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Abstract This paper develops a robust method to describe fuzzy returns by employ-
ing parametric possibility distributions. The parametric possibility distributions are
obtained by equivalent value (EV) reduction methods. For common type-2 triangular
and trapezoidal fuzzy variables, their reduced fuzzy variables are studied in the current
development. The parametric possibility distributions of reduced fuzzy variables are
first derived, then the second moment formulas for the reduced fuzzy variables are
established. Taking the second moment as a new risk measure, the reward-risk and
risk-reward models are developed to optimize fuzzy portfolio selection problems. The
mathematical properties of the proposed optimization models are analyzed, includ-
ing the analytical representations for the second moments of linear combinations of
reduced fuzzy variables as well as the convexity of second moments with respect to
decision vectors. On the basis of the analytical representations for the second moments,
the reward-risk and risk-reward models can be turned into their equivalent paramet-
ric quadratic convex programming problems, which can be solved by conventional
solution methods or general-purpose software. Finally, some numerical experiments
are performed to demonstrate the new modeling ideas and the efficiency of solution
method.
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1 Introduction

Portfolio selection problem was first proposed by Markowitz (1952), and mean-vari-
ance method has been widely accepted as a practical tool for portfolio optimization.
The use of the semivariance rather than variance as the risk measure was also proposed
by Markowitz (1959). Since then, several other risk measures have been documented
in portfolio literature. For example, Konno and Yamakazi (1991) measured invest-
ment risk by absolute deviation and developed mean-absolute-deviation models; Jo-
rion (1996) studied Value-at-Risk (VaR) as a risk measure, and applied the mean-VaR
model in finance industry, and Rockafellar and Uryaser (2000) reduced investment
risk by minimizing conditional Value-at-Risk (CVaR), and established mean-CVaR
model.

The conventional portfolio methods require security returns are random variables,
and probability theory is the main research tool. However, the observed values of
security returns in real-world problems are sometimes imprecise or vague. Imprecise
evaluations may result from unquantifiable, incomplete and non obtainable informa-
tion. On the basis of fuzzy theory (Zadeh 1965, 1978; Liu 2004), some researchers have
proposed various fuzzy methods for dealing with this impreciseness and ambiguity
in portfolio selection. For instance, Arenas-Parra et al. (2001) discussed the optimal
portfolio for a private investor by taking into account three criteria: return, risk and
liquidity; Chen et al. (2009) proposed a possibilistic mean variance portfolio selection
model, and solved it by a cutting plane algorithm; Huang (2009) gave a detailed sur-
vey about fuzzy portfolio selection based on credibility measure; Duan and Stahlecker
(2011) studied a static portfolio selection problem, in which future returns of securi-
ties are given as fuzzy sets, and Wu and Liu (2011) proposed mean-spread method for
optimal portfolio selection problems to avoid the difficulty of computing the variance
of fuzzy variable. The interested reader may also refer to the book (Huang, 2010)
about recent development of portfolio analysis under uncertainty.

In fuzzy community, Zadeh (1975) first proposed the concept of a type-2 fuzzy set as
an extension of ordinary fuzzy set. A type-2 fuzzy set is characterized by a fuzzy mem-
bership function, where the degree of membership for any element in this set is a fuzzy
number in the interval [0, 1]. Since then, type-2 fuzzy theory has been well developed
in the literature. For example, Mizumoto and Tanaka (1976) investigated the algebraic
structures that the fuzzy grades of type-2 fuzzy sets form under the operations of join,
meet and negation, and showed that normal convex fuzzy grades form a distributive
lattice under join and meet; Dubois and Prade (1979) developed the operations in a
fuzzy-valued logic; Karnik and Mendel (2001) proposed a defuzzification method by
using the concept of centroid for a type-2 fuzzy set; Mendel and John (2002) showed
us that a type-2 fuzzy set represents the uncertainty in terms of secondary membership
function and footprint of uncertainty; Mitchell (2005) introduced a similarity measure
for measuring the similarity or compatibility between two type-2 fuzzy sets; Mendel
(2007) described the important advances for both general and interval type-2 fuzzy
sets and systems; Liu and Liu (2010) studied type-2 fuzziness in an axiomatic frame-
work referred to as fuzzy possibility theory; Chen and Zhang (2011) gave some new
results about arithmetic of type-2 fuzzy variables, and Qin et al. (2011a,b) proposed the
critical value and mean value reduction methods for secondary possibility distribution
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functions. In the current development, a new EV reduction method will be discussed
for type-2 triangular and trapezoidal fuzzy variables.

On the other hand, we will study the portfolio selection problems from a new view-
point, in which fuzzy returns are characterized by parametric possibility distributions.
More precisely, to deal with type-2 fuzziness encountered in portfolio selection prob-
lems, the security returns can be represented by parametric possibility distributions,
which are obtained by using the EV reduction methods. On the basis of the second
moments of the reduced fuzzy variables, the reward-risk and risk-reward models are
developed to deal with fuzzy portfolio optimization problems. In our models, the
investment return is quantified by the expected value, while the investment risk is
gauged by the second moment of a portfolio. The mathematical properties of the pro-
posed optimization models are analyzed, including the analytical representations for
the second moments of linear combinations of reduced fuzzy variables as well as the
convexity of second moments with respect to decision vectors. Using the analytical
representations for the second moments, the reward-risk and risk-reward models can
be turned into their equivalent parametric quadratic convex programming problems,
which can be solved by conventional numerical algorithms or general-purpose soft-
ware. Some numerical experiments are performed to demonstrate the above modeling
ideas and the efficiency of solution method.

The rest of this paper is organized as follows. For common type-2 triangular and
trapezoidal fuzzy variables, Sect. 2 derives the parametric possibility distributions
of reduced fuzzy variables, and Sect. 3 establishes the second moment formulas of
reduced fuzzy variables by L–S integral and discusses their convexity with respect
to fuzzy parameters. In Sect. 4, we develop the reward-risk and risk-reward models
for fuzzy portfolio selection problems. Section 5 deals with the equivalent parametric
programming problems of the proposed optimization models as well as their solution
methods. Section 6 provides two numerical examples to demonstrate the new modeling
ideas and the effectiveness of the solution method. Section 7 concludes the paper.

2 Parametric possibility distributions of reduced fuzzy variables

If a fuzzy variable ξ takes its values in the unit interval [0, 1], then it is called a regular
fuzzy variable. Suppose μξ (t) is a generalized possibility distribution (not necessar-
ily normalized) of regular fuzzy variable ξ . Then for any t ∈ [0, 1], the possibility,
necessity and credibility of fuzzy event {ξ ≤ t} are computed by

Pos{ξ ≤ t} = sup
0≤u≤t

μξ (u), (1)

Nec{ξ ≤ t} = sup
0≤u≤1

μξ (u)− sup
t<u≤1

μξ (u), (2)

and

Cr{ξ ≤ t} = 1

2

(
sup

0≤u≤1
μξ (u)+ sup

0≤u≤t
μξ (u)− sup

t<u≤1
μξ (u)

)
. (3)
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If the possibility distributionμξ (t) is normalized, then the credibility defined above
coincides with the concept defined in Liu and Liu (2002).

Let ξ be a regular fuzzy variable with a generalized possibility distributionμξ . Then
the pessimistic equivalent value (PEV) of ξ is calculated by the following integral

EV∗[ξ ] =
∫

[0,1]
td (Pos{ξ ≤ t}) , (4)

while the optimistic equivalent value (OEV) of ξ is calculated by the following integral

EV∗[ξ ] =
∫

[0,1]
td (Nec{ξ ≤ t}) . (5)

The equivalent value (EV) of ξ is computed by the following integral

EV[ξ ] =
∫

[0,1]
td (Cr{ξ ≤ t}) . (6)

The three integrals in Eqs. (4), (5) and (6) are all L–S integrals, and the properties
and calculation methods about L–S integral can be found in the book (Carter and Van
Brunt, 2000).

A type-2 fuzzy variable represents the uncertainty in terms of second possibil-
ity distribution and support of uncertainty. In this section, we give a new method to
reduce the uncertainty in second possibility distribution. Different from the critical
value and mean value reduction methods defined by Qin et al. (2011a,b), the EV reduc-
tion method considered in the current development is based on classical L–S integral
instead of fuzzy integrals.

Let ξ̃ be a type-2 fuzzy variable. In order to reduce the uncertainty in secondary
possibility distribution, we now define the PEV, OEV and EV of regular fuzzy variable
P̃os{γ ∈ � | ξ̃ (γ) = t} as its representing values. The methods are referred to as the
PEV, OEV and EV reduction method for ξ̃ , respectively. In the following sections,
the variables obtained by the three EV reduction methods are called reduced fuzzy
variables.

A type-2 fuzzy variable ξ̃ is called trapezoidal if its secondary possibility distribu-
tion μ̃ξ̃ (t) is the regular fuzzy variable

(
t − r1

r2 − r1
− θl min

{
t − r1

r2 − r1
,

r2 − t

r2 − r1

}
,

t − r1

r2 − r1
,

t − r1

r2 − r1
+ θr min

{
t − r1

r2 − r1
,

r2 − t

r2 − r1

})
(7)
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for t ∈ [r1, r2], the regular fuzzy variable 1̃ for t ∈ [r2, r3], and the regular fuzzy
variable

(
r4 − t

r4 − r3
− θl min

{
r4 − t

r4 − r3
,

t − r3

r4 − r3

}
,

r4 − t

r4 − r3
,

r4 − t

r4 − r3
+ θr min

{
r4 − t

r4 − r3
,

t − r3

r4 − r3

})
(8)

for t ∈ [r3, r4], where θl , θr ∈ [0, 1] are two parameters characterizing the degree of
uncertainty that ξ̃ takes the value t . We denote the type-2 trapezoidal fuzzy variable ξ̃
with the above secondary possibility distribution by (r̃1, r̃2, r̃3, r̃4; θl , θr ).

