
Fuzzy Optim Decis Making (2012) 11:451–463
DOI 10.1007/s10700-012-9125-x

A risk index model for portfolio selection with returns
subject to experts’ estimations

Xiaoxia Huang

Published online: 25 March 2012
© Springer Science+Business Media, LLC 2012

Abstract Portfolio selection is concerned with selecting an optimal portfolio that
can strike a balance between maximizing the return and minimizing the risk among
a large number of securities. Traditionally, security returns were regarded as ran-
dom variables. However, there are cases that the predictions of security returns are
given mainly based on experts’ judgements and estimations rather than historical data.
In this paper, we introduce a new type of variable to reflect the subjective estimations
of the security returns. A risk index for uncertain portfolio selection is proposed and
a new safe criterion for judging the portfolio investment is introduced. Based on the
proposed risk index, a new mean-risk index model is developed and its crisp forms are
given. In addition, to illustrate the application of the model, two numerical examples
are also presented.

Keywords Portfolio selection · Uncertain programming · Mean-risk index model ·
Risk index

1 Introduction

Portfolio selection is concerned with selecting optimal combination of securities
among a large number of candidate securities. Traditionally, security returns were
regarded to be random variables and a great deal of achievements have been made in
portfolio theory based on this assumption, for example, recent works Abdelaziz et al.
(2007), Corazza and Favaretto (2007), Huang (2008), Lin and Liu (2008), etc. How-
ever, since the security returns, especially short term security returns are sensitive to
various economic and non-economic factors, it is found in reality that sometimes the
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historical data can hardly reflect the future security returns. The predictions of secu-
rity returns have to be given mainly based on experts’ judgements and estimations.
Therefore, many scholars argued that we should find other way other than probability
theory to solve the portfolio selection problem in the situation. With the introduction
and development of fuzzy set theory, scholars have tried using fuzzy set theory to
help select the portfolio with returns subject to experts’ evaluations since 1990’s. For
example, based on possibility measure, Watada (1997), Tanaka and Guo (1999), Carls-
son et al. (2002), Bilbao-Terol et al. (2006), Lacagnina and Pecorella (2006) extended
the mean-variance idea to solve the portfolio selection problems in different ways.
Based on credibility measure, Huang (2007, 2008), Qin et al. (2009), Li et al. (2010),
and Zhang et al. (2010) proposed a spectrum of credibilistic mean-variance portfolio
selection models.

These researches broadened the way to handle portfolio selection problem when
security returns are given mainly based on human estimations rather than historical
data. However, deeper researches find that paradoxes will appear if we use fuzzy
variable to describe the subjective estimations of security returns. For example, if a
security return is regarded as a fuzzy variable, then we have a membership function to
characterize it. Suppose it is a triangular fuzzy variable ξ = (−0.7, 0.2, 1.1). Based
on the membership function, it is known from possibility theory or credibility theory
that the return is exactly 0.2 with belief degree 1 in possibility measure or 0.5 in cred-
ibility measure. However, this conclusion is hard to accept because the belief degree
of exactly 0.2 should be almost zero. In addition, it is known from possibility theory
or credibility theory that the return being exactly 0.2 and not exactly 0.2 have the
same belief degree in either possibility measure or credibility measure, which implies
that the two events will happen equally likely. This conclusion is also contradictory
to our judgement and is hard to accept. In 2007, Liu proposed an uncertain measure
and developed an uncertainty theory which can be used to handle subjective impre-
cise quantity. Much research work has been done on the development of uncertainty
theory and related theoretical work. For example, You (2009) proved some conver-
gence theorems of uncertain sequences, and Gao (2009) proved some properties of
continuous uncertain measure. Liu studied uncertain programming (Liu 2009). Gao
et al. (2010) discussed the inference rule for uncertain systems. Peng and Iwamura
(2010) gave a sufficient and necessary condition of uncertainty distribution, and Chen
and Liu (2010) proved the existence and uniqueness theorem for uncertain differential
equations, etc. When we use uncertain variable to describe the experts’ estimations
of security returns, the above mentioned paradoxes disappear immediately. Based on
uncertainty theory, Zhu (2010) has solved an uncertain optimal control problem and
applied it to a portfolio selection model, and Huang (2011) has defined a risk curve and
has given a new selection method for uncertain portfolio selection and further proposed
the uncertain mean-variance and mean-semivariance selection methods (Huang 2012).
In this paper, we will also use uncertain variables to describe the experts’ estimations
of security returns. Different from using variance as risk measurement, We will define
a new risk measurement, i.e., a risk index, and further propose a new mean-risk index
selection method for portfolio selection based on the new risk measurement.

