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Abstract Uncertain variable is used to model quantities in uncertainty. This paper
considers comonotonic functions of an uncertain variable, and gives their uncertainty
distributions. Besides, it proves the linearity of expected value operator on comono-
tonic functions of an uncertain variable.
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1 Introduction

Probability theory is a branch of axiomatic mathematics to deal with random phenom-
ena and is applicable only when the estimated probability is closed enough to the real
frequency. However, we are usually lack of historical data to estimate the probability
in practice. In that case, some experts are invited to evaluate their belief degree. Since
human beings tend to overweight unlikely events (Kahneman and Tversky 1979), the
belief degree may have a much larger range than the real frequency. If we insist on
treating the belief degree as probability, some counterintuitive results will happen.
Interested readers may refer to Liu (2012) for an example. In order to deal with this
situation, an uncertainty theory was founded by Liu (2007) and refined by Liu (2011)
based on normality, duality, subadditivity and product axioms.
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In the framework of uncertainty theory, many researchers have contributed a lot.
Gao (2009) provided some properties of continuous uncertain measure, and Zhang
(2011) proposed some inequalities on uncertain measure. Based on uncertain mea-
sure, a concept of uncertain variable was proposed as a measurable function from an
uncertainty space to a real number set. You (2009) proposed some convergence theo-
rems on a sequence of uncertain variables. Then Tian (2011) and Yang (2011) proposed
some moment inequalities of uncertain variables. In order to describe an uncertain var-
iable, a concept of uncertainty distribution was defined. Peng and Iwamura (2010) gave
a sufficient and necessary condition for a function being an uncertainty distribution
of an uncertain variable. Expected value is an important index to compare uncertain
variables. Liu and Ha (2010) gave some theorems on expected values of monotone
functions of uncertain variables.

This paper will consider the comonotonic functions of an uncertain variable. The
rest of this paper is organized as follows. In Sect. 2, we review some basic results
of uncertainty theory which will be used throughout the paper. Then the concept of
comonotonic functions is given in Sect. 3. After that, the uncertainty distributions and
expected values of comonotonic functions of uncertain variables are given in Sects. 4
and 5, respectively. At last, some remarks are made in Sect. 6.

2 Preliminary

Uncertainty theory is a branch of axiomatic mathematics to model human uncertainty.
The fundamental concept in uncertainty theory is uncertain measure.

Definition 1 (Liu 2007) Let L be a σ -algebra on a nonempty set Γ . A set function
M : L → [0, 1] is called an uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality Axiom) M{Γ } = 1 for the universal set Γ .

Axiom 2: (Duality Axiom) M{Λ} + M{Λc} = 1 for any event Λ.

Axiom 3: (Subadditivity Axiom) For every countable sequence of eventsΛ1,Λ2, . . . ,

we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M {Λi } .

Besides, the product uncertain measure on the product σ -algebra L was defined via
Liu (2009) by the following axiom.

Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .

Then the product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
i=1

Λk

}
=

∞∧
k=1

Mk{Λk}
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where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.

Definition 2 (Liu 2007) An uncertain variable is a measurable function from an uncer-
tainty space (Γ,L,M) to the set of real numbers, i.e., for any Borel set B of real
numbers, the set

{ξ ∈ B} = {γ | ξ(γ ) ∈ B}

is an event.

In order to describe an uncertain variable, a concept of uncertainty distribution is
defined.

Definition 3 (Liu 2007) The uncertainty distribution of an uncertain variable ξ is
defined by

Φ(x) = M{ξ ≤ x}

for any x ∈ �.

The inverse function Φ−1(α) is called an inverse uncertainty distribution of ξ . It
plays an important role in the operation of uncertain variables.

Theorem 1 (Liu 2011) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
uncertainty distributions Φ1, Φ2, . . . , Φn, respectively. If f (x1, x2, . . . , xn) is strictly
increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect to
xm+1, xm+2, . . . , xn, then ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable with an
inverse uncertainty distribution

Φ−1(r) = f
(
Φ−1

1 (r), . . . , Φ−1
m (r),Φ−1

m+1(1 − r), . . . , Φ−1
n (1 − r)

)
.

