
Fuzzy Optim Decis Making (2013) 12:191–213
DOI 10.1007/s10700-012-9148-3

Alfa-cut based linear programming methodology
for constrained matrix games with payoffs
of trapezoidal fuzzy numbers

Deng-Feng Li · Fang-Xuan Hong

Received: 20 August 2011 / Accepted: 18 October 2012 / Published online: 1 November 2012
© Springer Science+Business Media New York 2012

Abstract The purpose of this paper is to develop an effective methodology for
solving constrained matrix games with payoffs of trapezoidal fuzzy numbers (TrFNs),
which are a type of two-person non-cooperative games with payoffs expressed by
TrFNs and players’ strategies being constrained. In this methodology, it is proven
that any Alfa-constrained matrix game has an interval-type value and hereby any con-
strained matrix game with payoffs of TrFNs has a TrFN-type value. The auxiliary
linear programming models are derived to compute the interval-type value of any
Alfa-constrained matrix game and players’ optimal strategies. Thereby the TrFN-type
value of any constrained matrix game with payoffs of TrFNs can be directly obtained
through solving the derived four linear programming models with data taken from
only 1-cut and 0-cut of TrFN-type payoffs. Validity and applicability of the models
and method proposed in this paper are demonstrated with a numerical example of the
market share game problem.

Keywords Fuzzy game theory · Group decision making · Interval computation ·
Linear programming · Algorithm

1 Introduction

There are different kinds of games to deal with antagonistic decision problems (Owen
1982). Two-person zero-sum games, which are often called matrix games for short,
are an important kind of non-cooperative games. Matrix games have been extensively
studied and successfully applied to many fields such as economics, finance, business,

D.-F. Li (B) · F.-X. Hong
School of Management, Fuzhou University, No. 2, XueyuanRoad, Daxue New District,
Fuzhou District, Fuzhou, 350108 Fujian, China
e-mail: lidengfeng@fzu.edu.cn; dengfengli@sina.com

123



192 D.-F. Li, F.-X. Hong

auctions and e-commerce as well as advertising. In some situations, however, players
are not able to estimate exactly payoffs of outcomes in the game due to lack of ade-
quate information and/or imprecision of the available information on the environments
(Aggarwal et al. 2012; Bector et al. 2004; Larbani 2009; Liu and Kao 2009). This lack
of precision and certainty may be appropriately modeled by using the fuzzy set (Zadeh
1965). In addition, choice of strategies for players is constrained due to some practical
reason why this should be in some real-life game problems, i.e., not all mixed strat-
egies in a game are permitted for each player (Dresher 1961). Such a matrix game
with payoffs expressed by trapezoidal fuzzy numbers (TrFNs) is called a constrained
matrix game with payoffs of TrFNs for short. Dresher (1961) gave a real example of
the constrained matrix game with crisp payoffs. Li (1999) and Li and Cheng (2002)
studied the constrained matrix games with fuzzy payoffs by using fuzzy multiobjec-
tive programming. The aim of this paper is to develop an effective methodology for
solving constrained matrix games with payoffs of TrFNs. In this methodology, by
using the duality theorem of linear programming and the concept of α-cuts for TrFNs,
it is proven that any α-constrained matrix game has an interval-type value and hereby
any constrained matrix game with payoffs of TrFNs has a TrFN-type value. The auxil-
iary linear programming models are derived to compute the interval-type value of any
α-constrained matrix game and players’ optimal strategies. Thereby the mean interval
and the lower and upper limits of the TrFN-type value of any constrained matrix game
with payoffs of TrFNs can be directly obtained through solving the derived four linear
programming models with data taken from only 1-cut and 0-cut of TrFN-type payoffs.
Thus, the fuzzy value of any constrained matrix game with payoffs of TrFNs can be
easily and explicitly obtained by the representation theorem for the fuzzy set.

The rest of this paper is organized as follows. Section 2 briefly reviews some nota-
tions and definitions such as TrFNs, α-cuts and constrained matrix games as well
as auxiliary linear programming models. Constrained matrix games with payoffs of
TrFNs and the auxiliary linear programming models are presented in Sect. 3. In Sect.
4, validity and applicability of the proposed models and method are demonstrated
with a numerical example of the market share game problem. Conclusion is made in
Sect. 5.

2 Constrained matrix games and trapezoidal fuzzy numbers

2.1 Constrained matrix games and auxiliary linear programming models

Assume that S1 = {α1, α2, . . . , αm} and S2 = {β1, β2, . . . , βn} are sets of pure strate-
gies for players I and II, respectively. A payoff matrix of player I is concisely expressed
as A = (ai j )m×n . Players I and II must respectively choose their mixed strategies
y = (y1, y2, . . . , ym)T and z = (z1, z2, . . . , zn)T from some convex polyhedrons,
which are called constrained sets determined by some systems of linear inequalities and
equations. Without loss of generality, let Y = {y|BTy ≤ c,y ≥ 0} and Z = {z|Ez ≥ d,

z ≥ 0} respectively represent the constrained sets of strategies for I and II, where
c = (c1, c2, . . . , cp)

T, B = (bil)m×p, d = (d1, d2, . . . , dq)T, E = (ek j )q×n, p and
q are positive integers. Note that BTy ≤ c includes

∑m
i=1 yi = 1 since the latter is
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Alfa-cut based linear programming methodology 193

equivalent to both
∑m

i=1 yi ≤ 1 and −∑m
i=1 yi ≤ −1. Likewise, Ez ≥ d includes∑n

j=1 z j = 1. Thus, a constrained matrix game A is meant that player I’ payoff matrix
is A (hereby player II’ payoff matrix is −A) and the sets of constrained strategies for
I and II are Y and Z , respectively.

Suppose that players I and II are playing the constrained matrix game A. If player
I chooses any mixed strategy y ∈ Y and player II chooses any mixed strategy z ∈ Z ,
then the expected payoff of player I is computed as follows:

yTAz =
m∑

i=1

n∑

j=1

yi ai j z j . (1)

Thus, player I should choose an optimal strategy y∗ ∈ Y so that

min
z∈Z

{y∗TAz} = max
y∈Y

min
z∈Z

{yTAz} = ν. (2)

ν is called player I’s gain-floor.
Similarly, player II should choose an optimal strategy z∗ ∈ Z so as to obtain

max
y∈Y

{yTAz∗} = min
z∈Z

max
y∈Y

{yTAz} = ω. (3)

ω is called player II’s loss-ceiling.

Definition 1 (Owen 1982) Assume that there exist y∗ ∈ Y and z∗ ∈ Z so that

y∗TAz∗ = max
y∈Y

min
z∈Z

{yTAz} = min
z∈Z

max
y∈Y

{yTAz}. (4)

Then, (y∗, z∗) and ν = y
∗T Az∗ are called a saddle point (in mixed strategies) and a

value of the constrained matrix game A, respectively.

In a similar way to the matrix game (Owen 1982), Eq. (4) is equivalent to the linear
programming models as follows:

max{dTx}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ETx − ATy ≤ 0
BTy ≤ c
x ≥ 0
y ≥ 0

(5)

and

min{cTs}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

Bs − Az ≥ 0
Ez ≥ d
s ≥ 0
z ≥ 0,

(6)
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where x = (x1, x2, . . . , xq)T and s = (s1, s2, . . . , sp)
T. It is easily seen that Eqs. (5)

and (6) are a pair of primal-dual linear programming problems. Therefore, if both Eqs.
(5) and (6) are feasible, then the constrained matrix game A has a value and a saddle
point in mixed strategies, which can be summarized as the following theorems.

