used to determine the OWA weights (Xu 2005; Xu and Yager
2006). Specifically, Xu (2005) developed a normal distribution-based method, which
is defined as follows:

τk = e
− (k−uK )2

2·v2
K

∑K
h̄=1 e

− (h̄−uK )2

2·v2
K

, k = 1, 2, . . . K , (9)

where uK is the mean of the collection of 1, 2, . . ., K , and vK (vK > 0) is the standard
deviation of the collection of 1, 2, . . ., K . That is:

uK = 1

K
· K (1 + K )

2
= 1 + K

2
, (10)

vK =
√
√
√
√ 1

K

K∑

k=1

(k − uK )2. (11)

The HA operation HA
(

A1
i j , A2

i j , . . . , AK
i j

)
with the associated OWA weight vector

τ = (τ1, τ2, . . . , τK ), where τk ∈ [0, 1] and
∑K

k=1 τk = 1, is obtained by (τ1 Ȧσ(1)
i j )⊕

(τ2 · Ȧσ(2)
i j ) ⊕ · · · ⊕ (τK · Ȧσ(K )

i j ), as indicated in the following definition.
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Definition 5 Let an IT2TrFN Ak
i j =

[(
akL

1i j , akL
2i j , akL

3i j , akL
4i j ; hkL

Ai j

)
,
(

akU
1i j , akU

2i j , akU
3i j ,

akU
4i j ; hkU

Ai j

)]
denote the rating of alternative Ai ∈ A with respect to criterion x j ∈ X

provided by the decision-maker Ek ∈ E . Let Ȧk
i j = πk · Ak

i j for all k = 1, 2, . . . , K
as follows:

Ȧk
i j =

[(
ȧkL

1i j , ȧkL
2i j , ȧkL

3i j , ȧkL
4i j ; hkL

Ȧi j

)
,
(

ȧkU
1i j , ȧkU

2i j , ȧkU
3i j , ȧkU

4i j ; hkU
Ȧi j

)]

=
[(

πk × akL
1i j , πk × akL

2i j , πk × akL
3i j , πk × akL

4i j ; hkL
Ai j

)
,

(
πk × akU

1i j , πk × akU
2i j , πk × akU

3i j , πk × akU
4i j ; hkU

Ai j

)]
. (12)

Referring to the OWA weight vector τ = (τ1, τ2, . . . , τK ), the hybrid average evalu-
ation of alternative Ai with respect to criterion x j is defined by:

Âi j =
[

ÂL
i j , ÂU

i j

]
=
[(

âL
1i j , âL

2i j , âL
3i j , âL

4i j ; hL
Âi j

)
,

(

âU
1i j , âU

2i j , âU
3i j , âU

4i j ; hU
Âi j

)]

=
[(

K∑

k=1

(
τk × ȧσ(k)L

1i j

)
,

K∑

k=1

(
τk × ȧσ(k)L

2i j

)
,

K∑

k=1

(
τk × ȧσ(k)L

3i j

)
,

K∑

k=1

(
τk × ȧσ(k)L

4i j

)
; min

k
hσ(k)L

Ȧi j

)

, (13)

(
K∑

k=1

(
τk × ȧσ(k)U

1i j

)
,

K∑

k=1

(
τk × ȧσ(k)U

2i j

)
,

K∑

k=1

(
τk × ȧσ(k)U

3i j

)
,

K∑

k=1

(
τk × ȧσ(k)U

4i j

)
; min

k
hσ(k)U

Ȧi j

)]

,

where (σ (1), σ (2), . . . , σ (K )) is a permutation of (1, 2, . . . , K ) such that
d( Ȧσ(k)

i j , 0̃1) ≥ d( Ȧσ(k−1)
i j , 0̃1) for all k. Additionally, 0 ≤ âL

1i j ≤ âL
2i j ≤ âL

3i j ≤
âL

4i j ≤ 1, 0 ≤ âU
1i j ≤ âU

2i j ≤ âU
3i j ≤ âU

4i j ≤ 1, 0 ≤ hL
Âi j

≤ hU
Âi j

≤ 1, âU
1i j ≤ âL

1i j ,

âL
4i j ≤ âU

4i j , and ÂL
i j ⊂ ÂU

i j .

The collective decision matrix D̂ is expressed in the following way:

D̂ =

x1 x2 · · · xn

A1
A2
...

Am

⎡

⎢
⎢
⎢
⎣

[ ÂL
11, ÂU

11]
[ ÂL

21, ÂU
21]

...

[ ÂL
m1, ÂU

m1]

[ ÂL
12, ÂU

12]
[ ÂL

22, ÂU
22]

...

[ ÂL
m2, ÂU

m2]

· · ·
· · ·
. . .

· · ·

[ ÂL
1n, ÂU

1n]
[ ÂL

2n, ÂU
2n]

...

[ ÂL
mn, ÂU

mn]

⎤

⎥
⎥
⎥
⎦

. (14)

The collective data with respect to each criterion are normalized to the maximum
criterion values for benefit criteria and the minimum criterion values for cost criteria.
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Let â+
j = maxi1 âU

4i1 j (for x j ∈ Xb) and â−
j = mini1 âU

1i1 j (for x j ∈ Xc). The

transformed outcome of Âi j is obtained by the following:

Ai j =
[

AL
i j , AU

i j

]
=
[(

aL
1i j , aL

2i j , aL
3i j , aL

4i j ; hL
Ai j

)
,
(

aU
1i j , aU

2i j , aU
3i j , aU

4i j ; hU
Ai j

)]

=

⎧
⎪⎪⎨

⎪⎪⎩

[(
âL

1i j

â+
j

,
âL

2i j

â+
j

,
âL

3i j

â+
j

,
âL

4i j

â+
j

; hL
Âi j

)

,

(
âU

1i j

â+
j

,
âU

2i j

â+
j

,
âU

3i j

â+
j

,
âU

4i j

â+
j

; hU
Âi j

)]

if x j ∈ Xb,

[(
â−

j

âL
4i j

,
â−

j

âL
3i j

,
â−

j

âL
2i j

,
â−

j

âL
1i j

; hL
Âi j

)

,

(
â−

j

âU
4i j

,
â−

j

âU
3i j

,
â−

j

âU
2i j

,
â−

j

âU
1i j

; hU
Âi j

)]

if x j ∈ Xc.

(15)

The normalized collective decision matrix D is constructed as follows:

x1 x2 · · · xn

D =
A1
A2
...

Am

⎡

⎢
⎢
⎢
⎣

[AL
11, AU

11]
[AL

21, AU
21]

...

[AL
m1, AU

m1]

[AL
12, AU

12]
[AL

22, AU
22]

...

[AL
m2, AU

m2]

· · ·
· · ·
. . .

· · ·

[AL
1n, AU

1n]
[AL

2n, AU
2n]

...

[AL
mn, AU

mn]

⎤

⎥
⎥
⎥
⎦

. (16)

Additionally, the characteristics of alternative Ai can be represented by the IT2TrFN
in the following way:

Ai =
{〈

x j , [AL
i j , AU

i j ]
〉 ∣
∣x j ∈ X

}
. (17)

3.2 Incomplete preference structure

In the MCGDM process, decision-makers may express some preference relations
on weights of criteria according to their knowledge, past experience, and subjective
judgments. Usually such information of criterion weights is incomplete (Li 2011).
The incomplete information about criterion weights can be generally constructed by
several basic ranking forms (Xu 2010; Wei et al. 2011; Li 2011).

Definition 6 Let w j be the weight of criterion x j ∈ X , which satisfies the normaliza-
tion conditions: w j ∈ [0, 1] ( j = 1, 2, . . . , n) and

∑n
j=1 w j = 1. Let �0 denote a set

of all weight vectors, and

�0 =
⎧
⎨

⎩
(w1, w2, . . . , wn)

∣
∣
∣
∣
∣
∣
w j ≥ 0( j = 1, 2, . . . , n),

n∑

j=1

w j = 1

⎫
⎬

⎭
. (18)

The five basic ranking forms of incomplete weight information are as follows:

(i) A weak ranking:

�1 ={ (w1, w2, . . . , wn) ∈ �0| w j1 ≥ w j2 for all j1 ∈ϒ1 and j2 ∈�1
}
, (19)
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where ϒ1 and �1 are two disjointed subsets of the subscript index set N =
{1, 2, . . . , n} for all criteria.

(ii) A strict ranking:

�2 = {
(w1, w2, . . . , wn) ∈ �0| β j1 j2 ≥ w j1 − w j2 ≥ δ j1 j2 for all j1 ∈ ϒ2 and j2 ∈ �2

}
,

(20)

where β j1 j2 > 0 and δ j1 j2 > 0 are constants, satisfying β j1 j2 > δ j1 j2 ; ϒ2 and �2
are two disjointed subsets of N .

(iii) A ranking of differences (or strength of preference):

�3 ={ (w1, w2, . . . , wn)∈�0| w j1 −w j2 ≥ w j2 − w j3 for all j1 ∈ϒ3, j2 ∈�3, and j3 ∈ �3
}
,

(21)

where ϒ3, �3, and �3 are three disjointed subsets of N .
(iv) An interval bound:

�4 ={(w1, w2, . . . , wn) ∈ �0| δ j1 + ε j1 ≥ w j1 ≥ δ j1 for all j1 ∈ ϒ4
}
, (22)

where δ j1 ≥ 0 and ε j1 ≥ 0 are constants, satisfying 0 ≤ δ j1 ≤ δ j1 + ε j1 ≤ 1;
ϒ4 is a subsets of N .

(v) A ratio bound (or ranking with multiples):

�5 ={(w1, w2, . . . , wn)∈�0| w j1 ≥ δ j1 j2 . . . w j2 for all j1 ∈ϒ5 and j2 ∈�5
}
,

(23)

where δ j12 is a constant, satisfying 0 ≤ δ j12 ≤ 1; ϒ5 and �5 are two disjointed
subsets of N . Finally, the known information structure � consists of the above
five sets �1, �2, . . ., and �5 as follows:

� = �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5. (24)

The multiple decision-makers may provide different, even conflicting, opinions
on the preference information of the criteria. Thus, some conditions in � do not
simultaneously hold because of inconsistent information. In this case, there may be
no feasible solutions for the criterion weights. To overcome this difficulty, several
deviation variables were introduced to mitigate the inconsistent weight information in
this study. These deviation variables could relax the constraints of criterion weights in
� to solve the feasible weights under the situation of preference conflict in criterion
importance. For j1 
= j2 
= j3, the conditions in � are relaxed to �′ by introducing
the non-negative deviation variables e−

(i) j1 j2
, e−

(ii) j1 j2
, e+

(ii) j1 j2
, e−

(iii) j1 j2 j3
, e−

(iv) j1
, e+

(iv) j1
,

and e−
(v) j1 j2

, which are defined as follows:
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(i) A relaxed weak ranking:

�′
1 =

{
(w1, w2, . . . , wn) ∈ �0| w j1 + e−

(i) j1 j2
≥ w j2 for all j1 ∈ ϒ1 and j2 ∈ �1

}
.