Definition 4 (Liu 2007) The expected value of an uncertain variable ξ is defined by

E[ξ ] =
+∞∫
0

M{ξ ≥ x}dx −
0∫

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals exists.

Assume that ξ has a regular uncertainty distribution Φ. Then Liu (2011) proved
that

E[ξ ] =
+∞∫
0

(1 − Φ(x))dx −
0∫

−∞
Φ(x)dx
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and

E[ξ ] =
1∫

0

Φ−1(α)dα

provided that the expected value E[ξ ] exists. Following that, Liu and Ha (2010) proved
that

E[ f (ξ1, ξ2, . . . , ξn)]

=
1∫

0

f
(
Φ−1

1 (r), . . . , Φ−1
m (r),Φ−1

m+1(1 − r), . . . , Φ−1
n (1 − r)

)
dr

where ξ1, ξ2, . . . , ξn are independent uncertain variables, f (x1, x2, . . . , xn) is strictly
increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect to
xm+1, xm+2, . . . , xn . In addition, Liu (2011) proved the linearity of expected value
operator on independent uncertain variables, that is E[aξ +bη] = aE[ξ ]+bE[η] for
independent uncertain variables ξ and η and any real numbers a and b.

3 Comonotonic functions

This section will introduce the concept of comonotonic functions, and give a theorem
about them.

Definition 5 Two functions f and g are said to be comonotonic if

( f (x1) − f (x2)) (g(x1) − g(x2)) ≥ 0

for any real numbers x1 and x2.

Example 1 Consider the functions f (x) = |x | and g(x) = x2. For two real numbers
x1 and x2, if f (x1) = |x1| ≤ |x2| = f (x2), then g(x1) = x2

1 ≤ x2
2 = g(x2). As a

result, we have

( f (x1) − f (x2)) (g(x1) − g(x2)) ≥ 0

for any real numbers x1 and x2. Thus f and g are comonotonic functions.

Theorem 2 Let f and g be two monotone increasing functions on �. Then they are
comonotonic functions.

Proof Let x1 and x2 be two real numbers with x1 < x2. Since f and g are monotone
increasing functions, we have f (x1) ≤ f (x2), g(x1) ≤ g(x2). Then

( f (x1) − f (x2)) (g(x1) − g(x2)) ≥ 0.

As a result, f and g are comonotonic functions. �	
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Example 2 Consider the functions f (x) = x and g(x) = exp(x). Since both of them
are increasing functions, they are comonotonic functions.

Theorem 3 Let f and g be two monotone decreasing functions on �. Then they are
comonotonic functions.

Proof Let x1 and x2 be two real numbers with x1 < x2. Since f and g are monotone
decreasing functions, we have f (x1) ≥ f (x2), g(x1) ≥ g(x2). Then

( f (x1) − f (x2)) (g(x1) − g(x2)) ≥ 0.

As a result, f and g are comonotonic functions. �	
Example 3 Consider the functions f (x) = −x and g(x) = exp(−x). Since both of
them are decreasing functions, they are comonotonic functions.

Theorem 4 Let f1 and f2 be two comonotonic functions. Then for any real numbers
y1 and y2, either { f1(x) ≤ y1} ⊂ { f2(x) ≤ y2} or { f2(x) ≤ y2} ⊂ { f1(x) ≤ y1}
holds.

Proof The theorem will be proved by a contradiction method. Write A1 = {x | f1(x) ≤
y1} and A2 = {x | f2(x) ≤ y2}. Assume that A1 �⊂ A2 and A2 �⊂ A1. Then taking
x1 ∈ A1\A2, and x2 ∈ A2\A1, we have

f1(x1) ≤ y1 < f1(x2),

f2(x2) ≤ y2 < f2(x1).

Thus

( f1(x1) − f1(x2))( f2(x1) − f2(x2)) < 0

which contradicts to the definition of comonotonic functions. Thus either A1 ⊂ A2
or A2 ⊂ A1. The theorem is proved. �	

4 Comonotonic functions of an uncertain variable

In this section, we first consider the uncertain measures of two events generated from
comonotonic functions of an uncertain variable. Then we give the uncertainty distri-
bution of comonotonic functions of an uncertain variable.

