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Abstract In this paper, we first extend the dual simplex method to a type of fuzzy
linear programming problem involving symmetric trapezoidal fuzzy numbers. The
results obtained lead to a solution for fuzzy linear programming problems that does
not require their conversion into crisp linear programming problems. We then study
the ranges of values we can achieve so that when changes to the data of the problem are
introduced, the fuzzy optimal solution remains invariant. Finally, we obtain the opti-
mal value function with fuzzy coefficients in each case, and the results are described
by means of numerical examples.

Keywords Fuzzy linear programming · Dual simplex method ·
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1 Introduction

Bellman and Zadeh (1970) first proposed the basic concepts of fuzzy decision making.
Based on these concepts, Zimmermann (1978) formulated Fuzzy Linear Programming
(FLP) problems by the use of both the minimum operator, which is noncompensatory,
and the product operator, which is compensatory. Subsequently, Tanaka et al. (1973)
made use of this concept in mathematical programming. A formulation of FLP with
fuzzy constraints and a solution method was put forward by Tanaka and Asai (1984).
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Delgado et al. (1989) studied a general model for FLP problems which included
fuzziness both in the coefficients and also in the accomplishment of the constraints.
Campos and Verdegay (1989) used the concept of comparison of fuzzy numbers for
solving FLP problems. In effect, most convenient methods are based on the concept
of comparison of fuzzy numbers by use of ranking functions (Fortemps and Roubens
1996; Maleki 2002). In such methods, authors define a crisp model which is equiv-
alent to the FLP problem and then use the optimal solution of the model as that of
the FLP problem. A review of some common methods for ranking fuzzy numbers can
be seen in Wang and Kerre (2001). Vasant (2003) proposed a kind of FLP problem
based methodology using a specific membership function, as modified logistic mem-
bership function. Some authors consider various types of single and multi-objective
linear programming problems in which the variables and the right-hand-sides of the
constraints are fuzzy parameters (Ganesan and Veeramani 2006; Maleki 2002). Mahd-
avi-Amiri and Nasseri (2007) proposed a dual simplex algorithm directly using the
primal simplex table for solving linear programming problems with trapezoidal fuzzy
variables. Ganesan and Veeramani (2006) introduced a type of fuzzy arithmetic for
symmetric trapezoidal fuzzy numbers and then proposed a primal simplex method for
solving fuzzy linear programming problems without converting them to crisp linear
programming problems.

The study of duality theory for fuzzy parameter linear programming problems
has attracted a number of researchers in fuzzy decision theory. The duality of fuzzy
parameter linear programming was first studied by Rodder and Zimmermann (1980).
Verdegay (1954) defined the fuzzy dual problem with the help of parametric linear
programming and showed that fuzzy primal and dual problems both have the same
fuzzy solution under certain suitable conditions. Bector and Chandra (2002) discussed
duality in fuzzy linear programming based on a modification of the dual formulation
put forward by Rodder and Zimmermann. Nasseri et al. (2010) discussed a concept of
duality for fuzzy linear programming problems introduced by Ganesan and Veeramani,
and derived the weak and strong duality theorems.

Sensitivity analysis is a basic tool for studying perturbations in optimization prob-
lems, and is considered to be one of the most interesting research areas in the field
of FLP problems. Sensitivity analysis in FLP was first considered by Hamacher et al.
(1978), who derived a functional relationship between changes of parameter on the
right-hand-side and those of the optimal value of the primal objective function, for
almost all conceivable cases. Fuller (1989) showed that the solution to FLP problems
with symmetrical triangular fuzzy numbers is stable with respect to small changes to
the centers of fuzzy numbers. Perturbations occur due to calculation errors or simply
when answering ”What if …?” management questions.

In this paper, we first extend the dual simplex method to a type of fuzzy linear
programming problem involving symmetric trapezoidal fuzzy numbers, without con-
verting them to crisp linear programming problems. We then study sensitivity analysis
for these problems and derive bounds for the values of the parameters when the data
are perturbed, while the fuzzy optimal solution remains invariant.

The paper is organized as follows: In Sect. 2, we briefly recall some necessary
concepts of fuzzy set theory. We then review a kind fuzzy linear programming prob-
lems with symmetric trapezoidal fuzzy numbers. We devote Sect. 3 to extension of the
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Fig. 1 A symmetric trapezoidal
fuzzy number.

dual simplex method for these problems and explain it by some illustrative examples.
In Sect. 4 we study sensitivity analysis when given fuzzy optimal solution remains
invariant. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

In this section we present some notations, notions and results (Ganesan and Veeramani
2006) that will be useful in dealing with the issues addressed in this paper.

Definition 1 A fuzzy number on R(real line) is said to be a symmetric trapezoidal
fuzzy number if there exist real numbers aL and aU , aL ≤ aU and α > 0, such that

μã(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x

α
+ α − aL

α
, x ∈ [aL − α, aL ];

1, x ∈ [aL , aU ];
−x

α
+ aU + α

α
, x ∈ [aU , aU + α];

0, otherwise.

We denote a symmetric trapezoidal fuzzy number ã by ã = (aL , aU , α, α), where
(aL −α, aU +α) is the support of ã and [aL , aU ] its core, and the set of all symmetric
trapezoidal fuzzy numbers by F(R). μã(x) is called a membership function of ã. The
fuzzy number with the above membership function is shown in Fig. 1.

Let ã = (aL , aU , α, α) and b̃ = (bL , bU , β, β) be two symmetric trapezoidal fuzzy
numbers. The arithmetical operations on ã and b̃ are as follows:

1. x > 0, x ∈ R; xã = (xaL , xaU , xα, xα),

2. x < 0, x ∈ R; xã = (xaU , xaL ,−xα,−xα),

3. ã + b̃ = (aL + bL , aU + bU , α + β, α + β).