(25)

(ii) A relaxed strict ranking:

�′
2 =

{
(w1, w2, . . . , wn) ∈ �0

∣
∣
∣w j1 − w j2 + e−

(ii) j1 j2
≥ δ j1 j2 , w j1 − w j2 − e+

(ii) j1 j2
≤ β j1 j2

for all j1 ∈ ϒ2 and j2 ∈ �2} . (26)

(iii) A relaxed ranking of differences:

�′
3 =

{
(w1, w2, . . . , wn) ∈ �0|w j1 − 2w j2 + w j3 + e−

(iii) j1 j2 j3
≥ 0 for all j1 ∈ ϒ3,

j2 ∈ �3, and j3 ∈ �3} . (27)

(iv) A relaxed interval bound:

�′
4 =
{

(w1, w2, . . . , wn) ∈ �0| w j1 +e−
(iv) j1

≥ δ j1 , w j1 −e+
(iv) j1

≤ δ j1 +ε j1 for all j1 ∈ ϒ4

}
.

(28)

(v) A relaxed ratio bound:

�′
5 =

{

(w1, w2, . . . , wn) ∈ �0

∣
∣
∣
∣
w j1

w j2
+ e−

(v) j1 j2
≥ δ j1 j2 for all j1 ∈ ϒ5 and j2 ∈ �5

}

.

(29)

Finally, the set �′ of the relaxed conditions about criterion weights is given by:

�′ = �′
1 ∪ �′

2 ∪ �′
3 ∪ �′

4 ∪ �′
5. (30)

4 Interactive decision-making method on IT2TrFNs

This section presents an interactive method for solving an MCGDM problem with
IT2TrFN data. An integrated nonlinear programming model based on the concept
of signed distance-based closeness coefficients was constructed to estimate criterion
weights under the incomplete preference structure. Furthermore, according to the
decision-makers’ feedback on the acceptable levels of satisfaction toward the solution
results, an interactive procedure was developed to achieve an optimum satisfactory
solution among the decision-makers.

4.1 The integrated programming model

In the IT2TrFN framework, we employed the concept of signed distances to derive the
separations for each alternative from the positive-ideal and negative-ideal solutions
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independently and then to determine the signed distance-based closeness coefficient.
Because the values of the normalized ratings are between zero and one, the specifi-
cations of the positive-ideal solution, denoted as A+, and the negative-ideal solution,
denoted as A−, are as follows:

A+ = {〈
x j , [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)]

〉 ∣
∣x j ∈ X

}
, (31)

A− = {〈
x j , [(0, 0, 0, 0; 1), (0, 0, 0, 0; 1)]

〉 ∣
∣x j ∈ X

}
. (32)

Let A+
j = [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)] and A−

j = [(0, 0, 0, 0; 1), (0, 0, 0, 0; 1)]

for all x j ∈ X . According to Property 1, we know that d(A+
j , 1̃1) = 0, d(A+

j , 0̃1) = 2,

d(A−
j , 1̃1) = −2, and d(A−

j , 0̃1) = 0. For each Ai , it is obvious that the signed dis-

tances from Ai j to A+
j and Ai j to A−

j can be calculated with d(Ai j , 1̃1) and d(Ai j , 0̃1),
respectively, because the positions of the individual ratings in the positive-ideal and
negative-ideal solutions are placed on the y-axis at x=1 and at x = 0, respectively. It
follows that:

d(Ai j , A+
j ) = d(Ai j , 1̃1), (33)

d(Ai j , A−
j ) = d(Ai j , 0̃1). (34)

Let S(Ai j , A+
j ) and S(Ai j , A−

j ) denote the weighted signed distances from Ai j to A+
j

and Ai j to A−
j , respectively. For each set, Ai ∈ A and x j ∈ X ,

S(Ai j , A+
j ) = w j · d(Ai j , A+

j )

= w j

8

(
aL

1i j + aL
2i j + aL

3i j + aL
4i j + 4aU

1i j + 2aU
2i j + 2aU

3i j + 4aU
4i j

+3(aU
2i j + aU

3i j − aU
1i j − aU

4i j ) ·
(

hL
Ai j

/
hU

Ai j

)
− 16

)
, (35)

S(Ai j , A−
j ) = w j · d(Ai j , A−

j )

= w j

8

(
aL

1i j + aL
2i j + aL

3i j + aL
4i j + 4aU

1i j + 2aU
2i j + 2aU

3i j + 4aU
4i j

+3(aU
2i j + aU

3i j − aU
1i j − aU

4i j ) ·
(

hL
Ai j

/
hU

Ai j

))
. (36)

The closeness of the alternative Ai and the ideal solutions was determined based
on the weighted signed distances. More specifically, the average signed distances
(1/n) ·∑n

j=1 S(Ai j , A+
j ) and (1/n) ·∑n

j=1 S(Ai j , A−
j ) were calculated to identify

the signed distance-based closeness coefficient of each Ai . For i = 1, 2, . . . , m, let
CCi denote the signed distance-based closeness coefficient of Ai as follows:

CCi =
1
n

∑n
j=1 S(Ai j , A−

j )

1
n

∑n
j=1 S(Ai j , A−

j ) − 1
n

∑n
j=1 S(Ai j , A+

j )
. (37)
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Recall that d(A, 0̃1) − d(A, 1̃1) = 2 in Property 1. For the denominator in the right-
hand side, we obtain:

1

n

n∑

j=1

S(Ai j , A−
j ) − 1

n

n∑

j=1

S(Ai j , A+
j ) = 1

n
·

n∑

j=1

[
w j

(
d(Ai j , 0̃1) − d(Ai j , 1̃1)

)]

= 2

n
·

n∑

j=1

w j = 2

n
.

Therefore, CCi can be expressed as follows:

CCi = 1

2

n∑

j=1

S(Ai j , A−
j )

= 1

16

n∑

j=1

[
w j ·

(
aL

1i j + aL
2i j + aL

3i j + aL
4i j + 4aU

1i j + 2aU
2i j + 2aU

3i j + 4aU
4i j

+3(aU
2i j + aU

3i j − aU
1i j − aU

4i j ) ·
(

hL
Ai j

/
hU

Ai j

))]
(38)

It is clear that 0 ≤ CCi ≤ 1. In addition, CCi =1 if Ai = A+
j , and CCi = 0 if

Ai = A−
j . The alternative Ai is closer to A+

j and farther from A−
j as CCi approaches

1. The alternative with the largest signed distance-based closeness coefficient is the
one prescribed to the decision-makers.

However, the crisp values of criterion weights are unknown, and we only have some
imprecise or partial information about the importance weights. Thus, an integrated
programming model based on signed distance-based closeness coefficients was estab-
lished to estimate the importance weights of criteria from incomplete and inconsistent
information. For each alternative Ai , we can obtain the largest signed distance-based
closeness coefficient by maximizing CCi under the relaxed conditions �′ about cri-
terion weights. Conversely, for smaller values of the deviation variables, the criterion
weights w j are closer to the constraints in �. Furthermore, if the deviation variables are
close to zero, then there is no gross violation of the conditions in �. Therefore, we have
a second objective to minimize

∑
j1, j2, j3 (e−

(i) j1 j2
+ e−

(ii) j1 j2
+ e+

(ii) j1 j2
+ e−

(iii) j1 j2 j3
+

e−
(iv) j1

+e+
(iv) j1

+e−
(v) j1 j2

). With consideration of the two objectives of maximal signed

distance-based closeness coefficient and minimal deviation variables under the relaxed
conditions �′, a bi-objective programming model was established as follows:

max {CCi }

min

⎧
⎨

⎩

∑

j1, j2, j3

(
e−
(i) j1 j2

+ e−
(ii) j1 j2

+ e+
(ii) j1 j2

+ e−
(iii) j1 j2 j3

+ e−
(iv) j1

+ e+
(iv) j1

+ e−
(v) j1 j2

)
⎫
⎬

⎭
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[M1]s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(w1, w2, . . . , wn) ∈ �′
e−
(i) j1 j2

≥ 0 j1 ∈ ϒ1 and j2 ∈ �1,

e−
(ii) j1 j2

≥ 0, e+
(ii) j1 j2

≥ 0 j1 ∈ ϒ2 and j2 ∈ �2,

e−
(iii) j1 j2 j3

≥ 0 j1 ∈ ϒ3, j2 ∈ �3, and j3 ∈ �3,

e−
(iv) j1

≥ 0, e+
(iv) j1

≥ 0 j1 ∈ ϒ4,

e−
(v) j1 j2

≥ 0 j1 ∈ ϒ5 and j2 ∈ �5,

(39)

for each Ai ∈ A.
There are m alternatives in the set A; thus, a total of m bi-objective programming

models need to be solved to produce m optimal solutions of criterion weights. Although
the optimal weight vector for each alternative can be determined, these optimal weights
may be different among the m models in general. As a result, the corresponding signed
distance-based closeness coefficients for the m alternatives cannot be compared on the
equity basis. Accordingly, an integrated programming model needs to be constructed
to determine common weight vectors for a consistent comparative basis. In view of the
fact that the decision-makers cannot easily or evidently judge the preference relations
among all of the non-inferior alternatives, it is reasonable to assume that all non-
inferior alternatives are of equal importance. In addition, the models in [M1] for all
Ai ∈ A have the same constraints, and the m models can be combined to formulate a
single multiple objective programming model:

max {CC1, CC2, . . . , CCm}

min

⎧
⎨

⎩

∑

j1, j2, j3

(
e−
(i) j1 j2

+ e−
(ii) j1 j2

+ e+
(ii) j1 j2

+ e−
(iii) j1 j2 j3

+ e−
(iv) j1

+ e+
(iv) j1

+ e−
(v) j1 j2

)
⎫
⎬

⎭

[M2]s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(w1, w2, . . . , wn) ∈ �′
e−
(i) j1 j2

≥ 0 j1 ∈ ϒ1 and j2 ∈ �1,

e−
(ii) j1 j2

≥ 0, e+
(ii) j1 j2

≥ 0 j1 ∈ ϒ2 and j2 ∈ �2,

e−
(iii) j1 j2 j3

≥ 0 j1 ∈ ϒ3, j2 ∈ �3, and j3 ∈ �3,

e−
(iv) j1

≥ 0, e+
(iv) j1

≥ 0 j1 ∈ ϒ4,

e−
(v) j1 j2

≥ 0 j1 ∈ ϒ5 and j2 ∈ �5.