For a type-2 trapezoidal fuzzy variable ξ̃ , its reduced fuzzy variables have the
following parametric possibility distributions:

Proposition 1 Let ξ̃ = (r̃1, r̃2, r̃3, r̃4; θl , θr ) be a type-2 trapezoidal fuzzy variable,
and ξ∗, ξ∗ and ξ its reduced fuzzy variables obtained by the PEV, OEV and EV methods,
respectively. Then we have:

(i) The parametric possibility distribution of ξ∗ is

μξ∗(t; θl) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2−θl )(t−r1)
2(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(2+θl )t−θl r2−2r1
2(r2−r1)

, r1+r2
2 ≤ t ≤ r2

1, r2 ≤ t ≤ r3

(−2−θl )t+θl r3+2r4
2(r4−r3)

, r3 ≤ t ≤ r3+r4
2

(2−θl )(r4−t)
2(r4−r3)

, r3+r4
2 ≤ t ≤ r4,

and denote ξ∗ = (r1, r2, r3, r4; h∗(θl)), where h∗(θl) = μξ∗
( r1+r2

2 ; θl
) =

μξ∗
( r3+r4

2 ; θl
) = 2−θl

4 .
(ii) The parametric possibility distribution of ξ∗ is

μξ∗(t; θr ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2+θr )(t−r1)
2(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(2−θr )t+θr r2−2r1
2(r2−r1)

, r1+r2
2 ≤ t ≤ r2

1, r2 ≤ t ≤ r3

(θr −2)t−θr r3+2r4
2(r4−r3)

, r3 ≤ t ≤ r3+r4
2

(2+θr )(r4−t)
2(r4−r3)

, r3+r4
2 ≤ t ≤ r4,

and denote ξ∗ = (r1, r2, r3, r4; h∗(θr )), where h∗(θr ) = μξ∗
( r1+r2

2 ; θr
) =

μξ∗
( r3+r4

2 ; θr
) = 2+θr

4 .

123



416 X.-L. Wu, Y.-K. Liu

(iii) The parametric possibility distribution of ξ is

μξ (t; θl , θr ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(4+θr −θl )(t−r1)
4(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(4−θr +θl )t+(θr −θl )r2−4r1
4(r2−r1)

, r1+r2
2 ≤ t ≤ r2

1, r2 ≤ t ≤ r3
(−4+θr −θl )t−(θr −θl )r3+4r4

4(r4−r3)
, r3 ≤ t ≤ r3+r4

2
(4+θr −θl )(r4−t)

4(r4−r3)
, r3+r4

2 ≤ t ≤ r4,

and denote ξ = (r1, r2, r3, r4; h(θl , θr )), where h(θl , θr )=μξ
( r1+r2

2 ; θl , θr
) =

μξ
( r3+r4

2 ; θl , θr
) = 4+θr −θl

8 .

Proof We only prove assertion (i), and the rest can be proved similarly.
Since ξ∗ is the reduced fuzzy variable of ξ̃ by the PEV method, it follows from

Eqs. (7) and (8) that the parametric possibility distribution μξ∗(t; θl) is computed as
follows

μξ∗(t; θl) = Pos{ξ∗ = t}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

(
2 t−r1

r2−r1
− θl min

{
t−r1

r2−r1
, r2−t

r2−r1

})
, r1 ≤ t ≤ r2

1, r2 ≤ t ≤ r3

1
2

(
2 r4−t

r4−r3
− θl min

{
r4−t
r4−r3

, t−r3
r4−r3

})
, r3 ≤ t ≤ r4

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2−θl )(t−r1)
2(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(2+θl )t−θl r2−2r1
2(r2−r1)

, r1+r2
2 ≤ t ≤ r2

1, r2 ≤ t ≤ r3

(−2−θl )t+θl r3+2r4
2(r4−r3)

, r3 ≤ t ≤ r3+r4
2

(2−θl )(r4−t)
2(r4−r3)

, r3+r4
2 ≤ t ≤ r4,

which completes the proof of assertion (i).

Corollary 1 Let ξ̃ be a type-2 trapezoidal fuzzy variable. Then the parametric possi-
bility distributions μξ∗(t; θl), μξ∗(t; θr ) and μξ (t; θl , θr ) satisfy the following condi-
tions as shown in Fig. 1:

μξ∗(t; θr ) ≥ μξ (t; θl , θr ) ≥ μξ∗(t; θl). (9)

As a consequence of Proposition 1, the reduced fuzzy variables of type-2 triangular
fuzzy variable have the following parametric possibility distributions:

Corollary 2 Let ξ̃ = (r̃1, r̃2, r̃3; θl , θr ) be a type-2 triangular fuzzy variable, and ξ∗,
ξ∗ and ξ its reduced fuzzy variables obtained by the PEV, OEV and EV methods,
respectively. Then we have:
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Fig. 1 The relationships among
parametric possibility
distributions of ξ∗, ξ∗ and ξ
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(i) The parametric possibility distribution of ξ∗ is

μξ∗(t; θl) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2−θl )(t−r1)
2(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(2+θl )t−θl r2−2r1
2(r2−r1)

, r1+r2
2 ≤ t ≤ r2

(−2−θl )t+θl r2+2r3
2(r3−r2)

, r2 ≤ t ≤ r2+r3
2

(2−θl )(r3−t)
2(r3−r2)

, r2+r3
2 ≤ t ≤ r3,

and denote ξ∗ = (r1, r2, r3; h∗(θl)), where h∗(θl) = μξ∗
( r1+r2

2 ; θl
) = μξ∗( r2+r3

2 ; θl
) = 2−θl

4 .
(ii) The parametric possibility distribution of ξ∗ is

μξ∗(t; θr ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2+θr )(t−r1)
2(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(2−θr )t+θr r2−2r1
2(r2−r1)

, r1+r2
2 ≤ t ≤ r2

(θr −2)t−θr r2+2r3
2(r3−r2)

, r2 ≤ t ≤ r2+r3
2

(2+θr )(r3−t)
2(r3−r2)

, r2+r3
2 ≤ t ≤ r3,

and denote ξ∗ = (r1, r2, r3; h∗(θr )), where h∗(θr ) = μξ∗
( r1+r2

2 ; θr
) = μξ∗( r2+r3

2 ; θr
) = 2+θr

4 .
(iii) The parametric possibility distribution of ξ is

μξ (t; θl , θr ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(4+θr −θl )(t−r1)
4(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(4−θr +θl )t+(θr −θl )r2−4r1
4(r2−r1)

, r1+r2
2 ≤ t ≤ r2

(−4+θr −θl )t−(θr −θl )r2+4r3
4(r3−r2)

, r2 ≤ t ≤ r2+r3
2

(4+θr −θl )(r3−t)
4(r3−r2)

, r2+r3
2 ≤ t ≤ r3,
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and denote ξ = (r1, r2, r3; h(θl , θr )), where h(θl , θr ) = μξ
( r1+r2

2 ; θl , θr
) =

μξ
( r2+r3

2 ; θl , θr
) = 4+θr −θl

8 .

For type-2 trapezoidal and triangular fuzzy variables, Proposition 1 and Corollary
2 show that their reduced fuzzy variables ξ∗, ξ∗ and ξ are characterized by parametric
possibility distributions, i.e., their possibility distributions depend on parameters θl

and θr . As a consequence, a reduced fuzzy variable is more flexible than an ordinary
fuzzy variable in the applications of the real-world decision making problems under
uncertainty.

3 Moments of reduced fuzzy variables

Let ξ be a reduced fuzzy variable with a parametric possibility distribution μξ (t; θ).
To measure the variation of the parametric possibility distribution about its expected
value E[ξ ], we adopt the following index about the nth moment of ξ ,

Mn[ξ ] =
∫

(−∞,+∞)

(t − E[ξ ])nd (Cr{ξ ≤ t}) , (10)

where the credibility distribution is defined by the parametric possibility distribution
μξ (u; θ) of ξ as follows

Cr{ξ ≤ t} = 1

2

(
sup
u∈�

μξ (u; θ)+ sup
u≤t

μξ (u; θ)− sup
u>t

μξ (u; θ)
)
, t ∈ �.

In addition, the integral in Eq. (10) is L–S integral. When n = 2, M2[ξ ] is called
the second moment of ξ . In the following, we will establish the second moment for-
mulas for reduced fuzzy variables. First, we have the following results about type-2
trapezoidal fuzzy variable.

Theorem 1 Let ξ̃ be a type-2 trapezoidal fuzzy variable defined as (r̃1, r̃2, r̃3, r̃4;
θl , θr ), and ξ∗, ξ∗ and ξ its reduced fuzzy variables obtained by the PEV, OEV and EV
methods, respectively. Then we have:

(i) The second moment of ξ∗ is

M2[ξ∗]= 1
48

(
5r2

1 +5r2
2 +5r2

3 +5r2
4 +2r1r2+2r3r4−6r1r3−6r1r4−6r2r3−6r2r4

)
− 1

256θ
2
l (r1 − r2 − r3 + r4)

2 − 1
32θl

(
r2

1 − r2
2 − r2

3 + r2
4 + 2r2r3 − 2r1r4

)
,

which is equivalent to the following parametric matrix form

M2[ξ∗] = 1

2
r T Q∗r,
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where r = (r1, r2, r3, r4)
T , and the matrix

Q∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
128 θ

2
l − 1

16 θl + 5
24

1
128 θ

2
l + 1

24
1

128 θ
2
l − 1

8 − 1
128 θ

2
l + 1

16 θl − 1
8

1
128 θ

2
l + 1

24 − 1
128 θ

2
l + 1

16 θl + 5
24 − 1

128 θ
2
l − 1

16 θl − 1
8

1
128 θ

2
l − 1

8

1
128 θ

2
l − 1

8 − 1
128 θ

2
l − 1

16 θl − 1
8 − 1

128 θ
2
l + 1

16 θl + 5
24

1
128 θ

2
l + 1

24

− 1
128 θ

2
l + 1

16 θl − 1
8

1
128 θ

2
l − 1

8
1

128 θ
2
l + 1

24 − 1
128 θ

2
l − 1

16 θl + 5
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(ii) The second moment of ξ∗ is

