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Abstract Closed-loop logistics planning is an important tactic for the achievement
of sustainable development. However, the correlation among the demand, recovery,
and landfilling makes the estimation of their rates uncertain and difficult. Although the
fuzzy numbers can present such kinds of overlapping phenomena, the conventional
method of defuzzification using level-cut methods could result in the loss of informa-
tion. To retain complete information, the possibilistic approach is adopted to obtain
the possibilistic mean and mean square imprecision index (MSII) of the shortage and
surplus for uncertain factors. By applying the possibilistic approach, a multi-objective,
closed-loop logistics model considering shortage and surplus is formulated. The two
objectives are to reduce both the total cost and the root MSII. Then, a non-dominated
solution can be obtained to support decisions with lower perturbation and cost. Also,
the information on prediction interval can be obtained from the possibilistic mean
and root MSII to support the decisions in the uncertain environment. This problem is
non-deterministic polynomial-time hard, so a new algorithm based on the spanning
tree-based genetic algorithm has been developed. Numerical experiments have shown
that the proposed algorithm can yield comparatively efficient and accurate results.

Keywords Closed-loop logistics · Fuzzy number · Possibilistic mean ·
Genetic algorithms · Shortage and surplus

1 Introduction

For the sustainability of the earth, green supply chain (GSC) management has been
considered an effective approach because it is implemented on closed-loop logistics,
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including forward and reverse logistics, so that the requirements of reproduction, reuse,
and redesign for sustainability can be facilitated. A number of studies, such as those of
Lu et al. (2000), Baumgarten et al. (2003), and Schultmann et al. (2006), significantly
contributed to the development of GSC because of its importance.

However, based on the studies of Kongar (2004), Listes (2007), Salema et al.
(2007), and Wang and Hsu (2010b), not only the uncertainty embedded in reverse
logistics, but also the uncertain factors of the reverse supply chain, which are more
complex than those of the forward supply chain, present a challenge for GSC man-
agers. To cope with such complicated uncertainty, Wang and Hsu (2010b) empha-
sized that fuzzy numbers are appropriate for describing uncertain factors and that
the statistical approach toward possibility has a sound foundation to synthesize fuzzy
information because fuzzy presentation is capable of processing uncertain patterns in
GSC.

Among the difficulties in management that result from uncertain factors, the short-
age and surplus of demands are the most serious. Resolving such uncertainty by
simply providing uncertain parameters is not always sufficient. The closed-loop logis-
tics problem concerns the recycling of goods through the methods for reusing, and
the recovery and landfilling rates are the factors that determine the end of reusable
materials in the reverse logistics, so the insufficiency or surplus of these factors will
directly affect plans for reproduction. Therefore, studies should consider the logistics
problems on shortage and surplus to cope with unstable environments. The possibilis-
tic mean and mean square imprecision index (MSII) of shortage and surplus are thus
developed in the present study, and the proposed mathematical model is applied with
these properties to build a multi-objective model. The objectives are to reduce both
the cost and the root mean square imprecision index (RMSII), which directly affects
the risk level.

To resolve these problems, three issues should be considered: the model, its appli-
cability, and the efficiency of the solution.

Although the fuzzy numbers are useful and efficient tools for investigating impre-
cise and overlapping factors, the determination of the expected amounts of short-
age and surplus for demand, landfilling, and recovery from these numbers remains
a problem. Several objectives should be achieved, so a multi-objective model should
be formulated, and non-dominated solutions should be obtained to yield lower cost
and perturbation. In addition, the location-allocation transportation problem is a
non-deterministic polynomial-time (NP) problem; hence, an efficient algorithm is
necessary.

After reviewing the literature on the analysis of GSC in uncertain environments
using defuzzification procedures and genetic algorithms (GAs), as shown in Sect. 2,
the possibilistic means of shortage and surplus are introduced in Sect. 3. A multi-
objective mathematical programming model for GSC logistics is proposed in Sect. 4.
The solution process for the revised spanning tree-based genetic algorithm is then
presented in detail in Sect. 5. A numerical example of an uncertain GSC with shortage
and surplus is presented and discussed in Sect. 6. Finally, in Sect. 7, the conclusion is
drawn.
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2 Literature review

This section focuses on the resolution of uncertain issues related to GSC, as discussed
in the literature. After covering the basic knowledge on uncertain GSC, the spanning
tree-based GAs are also discussed.