4. ãb̃ =
((

aL+aU

2

) (
bL+bU

2

)
− w,

(
aL+aU

2

) (
bL+bU

2

)

+w, |aU β + bU α|, |aU β + bU α|
)
,

where w = h − k

2
, k = min(aLbL , aL bU , aU bL , aU bU ),

h = max(aLbL , aL bU , aU bL , aU bU ).

Definition 2 Let ã = (aL , aU , α, α) and b̃ = (bL , bU , β, β) be two symmetric trap-
ezoidal fuzzy numbers. Define the relation as
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ã � b̃ if and only if either
(aL − α) + (aU + α)

2
<

(bL − β) + (bU + β)

2
that is

aL + aU

2
<

bL + bU

2
(in this case, we can also write ã ≺ b̃)

or

aL + aU

2
= bL + bU

2
, bL < aL and aU < bU

or

aL + aU

2
= bL + bU

2
, bL = aL , aU = bU and α ≤ β,

(in the last two cases, we can also write ã ≈ b̃ and say that ã and b̃ are equivalent).

Remark 3 Two symmetric trapezoidal fuzzy numbers (aL , aU , α, α), (bL , bU , β, β)

are equivalent if and only if

aL + aU

2
= bL + bU

2
.

In this case, we simply write (aL , aU , α, α) ≈ (bL , bU , β, β) and it is to be noted
that aL need not be equal to bL or aU need not be equal to bU , but (aL , aU , α, α)

− (bL , bU , β, β) ≈ (−h, h, α + β, α + β), where h = (bU − aL) ≥ 0.

2.1 Fuzzy linear programming

In this section, we consider the Basic Feasible Solutions and the Complementary
Slackness Conditions for fuzzy linear programming with trapezoidal fuzzy numbers,
which were introduced in Ganesan and Veeramani (2006). Consider a primal fuzzy
linear programming problem:

max z̃ � c̃x̃
s.t. Ax̃ � b̃ (F L P)

x̃ 	 0̃,

with its associated dual problem (Nasseri et al. 2010)

min w̃0 � w̃b̃
s.t. w̃A 	 c̃, (F L D)

where b̃ ∈ (F(R))m, A ∈ R
m×n, c̃T ∈ (F(R))n are given data, and x̃ ∈ (F(R))n,

w̃T ∈ (F(R))m are the primal and dual variables, respectively, and �,� are the fuzzy
order relations.

Definition 4 A fuzzy vector x̃ = (x̃1, . . . , x̃n)T ∈ (F(R))n , where each x̃i ∈ F(R),
is called a fuzzy feasible solution to (FLP) if x̃ 	 0̃ satisfies the constraints Ax̃ � b̃.
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Definition 5 Let Q be the set of all fuzzy feasible solutions of (FLP). A fuzzy feasible
solution x̃∗ ∈ Q is said to be a fuzzy optimal solution to (FLP) if c̃x̃ � c̃x̃∗ for all
x̃ ∈ Q.

Definition 6 Let A be the coefficient matrix of the F L P problem with full row rank
and B be a nonsingular sub-matrix m×m of A. Let {B1, . . . , Bm} ⊂ {1, . . . , n} denote
the index set of the columns of matrix B. Let N = {1, 2, . . . , n} \ B. In this case,
vector x̃ � (x̃ T

B , x̃ T
N )T � (B−1b̃, 0̃) is called a basic solution. If x̃B 	 0̃, then the

fuzzy basic solution x̃ is called a fuzzy basic feasible solution and the corresponding
fuzzy objective value will be z̃ � c̃B x̃B , in which c̃B � (c̃B1 , . . . , c̃Bm ).

Let A. j denote the j th column of A, and x̃ and w̃ the primal and dual fuzzy feasible
solutions of problems (FLP) and (FLD), respectively. It should be remembered that a
necessary and sufficient condition for x̃ and w̃ to be optimal is ( Theorem 5.4, Nasseri
et al. 2010)

w̃i (b̃i − Ai. x̃) � 0̃, i = 1, 2, . . . , m (1)

(c̃ j − w̃A. j )x̃ j � 0̃, j = 1, 2, . . . , n (2)

where Ai. is the i th row of A, and (1) and (2) are referred to as complementary slackness
conditions.

3 Dual simplex method

Consider the (FLP) problem. Suppose that a basic solution for (FLP) is given by
x̃B � B−1b̃ and x̃N � 0̃, with the basis matrix B. Now let z̃ j � c̃B B−1 A. j , ỹ0 �
B−1b̃, where c̃B � (c̃B1 , . . . , c̃Bm ) and A. j is the j th column of the coefficient matrix
A. Consider Tabel 1, where x̃Br is the r th fuzzy basic variable and y j = B−1 A. j

Suppose that for j = 1, . . . , n, we have

z̃ j − c̃ j � c̃B B−1 A. j − c̃ j 	 0̃, (3)

that is, the optimality condition of the primal fuzzy problem (FLP) at x̃ holds true. we
define w̃ � c̃B B−1, where w̃ = (w̃1, . . . , w̃m). In this way, from (3), we have

w̃A 	 c̃,

that is, w̃ is a dual fuzzy feasible solution. If ỹ0r 	 0̃, for all r = 1, . . . , m, then we
can obtain a fuzzy feasible solution for the (FLP) problem. Moreover, we will have

c̃x̃ � c̃B x̃B � c̃B B−1b̃ � w̃b̃, (4)

and thus, by Corollary 5.1 in Nasseri et al. (2010), establish the optimality of x̃ and w̃

for the (FLP) and (FLD), respectively. Therefore, we have the following result.
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Table 1