M2[ξ∗] = 1
48

(
5r2

1 +5r2
2 +5r2

3 +5r2
4 +2r1r2+2r3r4−6r1r3−6r1r4−6r2r3−6r2r4

)
− 1

256θ
2
r (r1 − r2 − r3 + r4)

2 + 1
32θr

(
r2

1 − r2
2 − r2

3 + r2
4 + 2r2r3 − 2r1r4

)
,

which is equivalent to the following parametric matrix form

M2[ξ∗] = 1

2
r T Q∗r,

where r = (r1, r2, r3, r4)
T , and the matrix

Q∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
128 θ

2
r + 1

16 θr + 5
24

1
128 θ

2
r + 1

24
1

128 θ
2
r − 1

8 − 1
128 θ

2
r − 1

16 θr − 1
8

1
128 θ

2
r + 1

24 − 1
128 θ

2
r − 1

16 θr + 5
24 − 1

128 θ
2
r + 1

16 θr − 1
8

1
128 θ

2
r − 1

8

1
128 θ

2
r − 1

8 − 1
128 θ

2
r + 1

16 θr − 1
8 − 1

128 θ
2
r − 1

16 θr + 5
24

1
128 θ

2
r + 1

24

− 1
128 θ

2
r − 1

16 θr − 1
8

1
128 θ

2
r − 1

8
1

128 θ
2
r + 1

24 − 1
128 θ

2
r + 1

16 θr + 5
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(iii) The second moment of ξ is

M2[ξ ] = 1
48

(
5r2

1 +5r2
2 +5r2

3 +5r2
4 +2r1r2+2r3r4−6r1r3−6r1r4−6r2r3−6r2r4

)
− 1

1,024 (θr−θl)
2(r1−r2−r3+r4)

2+ 1
64 (θr−θl)

(
r2

1 −r2
2 −r2

3 +r2
4 +2r2r3−2r1r4

)
,

which is equivalent to the following parametric matrix form

M2[ξ ] = 1

2
r T Qr,
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where r = (r1, r2, r3, r4)
T , and the elements of the symmetric matrix Q include

Q11 = Q44 = − 1

512
(θr − θl)

2 + 1

32
(θr − θl)+ 5

24
,

Q12 = Q34 = 1

512
(θr − θl)

2 + 1

24
,

Q13 = Q24 = 1

512
(θr − θl)

2
r − 1

8
,

Q14 = − 1

512
(θr − θl)

2 − 1

32
(θr − θl)− 1

8
,

Q22 = Q33 = − 1

512
(θr − θl)

2 − 1

32
(θr − θl)+ 5

24
,

Q23 = − 1

512
(θr − θl)

2 + 1

32
(θr − θl)− 1

8
.

Moreover, the second moments M2[ξ∗], M2[ξ∗] and M2[ξ ] are all parametric
quadratic convex functions with respect to vector r ∈ �4.

Proof We only prove assertion (i i i), and the rest can be proved similarly.
Since ξ is the reduced fuzzy variable by the EV method, its parametric possibility

distributionμξ (t; θl , θr ) is given by assertion (i i i) of Proposition 1. As a consequence,
the credibility distribution of ξ is

Cr{ξ ≤ t} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t < r1
(4+θr −θl )(t−r1)

8(r2−r1)
, r1 ≤ t ≤ r1+r2

2
(4−θr +θl )t+(θr −θl )r2−4r1

8(r2−r1)
, r1+r2

2 ≤ t ≤ r2

1
2 , r2 ≤ t ≤ r3

1 − (−4+θr −θl )t−(θr −θl )r3+4r4
8(r4−r3)

, r3 ≤ t ≤ r3+r4
2

1 − (4+θr −θl )(r4−t)
8(r4−r3)

, r3+r4
2 ≤ t ≤ r4

1, t > r4,

and the expected value of ξ is

E[ξ ] = 1

4
(r1 + r2 + r3 + r4)+ 1

32
(θr − θl)(r1 − r2 − r3 + r4),

which is denoted by m. Therefore, the second moment of ξ is calculated by

M2[ξ ] = ∫
(−∞,+∞)

(t − m)2d(Cr{ξ ≤ t})

= ∫
(

r1,
r1+r2

2

)(t − m)2d
(
(4+θr −θl )(t−r1)

8(r2−r1)

)
+ ∫
(

r1+r2
2 ,r2

)(t − m)2d
(
(4−θr +θl )t+(θr −θl )r2−4r1

8(r2−r1)

)
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+ ∫
(

r3,
r3+r4

2

)(t − m)2d
(

1 − (−4+θr −θl )t−(θr −θl )r3+4r4
8(r4−r3)

)

+ ∫
(

r3+r4
2 ,r4

)(t − m)2d
(

1 − (4+θr −θl )(r4−t)
8(r4−r3)

)

= 4+θr −θl
8(r2−r1)

r1+r2
2∫

r1

(t − m)2dt + 4−θr +θl
8(r2−r1)

r2∫
r1+r2

2

(t − m)2dt − −4+θr −θl
8(r4−r3)

r3+r4
2∫

r3

(t − m)2dt

+ 4+θr −θl
8(r4−r3)

r4∫
r3+r4

2

(t − m)2dt

= 1
48

(
5r2

1 + 5r2
2 + 5r2

3 + 5r2
4 + 2r1r2 + 2r3r4 − 6r1r3 − 6r1r4 − 6r2r3 − 6r2r4

)
− 1

1,024 (θr−θl)
2(r1−r2−r3+r4)

2+ 1
64 (θr−θl)(r2

1 −r2
2 −r2

3 +r2
4 +2r2r3−2r1r4)

= 1
2r T Qr.

On the other hand, the integrand (t −m)2 and the credibility distribution Cr{ξ ≤ t}
are both nonnegative, so M2[ξ ] ≥ 0 holds for any vector r ∈ �4. In addition, Q is a
4 × 4 symmetric parametric matrix. Therefore, M2[ξ ] is a positive semidefinite qua-
dratic form. In other words, for any parameters θl and θr , the second moment M2[ξ ]
is a parametric quadratic convex function with respect to vector r ∈ �4. The proof of
the theorem is complete.

As a corollary of Theorem 1, the second moment formulas for the reduced fuzzy
variables of type-2 triangular fuzzy variable are as follows.

Corollary 3 Let ξ̃ be a type-2 triangular fuzzy variable defined as (r̃1, r̃2, r̃3; θl , θr ),
and ξ∗, ξ∗ and ξ its reduced fuzzy variables obtained by the PEV, OEV and EV methods,
respectively. Then we have:

(i) The second moment of ξ∗ is

M2[ξ∗] = 1
48

(
5r2

1 + 4r2
2 + 5r2

3 − 4r1r2 − 4r2r3 − 6r1r3
)

− 1
256θ

2
l (r1 − 2r2 + r3)

2 − 1
32θl(r3 − r1)

2,

which is equivalent to the following parametric matrix form

M2[ξ∗] = 1

2
r T R∗r,

where r = (r1, r2, r3)
T , and the matrix

R∗ =

⎡
⎢⎢⎢⎣

− 1
128 θ

2
l − 1

16 θl + 5
24

1
64 θ

2
l − 1

12 − 1
128 θ

2
l + 1

16 θl − 1
8

1
64 θ

2
l − 1

12 − 1
32 θ

2
l + 1

6
1

64 θ
2
l − 1

12

− 1
128 θ

2
l + 1

16 θl − 1
8

1
64 θ

2
l − 1

12 − 1
128 θ

2
l − 1

16 θl + 5
24

⎤
⎥⎥⎥⎦ .
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(ii) The second moment of ξ∗ is

M2[ξ∗] = 1
48

(
5r2

1 + 4r2
2 + 5r2

3 − 4r1r2 − 4r2r3 − 6r1r3
)

− 1
256θ

2
r (r1 − 2r2 + r3)

2 + 1
32θr (r3 − r1)

2,

which is equivalent to the following parametric matrix form

M2[ξ∗] = 1

2
r T R∗r,

where r = (r1, r2, r3)
T , and the matrix

R∗ =
⎡
⎣− 1

128θ
2
r + 1

16θr + 5
24

1
64θ

2
r − 1

12 − 1
128θ

2
r − 1

16θr − 1
8

1
64θ

2
r − 1

12 − 1
32θ

2
r + 1

6
1

64θ
2
r − 1

12
− 1

128θ
2
r − 1

16θr − 1
8

1
64θ

2
r − 1

12 − 1
128θ

2
r + 1

16θr + 5
24

⎤
⎦ .

(iii) The second moment of ξ is

M2[ξ ] = 1
48 (5r2

1 + 4r2
2 + 5r2

3 − 4r1r2 − 4r2r3 − 6r1r3)− 1
1,024

(θr − θl)
2(r1 − 2r2 + r3)

2 + 1
64 (θr − θl)(r3 − r1)

2,

which is equivalent to the following parametric matrix form

M2[ξ ] = 1

2
r T Rr,

where r = (r1, r2, r3)
T , and the matrix

R =
⎡
⎣− 1

512 (θr − θl )
2 + 1

32 (θr − θl )+ 5
24

1
256 (θr − θl )

2 − 1
12 − 1

512 (θr − θl )
2 − 1

32 (θr − θl )− 1
8

1
256 (θr − θl )

2 − 1
12 − 1

128 (θr − θl )
2 + 1

6
1

256 (θr − θl )
2 − 1

12− 1
512 (θr − θl )

2 − 1
32 (θr − θl )− 1

8
1

256 (θr − θl )
2 − 1

12 − 1
512 (θr − θl )

2 + 1
32 (θr − θl )+ 5

24

⎤
⎦ .