2.1 Uncertain green logistics and methods for resolving uncertainty

After Fleischmann et al. (2000) and Kongar (2004) showed the difficulties associated
with the high level of uncertainty embedded in a reverse supply chain, Biehl et al.
(2007) used an experimental design for the reverse supply chain to confirm the high
degrees of uncertainty in the collection and landfill rates. The factors of demand, land-
fill, and recovery rates have overlapping patterns, so Wang and Hsu (2010b) resolved
their uncertainties using the fuzzy set theory.

However, during the resolution process of the fuzzy approach, “defuzzification”
is an issue when generating final solutions for decision making. In the literature, a
number of studies addressed this defuzzification issue using different approaches. For
instance, López-González et al. (2000) established the fuzzy objective function based
on the Hamming distance. In recent studies, the credibility measure was also used.
Peng and Liu (2004), Zheng and Liu (2006), Ke and Liu (2007), Yang et al. (2007),
and Wen and Iwamura (2008) were among those who used the credibility measure.
However, the credibility measure does not consider the complete information of fuzzy
numbers at any one time, which therefore, remains an issue.

To overcome such limitations, Dubois and Prade (1987) proposed an alternative
measure of the possibilistic mean to retain the complete information of fuzzy num-
bers. The idea is to define an interval-valued expectation of a fuzzy number by viewing
it as a consonant random set. This idea was extended by Carlsson and Fullér (2001)
into the interval-valued possibilistic mean of a continuous possibility distribution,
such that both the extension principle (Zadeh 1975) and the well-known definition
of expectation in the probability theory can be integrated. Wang and Hsu (2010b)
then applied the possibilistic mean value method to retain the information of fuzzy
numbers, which was then successfully used for GSC logistics.

In terms of the resolution, the issue on the location selection of conventional logis-
tics planning has been extensively discussed as an NP-hard problem (Gen and Cheng
1997; Syarif et al. 2002). The definition of the fitness function for developing the algo-
rithms is important because of this uncertainty. In the literature, both the Hamming
distance and the credibility measure are used to define the fitness function (López-
González et al. 2000; Yang et al. 2007; Wen and Iwamura 2008). The method to
adequately define the fitness function to reflect the possible shortage and surplus is
the first issue addressed in the present study.

GAs are powerful algorithms for solving engineering design and optimization prob-
lems. The fuzzy methods with GAs have been used in many areas of uncertainty.
López-González et al. (2000) discussed transportation problems with fuzzy applica-
tion based on the Hamming distance and used GAs to solve the problem. Yang et al.
(2007) adopted a chance-constrained method with the credibility measure of the fuzzy
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parameters and applied the hybrid algorithms of Tabu Search and GA to solve logistics
distribution center location problems. Wen and Iwamura (2008) also used the credibil-
ity measure and GAs to solve the facility location-allocation problem using optimistic
and pessimistic criteria. Other applications of uncertainty with credibility measure
and GAs have been used in numerous studies, such as those by Peng and Liu (2004),
Zheng and Liu (2006), and Ke and Liu (2007). For multi-objective problems, Duenas
and Petrovic (2008) also applied GAs for a single-machine scheduling problem under
fuzziness. Among the different issues discussed in different studies, one common and
important issue for GAs is to determine a suitable coding type. Therefore, the second
aim of the present study is to find specific coding methods to represent the multi-stage
logistics transformation with location-allocation under uncertainty.

2.2 Spanning tree-based genetic algorithm

For the basic concepts of GAs, the study by Gen and Cheng (1997) can be used as
reference. The concept of applying a spanning tree to supply chain network problems
was first proposed by Syarif et al. (2002). The multi-stage logistics transformation
with location-allocation is a fixed charge transportation problem (FCTP). Syarif et al.
(2002) and Jo et al. (2007) have successfully adopted spanning tree-based GAs with
Prüfer encoding to solve FCTPs. However, empirical investigations have shown that
Prüfer encoding is an unsatisfactory method for evolutionary algorithms and should
therefore be avoided (Yeh 2005). However, the spanning tree-based GAs have the
advantage of being capable of using the least number of arcs between two stages to
solve logistics problems, thereby saving memory and time (Yao and Hsu 2009).