Basis . . . x̃k . . . x̃ j . . . x̃B1 . . . x̃Br . . . x̃Bm R.H.S
z̃ . . . z̃k − c̃k . . . z̃ j − c̃ j . . . 0 . . . 0 . . . 0 c̃B B−1b̃

x̃B1 . . . y1k . . . y1 j . . . 1 . . . 0 . . . 0 ỹ01

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

x̃Br . . . yrk . . . yr j . . . 0 . . . 1 . . . 0 ỹ0r

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

x̃Bm . . . ymk . . . ymj . . . 0 . . . 0 . . . 1 ỹ0m

Corollary 7 The optimality criteria z̃ j − c̃ j 	 0̃ for all j , for the (FLP) problem is
equivalent to the feasibility condition for the (FLD) problem. If, in addition, x̃ corre-
sponding to a basis B is primal fuzzy feasible then x̃ is optimal for the (FLP) problem
and w̃ � c̃B B−1 is optimal to the (FLD) problem.

Now, assume that the (FLD) problem is feasible and x̃ , corresponding to a basis B,
is dual feasible but primal infeasible. That is, we have

z̃ j − c̃ j 	 0̃, j = 1, 2, . . . , n,

and there exists at least one r such that ỹ0r ≺ 0̃. Thus, according to duality the-
ory, the (FLP) problem can be either infeasible (in which case, the (FLD) problem is
unbounded), or it has an optimal solution. Next we will show how to work on row r of
the above table corresponding to basis B, as the pivoting row, and either (1) detect the
infeasibility of the (FLP) problem (or unboundedness of the (FLD) problem), or (2)
find a column �, as a pivoting column, to pivot on yr� and obtain a new dual feasible
table with a non-increasing primal objective value. We explain these cases below.

Theorem 8 If in a dual feasible simplex table an r exists such that ỹ0r ≺ 0̃ and
yr j ≥ 0, for all j , then the (FLP) problem is infeasible.

Proof Suppose that Table 1 is a dual feasible table, and an r exists such that ỹ0r ≺ 0̃
and yr j ≥ 0 for all j . Corresponding to the r th row of the table, we have

x̃Br +
∑

j∈N

yr j x̃ j � ỹ0r .

Since, by assumption, yr j ≥ 0, j ∈ N and x̃ j 	 0̃, then x̃Br +
∑

j∈N
yr j x̃ j 	 0̃ for

any fuzzy basic feasible solution. However, ỹ0r ≺ 0̃ and this shows that the (FLP)
problem is infeasible. �

Theorem 9 If in a dual feasible simplex table, an r exists such that ỹ0r ≺ 0̃ and there
exists a nonbasic index k ∈ N such that yrk < 0, then pivoting on yrk will yield a dual
feasible table with a corresponding non-increasing objective value.
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Proof Pivoting on the pivot yrk will result in the new objective row as follows:

z̃ j − c̃ j − yr j

yrk
(z̃k − c̃k), j ∈ N . (5)

For the new table to be dual feasible we need to have

z̃ j − c̃ j − yr j

yrk
(z̃k − c̃k) 	 0̃, j ∈ N , (6)

which results in

z̃ j − c̃ j

yr j
� z̃k − c̃k

yrk
, yr j < 0. (7)

To satisfy (7), it is sufficient to let

z̃k − c̃k

yrk
� max

{ z̃ j − c̃ j

yr j
| yr j < 0

}
. (8)

We note that the new objective value is non-increasing, since

c̃B B−1b̃ − ỹ0r

yrk
(z̃k − c̃k) � c̃B B−1b̃,

based on the fact that

ỹ0r ≺ 0̃, yrk < 0 and z̃k − c̃k 	 0̃.

�

Now, using the above results, we introduce a new dual algorithm to solve the (FLP)

problem directly, making use of the dual feasible simplex table. Thus, we refer to the
new algorithm as a dual simplex method.

Algorithm: a dual simplex method
(Dual feasibility) Let B be a basis for the (FLP) problem such that z̃ j − c̃ j 	 0̃ for all
j .
Compute the simplex table.
If ỹ0 	 0̃ then Stop (the current solution is optimal)
or else select the pivot row r with ỹ0r ≺ 0̃.
If yr j ≥ 0 for all j then Stop (the primal (FLP) is infeasible)
or else select the pivot column k by means of the following maximum ratio test:

z̃k − c̃k

yrk
� max

{
z̃ j − c̃ j

yr j
| yr j < 0

}

.

123



178 B. Kheirfam, J.L. Verdegay

Pivot on yrk and go to step 1.

For an illustration of the dual simplex method we consider the following example.

Example 1

max z̃ � −(13, 15, 2, 2)x̃1 − (12, 14, 3, 3)x̃2 − (15, 17, 2, 2)x̃3
s.t. 2x̃1 + 3x̃2 + 2x̃3 	 (45, 55, 6, 6)

4x̃1 + 3x̃3 	 (60, 80, 8, 8)

2x̃1 + 5x̃2 	 (65, 95, 5, 5)

x̃1, x̃2, x̃3 	 0̃.