Theorem 1 (Owen 1982) If both Eqs. (5) and (6) are feasible linear programming,
then they respectively have optimal solutions (y∗, x∗)T and (z∗, s∗)T. Moreover, (y∗, z∗)
and ν = y

∗T Az∗ are the saddle point and the value of the constrained matrix game
A, respectively.

Theorem 2 If (y∗, x∗)T and (z∗, s∗)T respectively are feasible solutions of Eqs. (5)
and (6) and dTx∗ = cTs∗, then (y∗, z∗) and ν = dTx∗ = cTs∗ are the saddle point
and the value of the constrained matrix game A, respectively.

Theorem 2 is easily proven by using the duality theorem of linear programming. The
interested reader is referred to Li (1999) and Owen (1982) for the detailed (omitted).

2.2 Trapezoidal fuzzy numbers and Alfa-cuts

A fuzzy number b̃ with the membership function μb̃(x) is a special fuzzy subset on
the set R of real numbers, which satisfies the following conditions (Dubois and Prade
1980):

(1) There exists at least a x0 ∈ R so that μb̃(x0) = 1;
(2) The membership function μb̃(x) is left and right continuous.

TrFNs are a special kind of fuzzy numbers. Let ã = (al , am1 , am2 , ar ) be a TrFN,
whose membership function is defined as follows:

μã (x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − al)/(am1 − al) if al ≤ x < am1

1 if am1 ≤ x ≤ am2

(ar − x)/(ar − am2) if am2 < x ≤ ar

0 else,

(7)

where [am1, am2 ], al and ar are the mean interval and the lower and upper limits of
ã, respectively.

Obviously, if am1 = am2 then the TrFN ã = (al , am1 , am2 , ar ) is reduced to a tri-
angular fuzzy number (TFN) ã = (al , am, ar ), where am = am1 = am2 . If al = am1

and am2 = ar , then ã = (al , am1 , am2 , ar ) is reduced to an interval a = [aL , aR],
where aL = al = am1 and aR = am2 = ar . If al = am1 = am2 = ar then ã =
(al , am1 , am2 , ar ) is reduced to a real number a, where a = al = am1 = am2 = ar .
Conversely, TFNs, intervals and real numbers are easily rewritten as TrFNs. Therefore,
TrFNs are an extremely congenial class of fuzzy numbers for representing imprecision
and uncertainty such linguistics values and ill-quantity (Collins and Hu 2008; Zadeh
1965).

ã = (al , am1 , am2 , ar ) is called a non-negative TrFN if al ≥ 0 and one of the values
al , am1 , am2 and ar is non-zero.
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Alfa-cut based linear programming methodology 195

Let ã = (al , am1 , am2 , ar ) and b̃ = (bl , bm1 , bm2 , br ) be two non-negative TrFNs.
Then, their arithmetical operations are expressed as follows:

ã + b̃ = (al + bl , am1 + bm1 , am2 + bm2 , ar + br ) (8)

and

λã =
{

(λal , λam1 , λam2 , λar ) if λ ≥ 0
(λar , λam1 , λam2 , λal) if λ < 0.

(9)

Equations (8) and (9) mean that the sum of TrFNs and the product of a real number
and a TrFN are still TrFNs.

A α-cut of a TrFN ã = (al , am1 , am2 , ar ) is defined as ã(α) = {x |μã(x) ≥ α},
where α ∈ [0, 1]. Thus, for any α ∈ [0, 1], we can obtain a α-cut of the TrFN
ã = (al , am1 , am2 , ar ), which is an interval, denoted by ã(α) = [aL(α), aR(α)]. It is
easily derived from Eq. (7) that

aL(α) = αam1 + (1 − α)al (10)

and

aR(α) = αam2 + (1 − α)ar . (11)

Obviously, 1-cut and 0-cut are just the Core and Support of ã = (al , am1 , am2 , ar ),
respectively, i.e.,

ã(1) = Core(ã) = {x |μã(x) = 1} = [am1, am2 ] (12)

and

ã(0) = Support(ã) = {x |μã(x) > 0} = [al , ar ]. (13)

According to the operations over intervals (Moore 1979), it follows that

[αam1 + (1 − α)al , αam2 + (1 − α)ar ] = α[am1 , am2 ] + (1 − α)[al , ar ]. (14)

Combining with Eqs. (10)–(13), Eq. (14) is easily rewritten as follows:

[aL(α), aR(α)]=αã(1) + (1 − α)ã(0)=[αam1 + (1 − α)al , αam2 + (1 − α)ar ],
(15)

i.e., any α-cut of a TrFN can be directly obtained from both its 1-cut and 0-cut.
According to the representation theorem for the fuzzy set (Zadeh 1965), using Eq.

(15), a TrFN ã = (al , am1 , am2 , ar ) can be expressed as follows:

ã =
⋃

α∈[0,1]
{α ⊗ ã(α)} =

⋃

α∈[0,1]
{α ⊗ [aL(α), aR(α)]}, (16)
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where α ⊗ ã(α) is defined as a fuzzy set, whose membership function is defined as
follows:

μα⊗ã(α)(x) =
{

α if x ∈ ã(α)

0 otherwise,
(17)

i.e.,

μα⊗ã(α)(x) =
{

α if aL(α) ≤ x ≤ aR(α)

0 otherwise.
(18)

According to Eq. (15), Eq. (16) can be further rewritten as follows:

ã =
⋃

α∈[0,1]
{α ⊗ [αã(1) + (1 − α)ã(0)]}. (19)

Hence, it is easily derived from Eq. (19) that

μã(x) = max{α|x ∈ αã(1) + (1 − α)ã(0)}. (20)

More specially, combining with Eqs. (12) and (13), Eq. (20) can be written as the
same as Eq. (7). Thus, it is seen from Eq. (19) that a TrFN can be directly constructed
by using both its 1-cut and 0-cut.

From the aforementioned discussion, we summarize the conclusion as in the fol-
lowing theorem, which will be used to construct the fuzzy values of constrained matrix
games with payoffs of TrFNs in Sect. 3.

Theorem 3 A TrFN and its α-cuts have the relations (1) and (2) as follows:

(1) Any α-cut of a TrFN can be directly obtained from both its 1-cut and 0-cut;
(2) Any TrFN can be directly constructed by using both 1-cut and 0-cut.

3 Constrained matrix games with payoffs of TrFNs and solution method

3.1 Concepts of Alfa-constrained matrix games and values

Let us consider a constrained matrix game Ã with payoffs of TrFNs, where the payoff
matrix of player I is given as Ã = (ãi j )m×n , whose elements ãi j (i = 1, 2, . . . , m; j =
1, 2, . . . , n) are TrFNs stated as Sect. 2.2.

Definition 2 For a given α ∈ [0, 1], denote the payoff matrix of player I by Ã(α) =
(ãi j (α))m×n , whose elements ãi j (α) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) are α-cuts of
the TrFN-type payoffs ãi j . Then, Ã(α) is called a α-constrained matrix game of the
constrained matrix game Ã with payoffs of TrFNs, which is often called the α-con-
strained matrix game Ã(α) for short.
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Alfa-cut based linear programming methodology 197

Definition 3 For a given α ∈ [0, 1], if player I’s gain-floor ν̃(α) and player II’s
loss-ceiling ρ̃(α) have a common value Ṽ (α), then Ṽ (α) is called the value of the
α- constrained matrix game Ã(α), or the α-constrained matrix game Ã(α) has a value
Ṽ (α), where Ṽ (α) = ν̃(α) = ρ̃(α).

Definition 4 For any α ∈ [0, 1], if each α-constrained matrix game Ã(α) has a value
Ṽ (α), then the constrained matrix game Ã with payoffs of TrFNs has a fuzzy value
Ṽ , where Ṽ = ∪α∈[0,1]{α ⊗ Ṽ (α)}.