Moreover, the second moments M2[ξ∗], M2[ξ∗] and M2[ξ ] are all parametric
quadratic convex functions with respect to vector r ∈ �3.

4 Moment risk criteria in portfolio optimization

In this section, we adopt the second moment as a risk measure and develop reward-risk
and risk-reward models to optimize fuzzy portfolio selection problems in which the
fuzzy returns are characterized by parametric possibility distributions.

4.1 Reward-risk and risk-reward models

Portfolio selection was first proposed by Markowitz (1952) to study the problem of
how to allocate one’s capital to a number of potential securities so that the investment
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can bring a profitable return. On the basis of probability theory, the key principle of
mean-variance model is to use the expected return of a portfolio as the investment
return and to use the variance of a portfolio return as the investment risk.

Due to the complexity of security market under uncertainty, the observed values
of security returns in real-world problems are sometimes imprecise or vague. To deal
with this situation, fuzzy portfolio selection problems were developed in the literature,
in which fixed possibility distribution functions or membership functions of security
returns are usually supposed to be available (Huang 2010; Wu and Liu 2011). In this
section, we will develop a robust approach to dealing with fuzzy portfolio selection
problem. In our method, we will employ parametric possibility distribution functions
instead of fixed possibility distribution functions to describe the reduced security
returns, and the parametric possibility distributions are obtained by using the EV
reduction method for type-2 fuzzy returns. In other words, the reduced fuzzy returns
have parametric possibility distributions, so they can serve as the representatives of
type-2 fuzzy returns. When the parameters vary in the unit interval [0, 1], the distribu-
tion functions run over the entire footprints of type-2 fuzzy returns. In the following,
we will adopt this modeling idea to construct fuzzy portfolio selection problems.

More precisely, given a collection of potential securities indexed from 1 to n, let
ξ̃i be the type-2 fuzzy returns of security i in the next time period, i = 1, 2, . . . , n.
According to type-2 possibility distributions of returns ξ̃i , we employ the EV reduction
method to get their reduced fuzzy returns ξi for i = 1, 2, . . . , n, which are character-
ized by parametric possibility distributions. Using the second moment of reduced fuzzy
returns as a new risk criterion, we can build meaningful portfolio selection models.
Assume that an investor invests all his fund in n potential securities, and nonnegative
numbers xi is the investment proportion to security i such that

∑n
i=1 xi = 1. As a

consequence, the return investor would obtain by using this portfolio is represented by

R(x, ξ) =
n∑

i=1

xiξi = ξ T x,

where x = (x1, x2, . . . , xn)
T and ξ = (ξ1, ξ2, . . . , ξn)

T . The reward associated with
such a portfolio is defined as the expected return

E[R(x, ξ)] = E
[
ξ T x

]
.

Note that a security with a high return usually results in a high level of risk. Thus,
it is necessary to define a risk measure for the return R(x, ξ). In this paper, we will
gauge the risk associated with return R(x, ξ) by its second moment

M2[R(x, ξ)] = M2

[
ξ T x

]
.

Using E[R(x, ξ)] and M2[R(x, ξ)] as optimization indices, we have two formu-
lations about portfolio selection problem according to an investor’s altitude towards
risk.
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On the one hand, if an investor desires to maximize expected return under the
condition that the maximum acceptable risk is ψ , then he may employ the following
mathematical model ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max E[ξ T x]
subject to: M2[ξ T x] ≤ φ∑n

i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , n,

(11)

where φ ≥ 0 plays the role of a parameter. This formulation of the portfolio selection
problem is called a reward-risk model, with E[ξ T x] representing reward and M2[ξ T x]
standing for risk.

On the other hand, if an investor is looking for a portfolio with minimum risk under
prescribing a minimum acceptable level ψ of expected portfolio return, then he may
consider the following optimization model

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min M2[ξ T x]
subject to: E[ξ T x] ≥ ψ∑n

i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , n,

(12)

where ψ ≥ 0 plays the role of a parameter. This formulation of the portfolio selec-
tion problem is called a risk-reward model, which is also a parametric optimization
problem with parameter ψ . In finance, the optimal objective value as a function of
ψ plays an important role. Its graph is called the efficient frontier with the horizontal
axis corresponding to risk and the vertical one corresponding to return.

4.2 Linear combinations of reduced fuzzy returns and their moment formulas

Since M2[ξ T x] in problems (11) and (12) is the second moment of linear combination
of reduced fuzzy returns, we can deduce its second moment formulas in the following
case.

First, for type-2 trapezoidal fuzzy variables, we have the following calculation
formulas:

Theorem 2 Let ξ̃i = (r̃i1, r̃i2, r̃i3, r̃i4; θl , θr ), i = 1, 2, . . . , n be mutually indepen-
dent type-2 trapezoidal fuzzy returns, and ξi,∗, ξ∗

i and ξi the reduced fuzzy returns of
ξ̃i obtained by the PEV, OEV and EV methods, respectively. Then for any xi ∈ �, i =
1, 2, . . . , n, we have:

(i) The second moment of ξ T∗ x is

M2

[
ξ T∗ x

]
= 1

2
xT D∗x,
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where x = (x1, x2, . . . , xn)
T , ξ T∗ = (ξ1,∗, ξ2,∗, . . . , ξn,∗)T and D∗ = FT Q∗F

with the matrix

F =

⎡
⎢⎢⎣

r11 r21 · · · rn1
r12 r22 · · · rn2
r13 r23 · · · rn3
r14 r24 · · · rn4

⎤
⎥⎥⎦ (13)

and the matrix

Q∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
128 θ

2
l − 1

16 θl+ 5
24

1
128 θ

2
l + 1

24
1

128 θ
2
l − 1

8 − 1
128 θ

2
l + 1

16 θl− 1
8

1
128 θ

2
l + 1

24 − 1
128 θ

2
l + 1

16 θl+ 5
24 − 1

128 θ
2
l − 1

16 θl− 1
8

1
128 θ

2
l − 1

8

1
128 θ

2
l − 1

8 − 1
128 θ

2
l − 1

16 θl− 1
8 − 1

128 θ
2
l + 1

16 θl+ 5
24

1
128 θ

2
l + 1

24

− 1
128 θ

2
l + 1

16 θl− 1
8

1
128 θ

2
l − 1

8
1

128 θ
2
l + 1

24 − 1
128 θ

2
l − 1

16 θl+ 5
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(ii) The second moment of ξ∗T x is

M2

[
ξ∗T x

]
= 1

2
xT D∗x,

where x = (x1, x2, . . . , xn)
T , ξ∗ = (ξ∗

1 , ξ
∗
2 , . . . , ξ

∗
n )

T and D∗ = FT Q∗F, F is
the matrix defined by (13) and the matrix

Q∗=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
128 θ

2
r + 1

16 θr + 5
24

1
128 θ

2
r + 1

24
1

128 θ
2
r − 1

8 − 1
128 θ

2
r − 1

16 θr − 1
8

1
128 θ

2
r + 1

24 − 1
128 θ

2
r − 1

16 θr + 5
24 − 1

128 θ
2
r + 1

16 θr − 1
8

1
128 θ

2
r − 1

8

1
128 θ

2
r − 1

8 − 1
128 θ

2
r + 1

16 θr − 1
8 − 1

128 θ
2
r − 1

16 θr + 5
24

1
128 θ

2
r + 1

24

− 1
128 θ

2
r − 1

16 θr − 1
8

1
128 θ

2
r − 1

8
1

128 θ
2
r + 1

24 − 1
128 θ

2
r + 1

16 θr + 5
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(iii) The second moment of ξ T x is

M2

[
ξ T x

]
= 1

2
xT Dx,

where x = (x1, x2, . . . , xn)
T , ξ = (ξ1, ξ2, . . . , ξn)

T and D = FT QF, F is the
matrix defined by (13) and the elements of the symmetric matrix Q include

Q11 = Q44 = − 1

512
(θr − θl)

2 + 1

32
(θr − θl)+ 5

24
,

Q12 = Q34 = 1

512
(θr − θl)

2 + 1

24
,

Q13 = Q24 = 1

512
(θr − θl)

2 − 1

8
,

Q14 = − 1

512
(θr − θl)

2 − 1

32
(θr − θl)− 1

8
,
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Q22 = Q33 = − 1

512
(θr − θl)

2 − 1

32
(θr − θl)+ 5

24
,

Q23 = − 1

512
(θr − θl)

2 + 1

32
(θr − θl)− 1

8
.

Moreover, the second moments M2[ξ T∗ x], M2[ξ∗T x] and M2[ξ T x] are all para-
metric quadratic convex functions with respect to decision vector x ∈ �n.

Proof We only prove assertion (i i i), and the rest can be proved similarly.
Note that ξi ’s are mutually independent reduced fuzzy returns. If we denote R(x, ξ)

= ξ T x , then its α-cut is Rα(x, ξ) = ∑n
i=1 xiξi,α . As a consequence, the parametric

possibility distribution of R(x, ξ) is as follows

μR(t; θl , θr ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4+θr −θl )(t−r1)
4(r2−r1)

, r1 ≤ t ≤ r1+r2
2

(4−θr +θl )t+(θr −θl )r2−4r1
4(r2−r1)

, r1+r2
2 ≤ t ≤ r2

1, r2 ≤ t ≤ r3

(−4+θr −θl )t−(θr −θl )r3+4r4
4(r4−r3)

, r3 ≤ t ≤ r3+r4
2

(4+θr −θl )(r4−t)
4(r4−r3)

, r3+r4
2 ≤ t ≤ r4,

where r1 = ∑n
i=1 xiri1, r2 = ∑n

i=1 xiri2, r3 = ∑n
i=1 xiri3 and r4 = ∑n

i=1 xiri4.
According to assertion (i i i) in Theorem 1, the second moment of ξ T x can be

represented as

M2[ξ T x] = 1

2
[r1, r2, r3, r4]Q

⎡
⎢⎢⎣

r1
r2
r3
r4

⎤
⎥⎥⎦ ≥ 0.