Abuali et al. (1995) proposed the determinant encoding and proved that this code is
better than that of Prüfer. Both the works of Chou et al. (2001) and Yao and Hsu (2009)
on logistic networks further confirmed this conclusion. Wang and Hsu (2010a) pro-
posed a revised spanning tree-based genetic algorithm with determinant encoding that
was applied successfully to the closed-loop logistics model. Therefore, determinant
encoding is employed in the present work.

Although the spanning tree-based GAs with determinant encoding is capable of
solving the transportation location-allocation problem, overcoming uncertainty still
remains difficult. Real-number encoding should be integrated into the spanning tree-
based GAs because of the properties of uncertainty. The primary challenge for real
number encoding is the use of a pair of real-parameter decision variable vectors to
create a new pair of offspring vectors or perturbing a decision variable vector into a
mutated vector in a meaningful manner (Chang 2006; Kumar and Naresh 2007).

In previous studies on real-number encoding, Arumugam et al. (2005) proposed
the arithmetic crossover (AMXO) and average convex crossover methods (ACXO)
with dynamic mutation (DM). Note that ACXO is a special case of AMXO. Deep and
Thakur (2007) suggested that the heuristic crossover (HX) and power mutation (PM)
operators have the best performance and that the PM is better than DM; however,
they did not compare HX with AMXO or ACXO. AMXO is the most common and
efficient operator, whereas PM dominates other methods; hence, one of the feasible
combinations of operators is the AMXO and PM method.
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2.3 Summary

Uncertainty is one of the primary concerns of GSC management, and the demand,
recovery, and landfilling rates are the three main factors of uncertainty. Although the
use of fuzzy numbers is appropriate for presenting uncertainty, the literature has shown
that defuzzification procedures based on level cuts always result in information loss.
A realistic model capable of coping with the uncertainty of shortage and surplus in
closed-loop logistics remains lacking. Therefore, the possibilistic approach will be
adopted to obtain the possibilistic mean and MSII of shortage and surplus. In addi-
tion, the issues of uncertainty for this problem can be summarized into two, namely,
the realistic modeling with shortage and surplus and the efficient algorithm, because
closed-loop logistics is an NP-hard problem.

3 Possibilistic approach for shortage and surplus

Uncertainty is one of the primary issues in GSC logistics. The uncertain factors are
assumed to be fuzzy numbers described by fuzzy membership functions because of
the uncertainty embedded in the customer demand, recycling rate, and landfill rate. To
describe the exact situation of the uncertain environment, the resultant shortage and
surplus are discussed in this section under a possibilistic approach to retain the com-
plete information of fuzzy numbers using the possibilistic mean and MSII of shortage
and surplus for demand, recovery, and landfilling amounts.

3.1 Possibilistic mean of insufficient and surplus amounts

In this section, the process of obtaining the possibilistic mean of insufficient and
surplus amounts is shown. The case of uncertain demand is used as an example.

Possibilistic mean of insufficient amounts

In an interval number of uncertain demand with lower bound dL and upper bound dU ,
each value has the same possibility between dL and dU . Let z be the decision variable
that refers to the assigned transportation amount, with w as the actual amount, then
the total expected shortage of the interval number can be described as follows:

E(shortage) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dU∫

w=dL

w−z
dU −dL

dw = dL+dU
2 − z, z ≤ dL

dU∫

w=z

w−z
dU −dL

dw = (dU −z)2

2(dU −dL )
, dL < z < dU

0, z ≥ dU

(1)
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For example, when dL < z < dU , the expected shortage amounts of the interval
number is derived by:

E(shortage) =
dU∫

w=z

w − z

dU − dL
dw = d2

U − z2

2(dU − dL)
− (dU − z)z

dU − dL
= (dU − z)2

2(dU − dL)
.