We may write the first dual feasible simplex table as follows:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 R.H.S

z̃ (13, 15, 2, 2) (12, 14, 3, 3) (15, 17, 2, 2) 0̃ 0̃ 0̃ 0̃

x̃4 −2 −3 −2 1 0 0 (−55, −45, 6, 6)

x̃5 −4 0 −3 0 1 0 (−80, −60, 8, 8)

x̃6 −2 −5 0 0 0 1 (−95, −65, 5, 5)

Since ỹ03 ≺ 0̃, thus x̃6 is a leaving variable and

max

{
z̃ j − c̃ j

y3 j
: y3 j < 0

}

� max

{(−15

2
,
−13

2
, 1, 1

)

,

(−14

5
,
−12

5
,

3

5
,

3

5

)}

�
(−14

5
,
−12

5
,

3

5
,

3

5

)

,

thus x̃2 is an entering variable. The new table is:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 R.H.S

z̃
(

37
5 , 51

5 , 16
5 , 16

5

)
0̃ (15, 17, 2, 2) 0̃ 0̃

(
12
5 , 14

5 , 3
5 , 3

5

)
(−263,−153, 71, 71)

x̃4 − 4
5 0 −2 1 0 − 3

5 (−16, 12, 9, 9)

x̃5 −4 0 −3 0 1 0 (−80,−60, 8, 8)

x̃2
2
5 1 0 0 0 − 1

5 (13, 19, 1, 1)

x̃5 is a leaving variable and x̃1 is an entering variable. The next table is as follows:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 R.H.S

z̃ 0̃ 0̃
(

147
20 , 229

20 , 22
5 , 22

5

)
0̃

(
37
20 , 51

20 , 4
5 , 4

5

) (
12
5 , 14

5 , 3
5 , 3

5

) (
− 951

2 , − 499
2 , 157

5 , 157
5

)

x̃4 0 0 − 7
5 1 − 1

5 − 3
5

(
−4, 28, 48

5 , 48
5

)

x̃1 1 0 3
4 0 − 1

4 0 (15, 20, 2, 2)

x̃2 0 1 − 3
10 0 1

10 − 1
5

(
5, 13, 9

5 , 9
5

)
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Therefore, the optimal solution of the (FLP) problem obtained by the dual method
is x̃1 � (15, 20, 2, 2), x̃2 � (

5, 13, 9
5 , 9

5

)
, x̃3 � 0̃ with the optimal value

z̃ �
(

−951

2
,−499

2
,

157

5
,

157

5

)

.

Example 2

max z̃ � (−1,−1, 1, 1)x̃1 + (−4,−4, 4, 4)x̃2 + (−2,−1, 3, 3)x̃3 + (1, 1, 1, 1)x̃4
s.t. x̃1 − 2x̃2 + x̃3 − x̃4 	 (−2,−2, 3, 3)

2x̃1 + x̃2 + 2x̃3 − 2x̃4 � (2, 3, 1, 1)

x̃1 − 3x̃3 + x̃4 	 (1, 4, 3, 3)

x̃1, x̃2, x̃3 	 0̃.

We may write the first dual feasible simplex table as follows:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 R.H.S

z̃ (0, 0, 2, 2)
(

7
2 , 7

2 , 9
2 , 9

2

)
(0, 1, 4, 4) 0̃ 0̃ 0̃

(
− 3

2 , −1, 1
2 , 1

2

)

x̃5 0 5
2 0 0 1 0

(
3, 7

2 , 7
2 , 7

2

)

x̃4 −1 − 1
2 −1 1 0 0

(
− 3

2 , −1, 1
2 , 1

2

)

x̃6 −2 − 1
2 2 0 0 1

(
− 11

2 , −2, 7
2 , 7

2

)

Since ỹ03 ≺ 0̃, thus x̃6 is a leaving variable and

max
{

z̃ j −c̃ j
y3 j

: y3 j < 0
}

� max{(0, 0, 1, 1), (−7,−7, 9, 9)}
� (0, 0, 1, 1),

thus x̃1 is an entering variable. The new table is:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 R.H.S

z̃ 0̃
(

7
2 , 7

2 , 9
2 , 9

2

)
(0, 1, 6, 6) 0̃ 0̃ (0, 0, 1, 1)

(
− 39

8 , − 17
8 , 17

4 , 17
4

)

x̃5 0 5
2 0 0 1 0

(
3, 7

2 , 7
2 , 7

2

)

x̃4 0 − 1
4 −2 1 0 − 1

2

(
− 1

4 , 3
2 , 7

4 , 7
4

)

x̃1 1 1
4 −1 0 0 − 1

2

(
1, 11

4 , 7
4 , 7

4

)

Therefore, the optimal solution of the (FLP) problem obtained by the dual method
is x̃1 � (

1, 11
4 , 7

4 , 7
4

)
, x̃2 � 0̃, x̃3 � 0̃ and x̃4 � (− 1

4 , 3
2 , 7

4 , 7
4

)
with the optimal

value

z̃ �
(

−39

8
,−17

8
,

17

4
,

17

4

)

.
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4 Sensitivity analysis

Consider the primal problem (FLP). Suppose that the simplex method (Ganesan and
Veeramani 2006) produced an optimal basis B. We shall describe how to make use
of the optimality conditions (Theorem 2.4 in Ganesan and Veeramani 2006) in order
to find a new optimal solution if some of the problem data change without resolving
the problem from scratch. In particular the following variations in the primal problem
will be considered:

• change in the cost vector c̃,
• change in the right hand side vector b̃,
• change in the constraint matrix A,
• addition of a new activity (symmetric trapezoidal fuzzy variable),
• addition of a new constraint.