3.2 Alfa-constrained matrix games and auxiliary linear programming models

For the constrained matrix game Ã with payoffs of TrFNs stated as the above Sect. 3.1,
according to Eqs. (8) and (9), the expected payoff for player I is computed as follows:

Ẽ = yTÃz =
m∑

i=1

n∑

j=1

ãi j yi z j

=
⎛

⎝
m∑

i=1

n∑

j=1

al
i j yi z j ,

m∑

i=1

n∑

j=1

am1
i j yi z j ,

m∑

i=1

n∑

j=1

am2
i j yi z j ,

m∑

i=1

n∑

j=1

ar
i j yi z j

⎞

⎠, (21)

which is a TrFN.
Due to the fact that the constrained matrix game Ã with payoffs of TrFNs is zero-

sum, the expected payoff for player II is obtained as follows:

− Ẽ = yT(−Ã)z =
m∑

i=1

n∑

j=1

(−ãi j yi z j ) =
⎛

⎝−
m∑

i=1

n∑

j=1

ar
i j yi z j ,−

m∑

i=1

n∑

j=1

am2
i j yi z j ,

−
m∑

i=1

n∑

j=1

am1
i j yi z j ,−

m∑

i=1

n∑

j=1

al
i j yi z j

⎞

⎠ , (22)

which is still a TrFN. Thus, in general, player I’s gain-floor and player II’s loss-ceiling
should be TrFNs, denoted by ν̃ = (νl , νm1 , νm2 , νr ) and ω̃ = (ωl , ωm1 , ωm2 , ωr ),
respectively. Moreover, it is easily proven that ν̃ ≤ ω̃ (Li 1999; Li and Cheng 2002).

In a parallel way to the crisp constrained matrix games, if ν̃=ω̃ then the common
value Ṽ is called the fuzzy value of the constrained matrix game Ã with payoffs
of TrFNs, where Ṽ = ν̃ = ω̃. Obviously, Ṽ is a TrFN, denoted by Ṽ =(V l , V m1 ,

V m2 , V r ).
As far as we know, unfortunately, there is no method which can always ensure

that ν̃ = ω̃ and hereby the constrained matrix game with payoffs of TrFNs has the
fuzzy value. In this subsection, inspired by Li (2011), according to Definitions 2–4, we
develop a linear programming method for solving any α-constrained matrix game. In
particular, the auxiliary linear programming models are constructed to compute explic-
itly the TrFN-type value of the constrained matrix game Ã with payoffs of TrFNs.

For any α ∈ [0, 1], let us consider a α-constrained matrix game Ã(α), where
the payoff matrix of player I is given as Ã(α) = (ãi j (α))m×n , whose elements ãi j (α)

(i =1, 2, . . . , m; j =1, 2, . . . , n) are the α-cuts of the TrFN ãi j =(al
i j , am1

i j , am2
i j , ar

i j ).

123
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Stated as earlier, the α-cuts ãi j (α) of ãi j = (al
i j , am1

i j , am2
i j , ar

i j ) are intervals. It is easily
derived from Eq. (15) that

ãi j (α) = [aL
i j (α), aR

i j (α)] = [αam1
i j + (1 − α)al

i j , αam2
i j + (1 − α)ar

i j ]. (23)

Namely, the α-constrained matrix game Ã(α) is the constrained matrix game with
payoffs of intervals.

For any given values ai j (α) in the payoff intervals ãi j (α)(i = 1, 2, . . . , m; j = 1,

2, . . . , n), a payoff matrix is denoted by A(α) = (ai j (α))m×n . It is easily seen from
Eq. (2) that the value ν(α) of the constrained matrix game A(α) for player I is closely
related to the values ai j (α), i.e., entries in the payoff matrix A(α). In other words,
ν(α) is a function of the values ai j (α) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) in the payoff
intervals ãi j (α), denoted by ν(α) = υ(ai j (α)) (or υ(A(α))). Similarly, player I’s opti-
mal strategy y∗(α) ∈ Y is also a function of the values ai j (α) (i = 1, 2, . . . , m; j =
1, 2, . . . , n), denoted by y∗(α) = y∗(ai j (α)) (or y∗(A(α))). Likewise, the value ρ(α)

and player II’s optimal strategy z∗(α) ∈ Z are functions of the values ai j (α) (i =
1, 2, . . . , m; j = 1, 2, . . . , n) in the payoff intervals ãi j (α), denoted by ρ(α) =
ω(ai j (α)) (or ω(A(α))) and z∗(α) = z∗(ai j (α)) (or z∗(A(α))), respectively.

According to Eqs. (1) and (2), it is easily proven that player I’s gain-floor v(α) =
υ(ai j (α)) is a monotonic and non-decreasing function of the values ai j (α) (i =
1, 2, . . . , m; j = 1, 2, . . . , n) in the payoff intervals ãi j (α). In fact, for any values
ai j (α) and a′

i j (α) in the payoff intervals ãi j (α), if ai j (α) ≤ a′
i j (α) then we have

m∑

i=1

n∑

j=1

yi ai j (α)z j ≤
m∑

i=1

n∑

j=1

yi a
′
i j (α)z j (24)

since yi ≥ 0 (i = 1, 2, . . . , m) and z j ≥ 0 ( j = 1, 2, . . . , n), where y ∈ Y and z ∈ Z .
Hence,

min
z∈Z

⎧
⎨

⎩

m∑

i=1

n∑

j=1

yi ai j (α)z j

⎫
⎬

⎭
≤ min

z∈Z

⎧
⎨

⎩

m∑

i=1

n∑

j=1

yi a
′
i j (α)z j

⎫
⎬

⎭
, (25)

which directly implies that

max
y∈Y

min
z∈Z

⎧
⎨

⎩

m∑

i=1

n∑

j=1

yi ai j (α)z j

⎫
⎬

⎭
≤ max

y∈Y
min
z∈Z

⎧
⎨

⎩

m∑

i=1

n∑

j=1

yi a
′
i j (α)z j

⎫
⎬

⎭
, (26)

i.e.,

ν(ai j (α)) ≤ ν(a′
i j (α)), (27)

where A′(α) = (a′
i j (α))m×n is player I’s payoff matrix in the constrained matrix game

A′(α).
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According to the mini-max theorem of matrix games (Owen 1982), the constrained
matrix game A(α) = (ai j (α))m×n has a value, denoted by V (α) = V (ai j (α)) (or
V (A(α))). Obviously, V (α) = ν(α) = ρ(α). From the above discussion, V (α) =
V (ai j (α)) is also a non-decreasing function of the values ai j (α) (i = 1, 2, . . . , m; j =
1, 2, . . . , n) in the payoff intervals ãi j (α).

For the α-constrained matrix game Ã(α), the expected payoffs of players are a
linear combination of interval-valued payoffs. Thus, from a viewpoint of logic on
interval computation, the value of the α-constrained matrix game Ã(α) should be a
closed interval as well (Moore 1979). Note that player I’s value ν(α) = ν(ai j (α)) of
the constrained matrix game A(α) = (ai j (α))m×n is a non-decreasing function of the
values ai j (α) in the payoff intervals ãi j (α). Hence, player I’s upper bound νR(α) of the
interval-type value of the α-constrained matrix game Ã(α) can be obtained as follows:

νR(α) = max
y∈Y

min
z∈Z

{
yTAR(α)z

}
= max

y∈Y
min
z∈Z

⎧
⎨

⎩

m∑

i=1

n∑

j=1

yi a
R
i j (α)z j

⎫
⎬

⎭
, (28)

where AR(α)=(aR
i j (α))m×n . According to Eq. (5), Eq. (28) is equivalent to the linear

programming model as follows:

max{dTxR(α)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ETxR(α) − AR(α)TyR(α) ≤ 0
BTyR(α) ≤ c
xR(α) ≥ 0
yR(α) ≥ 0.