Theorem 5 Let ξ be an uncertain variable, and f1 and f2 be two comonotonic func-
tions. Then for any real numbers y1 and y2, we have

M{( f1(ξ) ≤ y1) ∩ ( f2(ξ) ≤ y2)} = M{ f1(ξ) ≤ y1} ∧ M{ f2(ξ) ≤ y2}.
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Proof Write A1 = {x | f1(x) ≤ y1} and A2 = {x | f2(x) ≤ y2}. Then we have
A1 ⊂ A2 or A2 ⊂ A1 by Theorem 4. Besides, we have { f1(ξ) ≤ y1} = {ξ ∈ A1}
and { f2(ξ) ≤ y2} = {ξ ∈ A2} Thus either { f1(ξ) ≤ y1} ⊂ { f2(ξ) ≤ y2} or
{ f2(ξ) ≤ y2} ⊂ { f1(ξ) ≤ y1} holds. By the property of uncertain measure, we have

M{( f1(ξ) ≤ y1) ∩ ( f2(ξ) ≤ y2)} = M{ f1(ξ) ≤ y1} ∧ M{ f2(ξ) ≤ y2}.

�	

Theorem 6 Let ξ be an uncertain variable, and f1 and f2 be two comonotonic func-
tions. Then for any real numbers y1 and y2, we have

M{( f1(ξ) ≥ y1) ∩ ( f2(ξ) ≥ y2)} = M{ f1(ξ) ≥ y1} ∧ M{ f2(ξ) ≥ y2}.

Proof Since f1 and f2 are comonotonic functions, − f1 and − f2 are also comonotonic
functions. Then for any real numbers y1 and y2, by Theorem 5 we have

M{( f1(ξ) ≥ y1) ∩ ( f2(ξ) ≥ y2)} = M{(− f1(ξ) ≤ −y1) ∩ (− f2(ξ) ≤ −y2)}
= M{− f1(ξ) ≤ −y1} ∧ M{− f2(ξ) ≤ −y2}
= M{ f1(ξ) ≥ y1} ∧ M{ f2(ξ) ≥ y2}.

The theorem is thus proved. �	

Before proving the theorem on the inverse uncertainty distributions of comonotonic
functions of an uncertain variable, we first introduce the definition of monotonicity of
a binary function.

Definition 6 A binary function H(x, y) is said to be increasing if f (x1, y1) ≤
f (x2, y2) whenever x1 ≤ x2 and y1 ≤ y2, and f (x1, y1) < f (x2, y2) whenever
x1 < x2 and y1 < y2.

Theorem 7 Let H(x, y) be an increasing function, and f and g be two comonoton-
ic functions. Assume that f (ξ) and g(ξ) are two regular uncertain variables with
uncertainty distributions Φ and Ψ , respectively. Then H( f (ξ), g(ξ)) has an inverse
uncertainty distribution H

(
Φ−1(α), Ψ −1(α)

)
.

Proof Since H(x, y) is an increasing function, we have

M
{

H( f (ξ), g(ξ)) ≤ H
(
Φ−1(α), Ψ −1(α)

)}
≥ M

{(
f (ξ) ≤ Φ−1(α)

)
∩

(
g(ξ) ≤ Ψ −1(α)

)}
= M

{
f (ξ) ≤ Φ−1(α)

}
∧

{
g(ξ) ≤ Ψ −1(α)

}
= α ∧ α = α.
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On the other hand, we have

M
{

H( f (ξ), g(ξ)) ≤ H
(
Φ−1(α), Ψ −1(α)

)}
≤ M

{(
f (ξ) ≤ Φ−1(α)

)
∪

(
g(ξ) ≤ Ψ −1(α)

)}
= M

{
f (ξ) ≤ Φ−1(α)

}
∨

{
g(ξ) ≤ Ψ −1(α)

}
= α ∨ α = α.

Thus

M
{

H( f (ξ), g(ξ)) ≤ H
(
Φ−1(α), Ψ −1(α)

)}
= α

which means H( f (ξ), g(ξ)) has an inverse uncertainty distribution H
(
Φ−1(α),

Ψ −1(α)
)
. �	

Example 4 Let f and g be two comonotonic functions. Assume that f (ξ) and g(ξ) are
two regular uncertain variables with uncertainty distributions Φ and Ψ , respectively.
Then f (ξ) + g(ξ) has an inverse uncertainty distribution Φ−1(α) + Ψ −1(α).