4.1 Change in the cost vector c̃

Given an optimal basic feasible solution, suppose that the cost coefficient of the fuzzy
variable x̃k is changed from c̃k to c̃′

k , so that c̃′
k := c̃k +λδ̃ck . The effect of this change

on the final table will occur in the cost row. We will determine the λ that make the old
solution still optimal. Consider the following two separation cases:

Case 1 x̃k is a non-basic variable.
In this case c̃B is not affected, and hence z̃ j := c̃B B−1 A. j is not changed for any j .
Thus z̃k − c̃k is replaced by z̃k − c̃′

k . Now, to preserve optimality, we must have

z̃k − c̃′
k = c̃B B−1 A.k − c̃k − λδ̃ck � z̃k − c̃k − λδ̃ck 	 0̃,

this implies, by Definition of the relation �,

λ

⎧
⎪⎪⎨

⎪⎪⎩

≥ (z̃k − c̃k)
L + (z̃k − c̃k)

U

(δ̃ck)L + (δ̃ck)U
, if (δ̃ck)

L + (δ̃ck)
U < 0

≤ (z̃k − c̃k)
L + (z̃k − c̃k)

U

(δ̃ck)L + (δ̃ck)U
, if (δ̃ck)

L + (δ̃ck)
U > 0

(9)

Hence for any change in c̃k , satisfying (9), the current optimal solution remains opti-
mal and the value of the objective function also does not change since x̃k � 0̃.

Case 2 x̃t is a basic variable, say x̃t := x̃Bk .
Let c̃Bk be replaced by c̃′

Bk
:= c̃Bk + λδ̃cBk . In this case the evaluations of z̃ j �

c̃B B−1 A. j for all non-basic variables are affected by any change in c̃k and we should
have:
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z̃′
j − c̃ j � c̃′

B B−1 A. j − c̃ j � (c̃B1 , . . . , c̃′
Bk

, . . . , c̃Bm )B−1 A. j − c̃ j

� c̃B B−1 A. j − c̃ j + (0, . . . , λδ̃cBk , . . . , 0)B−1 A. j

� z̃ j − c̃ j + λδ̃cBk

m∑

i=1

βki Ai j 	 0̃, j ∈ N

where B−1 = (βi j ). This implies that

λ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

≥ −(z̃ j − c̃ j )
L − (z̃ j − c̃ j )

U
(
(δ̃cBk )L + (δ̃cBk )U

) ∑m

i=1
βki Ai j

, if
(
(δ̃cBk )L + (δ̃cBk )U

) m∑

i=1

βki Ai j > 0

≤ −(z̃ j − c̃ j )
L − (z̃ j − c̃ j )

U
(
(δ̃cBk )L + (δ̃cBk )U

) ∑m

i=1
βki Ai j

, if
(
(δ̃cBk )L + (δ̃cBk )U

) m∑

i=1

βki Ai j < 0

(10)

Hence,

max
j∈N

⎧
⎨

⎩

−(z̃ j − c̃ j )
L − (z̃ j − c̃ j )

U
(
(δ̃cBk )L + (δ̃cBk )U

)∑m

i=1
βki Ai j

:
(
(δ̃cBk )L + (δ̃cBk )U

) m∑

i=1

βki Ai j > 0

⎫
⎬

⎭
≤ λ ≤

min
j∈N

⎧
⎨

⎩

−(z̃ j − c̃ j )
L − (z̃ j − c̃ j )

U
(
(δ̃cBk )L + (δ̃cBk )U

)∑m

i=1
βki Ai j

:
(
(δ̃cBk )L + (δ̃cBk )U

) m∑

i=1

βki Ai j < 0

⎫
⎬

⎭
.

Thus if the above relationship is satisfied, changes in c̃k will not affect the original
optimal basis nor the value of the optimal solution. The only change will occur in the
optimal value of the objective function z̃, and the new optimal value will be equal to:

z̃′∗ � c̃′
B B−1b̃ � c̃B B−1b̃ + (0, . . . , λδ̃cBk , . . . , 0)B−1b̃

� z̃∗ + λδ̃cBk

m∑

i=1

βki b̃i ,

which is a fuzzy linear function with respect to λ.

Example 3 Consider Example 2. Let c̃2 � (−4,−4, 4, 4) be replaced to c̃′
2� (−4,−4, 4, 4) + λ(3, 5, 6, 6). In this case, by using (9), we get

λ ≤ 7

8
.

Now, suppose that c̃1 � (−1,−1, 1, 1) be replaced to c̃1 � (−1,−1, 1, 1)

+ λ(−2, 3, 4, 4). In this case,

max

{

−28,−1

2

}

≤ λ ≤ min{0},
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or equivalently

−1

2
≤ λ ≤ 0,

and the new value of the objective function is equal to:

z̃′∗ �
(

−39

8
,−17

8
,

17

4
,

17

4

)

+ λ

(

−95

16
,

125

16
,

65

4
,

65

4

)

.

4.2 Change in the requirement vector b̃

Since the optimality condition, z̃ j − c̃ j 	 0̃,∀ j ∈ N , does not depend on the require-
ment vector, any change in the requirement vector does not affect the optimality con-
dition. It does, however, affect the values of the basic variables and hence the value of
the objective function. Thus if the magnitude of the change in the requirement vector
is such that it preserves the feasibility of the optimal basis, then the original optimal
basis remains optimal.

Let the requirement vector b̃ be replaced by b̃′ � b̃ + λδ̃b, where δ̃b is a constant
fuzzy vector. Then B−1b̃ will be replaced by B−1b̃′. The new right-hand-side can be
calculated without explicitly evaluating B−1b̃′. This is evident by noting that:

B−1b̃′ � B−1b̃ + λB−1δ̃b. (11)

To maintain the feasibility, we must have

B−1b̃ + λB−1δ̃b 	 0̃,

which is equivalent to

m∑

i=1

βhi b̃i + λ

m∑

i=1

βhi δ̃bi 	 0̃, h = 1, 2, . . . , m.