(29)

If Eq. (29) is feasible linear programming, then using the Simplex method of linear
programming (Owen 1982), an optimal solution of Eq. (29) is obtained, denoted
by (xR∗

(α), yR∗
(α)). Thus, according to Theorem 2, we obtain the upper bound

νR(α) = dTxR∗
(α) of player I’s gain-floor ν̃(α) and corresponding optimal strat-

egy yR∗
(α) ∈ Y for the α-constrained matrix game Ã(α).

Likewise, the lower bound νL(α) of player I’s gain-floor ν(α) and the optimal
strategy yL∗

(α) ∈ Y for the α-constrained matrix game Ã(α) are νL(α) = νL(aL
i j (α))

and yL∗ = yL∗
(aL

i j (α)), respectively. According to Eq. (5), (νL(α), yL∗
(α)) can be

obtained by solving the linear programming model as follows:

max{dTxL(α)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ETxL(α) − AL(α)TyL(α) ≤ 0
BTyL(α) ≤ c
xL(α) ≥ 0
yL(α) ≥ 0.

(30)

If Eq. (30) is feasible linear programming, then it has an optimal solution, denoted
by (yL∗

(α), xL∗
(α))T. Thus, according to Theorem 2, we obtain the lower bound
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νL(α) = dTxL∗
(α) of player I’s gain-floor ν̃(α) and corresponding optimal strategy

yL∗
(α) for the α-constrained matrix game Ã(α).
Thus, the lower bound νL(α) and the upper bound νR(α) of the player I’s value

of the α-constrained matrix game Ã(α) can be obtained. Therefore, the value of the
α-constrained matrix game Ã(α) is a closed interval [νL(α), νR(α)]. Namely, ν̃(α) =
[νL(α), νR(α)]. It is obvious that ν̃(α) is the α-cut of player I’s gain-floor ν̃(α) in the
constrained matrix game Ã with payoffs of TrFNs.

In the same analysis to that of player I, the upper bound ρR(α) of player II’s
value of the α-constrained matrix game Ã(α) and corresponding optimal strategy
zR∗

(α) ∈ Z are ρR(α) = ωR(aR
i j (α)) and zR∗

(α) = zR∗
(aR

i j (α)), respectively. Accord-

ing to Eq. (6), (ωR(α), zR∗
(α)) can be obtained by solving the linear programming

model as follows:

min{cTsR(α)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

BsR(α) − AR(α)zR(α) ≥ 0
EzR(α) ≥ d
sR(α) ≥ 0
zR(α) ≥ 0.

(31)

If Eq. (31) is feasible linear programming, then using the Simplex method of linear
programming, an optimal solution is obtained, denoted by (zR∗

(α), s R∗
(α)). Thus,

according to Theorem 2, we obtain the upper bound ρR(α) = cTsR∗
(α) of player II’s

loss-ceiling ω̃(α) and corresponding optimal strategy zR∗
(α).

Likewise, the lower bound ρL(α) of player II’s loss-ceiling ω̃(α) and correspond-
ing optimal strategy zL∗

(α) ∈ Z are ρL(α) = ωL(aL
i j (α)) and zL∗

(α) = zL∗
(aL

i j (α)),

respectively. According to Eq. (6), (ωL(α), zL∗
(α)) can be obtained by solving the

linear programming model as follows:

min{cTsL(α)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

BsL(α) − AL(α)zL(α) ≥ 0
EzL(α) ≥ d
sL(α) ≥ 0
zL(α) ≥ 0.

(32)

If Eq. (32) is feasible linear programming, then it has an optimal solution, denoted by
(zL∗

(α), sL∗
(α))T. Thus, we obtain the lower bound ρL(α) = cTsL∗

(α) of player II’s
loss-ceiling ω̃(α) and corresponding optimal strategy zL∗

(α). Thus, the lower bound
ρL(α) and the upper bound ρR(α) of player II’s value of the α-constrained matrix
game Ã(α) can be obtained. Therefore, player II’s value of the α-constrained matrix
game Ã(α) is a closed interval [ρL(α), ρR(α)]. Namely, ρ̃(α) = [ρL(α), ρR(α)]. It
is obvious that ρ̃(α) is the α-cut of player II’s loss-ceiling ω̃ in the constrained matrix
game Ã with payoffs of TrFNs.

It is easily seen that Eqs. (29) and (31) are a pair of primal-dual linear programming
problems. So the maximum of υR(α) is equal to the minimum of ωR(α) by the duality
theorem of linear programming (Owen 1982), i.e.,
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νR(α) = ρR(α). (33)

Likewise, Eqs. (30) and (32) are a pair of primal-dual linear programming problems.
Hence,

νL(α) = ρL(α). (34)

Therefore, player I’s gain-floor ν̃(α) = [νL(α), νR(α)] is equal to player II’s loss-ceil-
ing ρ̃(α) = [ρL(α), ρR(α)]. Namely, player I’s gain-floor and player II’s loss-ceiling
have a common value. According to Definition 3, the α-constrained matrix game Ã(α)

has a value, which is also an interval, denoted by Ṽ (α) = [V L(α), V R(α)]. Obviously,
Ṽ (α) = ν̃(α) = ρ̃(α), i.e., V L(α) = νL(α) = ρL(α) and V R(α) = νR(α) = ρR(α).
Furthermore, it is easily seen that Ṽ (α) is the α-cut of the fuzzy value Ṽ of the con-
strained matrix game Ã with payoffs of TrFNs, where Ṽ is a TrFN stated as earlier.
Thus, the conclusion is drawn in the following theorem.

Theorem 4 For any α ∈ [0, 1], the α-constrained matrix game Ã(α) has an interval-
type value Ṽ (α) = [V L(α), V R(α)], whose lower and upper bounds can be obtained
through solving two linear programming problems (i.e., Eqs. (29) and (30) or Eqs.
(31) and (32)), respectively.

Theorem 5 Any constrained matrix game Ã with payoffs of TrFNs always has a fuzzy
value Ṽ , where Ṽ = ∪α∈[0,1]{α ⊗ Ṽ (α)} = ∪α∈[0,1]{α ⊗ [V L(α), V R(α)]}.

Proof For any α ∈ [0, 1], according to Theorem 4, the α-constrained matrix game
Ã(α) has a value Ṽ (α) = [V L(α), V R(α)]. Thus, according to Definition 4, it directly
follows that the constrained matrix game Ã with payoffs of TrFNs has a fuzzy value
Ṽ . Combining with Eq. (16), we have

Ṽ =
⋃

α∈[0,1]
{α ⊗ Ṽ (α)} =

⋃

α∈[0,1]
{α ⊗ [V L(α), V R(α)]}. (35)

	


In particular, for α = 1, according to Eqs. (29) and (30) or Eqs. (31) and (32), the
linear programming problems are constructed as follows:

max{dTxR(1)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ETxR(1) − AR(1)TyR(1) ≤ 0
BTyR(1) ≤ c
xR(1) ≥ 0
yR(1) ≥ 0

(36)
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and

max{dTxL(1)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ETxL(1) − AL(1)TyL(1) ≤ 0
BTyL(1) ≤ c
xL(1) ≥ 0
yL(1) ≥ 0,