(40)

The second objective function in [M2] is equivalent to the following objective func-

tion: max
{
−∑ j1 , j2 , j3(e

−
(i) j1 j2

+ e−
(ii) j1 j2

+ e+
(ii) j1 j2

+ e−
(iii) j1 j2 j3

+ e−
(iv) j1

+ e+
(iv) j1

+e−
(v) j1 j2

)
}

. Let λ be a real number. By utilizing the max-min operator, the model

in [M2] can be integrated with the following single-objective nonlinear programming
model:

[M3]

max λ

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CCi ≥ λ i = 1, 2, . . . , m,

−∑ j1, j2, j3∈N

(
e−
(i) j1 j2

+e−
(ii) j1 j2

+ e+
(ii) j1 j2

+e−
(iii) j1 j2 j3

+ e−
(iv) j1

+e+
(iv) j1

+ e−
(v) j1 j2

)
≥ λ,

(w1, w2, . . . , wn) ∈ �′,
e−
(i) j1 j2

≥ 0 j1 ∈ ϒ1 and j2 ∈ �1,

e−
(ii) j1 j2

≥ 0, e+
(ii) j1 j2

≥ 0 j1 ∈ ϒ2 and j2 ∈ �2,

e−
(iii) j1 j2 j3

≥ 0 j1 ∈ ϒ3, j2 ∈ �3, and j3 ∈ �3,

e−
(iv) j1

≥ 0, e+
(iv) j1

≥ 0 j1 ∈ ϒ4,

e−
(v) j1 j2

≥ 0 j1 ∈ ϒ5 and j2 ∈ �5.

(41)

123



Multiple criteria group decision analysis 337

The optimal weight vector w̄ = (w̄1, w̄2, . . . , w̄n) and the optimal deviation values
ē−
(i) j1 j2

, ē−
(ii) j1 j2

, ē+
(ii) j1 j2

, ē−
(iii) j1 j2 j3

, ē−
(iv) j1

, ē+
(iv) j1

, and ē−
(v) j1 j2

( j1, j2, j3 ∈ N ) can be

obtained by solving the programming problem in [M3]. If all values of ē−
(i) j1 j2

, ē−
(ii) j1 j2

,

ē+
(ii) j1 j2

, ē−
(iii) j1 j2 j3

, ē−
(iv) j1

, ē+
(iv) j1

, and ē−
(v) j1 j2

are equal to zero, then the optimal weight

vector w̄ satisfies all conditions contained in the incomplete preference information
provided by the decision-makers. Otherwise, the resulting weight values are in con-
flict with some constraints in �. Finally, we apply (w̄1, w̄2, . . . , w̄n) to calculate the
corresponding signed distance-based closeness coefficients CCi for all Ai ∈ A. The
ranking of all alternatives can be determined along the decreasing order of the CCi

values.

4.2 The interactive method

To reach a consensus and acquire a satisfactory solution, an interactive procedure was
developed to facilitate the decision-makers to modify or complete their requirements
for satisfactory solutions with ease and compared the reference solution yielded by the
integrated programming model in [M3]. In doing this, the unsatisfied decision-makers
must provide an acceptable satisfaction level (i.e., the lower bounds of the degree
of satisfaction) for the undesirable results. Next, we incorporated a set of relevant
conditions into the model [M3] to represent additional bounds on signed distance-
based closeness coefficients.

A high signed distance-based closeness coefficient CCi of alternative Ai reflects
a higher the degree of satisfaction of Ai . Thus, the CCi values for each Ai ∈ A
can be employed to identify the degree of satisfaction of each alternative. Let

Z(Ai ) = Z
({〈

x j , [AL
i j , AU

i j ]
〉 ∣
∣x j ∈ X

})
denote a satisfactory function regarding

the overall performance of the alternative Ai . The function of signed distance-based
closeness coefficients can be employed to define a satisfactory function, but a satis-
factory function is not necessarily a function of closeness coefficients. Accordingly,
the discussed satisfactory function fulfills the following property:

CCi1 ≥ CCi2 ⇒ Z(Ai1) ≥ Z(Ai2). (42)

Possible maximal and minimal values of CCi are 1 and 0, respectively. For brevity, it
was assumed that the satisfactory function takes the form of a signed distance-based
closeness coefficient in this paper; that is:

Z(Ai ) = CCi . (43)

The more complicated forms can be expected to define the satisfactory function in
future research.

Assume that there are κ decision-makers dissatisfied with the solution results, where

κ ≤ K . Let
�

Zk(Ai ) (i = 1, 2, . . . , m; k = 1, 2, . . . , κ) denote the lower acceptable
bound for the degree of satisfaction for alternative Ai provided by the kth decision-
maker according to the Z(Ai ) (= CCi ) values yielded by [M3]. Considering the
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individual weights of the κ decision-makers, the aggregated lower bound of the degree
of satisfaction for alternative Ai can be obtained by fusing the unsatisfied decision-
makers’ opinions in the following:

�

Z(Ai ) =
∑κ

k=1 πk · �

Zk(Ai )
∑κ

k=1 πk
. (44)

Let εi denote an indifference threshold of the aggregated degree of satisfaction
�

Z (Ai ) for each alternative Ai , where εi ≥ 0. That is, the difference in
�

Z (Ai ) of εi or
less is assumed to be insignificant. Let the unsatisfactory set � denote the index set

for the subset of all alternatives for which Z(Ai ) <
�

Z (Ai ) − εi :

� =
{

i
∣
∣
∣
�

Z(Ai ) − Z(Ai ) > εi , i = 1, 2, . . . , m
}

=
{

i
∣
∣
∣
�

Z (Ai ) − CCi > εi , i = 1, 2, . . . , m
}

. (45)

If � = ∅, then the signed distance-based closeness coefficient CCi of each alternative
Ai fulfills the decision-makers’ requirements in some sense, and the solution results
achieve an acceptable level of satisfaction for common preferences. Conversely, if

� 
= ∅, the analyst should incorporate additional constraints of CCi ≥ �

Z(Ai ) − εi

for i ∈ � into the integrated programming model with the signed distance-based close-
ness coefficient approach based on IT2TrFNs to ensure that the solution results can
gradually satisfy the decision-makers’ preferences in the course of decision making.

Recall that solving the model in [M3] would produce the initial optimal weight
vector w̄ = (w̄1, w̄2, . . . , w̄n). Accordingly, the corresponding signed distance-based
closeness coefficient CCi , which represents the satisfactory degree Z(Ai ), could be
obtained for all Ai ∈ A. In the interactive process, the decision-makers are requested to
refer Z(Ai ) values. If some decision-makers are dissatisfied with the solution results,
they are requested to give the acceptable lower bound of the degree of satisfaction
for those undesirable results. After aggregating the lower bound opinions to acquire
�

Z(Ai ) of Ai ∈ A, we establish the following nonlinear programming model:

[M4]

max λ

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CCi ≥ λ i = 1, 2, . . . , m,

−∑ j1, j2, j3∈N

(
e−
(i) j1 j2

+e−
(ii) j1 j2

+e+
(ii) j1 j2

+e−
(iii) j1 j2 j3

+e−
(iv) j1

+ e+
(iv) j1

+ e−
(v) j1 j2

)
≥ λ,

CCi ≥�

Z (Ai ) − εi i ∈ �,

(w1, w2, . . . , wn) ∈ �′,
e−
(i) j1 j2

≥ 0 j1 ∈ ϒ1 and j2 ∈ �1,

e−
(ii) j1 j2

≥ 0, e+
(ii) j1 j2

≥ 0 j1 ∈ ϒ2 and j2 ∈ �2,

e−
(iii) j1 j2 j3

≥ 0 j1 ∈ ϒ3, j2 ∈ �3, and j3 ∈ �3,

e−
(iv) j1

≥ 0, e+
(iv) j1

≥ 0 j1 ∈ ϒ4,

e−
(v) j1 j2

≥ 0 j1 ∈ ϒ5 and j2 ∈ �5.

(46)

Solving the model in [M4], we can obtain the optimal weight vector ¯̄w =
( ¯̄w1, ¯̄w2, . . . , ¯̄wn) and the optimal deviation values ¯̄e−

(i) j1 j2
, ¯̄e−

(ii) j1 j2
, ¯̄e+

(ii) j1 j2
, ¯̄e−

(iii) j1 j2 j3
,
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Set the iteration counter 
and the indifferent threshold 

of each alternative.

Identify incomplete preference 
information by means of weak order, 
strict order, difference order, interval 

bound, and ratio bound.

Decision-makers evaluate the 
alternatives with respect to the 
predefined criteria and convert 

these evaluations into IT2TrFNs.

Construct the normalized 
collective decision matrix using a 

hybrid averaging approach.

Relax the constraints of criterion 
weights and establish the integrated 

programming model using [M3].

Provide the decision-makers with the 
results of satisfactory functions 

(defined by the closeness 
coefficients).

Request the unsatisfied decision-
makers to give the acceptably lower 

bound of the satisfactory degree.

Compute the aggregated lower 
bound and identify the 

unsatisfactory set.

Solve for the optimal solution and 
derive the signed distance-based 

closeness coefficients.

Is the unsatisfactory set
an empty set?

Incorporate additional constraints
and establish the modified integrated 

programming model using [M4].

Rank the alternatives and 
determine the best choice.

End the procedure and 
present the final results.

YesYes

NoNo

Fig. 1 Flowchart of the proposed method

¯̄e−
(iv) j1

, ¯̄e+
(iv) j1

, and ¯̄e−
(v) j1 j2

( j1, j2, j3 ∈ N ). Next, we apply ( ¯̄w1, ¯̄w2, . . . , ¯̄wn) to calcu-

late the corresponding signed distance-based closeness coefficient CCi for all Ai ∈ A.

Show the updated degree of satisfaction ¯̄Z(Ai )(= CCi ) to the decision-makers and
proceed the interactive method until a satisfactory solution with group consensus is
achieved. If there are no feasible solutions in the model of [M4], the decision-makers

need to reconsider and readjust the lower bound
�

Zk(Ai )(k = 1, 2, . . . , κ) regarding
the degree of satisfaction for alternative Ai (i ∈ �) until a feasible solution is obtained.
Furthermore, the condition of � = ∅ can be used as a stopping rule in the process of
interactions. While the stopping condition is satisfied, the resulting ranking order of

m alternatives can be obtained according to the decreasing order of the CCi values.

123



340 T.-Y. Chen

4.3 The proposed algorithm

For an MCGDM problem, form a committee of decision-makers (E = {E1, E2, . . . ,

EK }) and identify the relative importance weights (π = (π1, π2, . . . , πK )) of these
decision-makers. Specify the evaluation criteria (X = {x1, x2, . . . , xn}) and generate
feasible alternatives (A = {A1, A2, . . . , Am}). Figure 1 shows the flowchart of the
developed method.