The last relation implies that

λ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≥ −
(∑m

i=1
βhi b̃i

)L +
(∑m

i=1
βhi b̃i

)U

(∑m

i=1
βhi δ̃bi

)L +
(∑m

i=1
βhi δ̃bi

)U
, if

⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

L

+
⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

U

> 0

≤ −
(∑m

i=1
βhi b̃i

)L +
(∑m

i=1
βhi b̃i

)U

(∑m

i=1
βhi δ̃bi

)L +
(∑m

i=1
βhi δ̃bi

)U
, if

⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

L

+
⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

U

< 0

(12)

Thus the range for λ for which the optimal basis remains optimal is:
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max
1≤h≤m

⎧
⎪⎨

⎪⎩
−

(∑m

i=1
βhi b̃i

)L +
(∑m

i=1
βhi b̃i

)U

(∑m

i=1
βhi δ̃bi

)L +
(∑m

i=1
βhi δ̃bi

)U
:
⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

L

+
⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

U

> 0

⎫
⎪⎬

⎪⎭
≤ λ ≤

min
1≤h≤m

⎧
⎪⎨

⎪⎩
−

(∑m

i=1
βhi b̃i

)L +
(∑m

i=1
βhi b̃i

)U

(∑m

i=1
βhi δ̃bi

)L +
(∑m

i=1
βhi δ̃bi

)U
:
⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

L

+
⎛

⎝
m∑

i=1

βhi δ̃bi

⎞

⎠

U

< 0

⎫
⎪⎬

⎪⎭
.

(13)

The new solution of the problem is given by (11) and the value of the objective function
is a fuzzy linear function with respect to λ:

z̃′∗ � c̃B B−1(b̃ + λδ̃b) � c̃B B−1b̃ + λc̃B B−1δ̃b � z̃∗ + λc̃B B−1δ̃b.

Example 4 Consider Example 2. Let δ̃b � ((4, 2, 1, 1), (3, 2, 5, 5), (1, 2, 3, 3))T be
a perturbation direction, therefore by using (13) we get

max

{

−5,−15

11

}

≤ λ ≤ min

{
13

7

}

.

Therefore, the stability range of the optimal solution is:

−15

11
≤ λ ≤ 13

7
,

and the optimal value function in this region is as follows:

z̃(λ) �
(

−39

8
,−17

8
,

17

4
,

17

4

)

+ λ

(

−3

2
,−1, 5, 5

)

.

4.3 Change in the coefficients matrix A

We now discuss the effect of changing some of the entries in the constraint matrix A.
Two scenarios are possible, namely changes involving non-basic columns and changes
involving basic columns.

Case 1 Change in the non-basic columns
Suppose that some of the non-basic columns A. j , j ∈ N1 ⊆ N are replaced by
A′

. j := A. j + λδA. j , j ∈ N1, and that δA. j s are the perturbation vectors. Then the
new updated columns are:

(
c̃B B−1 A′

. j − c̃ j

B−1 A′
. j

)

, j ∈ N1.
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It is clear that the feasibility condition is not distributed. To preserve the optimality
we must have:

z̃′
j − c̃ j � c̃B B−1 A′

. j − c̃ j

� c̃B B−1(A. j + λδA. j ) − c̃ j

� (z̃ j − c̃ j ) + λc̃B B−1δA. j

	 0̃, j ∈ N1.

This implies that:

λ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

≥ − (z̃ j − c̃ j )
L + (z̃ j − c̃ j )

U

(c̃B B−1δA. j )
L + (c̃B B−1δA. j )

U
, if (c̃B B−1δA. j )

L + (c̃B B−1δA. j )
U > 0,

≤ − (z̃ j − c̃ j )
L + (z̃ j − c̃ j )

U

(c̃B B−1δA. j )
L + (c̃B B−1δA. j )

U
, if (c̃B B−1δA. j )

L + (c̃B B−1δA. j )
U < 0.

(14)

Thus the range for λ for which the optimal basis remains optimal is:

max
j∈N1

{

− (z̃ j − c̃ j )
L + (z̃ j − c̃ j )

U

(c̃B B−1δA. j )
L + (c̃B B−1δA. j )

U
: (c̃B B−1δA. j )

L + (c̃B B−1δA. j )
U > 0

}

≤ λ ≤

min
j∈N1

{

− (z̃ j − c̃ j )
L + (z̃ j − c̃ j )

U

(c̃B B−1δA. j )
L + (c̃B B−1δA. j )

U
: (c̃B B−1δA. j )

L + (c̃B B−1δA. j )
U < 0

}

.

Example 5 Consider Example 2. If A′
.2 = A.2 +λδA.2 and A′

.3 = A.3 +λδA.3 where
δA.2 = (1, 2,−1)T and δA.3 = (−3, 2, 2)T then by using the above relationship, we
have

λ ≤ 1

2
.

Case 2 Change in the basic column
Here our goal is to determine the lower and upper bounds for λ which guarantee that
the replacement A.k by A′

.k := A.k + λδA.k, k ∈ B, does not affect the optimal basis,
and the original optimal solution x̃∗ remains feasible and optimal. By undertaking this
replacement, the optimal basis B will be replaced with B := B + λδA.ket

k where ek

is a unit vector. The inverse matrix B is:

B̄−1 = B−1 − λ
B−1δA.ket

k B−1

1 + λet
k B−1δA.k

= B−1 − λ
B−1δA.kβk.