The rest of the paper is organized as follows. For better understanding of the paper,
some necessary knowledge about uncertain variable will be introduced in Sect. 2.
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Then the motivation for proposing an alternative risk measure will be discussed and a
risk index will be proposed in Sect. 3. Based on the risk index measure, a mean-risk
index model will be developed in the same section. After that, the crisp forms of the
model will be presented in Sect. 4. In Sect. 5, the application of the model will be
discussed by means of examples. Finally, in Sect. 6, some conclusion remarks will be
given.

2 Necessary knowledge about uncertain variable

In 2007, Liu proposed an uncertain measure and an uncertain variable based on an
axiomatic system of normality, self-duality, and countable subadditivity.

Definition 1 Let � be a nonempty set, and L a σ -algebra over �. Each element � ∈ L

is called an event. A set function M{�} is called an uncertain measure if it satisfies
the following three axioms (Liu 2007):

(i) (Normality) M{�} = 1.

(ii) (Self-duality) M{�} + M{�c} = 1.

(iii) (Countable subadditivity) For every countable sequence of events{�i }, we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

The triplet (�,L,M) is called an uncertainty space.
It can be proven (Liu 2010) that any uncertain measure M is increasing. That
is, for any events �1 ∈ �2, we have

M{�1} ≤ M{�2}. (1)

In order to define product uncertain measure, Liu (2007) proposed the fourth
axiom as follows:

(iv) (Product measure) Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . , n.

The product uncertain measure is

M = M1 ∧ M2 ∧ · · · ∧ Mn .

Definition 2 (Liu 2007) An uncertain variable is a measurable function ξ from an
uncertainty space (�,L,M) to the set of real numbers, i.e., for any Borel set of B of
real numbers, the set

{ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B}

is an event.
An uncertainty distribution function is used to characterize an uncertain variable

and is defined as follows.
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Definition 3 (Liu 2007) The uncertainty distribution � : � → [0, 1] of an uncertain
variable ξ is defined by

�(t) = M{ξ ≤ t}.

For example, by a normal uncertain variable, we mean the variable that has the
following normal uncertainty distribution

�(t) =
(

1 + exp

(
π(e − t)√

3σ

))−1

, t ∈ �,

where e and σ are real numbers and σ > 0. For convenience, it is denoted in the paper
by ξ ∼ N (e, σ ).

We call an uncertain variable the linear uncertain variable if it has the following
linear uncertainty distribution

�(t) =
⎧⎨
⎩

0, if t < a
(t − a)/(b − a), if a ≤ t ≤ b
1, if t > b.

For convenience, it is denoted in the paper by ξ ∼ L(a, b) where a < b.
When the uncertain variables ξ1, ξ2, . . . , ξn are represented by uncertainty distri-

butions, the operational law is given by Liu (2010) as follows:

Theorem 1 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
uncertainty distributions �1,�2, . . . , �n, respectively. Let f (t1, t2, . . . , tn) be strictly
increasing with respect to t1, t2, . . . , tn . Then

ξ = f (ξ1, ξ2, . . . , ξn)

is an uncertain variable with uncertainty distribution

	(t) = sup
f (t1,t2,...,tn)=t

(
min

1≤i≤n
�i (ti )

)
, t ∈ � (2)

whose inverse function is

	−1(α) = f (�−1
1 (α),�−1

2 (α), . . . , �−1
n (α)), 0 < α < 1 (3)

if �−1
1 (α),�−1

2 (α), . . . , �−1
n (α) are unique for each α ∈ (0, 1).

To tell the size of an uncertain variable, Liu defined the expected value of uncertain
variables.
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Definition 4 (Liu 2007) Let ξ be an uncertain variable. Then the expected value of ξ

is defined by

E[ξ ] =
∞∫

0

M{ξ ≥ r}dr −
0∫

−∞
M{ξ ≤ r}dr (4)

provided that at least one of the two integrals is finite.

It can be calculated that the expected value of the normal uncertain variable ξ ∼
N (e, σ ) is E[ξ ] = e, and the expected value of the linear uncertain variable ξ ∼
L(a, b) is E[ξ ] = (a + b)/2.