(37)

or

min{cTsR(1)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

BsR(1) − AR(1)zR(1) ≥ 0
EzR(1) ≥ d
sR(1) ≥ 0
zR(1) ≥ 0

(38)

and

min{cTsL(1)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

BsL(1) − AL(1)zL(1) ≥ 0
EzL(1) ≥ d
sL(1) ≥ 0
zL(1) ≥ 0,

(39)

respectively.
Using the Simplex method of linear programming, we obtain the optimal solu-

tions to the linear programming problems (i.e., Eqs. (36)–(39)), respectively, where
νR(1) = dTxR(1), νL(1) = dTxL(1), ρR(1) = cTsR(1) and ρL(1) = cTsL(1).
It easily follows from Eqs. (33) and (34) that [V L(1), V R(1)] = [νL(1), νR(1)] =
[ρL(1), ρR(1)]. According to the notation of Ṽ = (V l , V m1 , V m2 , V r ), we have

V m1 = V L(1) = νL(1) = ρL(1), V m2 = V R(1) = νR(1) = ρR(1). (40)

Namely, the mean interval of the fuzzy value Ṽ of the constrained matrix game Ã
with payoffs of TrFNs can be directly obtained by solving the two linear program-
ming problems (i.e., Eqs. (36) and (37) or Eqs. (38) and (39)). In other words, the
1-cut (or Core) of the fuzzy value is obtained as Ṽ (1) = Core(Ṽ ) = [V m1 , V m2 ] =
[νL(1), νR(1)] = [ρL(1), ρR(1)].

For α = 0, according to Eqs. (29) and (30) or Eqs. (31) and (32), the linear pro-
gramming problems are constructed as follows:

max{dTxR(0)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ETxR(0) − AR(0)TyR(0) ≤ 0
BTyR(0) ≤ c
xR(0) ≥ 0
yR(0) ≥ 0

(41)
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and

max{dTxL(0)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ETxL(0) − AL(0)TyL(0) ≤ 0
BTyL(0) ≤ c
xL(0) ≥ 0
yL(0) ≥ 0,

(42)

or

min{cTsR(0)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

BsR(0) − AR(0)zR(0) ≥ 0
EzR(0) ≥ d
sR(0) ≥ 0
zR(0) ≥ 0

(43)

and

min{cTsL(0)}

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

BsL(0) − AL(0)zL(0) ≥ 0
EzL(0) ≥ d
sL(0) ≥ 0
zL(0) ≥ 0,

(44)

respectively.
Using the Simplex method of linear programming, we obtain the optimal solu-

tions to the linear programming problems (i.e., Eqs. (41)–(44)), respectively, where
νR(0) = dTxR(0), νL(0) = dTxL(0), ρR(0) = cTsR(0) and ρL(0) = cTsL(0).
It easily follows from Eqs. (33) and (34) that [V L(0), V R(0)] = [νL(0), νR(0)] =
[ρL(0), ρR(0)]. According to the notation of Ṽ = (V l , V m1 , V m2 , V r ), we have

V l = V L(0) = νL(0) = ρL(0), V r = V R(0) = νR(0) = ρR(0). (45)

Namely, the lower limit and the upper limit of the fuzzy value Ṽ of the constrained
matrix game Ã with payoffs of TrFNs can be directly obtained by solving the two
linear programming problems (i.e., Eqs. (41) and (41) or Eqs. (43) and (44)). In other
words, the 0-cut (or Support) of the fuzzy value is obtained as Ṽ (0) = Support(Ṽ ) =
[V l , V r ] = [νL(0), νR(0)] = [ρL(0), ρR(0)].
Theorem 6 The fuzzy value of the constrained matrix game Ã with payoffs of TrFNs
can be expressed as follows:

Ṽ =
⋃

α∈[0,1]
{α ⊗ [αV m1 + (1 − α)V l , αV m2 + (1 − α)V r ]}, (46)

which is just the TrFN Ṽ = (V l , V m1 , V m2 , V r ), whose mean interval and the lower
and upper limits can be directly obtained through solving the above four linear
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programming problems (i.e., Eqs. (36), (37), (41) and (42) or Eqs. (38), (39), (43)
and (44)), respectively.

Proof According to Eqs. (15), (40) and (45), any α-cut Ṽ (α) = [V L(α), V R(α)] of
the fuzzy value Ṽ of the constrained matrix game Ã with payoffs of TrFNs can be
obtained as Ṽ (α) = αṼ (1)+(1−α)Ṽ (0) = [αV m1 +(1−α)V l , αV m2 +(1−α)V r ],
where α ∈ [0, 1]. According to Theorem 3, the fuzzy value Ṽ can be expressed as
follows:

Ṽ =
⋃

α∈[0,1]
{α ⊗ Ṽ (α)} =

⋃

α∈[0,1]
{α ⊗ [αV m1 + (1 − α)V l , αV m2 + (1 − α)V r ]},

(47)

which directly implies that the membership function of Ṽ is

μṼ (x) = max{α|αV m1 + (1 − α)V l ≤ x ≤ αV m2 + (1 − α)V r }

=

⎧
⎪⎪⎨

⎪⎪⎩

(x − V l)/(V m1 − V l) if V l ≤ x < V m1

1 if V m1 ≤ x ≤ V m2

(V r − x)/(V r − V m2) if V m2 < x ≤ V r

0 else.

(48)

Therefore, the fuzzy value Ṽ of the constrained matrix game Ã with payoffs of TrFNs
is just the TrFN Ṽ = (V l , V m1, V m2 , V r ). 	


Theorem 6 shows that the fuzzy value Ṽ of any constrained matrix game Ã with
payoffs of TrFNs is a TrFN, which can be directly and explicitly obtained through
solving the four linear programming problems (i.e., Eqs. (36), (37), (41) and (42) or
Eqs. (38), (39), (43) and (44)) with all data taken from only 1-cut and 0-cut of the
TrFN-type payoffs.

3.3 Algorithm for solving constrained matrix games with payoffs of TrFNs

From the aforementioned discussion, the process and algorithm for solving constrained
matrix games with payoffs of TrFNs are summarized as follows.

Step 1: Identify players, denoted by I and II;
Step 2: Identify pure strategies of players I and II, denoted the sets of pure strategies

by S1 = {δ1, δ2, . . . , δm} and S2 = {β1, β2, . . . , βn}, respectively;
Step 3: Identify constraint conditions of strategies’ choices for players I and II,

denoted the sets of constrained strategies by Y and Z , respectively;
Step 4: Pool opinions of outcomes for players I and II and estimate player I’s pay-

offs expressed with TrFNs ãi j = (al
i j , am1

i j , am2
i j , ar

i j ) (i = 1, 2, . . . , m; j =
1, 2, . . . , n) and hereby construct the payoff matrix Ã = (ãi j )m×n ;

Step 5: Construct and solve the linear programming problems according to Eqs. (29)
and (30) (or Eqs. (31) and (32)) and hereby obtain the value Ṽ (α) of any
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α-constrained matrix game Ã(α) and players’ optimal strategies, where α ∈
[0, 1];

Step 6: Construct and solve the two linear programming problems according to
Eqs. (36) and (37) and hereby obtain V m1 and V m2 ;

Step 7: Construct and solve the two linear programming problems according to
Eqs. (41) and (42) and hereby obtain V l and V r ;

Step 8: Construct the fuzzy value Ṽ of the constrained matrix game Ã with payoffs
of TrFNs according to the obtained values V m1 , V m2 , V l and V r . Namely,
the TrFN Ṽ = (V l , V m1 , V m2 , V r ) is explicitly obtained.