For an IT2TrFN environment with incomplete/inconsistent preference information,
the interactive group decision-making method using an integrated programming model
based on the signed distance-based closeness coefficient approach is given by the
following series of successive steps:

Step 0: Each iteration in this algorithm will be labeled ζ , where ζ = 0, 1, 2, . . .. Set
the iteration counter: ζ = 0. Set the value of the indifferent threshold εi for
each Ai ∈ A, where εi ≥ 0.

Step 1: Request the decision-makers to provide their preference over all criteria by
means of weak order, strict order, difference order, interval bound, and ratio
bound, as depicted in (19)–(23), respectively, and further construct the set
� with the known information using (24).

Step 2: Request the decision-makers to evaluate the alternatives using each criterion
and then, convert these evaluations into IT2TrFNs.

Step 3: Construct the normalized collective decision matrix D and acquire the signed
distance-based closeness coefficient CCi for each Ai ∈ A.

3.1: Apply (12) to calculate the weighted ratings Ȧk
i j of individual IT2TrFN data

by multiplying the weights of the decision-makers.
3.2: Derive the weighting vector (τ = (τ1, τ2, . . . , τK )) in the OWA operation

according to the normal distribution based method in (9)–(11).
3.3: Calculate the signed distance d( Ȧk

i j , 0̃1) from Ȧk
i j to 0̃1 using Proposition

1 and reorder all of the weighted ratings in descending order of signed
distances.

3.4: Compute the hybrid average Âi j for the group consensus opinion using the
HA operation in (13) for each Ai ∈ A and x j ∈ X .

3.5: Construct the collective decision matrix D̂ in (14).
3.6: Apply (15) to establish the normalized collective decision matrix D in (16).

In addition, calculate the signed distance d(Ai j , 0̃1) for each Ai ∈ A and
x j ∈ X .

3.7: For each alternative characteristic of Ai in (17), determine the signed
distance-based closeness coefficient CCi using (38).

Step 4: Relax the constraints of criterion weights by introducing the deviation vari-
ables, as depicted in (25)–(29). Next, construct the set �’ of the relaxed
conditions using (30).

Step 5: Establish the integrated programming model using [M3] and solve for the
optimal weight vector w̄. Apply w̄ to calculate the corresponding signed
distance-based closeness coefficients CCi for all Ai ∈ A.

Step 6: Identify the unsatisfactory set �ζ .
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6.1: Provide the decision-makers with the results of the satisfactory function
Z(Ai )(= CCi ) for all Ai ∈ A. Request the unsatisfied function to give the

acceptable lower bound
�

Zk (Ai ) for each undesirable result.
6.2: Apply the individual weights of the unsatisfied decision-makers to compute

the aggregated lower bound
�

Z (Ai ) of the degree of satisfaction using (44).

6.3: Use the condition of
�

Z (Ai ) − Z(Ai ) > εi (i.e.,
�

Z (Ai ) − CCi > εi ) in
(45) to identify the unsatisfactory set �ζ .

Step 7: While the stopping condition is false, do Steps 8-11.
Step 8: Establish the modified integrated programming model using [M4] and solve

for the optimal weight vector ¯̄wζ .

Step 9: Apply ¯̄wζ to calculate the signed distance-based closeness coefficient CC
ζ

i

for all Ai ∈ A. Let the updated satisfactory degree ¯̄Z(Ai )
ζ be CC

ζ

i .
Step 10: Update the unsatisfactory set �ζ .

10.1: Show the updated satisfactory function ¯̄Z(Ai )
ζ of each Ai ∈ A and request

the unsatisfied decision-makers to give the acceptable lower bound
�

Zk (Ai )
ζ

for each undesirable result.
10.2: Compute the aggregated lower bound

�

Z (Ai )
ζ of the satisfactory degree

using (44).

10.3: Use the condition of
�

Z (Ai )
ζ − ¯̄Z(Ai )

ζ > εi (i.e.,
�

Z (Ai )
ζ − CC

ζ

i > εi ) in
(45) to identify the unsatisfactory set �ζ .

Step 11: Test for the stopping condition and update the iteration counter. If �ζ = ∅,
then go to Step 12; otherwise, reset the ζ value (ζ (new) = ζ (old) + 1) and
continue.

Step 12: Rank the m alternatives in decreasing order of the CC
ζ

i values and determine
the best choice.

5 A case study of patient-centered medicine

The decision-making environment of a patient-centered healthcare system is more
complex than the decision-making process of an individual due to the involvement
of multiple decision-makers, including healthcare personnel, patients, and their fam-
ilies. The attending physician cannot independently perform many crucial health-
care decisions for the patients. Compared with the decision making by individuals,
the patient-centered healthcare system adopts a group decision-making method that
considers the professional judgments of the entire medical team, the patients’ incli-
nations, and the opinions of the family. The viewpoints and subjective opinions of
multiple decision-makers are integrated to comprehensively consider the assessed
issue. The following practical example involves a patient-centered medical prob-
lem of basilar artery occlusion (BAO) to illustrate the implementation of the pro-
posed interactive signed distance-based closeness coefficient method in the IT2TrFN
framework.
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5.1 Problem description

The case study was from the Department of Neurology, Chang Gung Memorial
Hospital in Taiwan. The patient was an 82-year-old widowed male with a history of
hypertension. Because of complaints of physical discomfort, the patient was brought
to the hospital by his eldest son and daughter-in-law, who live in the same residence.
The physician made an initial diagnosis of acute cerebrovascular disease and arranged
an immediate examination. The patient was a retired government employee with two
sons and one daughter, who were all married with children. He lived a frugal life with
his eldest son and considered physical examinations and treatments to be a waste of
money due to his old age and probability of dying at any time (which would allow him
to join his wife). In addition to his concerns about expensive medical bills, he disliked
the feeling of staying in a hospital and hoped to return home as soon as possible.
While waiting for his examination results and diagnosis, his condition deteriorated,
and he fell into a coma when the definitive diagnosis was made. His younger son and
daughter rushed to the hospital upon being informed by their older brother.

Because the patient was unconscious, the attending physician explained the diagno-
sis of BAO to his family members. BAO is an acute cerebrovascular disease caused by
a complete or partial occlusion of the basilar artery. BAO is characterized by a gradual
disturbance in consciousness, rapid progression, and a critical and poor prognosis.
The attending physician assessed the patient’s medical history and current physical
conditions and provided the following treatment options: intravenous thrombolysis,
intra-arterial thrombolysis, antiplatelet treatment, and heparinization. To allow the
patient’s family members to fully understand the advantages and disadvantages of
each treatment, the physician described the four treatment methods using several cri-
teria, as summarized in Table 1.

Each treatment has its own advantages and disadvantages. The physician wanted the
family members to thoroughly discuss these options and select the treatment method
with a group decision. The family members’ opinions diverged during the discussion.
The patient lived with his eldest son and family, and his eldest son and daughter-in-law
were providing his daily care. Therefore, the eldest son thought that he did not need
to pay for a portion of the cost of the surgery, while his wife was more concerned
about the prognosis of her father-in-law’s self-care capacity, worrying about whether
she would need to exert more efforts when caring for her father-in-law. The younger
son felt that the cost of the surgery did not matter, but he proposed that each of the
three siblings pay an equal fraction of the cost and take turns caring for their father
during the hospitalization. The daughter was the youngest of the three siblings and
received the most attention from her father since childhood. Thus, she was the closest
to her father. She wanted the physician to utilize the most effective treatment, such
that her father would recover completely. She also worried about the development of
complications, which may pose a significant physical burden on her elderly father.

The patient’s three children expressed their preferences with respect to some of
the assessment criteria. Because the responsibilities of daily care usually fell to the
eldest son’s wife, she was also asked to express her opinion. Although the patient had
already lost consciousness, when he was awake, he indicated that he did not want to
pay high medical expenses for his treatment due to his old age and wanted to return to
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Table 1 Descriptions of the treatment methods using the assessment criteria

A1 (Intravenous thrombolysis)

1. A very high survival rate

2. The possibility of allergic reaction. These side effects are not expected to have a high severity

3. The possibility of an intracerebral hemorrhagea as a complication

4. A 60 % probability of a cure if recanalization is achieved

5. No pain/discomfort during treatment

6. A greater out-of-pocket expense, even though the procedure is covered by the patient’s
health benefits

7. A shorter hospitalization if recanalization is achieved

8. The probability of recurrence is less than average

9. The prognosis for the patient’s self-care capacity is less than average

A2 (Intra-arterial thrombolysis)

1. A very high survival rate

2. The possibility of a blood pressure drop and local contusions. These side effects are not
expected to have a high severity

3. The possibility of an intracerebral hemorrhage as a complication. The probability is a little
higher than that of A1

4. A very high probability of a cure

5. An intravenous catheter is used during the treatment, which generates more discomfort than
an intravenous injection

6. The procedure is not covered by health insurance and is expensive (about NT$200K)
compared with the out-of-pocket expenses under health benefits

7. A short hospitalization

8. A very low probability of a recurrence

9. A moderate prognosis for the patient’s self-care capacity

A3 (Antiplatelet treatment)

1. A moderate survival rate

2. The possibility of a low-severity contusion or allergic reaction

3. The possibility of progressive strokeb as a complication, which may aggravate and prolong
the disease course

4. A very low or near-zero probability of a cure

5. No pain/discomfort during treatment

6. Health insurance covers most of the expenses, with a very low out-of-pocket expense

7. A very long hospitalization

8. The highest probability of a recurrence due to ineffective therapeutic effects

9. The worst prognosis for the patient’s self-care capacity

A4 (Heparinization)

1. A high survival rate

2. The possibility of contusions, allergic reactions, and thrombocytopenia as side effects. The
severity is relatively high

3. The possibility of an intracerebral hemorrhage as a complication, but with a lower severity
compared with A1 and A2

4. A relatively low probability of a cure

5. No pain/discomfort during the treatment

6. Low coverage by the patient’s health insurance and moderately higher out-of-pocket expenses
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Table 1 continued

7. A slightly longer hospitalization

8. A significantly high probability of a recurrence

9. A poor prognosis for the patient’s self-care ability
a Refers to the large hemorrhages caused by blood vessel ruptures in the cerebral parenchyma. Of these,
80 % occur in the cerebral hemispheres (primarily in the basal ganglia), and the other 20 % occur in the
brain stem and cerebellum
b Refers to the mild symptoms upon disease onset and the gradually aggravated conditions that develop
with the prolonging of the disease course until a fully developed stroke occurs. The condition may progress
from either mild to complete paralysis or from mild to severe paresis

home as soon as possible. Using the format of five basic preferences, the incomplete
preference information provided by the patient and his family was presented in a
mathematical format. In addition, based on the physician’s description of the four
treatment options, the three siblings were asked to provide an assessment using a
nine-point linguistic scale. To help the family reach a consensus, an initial solution
was obtained using the method developed in this study. Next, an interactive procedure
was used to identify a satisfaction solution, and the treatment method was determined
based on this satisfaction solution.