By defining a fuzzy set Ã = {(x, μ Ã(x))|μ Ã(x) ∈ [0, 1],∀x ∈ R}, where μ Ã(x) is
the membership function or degree of truth of x in A, a crisp set of elements belonging
to fuzzy set Ã, at least to a degree of γ , is called a γ -level set of Ã and is defined
by Aγ = {x ∈ R|μ Ã(x) ≥ γ, 0 ≤ γ ≤ 1}. If Ã is a fuzzy number, then for each
γ level, Aγ is a closed interval that can be defined by its lower and upper bounds as
[aL(γ ), aU (γ )] (Zadeh 1975), and the modes of fuzzy number Ã can be defined as
the values with the maximal degree, {x ∈ R|μ Ã(x) = 1}.

One method for collecting the information is to integrate all levels, which can be
attributed to Carlsson and Fullér (2001) based on the concept of mean in the probability
theory. The fuzzy numbers can be ranked using the method of Goetschel and Voxman
(1986), which compares the possibilistic means of the fuzzy numbers, as defined by
the arithmetic means of all γ -level sets, as shown below.

M( Ã) =
1∫

0

γ [aL(γ )+aU (γ )]dγ =
∫ 1

0 γ
[

aL (γ )+aU (γ )
2

]
dγ

∫ 1
0 γ dγ

= 1

2

(∫ 1
0 γ aL(γ )dγ

∫ 1
0 γ dγ

+
∫ 1

0 γ aU (γ )dγ
∫ 1

0 γ dγ

)

(2)

For example, if Ã = (a, SL , SU ) is a triangular fuzzy number with center a, left
spread from a, SL and right spread from a, SU , then

M( Ã) =
1∫

0

γ
[
a − (1 − γ )SL + a + (1 − γ )SU

]
dγ =

∫ 1
0 γ

[
2a+(1−γ )(SU −SL )

2

]
dγ

∫ 1
0 γ dγ

= a + SU − SL

6

Therefore, the method of Goetschel and Voxman (1986) for ranking fuzzy numbers
is actually the level-weight average of mean for each level cut.

Generally, the aim of a transportation problem is to satisfy the demand and to avoid
a surplus. For a given fuzzy number, the values beyond the lowest and highest possi-
ble values are assumed impossible with membership degree 0, therefore, the possible
demands only fall between the lower and upper bounds of the fuzzy number, which
are the only values that should be considered and satisfied.

Each level cut of the fuzzy number is a closed interval with lower and upper bounds,
so Eq. (1) can be used to derive the expected shortage in the form of an interval.
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Fig. 1 The visualized example when z is smaller than the mode

Therefore, applying the possibility theory, the possibilistic mean of shortage of a fuzzy
demand with lower and upper bounds, [dL(γ ), dU (γ )], of which the mode defined at
γ = 1 is the interval [m1, m2] = [dL(1), dU (1)], can be calculated.

If dL(0) ≤ z < m1, there are two cases for the closed interval of γ -level sets,
namely, dL(γ ) < z < dU (γ ) and z ≤ dL(γ ).

M
−
d =

γ ′
∫

0

γ

[
(dU (γ ) − z)2

dU (γ ) − dL(γ )

]

dγ +
1∫

γ ′
γ [dL(γ ) + dU (γ ) − 2z]dγ (3)

where γ ′ is the point of the level cut making z ≤ dL(γ ). The visualized figure is
similar to that shown in Fig. 1.

Figure 1 is a visualized example where z1 is smaller than the mode. D̃ is a fuzzy
number, and γ -level sets of D̃ are the closed intervals with lower and upper bounds,
[dL(γ ), dU (γ )]. When γ = 0.1 in Fig. 1, z1 is in the interval of [dL(0.1), dU (0.1)],
but when γ = 0.7, z1 is out of the interval and smaller than dL(0.7). In Fig. 1,
z1 = dL(0.6), indicating that if γ > 0.6, the lower bound is higher and z1 is out of
the range. The definition of γ ′ is the point of the level cut making z ≤ dL(γ ), so
γ ′ = 0.6. If γ ′ can be determined, Eq. (3) can be derived from Eq. (1) with different
cases. Equations (4) and (5) are similar.

If m1 ≤ z ≤ m2, it is necessary that dL(γ ) < z < dU (γ ) for the closed interval of
γ -level sets.