Example 5 Let f and g be two comonotonic functions. Assume that f (ξ) and g(ξ)

are two nonnegative regular uncertain variables with uncertainty distributions Φ and
Ψ , respectively. Then f (ξ) × g(ξ) has an inverse uncertainty distribution Φ−1(α) ×
Ψ −1(α).

Example 6 Let f and g be two comonotonic functions. Assume that f (ξ) and g(ξ)

are two regular uncertain variables with uncertainty distributions Φ and Ψ , respec-
tively. Then f (ξ) ∧ g(ξ) has an inverse uncertainty distribution Φ−1(α) ∧ Ψ −1(α),

and f (ξ) ∨ g(ξ) has an inverse uncertainty distribution Φ−1(α) ∨ Ψ −1(α).

5 Expected value

In this section, we give a theorem on the expected values of comonotonic functions of
uncertain variables.

Theorem 8 Let f and g be two comonotonic functions. Then for any uncertain vari-
able ξ , we have

E[ f (ξ) + g(ξ)] = E[ f (ξ)] + E[g(ξ)].

Proof Assume that f (ξ) and g(ξ) have uncertainty distributions Φ and Ψ , respec-
tively. Then f (ξ) + g(ξ) has an inverse uncertainty distribution Φ−1(α) + Ψ −1(α).
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Thus we have

E[ f (ξ) + g(ξ)] =
1∫

0

(
Φ−1(α) + Ψ −1(α)

)
dα

=
1∫

0

Φ−1(α)dα +
1∫

0

Ψ −1(α)dα

= E[ f (ξ)] + E[g(ξ)].

�	
Remark 1 The theorem does not hold if f and g are not assumed comonotonic. Here,
we give an example. Let the universal set Γ = {γ1, γ2, γ3} with

M{γ1} = 0.5, M{γ2} = 0.4, M{γ3} = 0.3.

Consider an uncertain variable ξ defined by

ξ(γ1) = −1, ξ(γ2) = 1, ξ(γ3) = 2.

Then

ξ−1(γ1) = −1, ξ−1(γ2) = 1, ξ−1(γ3) = 1/2,

(ξ + ξ−1)(γ1) = −2, (ξ + ξ−1)(γ2) = 2, (ξ + ξ−1)(γ3) = 5/2.

By the definition of expected value, we have

E[ξ ] = 0.3, E[ξ−1] = −0.05, E[ξ + ξ−1] = 0.15.

So E[ξ +ξ−1] �= E[ξ ]+ E[ξ−1]. However, for monotone functions f and g, we have
the following corollaries.

Corollary 1 Let f and g be increasing functions, and ξ be an uncertain variable.
Then

E[ f (ξ) + g(ξ)] = E[ f (ξ)] + E[g(ξ)].

Proof Note that increasing functions are comonotonic with each other. The corollary
follows immediately. �	
Corollary 2 Let f and g be decreasing functions, and ξ be an uncertain variable.
Then

E[ f (ξ) + g(ξ)] = E[ f (ξ)] + E[g(ξ)].
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Proof Note that decreasing functions are comonotonic with each other. The corollary
follows immediately. �	
Example 7 Both f (x) = x and g(x) = exp(x) are increasing functions. Thus for
uncertain variable ξ , we have

E[ξ + exp(ξ)] = E[ξ ] + E[exp(ξ)].

Example 8 Let ξ be a nonnegative uncertain variable. Note that f (x) = x and g(x) =
x2 are increasing functions on [0,+∞). Then we have

E
[
ξ + ξ2

]
= E[ξ ] + E

[
ξ2

]
.

Example 9 Let ξ be an uncertain variable taking values in [−π, π ]. Note that f (x) =
cos x and g(x) = −x2 are comonotonic functions on [−π, π ]. Then we have

E
[
cos ξ − ξ2

]
= E[cos ξ ] + E

[
−ξ2

]
= E[cos ξ ] − E

[
ξ2

]
.

6 Conclusions

This paper investigated comonotonic functions of uncertain variables, and gave some
properties of their uncertainty distributions. In addition, it proved that the expected
value of comonotonic functions of an uncertain variable is additive.
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