5.2 An illustrative application of the algorithm

The patient’s three children, eldest son, younger son, and daughter, are the three
decision-makers E1, E2, and E3, respectively. The three decision-makers considered
various criteria, including survival rate (x1), severity of the side effects (x2), severity
of the complications (x3), probability of a cure (x4), discomfort index of the treatment
(x5), cost (x6), number of days of hospitalization (x7), probability of a recurrence
(x8), and self-care capacity (x9). Here, x1, x4, and x9 are benefit criteria, whereas
the remaining criteria are cost ones. The set of evaluation criteria is denoted as
X = {x1, x2, . . . , x9}, with Xb = {x1, x4, x9} and Xc = {x2, x3, x5, x6, x7, x8}.
The weight vector of the three decision-makers is given by π = (π1, π2, π3) =
(0.40, 0.35, 0.25). There are four treatment options available, including intravenous
thrombolysis (A1), intra-arterial thrombolysis (A2), antiplatelet treatment (A3), and
heparinization (A4). The set of all alternatives is denoted by A = {A1, A2, A3, A4}.
In the following, we illustrate the implementation process of the proposed interactive
group decision-making method in the patient-centered medicine problem step by step:

In Step 0, let the initial iteration counter ζ be zero. In addition, let the indif-
ferent threshold εi = 0.05 for each Ai ∈ A for simplicity. In Step 1, let

�0 =
{
(w1, w2, . . . , w9)

∣
∣
∣w j ≥0 ( j = 1, 2, . . . , 9),

∑9
j=1 w j =1

}
. The preference

relationships over all criteria, provided by the three decision-makers and the two
influencers (the patient and his daughter-in-law) are given by:

E1: 0.12 ≤ w1 ≤ 0.25, w2 ≥ 0.9 · w6;
E2: 0.07 ≤ w4 − w6 ≤ 0.15, w7 − w3 ≥ w3 − w8;
E3: w1 ≥ w2, w4 − w8 ≥ w8 − w7, w3 ≥ 1.1 · w9;
The patient: w6 ≥ w4, 0.1 ≤ w7 ≤ 0.2;
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The patient’s daughter-in-law: 0.05 ≤ w9 − w5 ≤ 0.12.

The following set � of known information about criterion weights given by the three
decision-makers and the two influencers can be described as:

� = {(w1, w2, . . . , w9) ∈ �0 |w1 ≥ w2, w6 ≥ w4, 0.07 ≤ w4 − w6 ≤ 0.15,

0.05 ≤ w9 − w5 ≤ 0.12, w4 − w8 ≥ w8 − w7, w7 − w3 ≥ w3 − w8,

0.12 ≤ w1 ≤ 0.25, 0.1 ≤ w7 ≤ 0.2, w2 ≥ 0.9 · w6, w3 ≥ 1.1 · w9} .

The information in � is incomplete and partially inconsistent. For example, the ranking
priority of w4 and w6 given by E2 does not agree with the patient’s opinion.

In Step 2, the decision-makers applied the nine-point linguistic rating scales to
evaluate the four treatment options based on the nine criteria. The rating results are
presented in Table 2. Applying the transformation standards proposed in author’s
previous research (Chen 2012a,b), the linguistic evaluations were easily converted
into IT2TrFNs.

In Step 3.1, the weighted ratings Ȧk
i j were computed for all k = 1, 2, 3. Take

A27 as an example. The linguistic ratings provided by the three decision-makers are
L, ML, and M, and their corresponding IT2TrFNs are [(0.0875, 0.12, 0.16, 0.1825; 0.8),
(0.04, 0.1, 0.18, 0.23; 1)], [(0.2325, 0.255, 0.325, 0.3575; 0.8), (0.17, 0.22, 0.36, 0.42;
1)], and [(0.4025, 0.4525, 0.5375, 0.5675; 0.8), (0.32, 0.41, 0.58, 0.65; 1)], respectively,
according to Table 1 in Chen (2012a,b). Considering π = (0.40, 0.35, 0.25), the
weighted ratings Ȧ1

27, Ȧ2
27, and Ȧ3

27 are calculated as follows:

Ȧ1
27 = [(0.0350, 0.0480, 0.0640, 0.0730; 0.8), (0.0160, 0.0400, 0.0720, 0.0920; 1)],

Ȧ2
27 = [(0.0814, 0.0893, 0.1138, 0.1251; 0.8), (0.0595, 0.0770, 0.1260, 0.1470; 1)],

Ȧ3
27 = [(0.1006, 0.1131, 0.1344, 0.1419; 0.8), (0.0800, 0.1025, 0.1450, 0.1625; 1)].

In Step 3.2, the OWA weight vector τ = (τ1, τ2, τ3) = (0.2429, 0.5142, 0.2429).
In Step 3.3, we compute the signed distance d( Ȧk

i j , 0̃1) from Ȧk
i j to 0̃1. For example,

we use d( Ȧ1
27, 1̃1) = 0.1107, d( Ȧ2

27, 1̃1) = 0.2042, and d( Ȧ3
27, 1̃1) = 0.2459

because d( Ȧ3
27, 1̃1) > d( Ȧ2

27, 1̃1) > d( Ȧ1
27, 1̃1), σ(1) = 3, σ(2) = 2, and σ(3) = 1;

moreover, Ȧσ(1)
27 = Ȧ3

27, Ȧσ(2)
27 = Ȧ2

27, and Ȧσ(3)
27 = Ȧ1

27.
In Step 3.4, the group consensus opinions on the ratings of the alternatives with

respect to each criterion were derived by utilizing the HA operation. Table 3 summa-
rizes the aggregated rating Âi j of alternative Ai on criterion x j . Then, we can establish
the collective decision matrix D̂ in Step 3.5.

In Step 3.6, from the data in Table 3, it is known that a+
1 = 0.3379, a−

2 =
0.0024, a−

3 = 0.0402, a+
4 = 0.3379, a−

5 = 0.0024, a−
6 = 0.0039, a−

7 =
0.0539, a−

8 = 0.0039, and a+
9 = 0.2028. The normalized decision matrix D was

constructed, and Table 4 summarizes the normalized rating Ai j of alternative Ai on
criterion x j . In addition, the computation results of the signed distance d(Ai j , 0̃1) for
each Ai ∈ A and x j ∈ X are also shown in Table 4.
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Table 2 The therapeutic ratings evaluated by the decision-makers

Criteria Treatment options Decision-makers

E1 (eldest son) E2 (younger son) E3 (daughter)

x1 (Survival rate) A1 AH VH H

A2 VH VH AH

A3 MH M MH

A4 MH H H

x2 (Severity of the
side effects)

A1 VL VL L

A2 VL L VL

A3 L VL VL

A4 ML L ML

x3 (Severity of the complications) A1 ML M L

A2 MH H MH

A3 ML ML M

A4 L ML ML

x4 (Probability of a cure) A1 MH MH H

A2 AH VH VH

A3 AL VL VL

A4 ML M L

x5 (Discomfort index
of the treatment)

A1 VL L AL

A2 L ML L

A3 VL AL L

A4 VL VL L

x6 (Cost) A1 ML ML L

A2 AH AH H

A3 L VL VL

A4 M MH ML

x7 (Number of days
of hospitalization)

A1 MH M M

A2 L ML M

A3 AH AH VH

A4 MH H MH

x8 (Probability of a recurrence) A1 ML L M

A2 L VL AL

A3 AH AH AH

A4 AH VH VH

x9 (Self-care capacity) A1 L ML ML

A2 MH ML M

A3 AL VL VL

A4 VL ML L

AL absolutely low, VL very low, L low, ML, medium low, M medium, MH medium high, H high, VH very
high, AH absolutely high
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Table 3 The aggregated ratings of treatment options in D̂