M
−
d =

1∫

0

γ

[
(dU (γ ) − z)2

dU (γ ) − dL(γ )

]

dγ (4)

If m2 < z ≤ dU (0), there are two cases for the closed interval of γ -level sets,
namely, dL(γ ) < z < dU (γ ) and z ≥ dU (γ ).
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M
−
d =

γ ′
∫

0

γ

[
(dU (γ ) − z)2

dU (γ ) − dL(γ )

]

dγ (5)

where γ ′ is the point of level cut making z ≥ dU (γ ).
If a specific fuzzy number is known, the closed form can be derived. For example,

if D̃ = (d, SL , SU ) is a triangular fuzzy number with center d, left spread from d, SL

and right spread from d, SU , then
If d − SL ≤ z < d, then γ ′ = 1 − d−z

SL
. There are two cases, d − (1 − γ )SL < z <

d + (1 − γ )SU if γ < γ ′, and z ≤ d − (1 − γ )SL if γ ≥ γ ′, for the closed interval
of γ -level sets.

M
−
d =

γ ′
∫

0

γ

[ [(d − z) + (1 − γ )SU ]2

(1 − γ )(SL + SU )

]

dγ+
1∫

γ ′
γ [2d + (1 − γ )(SU − SL) − 2z]dγ

= 3γ 2(2SU (SU − z + d) − S2
U ) − 2γ 3S2

U − 6(d − z)2(ln |1 − γ | + γ )

6(SL + SU )

∣
∣
∣
∣
∣

γ ′

0

+γ 2
[
(SU − SL)(3 − 2γ )

6
+ (d − z)

]∣
∣
∣
∣

1

γ ′

If z = d, it is necessary that d − (1 − γ )SL < z < d + (1 − γ )SU for the closed
interval of γ -level sets.

M
−
d =

1∫

0

γ

[ [(d − z) + (1 − γ )SU ]2

(1 − γ )(SL + SU )

]

dγ =
1∫

0

γ (1 − γ )S2
U

(SL + SU )
dγ = S2

U

6(SL + SU )

If d < z ≤ d + SU , then γ ′ = 1 − z−d
SU

. There are two cases, d − (1 − γ )SL < z <

d + (1 − γ )SU and z ≥ d + (1 − γ )SU , for the closed interval of γ -level sets.

M
−
d =

γ ′
∫

0

γ

[ [(d − z) + (1 − γ )SU ]2

(1 − γ )(SL + SU )

]

dγ

= 3γ 2(2SU (SU − z + d) − S2
U ) − 2γ 3S2

U − 6(d − z)2(ln |1 − γ | + γ )

6(SL + SU )

∣
∣
∣
∣
∣

γ ′

0

The process to drive the possibilistic mean of surplus amounts is similar to that of
shortage, as summarized in the following section.
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Possibilistic mean of surplus amounts

The process is similar to that previously discussed. The expected surplus amounts of
the interval number can be described as follows:

E(sur plus) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, z ≤ dL
z∫

w=dL

z − w

dU − dL
dw = (z − dL)2

2(dU − dL)
, dL < z < dU

dU∫

w=dL

z − w

dU − dL
dw = z − dL + dU

2
, z ≥ dU

(6)

The possibility theory can be applied to calculate the possibilistic mean of surplus
of a fuzzy demand with lower and upper bounds, [dL(γ ), dU (γ )].

If dL(0) ≤ z < m1, then

M
+
d =

γ ′
∫

0

γ

[
(z − dL(γ ))2

dU (γ ) − dL(γ )

]

dγ (7)

where γ ′ is the point of level cut making z ≤ dL(γ ).
If m1 ≤ z ≤ m2, then

M
+
d =

1∫

0

γ

[
(z − dL(γ ))2

dU (γ ) − dL(γ )

]

dγ (8)

If m2 < z ≤ dU (0), then

M
+
d =

γ ′
∫

0

γ

[
(z − dL(γ ))2

dU (γ ) − dL(γ )

]

dγ +
1∫

γ ′
γ

[
2z − dU (γ ) − dL(γ )