In addition, we have the next equation

⎡
⎢⎢⎣

r1
r2
r3
r4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r11 r21 . . . rn1
r12 r22 . . . rn2
r13 r23 . . . rn3
r14 r24 . . . rn4

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ .

If we denote x = (x1, x2, . . . , xn)
T , and the matrix

F =

⎡
⎢⎢⎣

r11 r21 . . . rn1
r12 r22 . . . rn2
r13 r23 . . . rn3
r14 r24 . . . rn4

⎤
⎥⎥⎦ ,
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then (r1, r2, r3, r4)
T = Fx . Therefore, the second moment of fuzzy return ξ T x is

M2

[
ξ T x

]
= 1

2
xT FT QFx = 1

2
xT Dx ≥ 0,

where D = FT QF . Note that M2[ξ T x] ≥ 0 holds for any x ∈ �n , and D is a sym-
metric parametric matrix. Therefore, for any parameters θl and θr , the second moment
M2[ξ T x] is a parametric quadratic convex function with respect to decision vector
x ∈ �n . The proof of the theorem is complete.

As a corollary of Theorem 2, for type-2 triangular fuzzy returns, we have the fol-
lowing results:

Corollary 4 Let ξ̃i = (r̃i1, r̃i2, r̃i3; θl , θr ), i = 1, 2, . . . , n be mutually independent
type-2 triangular fuzzy returns, and ξi,∗, ξ∗

i and ξi its reduced fuzzy returns obtained
by the PEV, OEV and EV methods, respectively. Then for any xi ∈ �, i = 1, 2, . . . , n,
we have:

(i) The second moment of ξ T∗ x is

M2

[
ξ T∗ x

]
= 1

2
xT H∗x,

where x = (x1, x2, . . . , xn)
T , ξ T∗ = (ξ1,∗, ξ2,∗, . . . , ξn,∗)T and H∗ = ST R∗S

with the matrix

S =
⎡
⎣ r11 r21 r31 · · · rn1

r12 r22 r32 · · · rn2
r13 r23 r33 · · · rn3

⎤
⎦ , (14)

and the matrix

R∗ =
⎡
⎣− 1

128θ
2
l − 1

16θl + 5
24

1
64θ

2
l − 1

12 − 1
128θ

2
l + 1

16θl − 1
8

1
64θ

2
l − 1

12 − 1
32θ

2
l + 1

6
1

64θ
2
l − 1

12
− 1

128θ
2
l + 1

16θl − 1
8

1
64θ

2
l − 1

12 − 1
128θ

2
l − 1

16θl + 5
24

⎤
⎦ .

(ii) The second moment of ξ∗T x is

M2

[
ξ∗T x

]
= 1

2
xT H∗x,

where x = (x1, x2, . . . , xn)
T , ξ∗ = (ξ∗

1 , ξ
∗
2 , . . . , ξ

∗
n )

T and H∗ = ST R∗S, S is
the matrix defined by (14) and the matrix

R∗ =
⎡
⎣− 1

128θ
2
r + 1

16θr + 5
24

1
64θ

2
r − 1

12 − 1
128θ

2
r − 1

16θr − 1
8

1
64θ

2
r − 1

12 − 1
32θ

2
r + 1

6
1

64θ
2
r − 1

12
− 1

128θ
2
r − 1

16θr − 1
8

1
64θ

2
r − 1

12 − 1
128θ

2
r + 1

16θr + 5
24

⎤
⎦ .
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(iii) The second moment of ξ T x is

M2

[
ξ T x

]
= 1

2
xT H x,

where x = (x1, x2, . . . , xn)
T , ξ = (ξ1, ξ2, . . . , ξn)

T and H = ST RS, S is the
matrix defined by (14) and the matrix

R =

⎡
⎢⎢⎢⎣
− 1

512 (θr − θl )
2 + 1

32 (θr − θl )+ 5
24

1
256 (θr − θl )

2 − 1
12 − 1

512 (θr − θl )
2 − 1

32 (θr − θl )− 1
8

1
256 (θr − θl )

2 − 1
12 − 1

128 (θr − θl )
2 + 1

6
1

256 (θr − θl )
2 − 1

12

− 1
512 (θr − θl )

2 − 1
32 (θr − θl )− 1

8
1

256 (θr − θl )
2 − 1

12 − 1
512 (θr − θl )

2 + 1
32 (θr − θl )+ 5

24

⎤
⎥⎥⎥⎦ .

Moreover, the second moments M2[ξ T∗ x], M2[ξ T
x] and M2[ξ T x] are all para-

metric quadratic convex functions with respect to decision vector x ∈ �n.

5 Equivalent parametric programming and solution methods

5.1 Equivalent parametric programming

Assume ξ̃i ’s are mutually independent type-2 trapezoidal fuzzy returns. We now dis-
cuss the equivalent parametric programming problems of problems (11) and (12).
According to Theorem 2, the second moment of fuzzy return is represented by

M2

[
ξ T x

]
= 1

2
xT Dx,

where x = (x1, x2, . . . , xn)
T , D = FT QF , and the information matrix

F =

⎡
⎢⎢⎣

r11 r21 · · · rn1
r12 r22 · · · rn2
r13 r23 · · · rn3
r14 r24 · · · rn4

⎤
⎥⎥⎦
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is the knowledge about security returns. In addition, the elements in the symmetric
matrix Q are determined by

Q11 = Q44 = − 1

512
(θr − θl)

2 + 1

32
(θr − θl)+ 5

24
,

Q12 = Q34 = 1

512
(θr − θl)

2 + 1

24
,

Q13 = Q24 = 1

512
(θr − θl)

2
r − 1

8
,

Q14 = − 1

512
(θr − θl)

2 − 1

32
(θr − θl)− 1

8
,

Q22 = Q33 = − 1

512
(θr − θl)

2 − 1

32
(θr − θl)+ 5

24
,

Q23 = − 1

512
(θr − θl)

2 + 1

32
(θr − θl)− 1

8
,

where θl and θr characterize the degree of fuzziness.
On the other hand, we discuss the equivalent parametric form of E[ξ T x]. Owing to

the independence of security returns, we have

E
[
ξ T x

]
=

n∑
i=1

xi E[ξi ],

which can be expressed as

E
[
ξ T x

]
= cT x,

where x = (x1, x2, . . . , xn)
T , c = (E[ξ1],E[ξ2], . . . ,E[ξn])T and

E[ξi ] = 1

4
(ri1 + ri2 + ri3 + ri4)+ 1

32
(θr − θl)(ri1 − ri2 − ri3 + ri4).

From the discussions in Sect. 4, when the security returns are characterized by
type-2 trapezoidal fuzzy variables, the reward-risk problem (11) can be turned into
the following equivalent parametric quadratic programming one

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max cT x

subject to: 1
2 xT Dx ≤ φ∑n

i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , n.

(15)
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Similarly, the risk-reward problem (12) can be represented as the following equiv-
alent parametric quadratic programming one⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min 1
2 xT Dx

subject to: cT x ≥ ψ∑n
i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , n.

(16)

In problems (15) and (16), the second moment 1/2xT Dx is a quadratic convex
function with respect to decision vector x (Theorem 2). Expected value cT x and other
constraints are linear functions about decision vector x . Therefore, problems (15) and
(16) can be converted into the following parametric quadratic convex programming
ones with parameters θl and θr :⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min −cT x

subject to: 1
2 xT Dx ≤ φ∑n

i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , n,

(17)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min 1
2 xT Dx

subject to: −cT x ≤ −ψ∑n
i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , n.

(18)

5.2 Solution methods

Since problems (17) and (18) are quadratic convex programming ones, we may use
conventional solution methods or general-purpose software to solve them. For exam-
ple, problem (17) has a linear objective function with a quadratic convex constraint and
linear equality and inequality constraints, so we can solve it by cutting plane method
(Kelley 1960).

For the sake of presentation, we denote

f (x) = −cT x, h(x) = 1

2
xT Dx, g(x) = φ − h(x),

and

T =
{

x ∈ �n
∣∣ n∑

i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n

}
.
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The procedure of cutting plane method for problem (17) is described as follows:

Step 1. Set k = 1. Solve the following linear programming problem

{
min f (x)

subject to: x ∈ T,
(19)

and get the solution xk .
Step 2. If g(xk) ≥ 0, then xk is the global optimal solution to problem (17); Other-

wise, add the following inequality to problem (19) as a cutting plane

g(xk)+ �g(xk)(x − xk) ≥ 0.

Step 3. Solve the following programming problem

⎧⎪⎪⎨
⎪⎪⎩

min f (x)

subject to: g(xk)+ �g(xk)(x − xk) ≥ 0

x ∈ T,

(20)

and get the solution xk+1. Set k = k + 1, and go to Step 2.

Owing to the convexity of problem (17), the obtained optimal solution by cutting
plane method is a global optimal solution. In addition to the cutting plane method,
the equivalent parametric quadratic convex programming problems (17) and (18) can
also be solved by general-purpose software such as Lingo, which will be considered
in the next section.

6 Numerical experiments

In this section, we demonstrate the developed modeling ideas by two numerical exam-
ples. The first is solved by cutting plane method, while the second is solved by Lingo
software.

Example 1 Consider an investor intends to invest his fund in three securities. Let xi

denote the investment proportion to security i , and ξ̃i ’s mutually independent type-2 tri-
angular fuzzy returns for i = 1, 2, 3. The parametric distribution types of ξ̃i , i = 1, 2, 3
are as follows.

ξ̃1 = (˜1.002, ˜1.033, ˜1.045 ; θl , θr ), ξ̃2 = (˜1.009, ˜1.027, ˜1.059 ; θl , θr ),

ξ̃3 = (˜1.012, ˜1.038, ˜1.073 ; θl , θr ).