ÂL
i j ÂU

i j

âL
1i j âL

2i j âL
3i j âL

4i j hL
Âi j

âU
1i j âU

2i j âU
3i j âU

4i j hU
Âi j

Â11 0.3152 0.3240 0.3295 0.3309 0.8000 0.3083 0.3209 0.3330 0.3360 1.0000

Â12 0.0075 0.0095 0.0141 0.0263 0.8000 0.0024 0.0061 0.0167 0.0343 1.0000

Â13 0.0874 0.0982 0.1223 0.1328 0.8000 0.0646 0.0862 0.1343 0.1556 1.0000

Â14 0.2276 0.2359 0.2637 0.2740 0.8000 0.2045 0.2220 0.2776 0.2972 1.0000

Â15 0.0090 0.0117 0.0167 0.0263 0.8000 0.0034 0.0085 0.0194 0.0340 1.0000

Â16 0.0698 0.0780 0.0998 0.1101 0.8000 0.0495 0.0670 0.1107 0.1304 1.0000

Â17 0.1600 0.1743 0.2030 0.2133 0.8000 0.1334 0.1599 0.2173 0.2400 1.0000

Â18 0.0797 0.0901 0.1131 0.1235 0.8000 0.0578 0.0786 0.1246 0.1454 1.0000

Â19 0.0581 0.0662 0.0850 0.0941 0.8000 0.0402 0.0567 0.0944 0.1120 1.0000

Â21 0.3233 0.3337 0.3358 0.3358 0.8000 0.3185 0.3323 0.3379 0.3379 1.0000

Â22 0.0094 0.0122 0.0176 0.0295 0.8000 0.0034 0.0085 0.0206 0.0382 1.0000

Â23 0.2397 0.2485 0.2771 0.2876 0.8000 0.2157 0.2341 0.2913 0.3116 1.0000

Â24 0.3252 0.3343 0.3361 0.3361 0.8000 0.3210 0.3330 0.3379 0.3379 1.0000

Â25 0.0431 0.0537 0.0703 0.0790 0.8000 0.0251 0.0453 0.0786 0.0970 1.0000

Â26 0.3246 0.3266 0.3309 0.3322 0.8000 0.3209 0.3245 0.3330 0.3360 1.0000

Â27 0.0748 0.0850 0.1067 0.1165 0.8000 0.0539 0.0742 0.1175 0.1374 1.0000

Â28 0.0098 0.0130 0.0183 0.0272 0.8000 0.0039 0.0097 0.0211 0.0349 1.0000

Â29 0.1347 0.1452 0.1703 0.1801 0.8000 0.1119 0.1326 0.1829 0.2028 1.0000

Â31 0.1809 0.1903 0.2167 0.2266 0.8000 0.1581 0.1771 0.2299 0.2494 1.0000

Â32 0.0103 0.0135 0.0192 0.0304 0.8000 0.0039 0.0097 0.0223 0.0392 1.0000

Â33 0.0920 0.1016 0.1271 0.1384 0.8000 0.0689 0.0889 0.1399 0.1616 1.0000

Â34 0.0016 0.0016 0.0032 0.0112 0.8000 0.0000 0.0000 0.0043 0.0149 1.0000

Â35 0.0069 0.0088 0.0128 0.0219 0.8000 0.0024 0.0061 0.0150 0.0284 1.0000

Â36 0.0103 0.0135 0.0192 0.0304 0.8000 0.0039 0.0097 0.0223 0.0392 1.0000

Â37 0.3347 0.3370 0.3374 0.3374 0.8000 0.3336 0.3366 0.3379 0.3379 1.0000

Â38 0.3379 0.3379 0.3379 0.3379 1.0000 0.3379 0.3379 0.3379 0.3379 1.0000

Â39 0.0016 0.0016 0.0032 0.0112 0.8000 0.0000 0.0000 0.0043 0.0149 1.0000

Â41 0.2477 0.2571 0.2848 0.2947 0.8000 0.2242 0.2433 0.2986 0.3183 1.0000

Â42 0.0599 0.0678 0.0870 0.0962 0.8000 0.0418 0.0582 0.0966 0.1144 1.0000

Â43 0.0581 0.0662 0.0850 0.0941 0.8000 0.0402 0.0567 0.0944 0.1120 1.0000

Â44 0.0874 0.0982 0.1223 0.1328 0.8000 0.0646 0.0862 0.1343 0.1556 1.0000

Â45 0.0075 0.0095 0.0141 0.0263 0.8000 0.0024 0.0061 0.0167 0.0343 1.0000

Â46 0.1522 0.1657 0.1947 0.2056 0.8000 0.1254 0.1512 0.2092 0.2323 1.0000

Â47 0.2397 0.2485 0.2771 0.2876 0.8000 0.2157 0.2341 0.2913 0.3116 1.0000

Â48 0.3252 0.3343 0.3361 0.3361 0.8000 0.3210 0.3330 0.3379 0.3379 1.0000

Â49 0.0318 0.0378 0.0497 0.0589 0.8000 0.0196 0.0316 0.0557 0.0721 1.0000
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Table 4 The normalized collective decision matrix D

AL
i j AU

i j d(Ai j , 0̃1)

aL
1i j aL

2i j aL
3i j aL

4i j hL
Ai j

aU
1i j aU

2i j aU
3i j aU

4i j hU
Ai j

A11 0.9328 0.9589 0.9751 0.9793 0.8000 0.9124 0.9497 0.9855 0.9944 1.0000 1.9265

A12 0.0913 0.1702 0.2526 0.3200 0.8000 0.0700 0.1437 0.3934 1.0000 1.0000 0.6137

A13 0.3027 0.3287 0.4094 0.4600 0.8000 0.2584 0.2993 0.4664 0.6223 1.0000 0.7849

A14 0.6736 0.6981 0.7804 0.8109 0.8000 0.6052 0.6570 0.8215 0.8796 1.0000 1.4805

A15 0.0913 0.1437 0.2051 0.2667 0.8000 0.0706 0.1237 0.2824 0.7059 1.0000 0.4670

A16 0.0354 0.0391 0.0500 0.0559 0.8000 0.0299 0.0352 0.0582 0.0788 1.0000 0.0957

A17 0.2527 0.2655 0.3092 0.3369 0.8000 0.2246 0.2480 0.3371 0.4040 1.0000 0.5931

A18 0.0316 0.0345 0.0433 0.0489 0.8000 0.0268 0.0313 0.0496 0.0675 1.0000 0.0831

A19 0.2865 0.3264 0.4191 0.4640 0.8000 0.1982 0.2796 0.4655 0.5523 1.0000 0.7469

A21 0.9568 0.9876 0.9938 0.9938 0.8000 0.9426 0.9834 1.0000 1.0000 1.0000 1.9709

A22 0.0814 0.1364 0.1967 0.2553 0.8000 0.0628 0.1165 0.2824 0.7059 1.0000 0.4569

A23 0.1398 0.1451 0.1618 0.1677 0.8000 0.1290 0.1380 0.1717 0.1864 1.0000 0.3102

A24 0.9624 0.9893 0.9947 0.9947 0.8000 0.9500 0.9855 1.0000 1.0000 1.0000 1.9747

A25 0.0304 0.0341 0.0447 0.0557 0.8000 0.0247 0.0305 0.0530 0.0956 1.0000 0.0906

A26 0.0117 0.0118 0.0119 0.0120 0.8000 0.0116 0.0117 0.0120 0.0122 1.0000 0.0237

A27 0.4627 0.5052 0.6341 0.7206 0.8000 0.3923 0.4587 0.7264 1.0000 1.0000 1.2206

A28 0.1434 0.2131 0.3000 0.3980 0.8000 0.1117 0.1848 0.4021 1.0000 1.0000 0.6769

A29 0.6642 0.7160 0.8397 0.8881 0.8000 0.5518 0.6538 0.9019 1.0000 1.0000 1.5545

A31 0.5354 0.5632 0.6413 0.6706 0.8000 0.4679 0.5241 0.6804 0.7381 1.0000 1.2050

A32 0.0789 0.1250 0.1778 0.2330 0.8000 0.0612 0.1076 0.2474 0.6154 1.0000 0.4074

A33 0.2905 0.3163 0.3957 0.4370 0.8000 0.2488 0.2873 0.4522 0.5835 1.0000 0.7531

A34 0.0047 0.0047 0.0095 0.0331 0.8000 0.0000 0.0000 0.0127 0.0441 1.0000 0.0223

A35 0.1096 0.1875 0.2727 0.3478 0.8000 0.0845 0.1600 0.3934 1.0000 1.0000 0.6360

A36 0.1283 0.2031 0.2889 0.3786 0.8000 0.0995 0.1749 0.4021 1.0000 1.0000 0.6621

A37 0.1598 0.1598 0.1599 0.1610 0.8000 0.1595 0.1595 0.1601 0.1616 1.0000 0.3201

A38 0.0115 0.0115 0.0115 0.0115 0.8000 0.0115 0.0115 0.0115 0.0115 1.0000 0.0230

A39 0.0079 0.0079 0.0158 0.0552 0.8000 0.0000 0.0000 0.0212 0.0735 1.0000 0.0372

A41 0.7331 0.7609 0.8429 0.8722 0.8000 0.6635 0.7200 0.8837 0.9420 1.0000 1.6043

A42 0.0249 0.0276 0.0354 0.0401 0.8000 0.0210 0.0248 0.0412 0.0574 1.0000 0.0680

A43 0.4272 0.4729 0.6073 0.6919 0.8000 0.3589 0.4258 0.7090 1.0000 1.0000 1.1708

A44 0.2587 0.2906 0.3619 0.3930 0.8000 0.1912 0.2551 0.3975 0.4605 1.0000 0.6523

A45 0.0913 0.1702 0.2526 0.3200 0.8000 0.0700 0.1437 0.3934 1.0000 1.0000 0.6137

A46 0.0190 0.0200 0.0235 0.0256 0.8000 0.0168 0.0186 0.0258 0.0311 1.0000 0.0450

A47 0.1874 0.1945 0.2169 0.2249 0.8000 0.1730 0.1850 0.2302 0.2499 1.0000 0.4159

A48 0.0116 0.0116 0.0117 0.0120 0.8000 0.0115 0.0115 0.0117 0.0121 1.0000 0.0233

A49 0.1568 0.1864 0.2451 0.2904 0.8000 0.0966 0.1558 0.2747 0.3555 1.0000 0.4370
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In Step 3.7, we acquired the signed distance-based closeness coefficient CCi for
each characteristics of alternative Ai . For example:

CC1 = 1

2
(1.9265w1 + 0.6137w2 + 0.7849w3 + 1.4805w4 + 0.4670w5 + 0.0957w6

+0.5931w7 + 0.0831w8 + 0.7469w9) .

In Step 4, several non-negative deviation variables were introduced to construct the
set �’ of the relaxed conditions as follows:

�′ =
{
(w1, w2, . . . , w9) ∈ �0

∣
∣
∣w1 + e−

(i)12 ≥ w2, w6+e−
(i)64 ≥ w4, w4−w6+e−

(ii)46 ≥ 0.07,

w4 − w6 − e+
(ii)46 ≤ 0.15, w9 − w5 + e−

(ii)95 ≥ 0.05, w9 − w5 − e+
(ii)95 ≤ 0.12,

w4 − 2w8 + w7 + e−
(iii)487 ≥ 0, w7 − 2w3 + w8 + e−

(iii)738 ≥ 0, w1 + e−
(iv)1 ≥ 0.12,

w1 − e+
(iv)1 ≤ 0.25, w7 + e−

(iv)7 ≥ 0.1, w7 − e+
(iv)7 ≤ 0.2,

w2

w6
+ e−

(v)26 ≥

0.9,
w3

w9
+ e−

(v)39 ≥ 1.1

}

.