Theorem 2 (Liu 2010) Let ξ1 and ξ2 be independent uncertain variables with finite
expected values. Then for any real numbers a1 and a2, we have

E[a1ξ1 + a2ξ2] = a1E[ξ1] + a2E[ξ2]. (5)

3 Risk index and mean-risk index model

In portfolio selection, how to define risk is one of the most important topics. The
earliest and the most popular risk definition is variance. It was given by Markowitz in
1952. He regarded the security returns as random variables and proposed that expected
value of a portfolio return could be regarded as the representative of the investment
return and variance the risk of the investment. The idea is that the greater the deviation
from the expected value, the less likely the investors can obtain the expected return,
and thus the riskier the portfolio. Therefore, for conservative investors, when making
investment, they should first require that the portfolio be safe enough, i.e., the variance
value of the portfolio be less than or equal to a predetermined tolerable variance level
and then select among the safe portfolios the one with the maximum expected return.
In mathematica way, the mean-variance model is expressed as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max E[x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

V [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ c
x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n

(6)

where ξi denotes the random return of the i th security, xi the investment proportion
in the i th security, i = 1, 2, . . . , n, respectively, E the expected value operator, V the
variance operator, and c the predetermined maximum tolerable variance value.

Though variance is a popular risk measure, it is not so convenient to use for inves-
tors. It is seen from the model (6) that before knowing the expected return of the
portfolio, the investors need to give a maximum tolerable variance level. However, it
is difficult to judge if a variance level is tolerable or not when the expected value of
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the portfolio is unknown because with different expected value, the investors’ maxi-
mum tolerable variance degree may be different. For example, suppose we have two
portfolios A and B. The variance values of the two portfolio returns are both 1, but the
expected return of portfolio A is 0.1 and the expected return of Portfolio B is 10. It is
easy to see that though the variance values of portfolios A and B are same, Portfolio A
will be regarded quite unlikely to realize the expected value 0.1, and so variance 1 is
intolerable. On the contrary, variance value 1 may be tolerable for Portfolio B because
Portfolio B will be likely to realize the expected value 10 with the same variance
value 1. Furthermore, in reality, people usually regard the return being lower than a
base target as a loss, but variance gives no idea about investors’ likely loss degree.
These are also true in case of uncertain portfolio selection. These difficulties motivate
the author to propose an easier-to-use risk measure. As we know, people can choose
to invest their money in risk free asset and gain risk free interest rate with certainty.
Therefore, risk free interest rate can be set as a base target and any portfolio returns
below the risk free interest rate will be regarded as losses. Since the risk free interest
rate is known before investment, it is easier for investors to tell how much level below
the rate they can tolerate. To obtain an average loss level, i.e., an average level of the
portfolio return below the risk free interest rate, we define a risk index as follows:

Definition 5 Let ξ denote an uncertain return rate of a portfolio, and r f the risk free
interest rate. Then the risk index of the portfolio is defined by

RI (ξ) = E[(r f − ξ)+], (7)

where E is the expected value operator of the uncertain variable and

(r f − ξ)+ =
{

r f − ξ, if ξ ≤ r f

0, if ξ > r f .

Let c denote the maximum mean loss level that the investors can tolerate. Then it
is clear that a portfolio is safe if

RI (ξ) ≤ c. (8)

For example, if the investors set c = 0.01, it means that the tolerable average level
below risk free interest rate is 0.01.

In paper Huang (2011), Huang defined a risk curve which gives the information of
each likely loss degree and the loss occurrence chance. Let ξ represent the uncertain
portfolio return. The risk curve is expressed as

f (r) = M{r f − ξ ≥ r}, ∀r ≥ 0. (9)

Huang further defined a confidence curve which gives the investors’ maximal toler-
ance towards the occurrence chance of each likely loss level. Then let α(r) denote the
investors’ confidence curve. A portfolio is safe if

f (r) ≤ α(r), ∀r ≥ 0. (10)
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Comparing Eqs. (7) with (9), we can see that risk index is an average level of risk
curve. We can also see from safe criterion (10) that though risk curve provides loss
degree information, it is still not very easy to use for some investors because to tell if
a portfolio is safe or not, the investors have to find out their tolerance levels towards
all the occurrence chances of all the loss degrees. This is not an easy task sometimes.
However, taking risk index as risk measurement, the investors only need to give one
level, i.e., the tolerable average level below the base profit. This is always much easier.

Usually, when making investment, the investors will require that the portfolio be
safe enough and then pursue the maximum return. We use expected value as the repre-
sentative of investment return and risk index the risk measurement. Let xi denote the
investment proportions in securities i, ξi the uncertain return rates of the i th securities,
i = 1, 2, . . . , n, respectively, and c the investors’ tolerable average value below the
risk free interest rate. Then, to pursue the maximum return among the safe portfolios,
we have the model as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max E[ξ1x1 + ξ2x2 + · · · + ξn xn]
subject to:

RI (ξ1x1 + ξ2x2 + · · · + ξn xn) ≤ c
x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n

(11)

where RI is the risk index of the portfolio defined as

RI (ξ1x1 + ξ2x2 + · · · + ξn xn) = E[(r f − (ξ1x1 + ξ2x2 + · · · + ξn xn))+].