For this portfolio selection problem, we build it as problem (17). In this case, the
portfolio selection problem is equivalent to the following parametric quadratic convex
programming problem
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⎧⎪⎪⎨
⎪⎪⎩

min −cT x
subject to: 1

2 xT H x ≤ φ∑3
i=1 xi = 1

xi ≥ 0, i = 1, 2, 3,

(21)

where H = ST RS with the matrix

S =
⎡
⎣ r11 r21 r31

r12 r22 r32
r13 r23 r33

⎤
⎦

and the matrix

R =

⎡
⎢⎢⎢⎣

− 1
512 (θr − θl )

2 + 1
32 (θr − θl )+ 5

24
1

256 (θr − θl )
2 − 1

12 − 1
512 (θr − θl )

2 − 1
32 (θr − θl )− 1

8

1
256 (θr − θl )

2 − 1
12 − 1

128 (θr − θl )
2 + 1

6
1

256 (θr − θl )
2 − 1

12

− 1
512 (θr − θl )

2 − 1
32 (θr − θl )− 1

8
1

256 (θr − θl )
2 − 1

12 − 1
512 (θr − θl )

2 + 1
32 (θr − θl )+ 5

24

⎤
⎥⎥⎥⎦ .

We now solve it by cutting plane method with the following parametric values:
θl = 0.4, θr = 0.8 and φ = 0.28 × 10−3. As a consequence, the matrix

H =
⎡
⎣0.3462 0.3742 0.4628

0.3742 0.4560 0.5516
0.4628 0.5516 0.6700

⎤
⎦× 10−3,

and the vector c = (1.0280, 1.0307, 1.0404)T . So, the convex programming problem
reads ⎧⎪⎪⎨

⎪⎪⎩
min f (x)
subject to: h(x) ≤ 0.28

x1 + x2 + x3 = 1
x1, x2, x3 ≥ 0,

(22)

where

f (x) = −(1.0280x1 + 1.0307x2 + 1.0404x3),

h(x) = 0.1731x2
1+0.2280x2

2+0.3350x2
3+0.3742x1x2+0.4628x1x3+0.5516x2x3.

Let g(x) = 0.28 − h(x), T = {x ∈ �3 : x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}, and
Y = {x ∈ �3 : g(x) ≥ 0}. We now apply the cutting plane method to solve problem
(22). The solution procedure is as follows.

Iteration 1: Solve the following linear programming problem

{
min f (x)
subject to: x ∈ T .

(23)
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We get the solution x1 = (0, 0, 1)T , and g(x1) = −0.0550 < 0 that means x1 /∈ Y .
Hence, x1 is not the optimal solution to problem (22), and we add the following
inequality to problem (23) as a cutting plane

g(x1)+ �g(x1)(x − x1) ≥ 0,

that is, 0.4628x1 + 0.5516x2 + 0.6700x3 ≤ 0.6150.

Iteration 2: Solve the following programming problem

⎧⎨
⎩

min f (x)
subject to: 0.4628x1 + 0.5516x2 + 0.6700x3 ≤ 0.6150

x ∈ T .

We get the solution x2 = (0.2654440, 0, 0.7345560)T , and g(x2) = −0.0032 < 0
that means x2 /∈ Y . Hence, x2 is not the optimal solution to problem (22), and we add
the following inequality to problem (23) as a cutting plane

g(x2)+ �g(x2)(x − x2) ≥ 0,

that is, 0.4318x1 + 0.5045x2 + 0.6150x3 ≤ 0.5632.

Iteration 3: Solve the following programming problem

⎧⎨
⎩

min f (x)
subject to: 0.4318x1 + 0.5045x2 + 0.6150x3 ≤ 0.5632

x ∈ T .

We get the solution x3 = (0.2827511, 0, 0.7172489)T , and g(x3) = −3.5625 ×
10−5 < 0 that means x3 /∈ Y . Hence, x3 is not the optimal solution to problem (22),
and we add the following inequality to problem (23) as a cutting plane

g(x3)+ �g(x3)(x − x3) ≥ 0,

that is, 0.4298x1 + 0.5014x2 + 0.6114x3 ≤ 0.5600.

Iteration 4: Solve the following programming problem

⎧⎨
⎩

min f (x)
subject to: 0.4298x1 + 0.5014x2 + 0.6114x3 ≤ 0.5600

x ∈ T .

We get the solution x4 = (0.2830396, 0, 0.7169604)T , and g(x4) = 1.6758×10−5 >

0 that means x4 ∈ Y .
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As a consequence, the cutting plane method produces the following global optimal
solution to problem (22)

x∗ = (0.2830396, 0, 0.7169604)T .

Example 2 Consider an investor intends to invest his fund in twenty-two securities.
Let xi be the investment proportion to security i , and ξ̃i ’s mutually independent type-2
trapezoidal fuzzy returns for i = 1, 2, . . . , 22. The parametric distribution types of
ξ̃i , i = 1, 2, . . . , 22 are as follows.

ξ̃1 = (˜0.9946, ˜0.9967, ˜1.0012, ˜1.0016 ; θl , θr ), ξ̃2 = (˜1.0011, ˜1.0020, ˜1.0061, ˜1.0092 ; θl , θr )

ξ̃3 = (˜0.9986, ˜1.0073, ˜1.0081, ˜1.0094 ; θl , θr ), ξ̃4 = (˜0.9983, ˜1.0096, ˜1.0122, ˜1.0263 ; θl , θr )

ξ̃5 = (˜1.0033, ˜1.0122, ˜1.0262, ˜1.0310 ; θl , θr ), ξ̃6 = (˜1.0146, ˜1.0159, ˜1.0248, ˜1.0499 ; θl , θr )

ξ̃7 = (˜1.0209, ˜1.0225, ˜1.0416, ˜1.0553 ; θl , θr ), ξ̃8 = (˜1.0291, ˜1.0299, ˜1.0468, ˜1.0679 ; θl , θr )

ξ̃9 = (˜1.0259, ˜1.0468, ˜1.0618, ˜1.0709 ; θl , θr ), ξ̃10 = (˜1.0350, ˜1.0514, ˜1.0671, ˜1.0830 ; θl , θr )

ξ̃11 = (˜1.0388, ˜1.0469, ˜1.0702, ˜1.0851 ; θl , θr ), ξ̃12 = (˜1.0385, ˜1.0629, ˜1.0758, ˜1.0986 ; θl , θr )

ξ̃13 = (˜1.0414, ˜1.0569, ˜1.0770, ˜1.1024 ; θl , θr ), ξ̃14 = (˜1.0511, ˜1.0529, ˜1.0769, ˜1.1116 ; θl , θr )

ξ̃15 = (˜1.0422, ˜1.0766, ˜1.0877, ˜1.1168 ; θl , θr ), ξ̃16 = (˜1.0373, ˜1.0914, ˜1.0972, ˜1.1171 ; θl , θr )

ξ̃17 = (˜1.0460, ˜1.0932, ˜1.1048, ˜1.1269 ; θl , θr ), ξ̃18 = (˜1.0640, ˜1.0760, ˜1.1130, ˜1.1300 ; θl , θr )

ξ̃19 = (˜1.0615, ˜1.0785, ˜1.1155, ˜1.1275 ; θl , θr ), ξ̃20 = (˜1.0456, ˜1.0986, ˜1.1221, ˜1.1257 ; θl , θr )

ξ̃21 = (˜1.0549, ˜1.0896, ˜1.1279, ˜1.1293 ; θl , θr ), ξ̃22 = (˜1.0619, ˜1.0992, ˜1.1257, ˜1.1533 ; θl , θr ).

We build this portfolio selection problem as the risk-reward model (18). In this
case, the portfolio selection problem is equivalent to the following parametric qua-
dratic convex programming problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min 1
2 xT Dx

subject to: −cT x ≤ −ψ∑22
i=1 xi = 1

xi ≥ 0, i = 1, 2, . . . , 22,

(24)

where D = FT QF , the information matrix F defined by (13) is the knowledge about
security returns, and the matrix Q defined in Theorem 2 is a parametric matrix about
θl and θr . We next solve the convex programming problem (24) by Lingo software.

In the case when θl = θr = 0, the reduced returns ξi , i = 1, 2, . . . , 22 are trap-
ezoidal fuzzy variables shown in Table 1, and the possibility h(θl , θr ), the expected
values E[ξi ] and second moments M2[ξi ] are also computed and provided in Table
1. For this portfolio optimization problem, FT is the 22 × 4 return matrix consisting
of the second, third, fourth and fifth columns in Table 1. The vector c and matrix Q
are different for various values of θl and θr . In the following, we solve problem (24)
according to six cases.
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Table 1 The values of h(θl , θr ), E[ξi ] and M2[ξi ] for case 1

Reduced returns ri1 ri2 ri3 ri4 h(θl , θr ) E[ξi ] M2[ξi ]