In Step 5, the following integrated programming model using [M3] was constructed
to estimate the importance of the criterion weights:

max λ

s.t.
1

2
(1.9265w1 + 0.6137w2 + 0.7849w3 + 1.4805w4 + 0.4670w5 + 0.0957w6

+ 0.5931w7 + 0.0831w8 + 0.7469w9) ≥ λ,

1

2
(1.9709w1 + 0.4569w2 + 0.3102w3 + 1.9747w4 + 0.0906w5 + 0.0237w6

+ 1.2206w7 + 0.6769w8 + 1.5545w9) ≥ λ,

1

2
(1.2050w1 + 0.4074w2 + 0.7531w3 + 0.0223w4 + 0.6360w5 + 0.6621w6

+ 0.3201w7 + 0.0230w8 + 0.0372w9) ≥ λ,

1

2
(1.6043w1 + 0.0680w2 + 1.1708w3 + 0.6523w4 + 0.6137w5 + 0.0450w6

+ 0.4159w7 + 0.0233w8 + 0.4370w9) ≥ λ,

−
(

e−
(i)12+e−

(i)64+e−
(ii)46 + e+

(ii)46+e−
(ii)95+e+

(ii)95+e−
(iii)487 + e−

(iii)738+e−
(iv)1 + e+

(iv)1

+e−
(iv)7 + e+

(iv)7 + e−
(v)26 + e−

(v)39

)
≥ λ, (w1, w2, . . . , w9) ∈ �′,

e−
(i)12 ≥ 0, e−

(i)64 ≥ 0, e−
(ii)46 ≥ 0, e+

(ii)46 ≥ 0, e−
(ii)95 ≥ 0, e+

(ii)95 ≥ 0,

e−
(iii)487 ≥ 0, e−

(iii)738 ≥ 0, e−
(iv)1 ≥ 0, e+

(iv)1 ≥ 0, e−
(iv)7 ≥ 0, e+

(iv)7 ≥ 0,

e−
(v)26 ≥ 0, e−

(v)39 ≥ 0. (47)

The model in (47) was solved to obtain the optimal weight vector, w̄ =
(w̄1, w̄2, . . . , w̄9) = (0.1490, 0.0557, 0.1352, 0.1318, 0.0730, 0.0618, 0.1923,

0.0782, 0.1230); the optimal deviation values, ē−
(i)12 = ē−

(ii)46 = ē+
(ii)46 = ē−

(ii)95 =

123



350 T.-Y. Chen

ē+
(ii)95 = ē−

(iii)487 = ē−
(iii)738 = ē−

(iv)1 = ē+
(iv)1 = ē−

(iv)7 = ē+
(iv)7 = ē−

(v)26 = ē−
(v)39 = 0,

and ē−
(i)64 = 0.07; and the optimal objective value, λ̄ = −0.07. The signed

distance-based closeness coefficients were calculated as follows: CC1 = 0.4374,
CC2 = 0.5541, CC3 = 0.2311, and CC4 = 0.3351. The corresponding ranking of
the treatments is: A2  A1  A4  A3.

In Step 6.1, the analyst showed the solution results to the three decision-makers,
including the resulting satisfactory functions of Z(A1) = 0.4374, Z(A2) = 0.5541,
Z(A3) = 0.2311, and Z(A4) = 0.3351. Then, the decision-makers spoke with the
analyst, revealing that the patient’s two sons were not satisfied with the results of
Z(A3). They provided their acceptable lower bounds of the satisfaction function for

the alternative A3 as follows:
�

Z1 (A3) = 0.28 and
�

Z2 (A3) = 0.33. In Step 6.2,
considering the individual weights of the patient’s sons, the aggregated lower bound
of the satisfaction degree was obtained as follows:

�

Z(A3) = 0.4 × 0.28 + 0.35 × 0.33

0.4 + 0.35
= 0.3033.

In Step 6.3, because
�

Z(A3) − Z(A3) = 0.3033 − 0.2311 = 0.0722 > ε3(= 0.05),
we identified that the unsatisfactory set �0 = {3}.

In Step 7, the solution result regarding A3 in this iteration does not satisfy the first
two decision-makers’ requirements. Because �0 
= ∅, the stopping condition is false.
Let ζ (new) = ζ (old) + 1 = 0 + 1 = 1 and continue the algorithm.

In Step 8, we added the constraint of CC3 ≥�

Z (A3) − ε3(= 0.3033 − 0.05 =
0.2533) into the model in (47) and constructed the following modified integrated
programming model using [M4]:

max λ

s.t.
1

2
(1.9265w1 + 0.6137w2 + 0.7849w3 + 1.4805w4 + 0.4670w5 + 0.0957w6

+0.5931w7 + 0.0831w8 + 0.7469w9) ≥ λ,

1

2
(1.9709w1 + 0.4569w2 + 0.3102w3 + 1.9747w4 + 0.0906w5 + 0.0237w6

+1.2206w7 + 0.6769w8 + 1.5545w9) ≥ λ,

1

2
(1.2050w1 + 0.4074w2 + 0.7531w3 + 0.0223w4 + 0.6360w5 + 0.6621w6

+0.3201w7 + 0.0230w8 + 0.0372w9) ≥ λ,

1

2
(1.6043w1 + 0.0680w2 + 1.1708w3 + 0.6523w4 + 0.6137w5 + 0.0450w6

+0.4159w7 + 0.0233w8 + 0.4370w9) ≥ λ,

−
(

e−
(i)12+e−

(i)64+e−
(ii)46+e+

(ii)46+e−
(ii)95+e+

(ii)95+e−
(iii)487+e−

(iii)738+e−
(iv)1+e+

(iv)1

+e−
(iv)7 + e+

(iv)7 + e−
(v)26 + e−

(v)39

)
≥ λ,
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1

2
(1.2050w1 + 0.4074w2 + 0.7531w3 + 0.0223w4 + 0.6360w5 + 0.6621w6

+0.3201w7 + 0.0230w8 + 0.0372w9) ≥ 0.2533, (w1, w2, . . . , w9) ∈ �′,
e−
(i)12 ≥ 0, e−

(i)64 ≥ 0, e−
(ii)46 ≥ 0, e+

(ii)46 ≥ 0, e−
(ii)95 ≥ 0, e+

(ii)95 ≥ 0, e−
(iii)487 ≥ 0,

e−
(iii)738 ≥ 0, e−

(iv)1 ≥ 0, e+
(iv)1 ≥ 0, e−

(iv)7 ≥ 0, e+
(iv)7 ≥ 0, e−

(v)26 ≥ 0, e−
(v)39 ≥ 0.

(48)

The above model was solved to obtain the optimal weight vector, ¯̄w1 =
( ¯̄w1

1,
¯̄w1

2, . . . ,
¯̄w1

9) = (0.2218, 0.2057, 0.0859, 0.1017, 0.0000, 0.0678, 0.1489,

0.0901, 0.0781); the optimal deviation values, ¯̄e−,1
(i)12 = ¯̄e+,1

(ii)46 = ¯̄e−,1
(ii)95 = ¯̄e+,1

(ii)95 =
¯̄e−,1
(iii)487 = ¯̄e−,1

(iii)738 = ¯̄e−,1
(iv)1 = ¯̄e+,1

(iv)1 = ¯̄e−,1
(iv)7 = ¯̄e+,1

(iv)7 = ¯̄e−,1
(v)26 = ¯̄e−,1

(v)39 = 0, ¯̄e−,1
(i)64 =

0.0339, and ¯̄e−,1
(ii)46 = 0.0361; and the optimal objective value, ¯̄λ1 = −0.07.

In Step 9, applying ¯̄w1, the signed distance-based closeness coefficients were cal-

culated to be: CC
1

1 = 0.4661, CC
1

2 = 0.5622, CC
1

3 = 0.2578, and CC
1

4 = 0.3190

with the updated satisfaction degree ¯̄Z(Ai )
1 = CC

1

i for each Ai ∈ A.

In Step 10.1, the analyst showed the updated satisfactory function ¯̄Z(Ai )
1 of each Ai

to the three decision-makers. In this time, only the patient’s daughter was dissatisfied

with the results of ¯̄Z(A4)
1. She offered the acceptable lower bound

�

Z3 (A4)
1 = 0.32.

In Step 10.2, the aggregated lower bound
�

Z(A4)
1 = (0.25 × 0.32)/0.25 = 0.32. In

Step 10.3, the unsatisfactory set �1 = ∅ because
�

Z(A4)
1− ¯̄Z(A4)

1 = 0.32−0.319 =
0.001 < ε4(= 0.05).

In Step 11, the solution results of the model in (48) satisfy the stopping condition;
thus, go to Step 12. In Step 12, the optimal ranking of the four treatment options was

determined according to the decreasing order of the CC
1

i values: A2  A1  A4  A3.
Therefore, A2 is the most appropriate treatment option for the patient. Finally, the
patient’s family decided to adopt intra-arterial thrombolysis (A2) as the treatment. The
patient became conscious after the treatment and is still undergoing rehabilitation.

5.3 Comparative analysis

A comparative study was conducted to validate the results of the proposed method
with those of other approaches. We based the analysis on the same input data that are
presented in Sect. 5.1 and chose a well-known and widely used method, the TOPSIS
approach, to facilitate the comparison analysis.

The basic concept of the TOPSIS method is that the chosen alternative should have
the shortest distance from the positive-ideal solution and the farthest distance from the
negative-ideal solution (Hwang and Yoon 1981). Considering (w1, w2, . . . , wn) ∈ �′,
the weighted IT2TrFN value Aw

i of Ai is acquired by the following:

Aw
i =

{〈
x j ,
[(

w j a
L
1i j , w j a

L
2i j , w j a

L
3i j , w j a

L
4i j ; hL

Ai j

)
,

(
w j a

U
1i j , w j a

U
2i j , w j a

U
3i j , w j a

U
4i j ; hU

Ai j

)]〉∣
∣
∣ x j ∈ X

}
. (49)
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The weighted positive-ideal and negative-ideal solutions are obtained as follows:

Aw+ = {〈
x j ,
[
(w j , w j , w j , w j ; 1), (w j , w j , w j , w j ; 1)

]〉 ∣
∣x j ∈ X

}
, (50)

Aw− = {〈
x j , [(0, 0, 0, 0; 1), (0, 0, 0, 0; 1)]

〉 ∣
∣x j ∈ X

}
. (51)

The Euclidean distances, d E (Aw
i , Aw+) and d E (Aw

i , Aw−), of each weighted
IT2TrFN value Aw

i from the weighted positive-ideal and negative-ideal solutions,
respectively, are derived from:

d E (Aw
i , Aw+)=

⎡

⎣
1

8

n∑

j=1

w2
j

((
1−aL

1i j

)2+
(

1−aL
2i j

)2+
(

1 − aL
3i j

)2 +
(

1 − aL
4i j

)2

+
(

1−aU
1i j

)2+
(

1−aU
2i j

)2+
(

1−aU
3i j

)2+
(

1−aU
4i j

)2
)] 1

2

. (52)

d E (Aw
i , Aw−) =

⎡

⎣
1

8

n∑

j=1

w2
j

((
aL

1i j

)2 +
(

aL
2i j

)2 +
(

aL
3i j

)2 +
(

aL
4i j

)2 +
(

aU
1i j

)2

+
(

aU
2i j

)2 +
(

aU
3i j

)2 +
(

aU
4i j

)2
)] 1

2

. (53)

Then, the closeness coefficient CC E
i (0 ≤ CC E

i ≤ 1) of the alternative Ai is
defined with the following formula:

CC E
i = d E (Aw

i , Aw−)

d E (Aw
i , Aw+) + d E (Aw

i , Aw−)
. (54)

A single-objective nonlinear programming model can be constructed with incom-
plete information as follows:

[M5]

max λ′

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CC E
i ≥ λ′ i = 1, 2, . . . , m,

−∑ j1, j2, j3∈N

(
e−
(i) j1 j2

+e−
(ii) j1 j2

+e+
(ii) j1 j2

+ e−
(iii) j1 j2 j3

+e−
(iv) j1

+ e+
(iv) j1

+e−
(v) j1 j2

)
≥ λ′,

(w1, w2, . . . , wn) ∈ �′,
e−
(i) j1 j2

≥ 0 j1 ∈ ϒ1 and j2 ∈ �1,

e−
(ii) j1 j2

≥ 0, e+
(ii) j1 j2

≥ 0 j1 ∈ ϒ2 and j2 ∈ �2,

e−
(iii) j1 j2 j3

≥ 0 j1 ∈ ϒ3, j2 ∈ �3, and j3 ∈ �3,

e−
(iv) j1

≥ 0, e+
(iv) j1

≥ 0 j1 ∈ ϒ4,

e−
(v) j1 j2

≥ 0 j1 ∈ ϒ5 and j2 ∈ �5.