]
dγ (9)

where γ ′ is the point of level cut making z ≥ dU (γ ).
If a specific fuzzy number known, the closed form can be derived. For example, if

D̃ = (d, SL , SU ) is a triangular fuzzy number with center d, left spread from d, SL

and right spread from d, SU , then
If d − SL ≤ z < d, then γ ′ = 1 − d−z

SL
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M
+
d =

γ ′
∫

0

γ

[ [(z − d) + (1 − γ )SL ]2

(1 − γ )(SL + SU )

]

dγ

= 3γ 2(2SL(z + SL − d) − S2
L) − 2γ 3S2

L − 6(d − z)2(ln |1 − γ | − γ )

6(SL + SU )

∣
∣
∣
∣
∣

γ ′

0

If z = d, then

M
+
d =

1∫

0

γ

[ [(z − d) + (1 − γ )SL ]2

(1 − γ )(SL + SU )

]

dγ =
1∫

0

γ (1 − γ )S2
L

(SL + SU )
dγ = S2

L

6(SL + SU )

If d < z ≤ d + SU , then γ ′ = 1 − z−d
SU

M
+
d =

γ ′
∫

0

γ

[ [(z − d) + (1 − γ )SL ]2

(1 − γ )(SL + SU )

]

dγ +
1∫

γ ′
γ [2z − 2d − (1 − γ )(SU − SL)]dγ

= 3γ 2(2SL(z + SL − d) − S2
L) − 2γ 3S2

L − 6(d − z)2(ln |1 − γ | − γ )

6(SL + SU )

∣
∣
∣
∣
∣

γ ′

0

+γ 2
[
(SU − SL)(2γ − 3)

6
− d + z)

]∣
∣
∣
∣

1

γ ′

The case of the possibilistic mean for uncertain demand is similar to that previously
discussed. The possibilistic means of shortage and surplus for other fuzzy numbers,
as well as recovery and landfill rates, can be derived using similar methods. After
deriving the possibilistic mean of shortage and surplus, the MSII will be derived in the
next section to help decision makers understand the uncertainty for certain decisions.

3.2 MSII for insufficient and surplus amounts

In this section, the process of obtaining the MSII based on the possibilistic theory for
insufficient and surplus amounts is shown. Also, the case of uncertain demand is used
as an example.

MSII of insufficient amounts

In an interval number of uncertain demand with lower bound, dL , and upper bound, dU ,
each value has the same possibility between dL and dU . Let z be the decision variable
that refers to the assigned transportation amount, with w as the actual amount, then,
all of the possible MSII of shortage amounts for the interval number can be described
as follows:
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MSII(shortage)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dU∫

w=dL

(w − z)2

dU − dL
dw −

⎡

⎢
⎣

dU∫

w=dL

(w − z)

dU − dL
dw

⎤

⎥
⎦

2

= (dU − dL )2

12
z ≤ dL

dU∫

w=z

(w − z)2

dU − dL
dw −

⎡

⎣

dU∫

w=z

(w − z)

dU − dL
dw

⎤

⎦

2

= (dU − z)3(dU − 4dL + 3z)

12(dU − dL )2 , dL < z < dU

0, z ≥ dU

(10)

For example, when dL < z < dU , the MSII for shortage amounts of the interval
number is derived by

MSII(shortage) =
dU∫

w=z

(w − z)2

dU − dL
dw −

⎡

⎣

dU∫

w=z

(w − z)

dU − dL
dw

⎤

⎦

2

= 4(dU − z)3(dU − dL) − 3(dU − z)4

12(dU − dL)2

= (dU − z)3[4(dU − dL) − 3(dU − z)]
12(dU − dL)2

= (dU − z)3(dU − 4dL + 3z)

12(dU − dL)2

Carlsson and Fullér (2001) proposed a variance based on the end points of a fuzzy
number in relation to the possibilistic mean, and as previously explained, the infor-
mation of end points are insufficient for the determination of shortage and surplus.
Therefore, the MSII of a fuzzy number is given below using the arithmetic means of
γ -level sets based on all continuous points:

MSII( Ã) =
∫ 1

0 γ

(
[aU (γ )−aL (γ )]2

12

)

dγ

∫ 1
0 γ dγ

= 1

6

1∫

0

γ
([

aU (γ ) − aL(γ )
]2

)
dγ (11)

For example, if Ã = (a, SL , SU ) is a triangular fuzzy number with center a; left
spread from a, SL , and right spread from a, SU , then

MSII( Ã) = 1

6

1∫

0

γ (a + SU (1 − γ ) − (a − SL(1 − γ )))2dγ = (SL + SU )2

72

Each level cut of the fuzzy number is a closed interval with lower and upper bounds.
Equation (10) can be used to determine the MSII of the interval numbers. Therefore,
applying the possibility theory, the possibilistic MSII of shortage of a fuzzy demand
with lower and upper bounds, [dL(γ ), dU (γ )], can be calculated.

If dL(0) ≤ z < m1, there are two cases for the closed interval of γ -level sets,
namely, dL(γ ) < z < dU (γ ) and z ≤ dL(γ ).
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MSII−
d =

γ ′
∫

0

γ

[
(dU (γ ) − z)3(dU (γ ) − 4dL(γ ) + 3z)

6(dU (γ ) − dL(γ ))2

]

dγ

+
1∫

γ ′
γ

[
(dU (γ ) − dL(γ ))2

6

]

dγ (12)

where γ ′ is the point of level cut making z ≤ dL(γ ).
If m1 ≤ z ≤ m2, it is necessary that dL(γ ) < z < dU (γ ) for the closed interval of

γ -level sets.

MSII−
d =

1∫

0

γ

[
(dU (γ ) − z)3(dU (γ ) − 4dL(γ ) + 3z)

6(dU (γ ) − dL(γ ))2

]

dγ (13)

If m2 < z ≤ dU (0), there are two cases for the closed interval of γ -level sets,
namely, dL(γ ) < z < dU (γ ) and z ≥ dU (γ ).

MSII−
d =

γ ′
∫

0

γ

[
(dU (γ ) − z)3(dU (γ ) − 4dL(γ ) + 3z)

6(dU (γ ) − dL(γ ))2

]

dγ (14)

where γ ′ is the point of level cut that makes z ≥ dU (γ )

Again, if a specific fuzzy number is known, the closed form can be derived. For
example, if D̃ = (d, SL , SU ) is a triangular fuzzy number with center d, left spread
from d, SL and right spread from d, SU , then

If d − SL ≤ z < d, then γ ′ = 1 − d−z
SL

MSII−
d =

γ ′
∫

0

γ

[ [(d − z) + (1 − γ )SU ]3[(1 − γ )(SU + 4SL) + 3(z − d)]
6(1 − γ )2(SL + SU )2

]

dγ

+
1∫

γ ′
γ

[
(1 − γ )2(SL + SU )2

6

]

dγ

= 1

6(SL + SU )2

⎡

⎢
⎢
⎢
⎢
⎣

S3
U γ 4(SU +4SL )

4 − 2S2
U γ 3(SU (SU +4SL )+6SL (d−z))

3

+ SU γ 2(S3
U +4SL (S2

U +3(d−z)2)−6SU (d−z)(d−z−2SL ))

2−4γ (d − z)3(SL − 2SU ) − ln |1 − γ |
× [

(d − z)3(3(d − z) − 4(2SU − SL))
] − 3(d−z)4

1−γ

⎤

⎥
⎥
⎥
⎥
⎦

γ ′

0

+ γ 2(SL + SU )2(3γ 2 − 8γ + 6)

72

∣
∣
∣
∣

1

γ ′
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If z = d, then

MSII =
1∫

0

γ

[ [(d − z) + (1 − γ )SU ]3[(1 − γ )(SU + 4SL) + 3(z − d)]
6(1 − γ )2(SL + SU )2

]

dγ

= 1

6(SL + SU )2

⎡

⎢
⎢
⎢
⎢
⎣

S3
U γ 4(SU +4SL )

4 − 2S2
U γ 3(SU (SU +4SL )+6SL (d−z))

3

+ SU γ 2(S3
U +4SL (S2

U +3(d−z)2)−6SU (d−z)(d−z−2SL ))