ξ1 0.9946 0.9967 1.0012 1.0016 0.5 0.9985 8.4560 × 10−6

ξ2 1.0011 1.0020 1.0061 1.0092 0.5 1.0046 9.7368 × 10−6

ξ3 0.9986 1.0073 1.0081 1.0094 0.5 1.0059 11.6342 × 10−6

ξ4 0.9983 1.0096 1.0122 1.0263 0.5 1.0116 72.1262 × 10−6

ξ5 1.0033 1.0122 1.0262 1.0310 0.5 1.0182 112.9417 × 10−6

ξ6 1.0146 1.0159 1.0248 1.0499 0.5 1.0263 148.4233 × 10−6

ξ7 1.0209 1.0225 1.0416 1.0553 0.5 1.0351 186.8173 × 10−6

ξ8 1.0291 1.0299 1.0468 1.0679 0.5 1.0434 212.4830 × 10−6

ξ9 1.0259 1.0468 1.0618 1.0709 0.5 1.0514 246.6504 × 10−6

ξ10 1.0350 1.0514 1.0671 1.0830 0.5 1.0591 275.3465 × 10−6

ξ11 1.0388 1.0469 1.0702 1.0851 0.5 1.0602 314.7442 × 10−6

ξ12 1.0385 1.0629 1.0758 1.0986 0.5 1.0690 379.5300 × 10−6

ξ13 1.0414 1.0569 1.0770 1.1024 0.5 1.0694 447.9675 × 10−6

ξ14 1.0511 1.0529 1.0769 1.1116 0.5 1.0731 496.5719 × 10−6

ξ15 1.0422 1.0766 1.0877 1.1168 0.5 1.0808 543.6212 × 10−6

ξ16 1.0373 1.0914 1.0972 1.1171 0.5 1.0858 596.4111 × 10−6

ξ17 1.0460 1.0932 1.1048 1.1269 0.5 1.0927 647.9422 × 10−6

ξ18 1.0640 1.0760 1.1130 1.1300 0.5 1.0958 681.1047 × 10−6

ξ19 1.0615 1.0785 1.1155 1.1275 0.5 1.0958 681.1049 × 10−6

ξ20 1.0456 1.0986 1.1221 1.1257 0.5 1.0980 788.3903 × 10−6

ξ21 1.0549 1.0896 1.1279 1.1293 0.5 1.1004 844.0823 × 10−6

ξ22 1.0619 1.0992 1.1257 1.1533 0.5 1.1100 958.4863 × 10−6

Case 1: If θl = θr = 0, then the reduced fuzzy returns are collected in Table 1, the
vector c is

c = (0.9985, 1.0046, 1.0059, 1.0116, 1.0182, 1.0263, 1.0351, 1.0434, 1.0514,

1.0591, 1.0602, 1.0690, 1.0694, 1.0731, 1.0808, 1.0858, 1.0927,

1.0958, 1.0958, 1.0980, 1.1004, 1.1100)T ,

and the symmetric matrix Q is

Q =

⎡
⎢⎢⎣

5
24

1
24 − 1

8 − 1
8

1
24

5
24 − 1

8 − 1
8

− 1
8 − 1

8
5

24
1

24
− 1

8 − 1
8

1
24

5
24

⎤
⎥⎥⎦ .

Thus, the matrix D=FT QF can be calculated accordingly. For different values of ψ ,
the obtained optimal allocation proportions to the 22 securities are reported in Table 2.
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If θl = θr , then the optimal allocation proportions are the same as those in the case
θl = θr = 0, because the parameter h(θl , θr ) = 0.5 is a constant.

Case 2: If θl = 0.5, θr = 0.3, then the reduced fuzzy returns are provided in Table 3,
the vector c is

c = (0.9985, 1.0046, 1.0059, 1.0116, 1.0182, 1.0262, 1.0350, 1.0433, 1.0514,

1.0591, 1.0602, 1.0690, 1.0694, 1.0729, 1.0809, 1.0860, 1.0929,

1.0957, 1.0958, 1.0983, 1.1006, 1.1101)T ,

and the symmetric matrix Q is

Q =

⎡
⎢⎢⎣

0.2020 0.0417 −0.1249 −0.1188
0.0417 0.2145 −0.1313 −0.1249

−0.1249 −0.1313 0.2145 0.0417
−0.1188 −0.1249 0.0417 0.2020

⎤
⎥⎥⎦ .

As a consequence, for different values of ψ , the obtained optimal allocation propor-
tions to the 22 securities are reported in Table 4.

Case 3: If θl = 0.3, θr = 0.5, then the reduced fuzzy returns are shown in Table 5,
the vector c is

c = (0.9985, 1.0046, 1.0058, 1.0116, 1.0181, 1.0264, 1.0352, 1.0436, 1.0513,

1.0591, 1.0603, 1.0689, 1.0695, 1.0733, 1.0808, 1.0855,

1.0926, 1.0958, 1.0957, 1.0977, 1.1002, 1.1100)T ,

and the symmetric matrix Q is

Q =

⎡
⎢⎢⎣

0.2145 0.0417 −0.1249 −0.1313
0.0417 0.2020 −0.1188 −0.1249

−0.1249 −0.1188 0.2020 0.0417
−0.1313 −0.1249 0.0417 0.2145

⎤
⎥⎥⎦ .

Therefore, for different values of ψ , the corresponding optimal allocation proportions
to the 22 securities are reported in Table 6.

Case 4: If θl = 0.8, θr = 0.2, then the reduced fuzzy returns are shown in Table 7,
the vector c is

c = (0.9986, 1.0046, 1.0060, 1.0115, 1.0183, 1.0259, 1.0348, 1.0430, 1.0516,

1.0591, 1.0601, 1.0690, 1.0692, 1.0725, 1.0809, 1.0864, 1.0932, 1.0957,
1.0958, 1.0989, 1.1010, 1.1102)T ,
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Table 3 The values of h(θl , θr ), E[ξi ] and M2[ξi ] for case 2

Reduced returns ri1 ri2 ri3 ri4 h(θl , θr ) E[ξi ] M2[ξi ]

ξ1 0.9946 0.9967 1.0012 1.0016 0.475 0.9985 8.3661 × 10−6

ξ2 1.0011 1.0020 1.0061 1.0092 0.475 1.0046 9.5841 × 10−6

ξ3 0.9986 1.0073 1.0081 1.0094 0.475 1.0059 11.2696 × 10−6

ξ4 0.9983 1.0096 1.0122 1.0263 0.475 1.0116 69.6971 × 10−6

ξ5 1.0033 1.0122 1.0262 1.0310 0.475 1.0182 111.1558 × 10−6

ξ6 1.0146 1.0159 1.0248 1.0499 0.475 1.0262 144.7546 × 10−6

ξ7 1.0209 1.0225 1.0416 1.0553 0.475 1.0350 184.2536 × 10−6

ξ8 1.0291 1.0299 1.0468 1.0679 0.475 1.0433 208.6550 × 10−6

ξ9 1.0259 1.0468 1.0618 1.0709 0.475 1.0514 241.0200 × 10−6

ξ10 1.0350 1.0514 1.0671 1.0830 0.475 1.0591 268.9168 × 10−6

ξ11 1.0388 1.0469 1.0702 1.0851 0.475 1.0602 309.7398 × 10−6

ξ12 1.0385 1.0629 1.0758 1.0986 0.475 1.0690 368.7624 × 10−6

ξ13 1.0414 1.0569 1.0770 1.1024 0.475 1.0694 437.5981 × 10−6

ξ14 1.0511 1.0529 1.0769 1.1116 0.475 1.0729 486.8914 × 10−6

ξ15 1.0422 1.0766 1.0877 1.1168 0.475 1.0809 526.6141 × 10−6

ξ16 1.0373 1.0914 1.0972 1.1171 0.475 1.0860 576.5704 × 10−6

ξ17 1.0460 1.0932 1.1048 1.1269 0.475 1.0929 627.8856 × 10−6

ξ18 1.0640 1.0760 1.1130 1.1300 0.475 1.0957 671.7693 × 10−6

ξ19 1.0615 1.0785 1.1155 1.1275 0.475 1.0958 671.7695 × 10−6

ξ20 1.0456 1.0986 1.1221 1.1257 0.475 1.0983 769.9708 × 10−6

ξ21 1.0549 1.0896 1.1279 1.1293 0.475 1.1006 831.3250 × 10−6

ξ22 1.0619 1.0992 1.1257 1.1533 0.475 1.1101 934.5710 × 10−6

and the symmetric matrix Q is

Q =

⎡
⎢⎢⎣

0.1889 0.0424 −0.1243 −0.1070
0.0424 0.2264 −0.1445 −0.1243

−0.1243 −0.1445 0.2264 0.0424
−0.1070 −0.1243 0.0424 0.1889

⎤
⎥⎥⎦ .

Hence, for different values of ψ , the obtained optimal allocation proportions to the 22
securities are reported in Table 8.

Case 5: If θl = 0.2, θr = 0.8, then the reduced fuzzy returns are collected in Table 9,
the vector c is

c = (0.9985, 1.0046, 1.0057, 1.0117, 1.0181, 1.0267, 1.0353, 1.0438, 1.0511,

1.0591, 1.0604, 1.0689, 1.0696, 1.0737, 1.0807, 1.0851, 1.0923, 1.0958,

1.0957, 1.0971, 1.0998, 1.1098)T ,
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Table 5 The values of h(θl , θr ), E[ξi ] and M2[ξi ] for case 3

Reduced returns ri1 ri2 ri3 ri4 h(θl , θr ) E[ξi ] M2[ξi ]

ξ1 0.9946 0.9967 1.0012 1.0016 0.525 0.9985 8.5458 × 10−6

ξ2 1.0011 1.0020 1.0061 1.0092 0.525 1.0046 9.8891 × 10−6

ξ3 0.9986 1.0073 1.0081 1.0094 0.525 1.0058 11.9946 × 10−6

ξ4 0.9983 1.0096 1.0122 1.0263 0.525 1.0116 74.5548 × 10−6

ξ5 1.0033 1.0122 1.0262 1.0310 0.525 1.0181 114.7263 × 10−6

ξ6 1.0146 1.0159 1.0248 1.0499 0.525 1.0264 152.0476 × 10−6

ξ7 1.0209 1.0225 1.0416 1.0553 0.525 1.0352 189.3696 × 10−6

ξ8 1.0291 1.0299 1.0468 1.0679 0.525 1.0436 216.2789 × 10−6

ξ9 1.0259 1.0468 1.0618 1.0709 0.525 1.0513 252.2699 × 10−6

ξ10 1.0350 1.0514 1.0671 1.0830 0.525 1.0591 281.7762 × 10−6

ξ11 1.0388 1.0469 1.0702 1.0851 0.525 1.0603 319.7449 × 10−6

ξ12 1.0385 1.0629 1.0758 1.0986 0.525 1.0689 390.2974 × 10−6

ξ13 1.0414 1.0569 1.0770 1.1024 0.525 1.0695 458.3293 × 10−6

ξ14 1.0511 1.0529 1.0769 1.1116 0.525 1.0733 506.1679 × 10−6

ξ15 1.0422 1.0766 1.0877 1.1168 0.525 1.0808 560.6262 × 10−6

ξ16 1.0373 1.0914 1.0972 1.1171 0.525 1.0855 616.1605 × 10−6

ξ17 1.0460 1.0932 1.1048 1.1269 0.525 1.0926 667.9496 × 10−6

ξ18 1.0640 1.0760 1.1130 1.1300 0.525 1.0958 690.4380 × 10−6

ξ19 1.0615 1.0785 1.1155 1.1275 0.525 1.0957 690.4384 × 10−6

ξ20 1.0456 1.0986 1.1221 1.1257 0.525 1.0977 806.6192 × 10−6

ξ21 1.0549 1.0896 1.1279 1.1293 0.525 1.1002 856.7529 × 10−6

ξ22 1.0619 1.0992 1.1257 1.1533 0.525 1.1100 982.3943 × 10−6

and the symmetric matrix Q is

Q =

⎡
⎢⎢⎣

0.2264 0.0424 −0.1243 −0.1445
0.0424 0.1889 −0.1070 −0.1243

−0.1243 −0.1070 0.1889 0.0424
−0.1445 −0.1243 0.0424 0.2264

⎤
⎥⎥⎦ .