4 A numerical example and computational result comparison

Suppose that there are two industrial companies p1 and p2 aiming to enhance the
market share of an industrial product in a targeted market under the circumstance that
the demand amount of the industrial product in the targeted market basically is fixed.
In other words, the market share of one company increases while the market share of
another company decreases. The two companies are considering about two strategies to
increase the market share: strategy δ1 (improving technology) and δ2 (advertisement).
The company p1 needs the funds 80 and 50 (million yuan) when it takes strategies
δ1 and δ2, respectively. However, due to the lack of the funds, the company p1 only
provides 60 (million yuan), i.e., the company p1’s mixed strategies may satisfy the
constrained condition: 80y1 + 50y2 ≤ 60. Similarly, the company p2 need the funds
40 and 70 (million yuan) when it takes strategies δ1 and δ2, respectively. However, the
company p2 only provides 50 (million yuan), i.e., the company p2’s mixed strategies
may satisfy the constraint condition: 40z1+70z2 ≤ 50 (or −40z1−70z2 ≥ −50). Due
to a lack of information and imprecision of the available information, the managers
of the two companies usually are not able to forecast exactly the sales amount of the
companies’ product. Hereby, TrFNs are suitably used to represent the sales amount
of the industrial product from companies’ perspectives. Thus, the above problem may
be regarded as a constrained matrix game with payoffs of TrFNs. Namely, the compa-
nies p1 and p2 are regarded as players I and II, respectively. The sets of constrained
strategies are expressed as follows:

Y0 = {y |80y1 + 50y2 ≤ 60, y1 + y2 ≤ 1,−y1 − y2 ≤ −1, y1 ≥ 0, y2 ≥ 0}

and

Z0 = {z |−40z1 − 70z2 ≥ −50, z1 + z2 ≤ 1,−z1 − z2 ≤ −1, z1 ≥ 0, z2 ≥ 0},

respectively. Let us consider the specific constrained matrix game Ã0 with payoffs of
TrFNs, where the payoff matrix of the company p1 (i.e., player I) is given as follows:

Ã0 =
(

(27, 29, 32, 35) (−25,−19,−18,−17)

(−11,−10,−8,−5) (35, 40, 40.5, 41)

)
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where the element (27,29,32,35) in the matrix Ã0 is a TrFN, which indicates that
the company p1’s sales amount of the industrial product is between 27 and 35 when
the companies p1 and p2 use the strategy δ1 (improving technology) simultaneously.
Other elements (i.e., TrFNs) in the matrix Ã0 can be explained similarly.

Coefficient matrices and vectors of the constrained sets Y0 and Z0 for the industrial
companies p1 and p2 are obtained as follows:

B =
(

80 1 −1
50 1 −1

)

, ET =
(−40 1 −1

−70 1 −1

)

and

c = (60, 1,−1)T, d = (−50, 1,−1)T,

respectively.

4.1 Computational results obtained by the proposed method

According to Eq. (36), the linear programming problem can be obtained as follows:

max{−50x R
1 (1) + x R

2 (1) − x R
3 (1)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−40x R
1 (1) + x R

2 (1) − x R
3 (1) − 32y R

1 (1) + 8y R
2 (1) ≤ 0

−70x R
1 (1) + x R

2 (1) − x R
3 (1) + 18y R

1 (1) − 40.5y R
2 (1) ≤ 0

80y R
1 (1) + 50y R

2 (1) ≤ 60
y R

1 (1) + y R
2 (1) ≤ 1

−y R
1 (1) − y R

2 (1) ≤ −1
x R

k (1) ≥ 0 (k = 1, 2, 3)

y R
i (1) ≥ 0 (i = 1, 2).

(49)

Using the Simplex method of linear programming, the optimal solution (xR∗
(1),

yR∗
(1)) to Eq. (49) can be obtained, where yR∗

(1) = (1/3, 2/3)T and xR∗
(1) =

(0, 5.3333, 0)T. Hence, the upper bound νm2 of the mean interval of the company p1’s
gain-floor and corresponding optimal strategy ym∗

2 are νm2 = νR(1) = dTxR∗
(1) =

5.3333 and ym∗
2 = yR∗

(1) = (1/3, 2/3)T, respectively.
According to Eq. (37), the linear programming problem can be obtained as follows:

max{−50x L
1 (1) + x L

2 (1) − x L
3 (1)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−40x L
1 (1) + x L

2 (1) − x L
3 (1) − 29yL

1 (1) + 10yL
2 (1) ≤ 0

−70x L
1 (1) + x L

2 (1) − x L
3 (1) + 19yL

1 (1) − 40yL
2 (1) ≤ 0

80yL
1 (1) + 50yL

2 (1) ≤ 60
yL

1 (1) + yL
2 (1) ≤ 1

−yL
1 (1) − yL

2 (1) ≤ −1
x L

k (1) ≥ 0 (k = 1, 2, 3)

yL
i (1) ≥ 0 (i = 1, 2).

(50)
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Using the Simplex method of linear programming, the optimal solution (xL∗
(1),

yL∗
(1)) to Eq. (50) can be obtained, where yL∗

(1) = (1/3, 2/3)T and xL∗
(1) =

(0, 3, 0)T. Therefore, the lower bound νm1 of the mean interval of the company p1’s
gain-floor and corresponding optimal strategy ym∗

1 are νm1 = νL(1) = dTxL∗
(1) = 3

and ym∗
1 = yL∗

(1) = (1/3, 2/3)T, respectively.
According to Eq. (41), the linear programming problem can be constructed as fol-

lows:

max{−50x R
1 (0) + x R

2 (0) − x R
3 (0)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−40 x R
1 (0) + x R

2 (0) − x R
3 (0) − 35y R

1 (0) + 5y R
2 (0) ≤ 0

−70x R
1 (0) + x R

2 (0) − x R
3 (0) + 17y R

1 (0) − 41y R
2 ≤ 0

80y R
1 (0) + 50y R

2 (0) ≤ 60
y R

1 (0) + y R
2 (0) ≤ 1

−y R
1 (0) − y R

2 (0) ≤ −1
x R

k (0) ≥ 0 (k = 1, 2, 3)

y R
i (0) ≥ 0 (i = 1, 2).

(51)

The optimal solution (xR∗
(0), yR∗

(0)) to Eq. (51) can be obtained, where yR∗
(0) =

(1/3, 2/3)T and xR∗
(0) = (0, 8.3333, 0)T. The upper limit νr of the company p1’s

gain-floor and corresponding optimal strategy yr∗
are νr = νR(0) = dTxR∗

(0) =
8.3333 and yr∗ = yR∗

(0) = (1/3, 2/3)T, respectively.
According to Eq. (42), the linear programming problem can be obtained as follows:

max{−50x L
1 (0) + x L

2 (0) − x L
3 (0)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

40 x L
1 (0) + x L

2 (0) − x L
3 (0) − 27yL

1 (0) + 11yL
2 (0) ≤ 0

−70x L
1 (0) + x L

2 (0) − x L
3 (0) + 25yL

1 (0) − 35yL
2 (0) ≤ 0

80yL
1 (0) + 50yL

2 (0) ≤ 60
yL

1 (0) + yL
2 (0) ≤ 1

−yL
1 (0) − yL

2 (0) ≤ −1
x L

k (0) ≥ 0 (k = 1, 2, 3)

yL
i (0) ≥ 0 (i = 1, 2).

(52)

The optimal solution (xL∗
(0), yL∗

(0)) to Eq. (52) can be obtained, where yL∗
(0) =

(1/3, 2/3)T and xL∗
(0) = (0, 1.6667, 0)T. The lower limit νl of the company p1’s

gain-floor and corresponding optimal strategy yl∗ are νl = νL(0) = dTxL∗
(0) =

1.6667 and yl∗ = yL∗
(0) = (1/3, 2/3)T, respectively. Thus, the company p1’s gain-

floor is a TrFN ν̃ = (νl , νm1 , νm2 , νr ) = (1.6667, 3, 5.3333, 8.3333), whose mem-
bership function is given as follows:

μṽ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − 1.6667)/1.3333 if 1.6667 ≤ x < 3
1 if 3 ≤ x ≤ 5.3333
(8.3333 − x)/3 if 5.3333 < x ≤ 8.3333
0 else.