1 + λ
∑m

i=1 βkiδAik
, 1 + λ

m∑

i=1

βkiδAik > 0,

(15)

according to the Sherman-Morrison formulas, where B−1 = (βi j ) and βk. is the kth
row B−1. This change to the basis matrix will affect the feasibility of vector x̃∗. How-
ever, it may also affect the optimality condition and the optimal value of the objective
function z̃. Therefore:
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x̃ B̄ � B̄−1b̃

�
(

B−1 − λ
B−1δA.kβk.

1 + λ
∑m

i=1 βkiδAik

)

b̃

� x̃B − λ
B−1δA.kβk.b̃

1 + λ
∑m

i=1 βkiδAik
. (16)

Now the i th component of x̃B is given by:

(x̃B)i �
m∑

j=1

βi j b̃ j − λ

∑m

j=1
βi jδA jk

∑m

j ′=1
βk j ′ b̃ j ′

1 + λ
∑m

i ′=1
βki ′δAi ′k

, i = 1, 2, . . . , m. (17)

This new basic solution x̃B will be feasible if:

m∑

j=1

βi j b̃ j − λ

∑m

j=1
βi jδA jk

∑m

j ′=1
βk j ′ b̃ j ′

1 + λ
∑m

i ′=1
βki ′δAi ′k

	 0̃, i = 1, 2, . . . , m. (18)

This implies:

λ

⎛

⎝
m∑

j=1

βi j b̃ j

m∑

i ′=1

βki ′δAi ′k −
m∑

j=1

βi jδA jk

m∑

j ′=1

βk j ′ b̃ j ′

⎞

⎠ 	 −
m∑

j=1

βi j b̃ j .

Hence to maintain feasibility, we must have:

max
1≤i≤m

⎧
⎪⎨

⎪⎩

−
(∑m

j=1
βi j b̃ j

)L −
(∑m

j=1
βi j b̃ j

)U

Hi
: Hi > 0

⎫
⎪⎬

⎪⎭
≤ λ ≤

min
1≤i≤m

⎧
⎪⎨

⎪⎩

−
(∑m

j=1
βi j b̃ j

)L −
(∑m

j=1
βi j b̃ j

)U

Hi
: Hi < 0

⎫
⎪⎬

⎪⎭
, (19)

where

Hi =
⎛

⎝
m∑

j=1

βi j b̃ j

m∑

i ′=1

βki ′δAi ′k −
m∑

j=1

βi jδA jk

m∑

j ′=1

βk j ′ b̃ j ′

⎞

⎠

L

+
⎛

⎝
m∑

j=1

βi j b̃ j

m∑

i ′=1

βki ′δAi ′k −
m∑

j=1

βi jδA jk

m∑

j ′=1

βk j ′ b̃ j ′

⎞

⎠

U

, i = 1, 2, . . . , m.
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Now, to preserve optimality, we must have:

z̃′
j − c̃ j � c̃B B

−1
A. j − c̃ j � c̃B

⎛

⎝B−1 − λ
B−1δA.kβk.

1 + λ
∑m

i ′=1
βki ′δAi ′k

⎞

⎠ A. j − c̃ j

� z̃ j − c̃ j − λ

∑m

i=1

∑m

j ′=1

∑m

i ′=1
c̃Bi βi j ′δA j ′ kβki ′ Ai ′ j

1 + λ
∑m

i ′=1
βki ′δAi ′k

	 0̃, j ∈ N .

(20)

Since 1 + λ
∑m

i ′=1
βki ′δAi ′k > 0, (20) reduces to:

λ

⎛

⎝(z̃ j − c̃ j )

m∑

i ′=1

βki ′δAi ′k −
m∑

i=1

m∑

j ′=1

m∑

i ′=1

c̃Bi βi j ′δA j ′kβki ′ Ai ′ j

⎞

⎠ 	 −(z̃ j − c̃ j ).

(21)

Hence in order to maintain the optimality of the new solution, λ must satisfy:

max
j∈N

{
−(z̃ j − c̃ j )

L − (z̃ j − c̃ j )
U

M j
: M j > 0

}

≤ λ ≤

min
j∈N

{
−(z̃ j − c̃ j )

L − (z̃ j − c̃ j )
U

M j
: M j < 0

}

, (22)

where

M j =
⎛

⎝(z̃ j − c̃ j )

m∑

i ′=1

βki ′δAi ′k −
m∑

i=1

m∑

j ′=1

m∑

i ′=1

c̃Bi βi j ′δA j ′kβki ′ Ai ′ j

⎞

⎠

L

+
⎛

⎝(z̃ j − c̃ j )

m∑

i ′=1

βki ′δAi ′k −
m∑

i=1

m∑

j ′=1

m∑

i ′=1

c̃Bi βi j ′δA j ′kβki ′ Ai ′ j

⎞

⎠

U

, j ∈ N .

Therefore, we have proved the following theorem:

Theorem 10 If λ satisfies (19), (22) and 1 + λ
∑m

i ′=1
βki ′δAi ′k > 0 then x̃∗ is an

optimal solution to the perturbed problem.

In the stability region of Theorem 10, the optimal value function is a fuzzy linear
fractional function with symmetric trapezoidal fuzzy numbers as follows:

z̃(λ) � z̃∗ − λ

∑m

i=1

∑m

j=1

∑m

j ′=1
c̃Bi βi jδA jkβk j ′ b̃ j ′

1 + λ
∑m

i ′=1
βki ′δAi ′k

.
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Example 6 Consider Example 2. If A′
.1 = A.1 + λδA.1, where δA.1 = (2, 0,−1)T ,

then by using Theorem 10 we obtain the following interval for λ:

1 ≤ λ < 2,

and the optimal value function is a fuzzy linear fractional function as follows:

z̃(λ) �
(

−39

8
,−17

8
,

17

4
,

17

4

)

− 2λ

2 − λ

(

0, 0,
11

4
,

11

4

)

.