So, for different values of ψ , the obtained optimal allocation proportions to the 22
securities are reported in Table 10.

Case 6: In this case, we adopt two methods to treat the parameters θl and θr that
describe the uncertainty in the secondary possibility distributions of security returns.

Firstly, the values of parameters θl and θr are not fixed in advance but generated ran-
domly from the unite interval [0, 1]. After the values of θl and θr have been generated
randomly, the corresponding values of vector c and matrix Q are determined by their
definitions. With various values of ψ , the obtained optimal allocation proportions to
the 22 securities are reported in Table 11.

Secondly, the parameters θl and θr are treated as variables in problem (24). That is,
we add the constraints 0 ≤ θl ≤ 1 and 0 ≤ θr ≤ 1 to (24). With various values of ψ ,
the obtained optimal allocation proportions to the 22 securities with optimal values
of θl and θr are reported in Table 12, from which we can see that the optimal values
θ∗

l = 1 and θ∗
r = 0 hold for every acceptable return level ψ , which imply that the
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Table 7 The values of h(θl , θr ), E[ξi ] and M2[ξi ] for case 4

Reduced returns ri1 ri2 ri3 ri4 h(θl , θr ) E[ξi ] M2[ξi ]

ξ1 0.9946 0.9967 1.0012 1.0016 0.425 0.9986 8.1855 × 10−6

ξ2 1.0011 1.0020 1.0061 1.0092 0.425 1.0046 9.2776 × 10−6

ξ3 0.9986 1.0073 1.0081 1.0094 0.425 1.0060 10.5274 × 10−6

ξ4 0.9983 1.0096 1.0122 1.0263 0.425 1.0115 64.8369 × 10−6

ξ5 1.0033 1.0122 1.0262 1.0310 0.425 1.0183 107.5799 × 10−6

ξ6 1.0146 1.0159 1.0248 1.0499 0.425 1.0259 137.2846 × 10−6

ξ7 1.0209 1.0225 1.0416 1.0553 0.425 1.0348 179.0919 × 10−6

ξ8 1.0291 1.0299 1.0468 1.0679 0.425 1.0430 200.9023 × 10−6

ξ9 1.0259 1.0468 1.0618 1.0709 0.425 1.0516 229.7265 × 10−6

ξ10 1.0350 1.0514 1.0671 1.0830 0.425 1.0591 256.0573 × 10−6

ξ11 1.0388 1.0469 1.0702 1.0851 0.425 1.0601 299.7203 × 10−6

ξ12 1.0385 1.0629 1.0758 1.0986 0.425 1.0690 347.2265 × 10−6

ξ13 1.0414 1.0569 1.0770 1.1024 0.425 1.0692 416.8363 × 10−6

ξ14 1.0511 1.0529 1.0769 1.1116 0.425 1.0725 467.2765 × 10−6

ξ15 1.0422 1.0766 1.0877 1.1168 0.425 1.0809 492.5931 × 10−6

ξ16 1.0373 1.0914 1.0972 1.1171 0.425 1.0864 536.6149 × 10−6

ξ17 1.0460 1.0932 1.1048 1.1269 0.425 1.0932 587.6247 × 10−6

ξ18 1.0640 1.0760 1.1130 1.1300 0.425 1.0957 653.0928 × 10−6

ξ19 1.0615 1.0785 1.1155 1.1275 0.425 1.0958 653.0929 × 10−6

ξ20 1.0456 1.0986 1.1221 1.1257 0.425 1.0989 732.5597 × 10−6

ξ21 1.0549 1.0896 1.1279 1.1293 0.425 1.1010 805.5506 × 10−6

ξ22 1.0619 1.0992 1.1257 1.1533 0.425 1.1102 886.7184 × 10−6

minimum risk in terms of second moment is attained in the most conservative situation
for the values of parameters θl and θr , and the computational results coincide with the
theoretical analysis for the second moments of reduced fuzzy returns.

7 Conclusions

This paper studied the EV reduction methods for bounded type-2 fuzzy variables
in fuzzy possibility theory, and applied the EV reduction method to fuzzy portfo-
lio problem, in which the fuzzy returns are characterized by parametric possibility
distributions. The major new results are as follows.

(i) Based on the PEV, OEV and EV of regular fuzzy variable, we got the reduced
fuzzy variables of type-2 triangular and trapezoidal fuzzy variables, and derived
their parametric possibility distributions, where the parameters characterize the
degree of uncertainty in secondary possibility distributions.
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Table 9 The values of h(θl , θr ), E[ξi ] and M2[ξi ] for case 5

Reduced returns ri1 ri2 ri3 ri4 h(θl , θr ) E[ξi ] M2[ξi ]

ξ1 0.9946 0.9967 1.0012 1.0016 0.575 0.9985 8.7246 × 10−6

ξ2 1.0011 1.0020 1.0061 1.0092 0.575 1.0046 10.1926 × 10−6

ξ3 0.9986 1.0073 1.0081 1.0094 0.575 1.0057 12.7024 × 10−6

ξ4 0.9983 1.0096 1.0122 1.0263 0.575 1.0117 79.4101 × 10−6

ξ5 1.0033 1.0122 1.0262 1.0310 0.575 1.0181 118.2917 × 10−6

ξ6 1.0146 1.0159 1.0248 1.0499 0.575 1.0267 159.1636 × 10−6

ξ7 1.0209 1.0225 1.0416 1.0553 0.575 1.0353 194.4397 × 10−6

ξ8 1.0291 1.0299 1.0468 1.0679 0.575 1.0438 223.7740 × 10−6

ξ9 1.0259 1.0468 1.0618 1.0709 0.575 1.0511 263.4764 × 10−6

ξ10 1.0350 1.0514 1.0671 1.0830 0.575 1.0591 294.6355 × 10−6

ξ11 1.0388 1.0469 1.0702 1.0851 0.575 1.0604 329.7355 × 10−6

ξ12 1.0385 1.0629 1.0758 1.0986 0.575 1.0689 411.8317 × 10−6

ξ13 1.0414 1.0569 1.0770 1.1024 0.575 1.0696 479.0298 × 10−6

ξ14 1.0511 1.0529 1.0769 1.1116 0.575 1.0737 525.1062 × 10−6

ξ15 1.0422 1.0766 1.0877 1.1168 0.575 1.0807 594.6296 × 10−6

ξ16 1.0373 1.0914 1.0972 1.1171 0.575 1.0851 655.3849 × 10−6

ξ17 1.0460 1.0932 1.1048 1.1269 0.575 1.0923 707.8167 × 10−6

ξ18 1.0640 1.0760 1.1130 1.1300 0.575 1.0958 709.0989 × 10−6

ξ19 1.0615 1.0785 1.1155 1.1275 0.575 1.0957 709.0994 × 10−6

ξ20 1.0456 1.0986 1.1221 1.1257 0.575 1.0971 842.5051 × 10−6

ξ21 1.0549 1.0896 1.1279 1.1293 0.575 1.0998 881.8342 × 10−6

ξ22 1.0619 1.0992 1.1257 1.1533 0.575 1.1098 1030.1881 × 10−6

(ii) For the reduced fuzzy variables of type-2 triangular and trapezoidal fuzzy vari-
ables, their second moment formulas were established, and the convexity of
second moments with respect to fuzzy parameters was discussed.

(iii) Taking the second moment as a new risk measure, the reward-risk and risk-
reward models were developed to optimize fuzzy portfolio selection problems.
The mathematical properties of the proposed optimization models were ana-
lyzed, including the analytical representations for the second moments of linear
combinations of reduced fuzzy variables as well as the convexity of second
moments with respect to decision vectors.

(vi) Using the analytical representations of second moments, the reward-risk and risk-
reward models can be turned into their equivalent parametric quadratic convex
programming problems, which can be solved by conventional solution meth-
ods or general-purpose software. The solution results reported in the numerical
experiments demonstrated the credibility of the proposed parametric methods.

Finally, we want to emphasize that the parametric method developed in this paper
is a robust approach to optimizing fuzzy portfolio selection problems, and it requires
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less information about the security returns. In practical modeling process, the paramet-
ric method only requires the information about the distribution types about security
returns such as triangular and normal distributions, but not requires the knowledge
about the concrete values of parameters in the distributions. The decision makers may
select various values of parameters according to their preference or attitudes towards
risk. From this viewpoint, our parametric method has advantages over some existing
fuzzy methods in which the security returns are assumed to be characterized by fixed
possibility distribution functions or membership functions.
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