(53)

Similarly, according to Eq. (38), the linear programming problem can be obtained as
follows:
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min{60s R
1 (1)+s R

2 (1) − s R
3 (1)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

80s R
1 (1) + s R

2 (1) − s R
3 (1) − 32zR

1 (1) + 18zR
2 (1) ≥ 0

50s R
1 (1) + s R

2 (1) − s R
3 (1) + 8zR

1 (1) − 40.5zR
2 (1) ≥ 0

−40zR
1 (1) − 70zR

2 (1) ≥ −50
zR

1 (1) + zR
2 (1) ≥ 1

−zR
1 (1) − zR

2 (1) ≥ −1
s R
l (1) ≥ 0 (l = 1, 2, 3)

zR
j (1) ≥ 0 ( j = 1, 2).

(54)

Using the Simplex method of linear programming, the optimal solution (sR∗
(1),

zR∗
(1)) to Eq. (54) can be obtained, where zR∗

(1) = (1, 0)T and sR∗
(1) = (1.3333,

0, 74.6667)T. Therefore, the upper boundωm2 of the mean interval of the company p2’s
loss-ceiling and corresponding optimal strategy zm∗

2 are ωm2 = ωR(1) = cTsR∗
(1) =

5.3333 and zm∗
2 = zR∗

(1) = (1, 0)T, respectively.
According to Eq. (39), the linear programming problem can be obtained as

follows:

min{60sL
1 (1)+sL

2 (1) − sL
3 (1)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

80sL
1 (1) + sL

2 (1) − sL
3 (1) − 29zL

1 (1) + 19zL
2 (1) ≥ 0

50sL
1 (1) + sL

2 (1) − sL
3 (1) + 10zL

1 (1) − 40zL
2 (1) ≥ 0

−40zL
1 (1) − 70zL

2 (1) ≥ −50
zL

1 (1) + zL
2 (1) ≥ 1

−zL
1 (1) − zL

2 (1) ≥ −1
sL
l (1) ≥ 0 (l = 1, 2, 3)

zL
j (1) ≥ 0 ( j = 1, 2).

(55)

The optimal solution (sL∗
(1), zL∗

(1)) to Eq. (55) can be obtained, where zL∗
(1) =

(1, 0)T and sL∗
(1) = (1.30, 0, 75.0)T. Thus, the lower bound ωm1 of the mean interval

of the company p2’s loss-ceiling and corresponding optimal strategy zm∗
1 are ωm1 =

ωL(1) = cTsL∗
(1) = 3 and zm∗

1 = zL∗
(1) = (1, 0)T, respectively.

According to Eq. (43), the linear programming problem can be obtained as
follows:

min{60s R
1 (0) + s R

2 (0) − s R
3 (0)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

80s R
1 (0) + s R

2 (0) − s R
3 (0) − 35zR

1 (0) + 17zR
2 (0) ≥ 0

50s R
1 (0) + s R

2 (0) − s R
3 (0) + 5zR

1 (0) − 41zR
2 (0) ≥ 0

−40zR
1 (0) − 70zR

2 (0) ≥ −50
zR

1 (0) + zR
2 (0) ≥ 1

−zR
1 (0) − zR

2 (0) ≥ −1
s R
l (0) ≥ 0 (l = 1, 2, 3)

zR
j (0) ≥ 0 ( j = 1, 2).

(56)

The optimal solution (sR∗
(0), zR∗

(0)) to Eq. (56) can be obtained, where zR∗
(0) =

(1, 0)T and sR∗
(0) = (1.3333, 0, 71.6667)T, respectively. Therefore, the upper limit
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ωr of the company p2’s loss-ceiling and corresponding optimal strategy zr∗
are ωr =

ωR(0) = cTsR∗
(0) = 8.3333 and zr∗ = zR∗

(0) = (1, 0)T, respectively.
According to Eq. (44), the linear programming problem can be obtained as

follows:

min{60sL
1 (0)+sL

2 0 − sL
3 (0)}

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

80sL
1 0 + sL

2 0 − sL
3 0 − 27zL

1 0 + 25zL
2 0 ≥ 0

50sL
1 0 + sL

2 0 − sL
3 0 + 11zL

1 (0) − 35zL
2 (0) ≥ 0

−40zL
1 0 − 70zL

2 0 ≥ −50
zL

1 0 + zL
2 0 ≥ 1

−zL
1 0 − zL

2 0 ≥ −1
sL
l 0 ≥ 0 (l = 1, 2, 3)

zL
j 0 ≥ 0 ( j = 1, 2).

(57)

The optimal solution (sL∗
(0), zL∗

(0)) to Eq. (57) can be obtained, where zL∗
(0) =

(1, 0)T and sL∗
(0) = (1.2667, 0, 74.3333)T. Therefore, the lower limit ωl of the com-

pany p2’s loss-ceiling and corresponding optimal strategy zl∗ are ωl = ωL(0) =
cTsL∗

(0) = 1.6667 and zl∗ = zL∗
(0) = (1, 0)T, respectively. Thus, the company p2’s

loss-ceiling is a TrFN ω̃ = (ωl , ωm1 , ωm2 , ωr ) = (1.6667, 3, 5.3333, 8.3333).
Obviously, ν̃ = ω̃ = (1.6667, 3, 5.3333, 8.3333), i.e., the company p1’s gain-floor

and the company p2’s loss-ceiling have the identical TrFN-type value. Therefore, the
constrained matrix game Ã0 with payoffs of TrFNs has the fuzzy value, which is equal
to the TrFN Ṽ = (1.6667, 3, 5.3333, 8.3333).

Furthermore, using the linear programming models (i.e., Eqs. (29)–(32)), we also
can obtain the interval-type value of any α-constrained matrix game and players’
optimal strategies, where α ∈ [0, 1], depicted as in Table 1.

Table 1 The interval-type values of the α-constrained matrix games and players’ optimal strategies

α Play I Play II

yL (α)T yR(α)T (νL (α), νR(α)) zL (α)T zR(α)T (ωL (α), ωR(α))

0.0 (1/3, 2/3) (1/3, 2/3) (1.6667, 8.3333) (1, 0) (1, 0) (1.6667, 8.3333)

0.1 (1/3, 2/3) (1/3, 2/3) (1.8000, 8.0333) (1, 0) (1, 0) (1.8000, 8.0333)

0.2 (1/3, 2/3) (1/3, 2/3) (1.9333, 7.7333) (1, 0) (1, 0) (1.9333, 7.7333)

0.3 (1/3, 2/3) (1/3, 2/3) (2.0667, 7.4333) (1, 0) (1, 0) (2.0667, 7.4333)

0.4 (1/3, 2/3) (1/3, 2/3) (2.2000, 7.1333) (1, 0) (1, 0) (2.2000, 7.1333)

0.5 (1/3, 2/3) (1/3, 2/3) (2.3333, 6.8333) (1, 0) (1, 0) (2.3333, 6.8333)

0.6 (1/3, 2/3) (1/3, 2/3) (2.4667, 6.5333) (1, 0) (1, 0) (2.4667, 6.5333)

0.7 (1/3, 2/3) (1/3, 2/3) (2.6000, 6.2333) (1, 0) (1, 0) (2.6000, 6.2333)

0.8 (1/3, 2/3) (1/3, 2/3) (2.7333, 5.9333) (1, 0) (1, 0) (2.7333, 5.9333)

0.9 (1/3, 2/3) (1/3, 2/3) (2.8667, 5.6333) (1, 0) (1, 0) (2.8667, 5.6333)

1.0 (1/3, 2/3) (1/3, 2/3) (3.0000, 5.3333) (1, 0) (1, 0) (3.0000, 5.3333)
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Fig. 1 The fuzzy values of the constrained matrix game with payoffs of TrFNs

It is easily seen from Table 1 that any α-constrained matrix game always has an
interval-type value. Thereby, the constrained matrix game Ã0 with payoffs of TrFNs
has the TrFN-type value, depicted as in Fig. 1.