It is clear that portfolios whose risk indexes are not greater than the preset level c are
safe portfolios, and among them the portfolio with the maximum expected return is
the optimal portfolio that the investors should select.

4 Crisp forms

Before giving the crisp form, we first give a theorem for calculating the risk index.

Theorem 3 Let ξ be an uncertain security return with continuous uncertainty dis-
tribution � whose inverse function �−1(α) exists and is unique for each α ∈ (0, 1).
Then the risk index of the security can be calculated via:

RI (ξ) =
β∫

0

(
r f − �−1(α)

)
dα, (12)

where β is defined by �−1(β) = r f .
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Fig. 1 Risk index via integral

Proof According to Eq. (4), we have

RI (ξ) = E[(r f − ξ)+]

=
∞∫

0

M{r f − ξ ≥ r}dr (13)

=
∞∫

0

�(r f − r)dr

=
r f∫

−∞
�(r)dr.

It is easy to see from the Eq. (13) that the theorem holds. See Fig. 1. �

Theorem 4 Let �i denote the continuous uncertainty distribution of the i th uncertain
security return rate ξi whose inverse function �−1

i (α) exists and is unique for each
α ∈ (0, 1), i = 1, 2, . . . , n, respectively. Let ei be the expected return of the i th secu-
rity return rate. Then the risk index model (11) can be transformed into the following
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max x1e1 + x2e2 + · · · + xnen

subject to:

βr f −
β∫

0

(
x1�

−1
1 (α) + x2�

−1
2 (α) + · · · + xn�−1

n (α)
)

dα ≤ c

x1�
−1
1 (β) + x2�

−1
2 (β) + · · · + xn�−1

n (β) = r f

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n.

(14)

Proof The objective function of the model (14) can be obtained directly from
Theorem 2. �
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Let 	 denote the uncertainty distribution function of the portfolio return
∑n

i=1 xiξi .

It is known from Theorem 3 that

RI (ξ1x1 + ξ2x2 + · · · + ξn xn) =
β∫

0

(
r f − 	−1(α)

)
dα,

where β is determined by 	−1(β) = r f . Since xi ≥ 0 for i = 1, 2, . . . , n, respec-
tively, it follows from Theorem 1 that

β∫
0

(
r f − 	−1(α)

)
dα = βr f −

β∫
0

(
x1�

−1
1 (α) + x2�

−1
2 (α) + · · · + xn�−1

n (α)
)

dα,

and x1�
−1
1 (β) + x2�

−1
2 (β) + · · · + xn�−1

n (β) = r f .

Thus the theorem is proven.
According to Theorem 4, we can get the crisp forms of the mean-risk index model

in the situations where security returns are all normal uncertain variables or linear
uncertain variables.

Theorem 5 Suppose the return rates of the i th securities are all normal uncertain
variables ξi ∼ N (ei , σi ), i = 1, 2, . . . , n, respectively. Then the risk index model can
be transformed into the following crisp form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1

ei xi

subject to:

β
(

r f −
n∑

i=1

ei xi

)
−

n∑
i=1

√
3σi xi

π

[
β ln β + (1 − β) ln(1 − β)

]
≤ c

β = exp
(
π(r f −

n∑
i=1

ei xi )
/√

3
n∑

i=1

σi xi

)/
(

1 + exp
(
π(r f −

n∑
i=1

ei xi )
/√

3
n∑

i=1
σi xi

))
x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n.

(15)

Theorem 6 Suppose the return rates of the i th securities are all linear uncertain vari-
ables ξi ∼ (ai , bi ), i = 1, 2, . . . , n, respectively. Then the risk index model can be
transformed into the following crisp form:
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Table 1 Normal uncertain return rates of 10 securities

Security i Uncertain return rate ξi Security i Uncertain return rate ξi

1 N (0.038, 0.065) 6 N (0.028, 0.045)

2 N (0.043, 0.06) 7 N (0.035, 0.058)

3 N (0.032, 0.056) 8 N (0.033, 0.05)

4 N (0.039, 0.067) 9 N (0.025, 0.04)

5 N (0.031, 0.055) 10 N (0.05, 0.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1

2

n∑
i=1

(
ai xi + bi xi

)
subject to:(

r f −
n∑

i=1

ai xi

)2/
2

n∑
i=1

(
bi xi − ai xi

)
≤ c

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n.

(16)

5 Examples

Example 1 Suppose an investor chooses from 10 securities for his/her investment.
Assume that the monthly return rates of the ten securities are all normal uncertain
variables. The return rate of a security is defined to be ξ = (p′ + d − p)/p, where p′
denotes the closing price of the security next month, p the closing price of the security
at present, and d the dividend of the security during the month. The estimation of the
candidate security return rates is given in Table 1.