4.4 Adding a new activity

Suppose that a new activity x̃n+1 with unit cost c̃n+1 and consumption column A.n+1
is considered for possible production. Without resolving the problem, we can easily
determine wether producing x̃n+1 is worthwhile or not.

It is obvious that the original optimal solution is feasible for the modified problem.
It also remains optimal if z̃n+1 − c̃n+1 	 0̃. In this way, x̃∗

n+1 � 0̃. If, however,

z̃n+1 − c̃n+1 ≺ 0̃, then x̃n+1 is introduced into the basis and the primal simplex
method (Ganesan and Veeramani 2006) may be applied to find an optimal solution to
the modified problem.

4.5 Adding a new constraint

Suppose that a new constraint is added to the problem after an optimal solution has
already been obtained. If the optimal solution to the original problem satisfies the new
constraint, it is also an optimal solution to the modified problem. If it does not satisfy
the new constraint, a new optimal solution has to be found.

Suppose that B is the optimal basis before adding constraint Am+1. x̃ � b̃m+1. The
corresponding problem to basis B is shown below:

z̃ + (z̃N − c̃N )x̃N � c̃B B−1b̃

x̃B + B−1 N x̃N � B−1b̃. (23)

The constraint Am+1. x̃ � b̃m+1 is rewritten as (Am+1.)B x̃B + (Am+1.)N x̃N + x̃n+1
� b̃m+1, where Am+1. is decomposed into ((Am+1.)B (Am+1.)N ) and x̃n+1 is a slack
variable. Multiplying the Eq. (23) by (Am+1.)B and subtracting from the new constraint
gives the following system:

z̃ + (z̃N − c̃N )x̃N � c̃B B−1b̃

x̃B + B−1 N x̃N � B−1b̃
(
(Am+1.)N − (Am+1.)B B−1 N

)
x̃N + x̃n+1 � b̃m+1 − (Am+1.)B B−1b̃.

These equations give us a basic solution of the new problem. The only possible vio-
lation of optimality of the new problem is the sign of b̃m+1 − (Am+1.)B B−1b̃, if
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b̃m+1 − (Am+1.)B B−1b̃ 	 0̃, then the current solution is optimal. Otherwise, if b̃m+1
− (Am+1.)B B−1b̃ ≺ 0̃ then the dual simplex method (Sect. 3) is used to restore
feasibility.

Example 7 Consider Example 2. Suppose that the constraint x̃1 − 3x̃2 + 2x̃4 �
[−1, 3, 4, 4] is added to the problem, then

(A4.)N − (A4.)B B−1 N =
(

−11

4
, 5,

3

2

)

,

b̃4 − (A4.)B B−1b̃ �
(

−27

4
,

5

2
,

37

4
,

37

4

)

.

So we have the following table:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 R.H.S

z̃ 0̃
(

7
2 , 7

2 , 9
2 , 9

2

)
(0, 1, 6, 6) 0̃ 0̃ (0, 0, 1, 1) 0̃

(
− 39

8 ,− 17
8 , 17

4 , 17
4

)

x̃5 0 5
2 0 0 1 0 0

(
3, 7

2 , 7
2 , 7

2

)

x̃4 0 − 1
4 −2 1 0 − 1

2 0
(
− 1

4 , 3
2 , 7

4 , 7
4

)

x̃1 1 1
4 −1 0 0 − 1

2 0
(

1, 11
4 , 7

4 , 7
4

)

x̃7 0 − 11
4 5 0 0 3

2 1
(
− 27

4 , 5
2 , 37

4 , 37
4

)

Since ỹ04 ≺ 0̃, thus x̃7 is a leaving variable and x̃2 is an entering variable. The new
table is:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 R.H.S

z̃ 0̃ 0̃
(

70
11 , 81

11 , 146
11 , 146

11

)
0̃ 0̃

(
21
11 , 21

11 , 35
11 , 35

11

) (
14
11 , 14

11 , 18
11 , 18

11

)
[]

x̃5 0 0 50
11 0 1 15

11
10
11

(
− 34

11 , 61
11 , 126

11 , 126
11

)

x̃4 0 0 − 27
11 1 0 − 7

11 − 1
11

(
− 5

11 , 23
11 , 28

11 , 28
11

)

x̃1 1 0 − 6
11 0 0 − 4

11
1
11

(
9
11 , 28

11 , 19
11 , 19

11

)

x̃2 0 1 − 20
11 0 0 − 6

11 − 4
11

(
− 9

11 , 26
11 , 35

11 , 35
11

)

Therefore, the new optimal solution is:

x̃1 �
(

9

11
,

28

11
,

19

11
,

19

11

)

, x̃2 �
(

− 9

11
,

26

11
,

35

11
,

35

11

)

, x̃3 � 0̃ and

x̃4 �
(

− 5

11
,

23

11
,

28

11
,

28

11

)

.
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5 Concluding remarks

In this paper, we introduced a new approach based on dual simplex method to obtain the
fuzzy optimal solution of a kind of fuzzy linear programming problems with symmet-
ric trapezoidal fuzzy numbers, without converting them to crisp linear programming
problems. Then, we studied the sensitivity analysis for these problems when the data
are perturbed, while the fuzzy optimal solution remains invariant.

A topic for further research that would be interesting is the extension of these results
to unsymmetrical cases.
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