4.2 Computational results of the unconstrained matrix game with payoffs of TrFNs

If both companies do not take into account the constraint conditions of the strategies,
then the above market share problem may be regarded as a (unconstrained) matrix
game Ã′

0 with payoffs of TrFNs. Thus, using the methodology given by Li (2011), the
linear programming problems are obtained as follows:

min{x ′R
1 (1) + x ′R

2 (1)}

s.t.

⎧
⎨

⎩

32x ′R
1 (1) − 8x ′R

2 (1) ≥ 1
−18x ′R

1 (1) + 40.5x ′R
2 (1) ≥ 1

x ′R
1 (1) ≥ 0, x ′R

2 (1) ≥ 0

(58)

and

min{x ′L
1 (1) + x ′L

2 (1)}

s.t.

⎧
⎨

⎩

29x ′L
1 (1) − 10x ′L

2 (1) ≥ 1
−19x ′L

1 (1) + 40x ′L
2 (1) ≥ 1

x ′L
1 (1) ≥ 0, x ′L

2 (1) ≥ 0,

(59)

where x ′R
1 (1), x ′R

2 (1), x ′L
1 (1) and x ′L

2 (1) are decision variables.
Similarly, the two linear programming problems are constructed as follows:

min{x ′R
1 (0) + x ′R

2 (0)}

s.t.

⎧
⎨

⎩

35x ′R
1 (0) − 5x ′R

2 (0) ≥ 1
−17x ′R

1 (0) + 41x ′R
2 (0) ≥ 1

x ′R
1 (0) ≥ 0, x ′R

2 (0) ≥ 0

(60)
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and

min{x ′L
1 (0) + x ′L

2 (0)}

s.t.

⎧
⎨

⎩

27x ′L
1 (0) − 11x ′L

2 (0) ≥ 1
−25x ′L

1 (0) + 35x ′L
2 (0) ≥ 1

x ′L
1 (0) ≥ 0, x ′L

2 (0) ≥ 0,

(61)

where x ′R
1 (0), x ′R

2 (0), x ′L
1 (0) and x ′L

2 (0) are decision variables.
Using the Simplex method of linear programming, the optimal solution x′m∗

1 =
x′L∗

(1) = (x ′L∗
1 (1), x ′L∗

2 (1))T of Eq. (59) is easily obtained, where x
′m∗

1
1 = 0.0515

and x
′m∗

1
2 = 0.0495. According to the methodology given by Li (2011), the lower

bound ν′m1 of the mean interval and the company p1’s optimal strategy y′m∗
1 can be

obtained, where

ν′m1 = ν′L(1) = 1/(x ′L∗
1 (1) + x ′L∗

2 (1)) = 9.8980

and

y
′m∗

1
1 = y′L∗

1 (1) = x ′L∗
1 (1)/(x ′L∗

1 (1) + x ′L∗
2 (1)) = 0.5102

y
′m∗

1
2 = y′L∗

2 (1) = x ′L∗
2 (1)/(x ′L∗

1 (1) + x ′L∗
2 (1)) = 0.4898,

respectively.
Likewise, solving Eqs. (58), (60) and (61), the upper bound of the mean interval,

the lower and upper limits and the company p1’s optimal strategies can be obtained
as follows:

v′m2 = 11.6954, y′m∗
2 = (0.4924, 0.5076)T

and

ν′r = 13.7755, y′r∗ = (0.4694, 0.5306)T

and

ν′l = 6.8367, y′l∗ = (0.4694, 0.5306)T,

respectively.
Thus, the company p1’s gain-floor is a TrFN ṽ′ = (v′l , v′m1 , v′m2 , v′r ) = (6.8367,

9.8980,11.6954,13.7755), whose membership function is given as follows:

μṽ′(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x − 6.8367)/3.0613 if 6.8367 ≤ x < 9.8980
1 if 9.8980 ≤ x ≤ 11.6954
(13.7755 − x)/2.0801 if 11.6954 < x ≤ 13.7755
0 else.
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In the same way, according to the methodology given by Li (2011), we have

ω′m1 = 9.8980, z′m∗
1 = (0.6020, 0.3980)T

ω′m2 = 11.69549, z′m∗
2 = (0.5939, 0.4061)T

ω′r = 13.7755, z′r∗ = (0.5918, 0.4082)T

and

ω′l = 6.8367, z′l∗ = (0.6122, 0.3878)T,

respectively. Then, the company p2’s loss-celling is a TrFN ω̃′ = (ω′l , ω′m1 , ω′m2 , ω′r )
(6.8367,9.8980,11.6954,13.7755).

Thus, the company p1’s gain-floor and the company p2’s loss-celling have the iden-
tical TrFN-type value. Hereby the (unconstrained) matrix game Ã′

0 with payoffs of
TrFNs has the TrFN-type value Ṽ ′ = ν̃′ = ω̃′ = (6.8367,9.8980,11.6954,13.7755),
depicted as in Fig. 1.

It is easily seen from Fig. 1 that the fuzzy value Ṽ ′ and the companies’ optimal
strategies in the unconstrained matrix game Ã′

0 with payoffs of TrFNs are different
from the fuzzy value Ṽ and the corresponding optimal strategies in the constrained
matrix game Ã0 with payoffs of TrFNs. Moreover, Ṽ ′ is larger than Ṽ . These conclu-
sions are rational and accordance with the actual situation as expected. On the other
hand, it is shown that it is necessary to take into consideration the constraint conditions
of strategies’ choice for players.

5 Conclusion

Fuzzy game theory can give a basic conceptual framework for formulating and ana-
lyzing antagonistic decision problems that present some source of impreciseness and
uncertainty on any of its elements. However, because of obtaining different values or
defuzzification values for players, the existing methods are not rational and effective
from a viewpoint of logic and the concept of zero-sum games with payoffs of TrFNs.
The method proposed in this paper can always ensure that any constrained matrix game
with payoffs of TrFNs has the TrFN-type value. These conclusions are in accordance
with the viewpoint of logic and the zero-sum feature of matrix games with payoffs
of TrFNs. The auxiliary linear programming models are derived to compute α-cuts
(i.e., interval-type values) of the fuzzy value of any constrained matrix game with
payoffs of TrFNs and players’ optimal strategies. Particularly, the TrFN-type value
of the constrained matrix game with payoffs of TrFNs can be directly and explicitly
obtained through solving the derived four linear programming models with data taken
from only 1-cut and 0-cut of the TrFN-type payoffs.

It is obvious that the constrained matrix games with payoffs of TrFNs is a special
case of the constrained matrix games. In fact, if all the TrFN-type payoffs degenerate
to real numbers, i.e., al

i j = am1
i j = am2

i j = ar
i j , then the constrained matrix games
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with payoffs of TrFNs are reduced to the constrained matrix games. Hence, the linear
programming models (i.e., Eqs. (29)–(32)) are reduced to those (i.e., Eqs. (5) and (6))
of the constrained matrix games. Furthermore, if the constraint conditions of players’
strategies are not taken into account, the linear programming models are reduced to
those of the (unconstrained) matrix games (Owen 1982). Therefore, the models and
method proposed in this paper are extensions of those in the constrained matrix games
and the matrix games.
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