Suppose the monthly risk free interest rate is 0.01. The investor sets his/her tolera-
ble value below risk free interest rate c = 0.01. Then according to the model (15) in
Sect. 4, we have the model as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
10∑

i=1

ei xi

subject to:

β
(

0.01 −
10∑

i=1

ei xi

)
−

10∑
i=1

√
3σi xi

π

[
β ln β + (1 − β) ln(1 − β)

]
≤ 0.01

β = exp
(
π(0.01 −

10∑
i=1

ei xi )
/√

3
10∑

i=1

σi xi

)/
(

1 + exp
(
π(0.01 −

10∑
i=1

ei xi )
/√

3
10∑

i=1
σi xi

))
x1 + x2 + · · · + x10 = 1
xi ≥ 0, i = 1, 2, . . . , 10.

(17)
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Table 2 Allocation of money to 10 securities with normal uncertain returns (%)

Security i 1 2 3 4 5 6 7 8 9 10

Allocation of money 0.00 75.01 0.00 0.00 0.00 0.00 0.00 0.00 24.99 0.00

Table 3 Optimal portfolios under different risk level constraints (%)

c Obj. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1.0 3.85 0.00 75.01 0.00 0.00 0.00 0.00 0.00 0.00 24.99 0.00

1.5 4.48 0.00 74.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.91

2.0 4.67 0.00 46.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 53.08

2.5 4.86 0.00 20.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 79.75

By running Solver in Excel, to obtain the maximum expected return with the risk
index not greater than the preset level 0.01, the investor should allocate his/her money
according to Table 2. The maximum expected return rate is 3.85 %.

To test the effect of requirement for risk index on the decision result of portfo-
lio selection, we adjust the c value and do the experiment. The results are shown in
Table 3. It is seen that when the tolerable risk level c increases, the obtained expected
value of the portfolio return becomes greater, which is in consistent with the rule of
“the higher the risk, the higher the return”.

Example 2 Suppose in this case the candidate securities are linear uncertain variables
which are given in Table 4. The risk-free interest rate is still 0.01, and the risk index
level is set at c = 0.017. Then according to the model (16) in Sect. 4, we have the
model as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1

2

10∑
i=1

(
ai xi + bi xi

)
subject to:(

0.01 −
n∑

i=1

ai xi

)2/
2

n∑
i=1

(
bi xi − ai xi

)
≤ 0.017

x1 + x2 + · · · + x10 = 1
xi ≥ 0, i = 1, 2, . . . , 10.

(18)

By running Solver in Excel, to obtain the maximum expected return with the risk
index not greater than the preset level 0.017, the investor should allocate his/her money
according to Table 5. The maximum expected return rate is 4.28 %.

Again, we adjust the c values and show the portfolio selection results in Table 6. It
is also seen that when the tolerable risk level c increases, the obtained expected value
of the portfolio return becomes greater.
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Table 4 Linear uncertain return rates of 10 securities

Security i Uncertain return rate ξi Security i Uncertain return rate ξi

1 L(−0.093, 0.202) 6 L(−0.214, 0.332)

2 L(−0.089, 0.192) 7 L(−0.231, 0.392)

3 L(−0.080, 0.160) 8 L(−0.324, 0.442)

4 L(−0.148, 0.223) 9 L(−0.245, 0.386)

5 L(−0.123, 0.241) 10 L(−0.175, 0.278)

Table 5 Allocation of money to 10 securities with linear uncertain returns (%)

Security i 1 2 3 4 5 6 7 8 9 10

Allocation of money 0.00 24.40 75.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6 Optimal portfolios under different risk level constraints (%)

c Obj. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1.7 4.28 0.00 24.40 75.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.1 5.73 89.33 0.00 0.00 0.00 0.00 0.00 10.67 0.00 0.00 0.00

2.8 6.37 64.76 0.00 0.00 0.00 0.00 0.00 35.24 0.00 0.00 0.00

3.3 6.82 47.31 0.00 0.00 0.00 0.00 0.00 52.69 0.00 0.00 0.00

6 Conclusions

This paper has discussed the portfolio selection problem when security returns are
given by experts’ estimations rather than historical data. Regarding security returns as
uncertain variables, the paper has introduced a risk index as an alternative risk mea-
surement and developed a mean-risk index model. In addition, the crisp forms of the
model have also been provided. The numerical examples illustrated the application of
the proposed model and showed that the greater the risk level, the higher the obtained
expected return.
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