(55)

Incorporating the data of the patient-centered medical problem into [M5], we con-
structed the following integrated programming model:
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max λ′

s.t.

[
1

8

(
7.3939w2

1 + 1.3838w2
2 + 1.3400w2

3 + 4.4541w2
4 + 0.7405w2

5 + 0.0201w2
6

+ 0.7323w2
7 + 0.0152w2

8 + 1.2187w2
9

)]0.5
/{[1

8

(
0.0177w2

1 + 4.5014w2
2

+ 3.0456w2
3 + 0.6015w2

4 + 4.9617w2
5 + 7.2551w2

6 + 3.9763w2
7 + 7.3482w2

8

+ 3.2355w2
9

)]0.5 +
[

1

8

(
7.3939w2

1 + 1.3838w2
2 + 1.3400w2

3 + 4.4541w2
4

+ 0.7405w2
5 + 0.0201w2

6 + 0.7323w2
7 + 0.0152w2

8 + 1.2187w2
9

)]0.5
}

≥ λ′,
[

1

8

(
7.7217w2

1 + 0.7247w2
2 + 0.1948w2

3 + 7.7575w2
4 + 0.0207w2

5 + 0.0011w2
6

+ 3.2826w2
7 + 1.5227w2

8 + 4.9930w2
9

)]0.5
/{[1

8

(
0.0057w2

1 + 5.0499w2
2

+ 5.7158w2
3 + 0.0043w2

4 + 7.2833w2
5 + 7.8113w2

6 + 1.4826w2
7 + 4.0165w2

8

+ 0.5620w2
9

)]0.5 +
[

1

8

(
7.7217w2

1 + 0.7247w2
2 + 0.1948w2

3 + 7.7575w2
4

+ 0.0207w2
5 + 0.0011w2

6 + 3.2826w2
7 + 1.5227w2

8 + 4.9930w2
9

)]0.5
}

≥ λ′,
[

1

8

(
2.9662w2

1 + 0.5630w2
2 + 1.2214w2

3 + 0.0033w2
4 + 1.4300w2

5 + 1.4867w2
6

+ 0.2052w2
7 + 0.0011w2

8 + 0.0093w2
9

)]0.5
/{[1

8

(
1.3242w2

1 + 5.2704w2
2

+ 3.1988w2
3 + 7.7857w2

4 + 4.3190w2
5 + 4.1359w2

6 + 5.6428w2
7 + 7.8171w2

8

+ 7.6463w2
9

)]0.5 +
[

1

8

(
2.9662w2

1 + 0.5630w2
2 + 1.2214w2

3 + 0.0033w2
4

+ 1.4300w2
5 + 1.4867w2

6 + 0.2052w2
7 + 0.0011w2

8 + 0.0093w2
9

)]0.5
}

≥ λ′,
[

1

8

(
5.2145w2

1 + 0.0103w2
2 + 3.0665w2

3 + 0.9085w2
4 + 1.3838w2

5 + 0.0042w2
6

+ 0.3502w2
7 + 0.0011w2

8 + 0.4392w2
9

)]0.5
/{[1

8

(
0.3779w2

1 + 7.4655w2
2

+ 1.6805w2
3 + 3.6915w2

4 + 4.5014w2
5 + 7.6434w2

6 + 5.0266w2
7 + 7.8137w2

8

+ 4.9166w2
9

)]0.5 +
[

1

8

(
5.2145w2

1 + 0.0103w2
2 + 3.0665w2

3 + 0.9085w2
4

+ 1.3838w2
5 + 0.0042w2

6 + 0.3502w2
7 + 0.0011w2

8 + 0.4392w2
9

)]0.5
}

≥ λ′,

−
(

e−
(i)12+e−

(i)64+e−
(ii)46+e+

(ii)46+e−
(ii)95+e+

(ii)95+e−
(iii)487 + e−

(iii)738+e−
(iv)1+e+

(iv)1

+ e−
(iv)7 + e+

(iv)7 + e−
(v)26 + e−

(v)39

)
≥ λ′, (w1, w2, . . . , w9) ∈ �′,

e−
(i)12 ≥ 0, e−

(i)64 ≥ 0, e−
(ii)46 ≥ 0, e+

(ii)46 ≥ 0, e−
(ii)95 ≥ 0, e+

(ii)95 ≥ 0, e−
(iii)487 ≥ 0,

e−
(iii)738 ≥ 0, e−

(iv)1 ≥ 0, e+
(iv)1 ≥ 0, e−

(iv)7 ≥ 0, e+
(iv)7 ≥ 0, e−

(v)26 ≥ 0, e−
(v)39 ≥ 0. (56)
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Solving the model in (56), we obtained (w̄1, w̄2, . . . , w̄9)=(0.1200, 0.0746, 0.1471,
0.1157, 0.0428, 0.0829, 0.1576, 0.1367, 0.1226). The closeness coefficients were
calculated as follows: CC

E
1 = 0.3803, CC

E
2 = 0.7488, CC

E
3 = 0.0337, and CC

E
4 =

0.2301. The corresponding ranking of the treatments is: A2  A1  A4  A3.
The models in (47) and (56) yielded a similar distribution of criterion weights and the

same ranking results of the treatment options. However, the formulation of the model in
(56) is much heavier and more complicated than that of the model in (47). To determine
the separations of each alternative from the positive-ideal and negative-ideal solutions,
our proposed method employed the signed distances between IT2TrFNs to identify
the closeness coefficient, whereas the Euclidean distances were used in the classical
TOPSIS methodology. According to the comparative results, the employment of the
signed distance-based closeness coefficients can significantly reduce the complexity
in modeling and simplify the solution efforts.

Furthermore, our proposed method provided more reasonable results than the
TOPSIS method even though the two methods yielded the same ranking orders
of the four treatment options. The TOPSIS method acquired the following close-
ness coefficients: 0.3803, 0.7488, 0.0337, and 0.2301 for intravenous thrombolysis,
intra-arterial thrombolysis, antiplatelet treatment, and heparinization, respectively.
Nevertheless, these results are very strange and unreasonable. Note that there is a
noteworthy difference between the closeness coefficients of intra-arterial thrombol-
ysis (0.7488) and antiplatelet treatment (0.0337). In the real-life situations, most
of the physicians recognize that too many treatment choices would render it diffi-
cult for the patients and their family members to make a choice. If the antiplatelet
treatment does not have an evident therapeutic effect during the cure of the dis-
ease, it is impossible for the physician to provide this treatment protocols for the
patient. Furthermore, the resulting closeness coefficient of intra-arterial thrombol-
ysis is markedly larger than that of other treatments. This implies that a domi-
nant alternative exists in the patient-centered medicine problem of the BAO disease.
However, it is not true in the discussed case. With respect to the solution results
produced by the model in (47), the obtained signed distance-based closeness coeffi-
cients are 0.4374, 0.5541, 0.2311, and 0.3351 for the four treatment options. These
results seem much more reasonable and meaningful than the TOPSIS results. There-
fore, despite minimizing the tedious computation requirements, the proposed method
can generate credible solution results in the patient-centered medical problem. The
comparative analysis demonstrates the potential of the proposed method in practical
applications.

6 Conclusions

In this paper, we developed an interactive decision-making model for solving MCGDM
problems within the IT2TrFN environment. This paper makes several important con-
tributions to the existing literature on the topic of interactive decision-making method-
ologies. First, we fused individual IT2TrFN ratings to construct a collective decision
matrix using the operation of hybrid averages, which reflect the importance degrees of
each decision-maker and the agreement of individual opinions. Second, we utilized the
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concept of signed distances between IT2TrFNs to determine the closeness coefficient
involving the separations of each alternative from the positive-ideal and negative-ideal
solutions. This approach is completely different from the traditional definition of the
closeness coefficient in TOPSIS methodology. Third, we established the integrated
programming model with the signed distance-based closeness coefficient approach to
estimate the importance weights of criteria from incomplete and inconsistent infor-
mation and to determine the priority ranking of the alternatives. Fourth, we developed
an interactive method to facilitate the decision-makers to modify or complete their
requirements for satisfactory solutions with ease compared to the reference solu-
tion obtained by the integrated programming model. Fifth, we applied the developed
methodology to the field of patient-centered medicine. The comparative analysis also
validated the feasibility and effectiveness of the proposed methods. Briefly, we con-
ducted a study to construct a new interactive decision-making model involving the
signed distance-based HA operation and closeness coefficient approach for solving
interval type-2 fuzzy MCGDM problems with incomplete preference information.

A possible limitation of the developed interactive MCGDM method based on
IT2TrFNs is the data collection of incomplete preference information. The pro-
posed method is useful because of its flexibility with regard to incomplete infor-
mation. Incomplete information about criterion weights provided by the decision
makers can be generally constructed using the five basic ranking forms, includ-
ing a weak ranking, strict ranking, ranking of differences, interval bound, and ratio
bound. However, it might be difficult to obtain some ranking forms, such as rank-
ing of differences and ratio bound. According to the application experience of the
patient-centered medical problem, it is arduous to collect the patient’s and his fam-
ily’s opinions to complete the basic ranking relations of criterion importance. In
addition, an effective method is lacking for justifying the evidence base for these
subjective opinions. If we have difficulty in collecting incomplete preference infor-
mation, we can adopt another approach to acquire criterion importance by using lin-
guistic variables, in a manner similar to that of alternative ratings via the nine-point
linguistic scales.

We assumed that the satisfactory function had taken the form of the signed
distance-based closeness coefficient in our interactive procedure. In future stud-
ies, we can consider a more complicated form to redefine the satisfactory func-
tion. Nevertheless, this paper has demonstrated the applicability of the proposed
method in a real life patient-centered medical problem. Future research will extend
the proposed interactive MCGDM model and method such that it is suitable for a
patient-centered healthcare system. It is anticipated that the developed method can
be a useful support model for the future promotion of integrated decision making to
assist the medical personnel in the humanized medical care and improve the quality of
medical care.
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