2−4γ (d − z)3(SL − 2SU ) − ln |1 − γ |
× [

(d − z)3(3(d − z) − 4(2SU − SL))
] − 3(d−z)4

1−γ

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

0

If d < z ≤ d + SU , then γ ′ = 1 − z−d
SU

MSII−
d =

γ ′
∫

0

γ

[ [(d − z) + (1 − γ )SU ]3[(1 − γ )(SU + 4SL) + 3(z − d)]
6(1 − γ )2(SL + SU )2

]

dγ

= 1

6(SL + SU )2

⎡

⎢
⎢
⎢
⎢
⎣

S3
U γ 4(SU +4SL )

4 − 2S2
U γ 3(SU (SU +4SL )+6SL (d−z))

3

+ SU γ 2(S3
U +4SL (S2

U +3(d−z)2)−6SU (d−z)(d−z−2SL ))

2−4γ (d − z)3(SL − 2SU ) − ln |1 − γ |
× [

(d − z)3(3(d − z) − 4(2SU − SL))
] − 3(d−z)4

1−γ

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

γ ′

0

The process to drive the MSII of surplus amounts is similar to that of shortage and
is briefly described as follows:

MSII of surplus amounts

The process is similar to that previously discussed. The MSII of shortage amounts for
the interval number can be described as follows:

M SI I (sur plus)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, z ≤ dL

z∫

w=dL

(z−w)2

dU −dL
dw −

[
z∫

w=dL

(z−w)
dU −dL

dw

]2

= (dL−z)3(dL−4dU +3z)
12(dU −dL )2 , dL < z < dU

dU∫

w=dL

(z−w)2

dU −dL
dw −

[
dU∫

w=dL

(z−w)
dU −dL

dw

]2

= (dU −dL )2

12 , z ≥ dU

(15)

The possibility theory can be applied to calculate the MSII of surplus of a fuzzy
demand with lower and upper bounds, [dL(γ ), dU (γ )].
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If dL(0) ≤ z < m1, then

MSII+
d =

γ ′
∫

0

γ

[
(dL(γ ) − z)3(dL(γ ) − 4dU (γ ) + 3z)

6(dU (γ ) − dL(γ ))2

]

dγ (16)

where γ ′ is the point of level cut that makes z ≤ dL(γ ).
If m1 ≤ z ≤ m2, then

MSII+
d =

1∫

0

γ

[
(dL(γ ) − z)3(dL(γ ) − 4dU (γ ) + 3z)

6(dU (γ ) − dL(γ ))2

]

dγ (17)

If m2 < z ≤ dU (0), then

MSII+
d =

γ ′
∫

0

γ

[
(dL(γ ) − z)3(dL(γ ) − 4dU (γ ) + 3z)

6(dU (γ ) − dL(γ ))2

]

dγ

+
1∫

γ ′
γ

[
(dU (γ ) − dL(γ ))2

6

]

dγ (18)

where γ ′ is the point of level cut that makes z ≥ dU (γ ).
Again, taking D̃ = (d, SL , SU ), which a triangular fuzzy number with center d,

left spread from d, SL , and right spread from d, SU , as an example, the closed form
can be derived as follows:

If d − SL ≤ z < d, then γ ′ = 1 − d−z
SL

MSII+
d =

γ ′
∫

0

γ

[ [(d − z) − (1 − γ )SL ]3[3(z − d) − (1 − γ )(SL + 4SU )]
6(1 − γ )2(SL + SU )2

]

dγ

= 1

6(SL + SU )2

⎡

⎢
⎢
⎢
⎢
⎣

S3
Lγ 4(SL+4SU )

4 − 2S2
Lγ 3(SL (SL+4SU )−6SU (d+z))

3

+ SLγ 2(S3
L+4SU (S2

L+3(d−z)2)−6S2
L (d−z)(d−z+2SU ))

2−4γ (d − z)3(2SL − SU ) − ln |1 − γ |
× [

(d − z)3(3(d − z) + 4(2SL − SU ))
] − 3(d−z)4

1−γ

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

γ ′

0
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If z = d, then

MSII+
d =

1∫

0

γ

[ [(d − z) − (1 − γ )SL ]3[3(z − d) − (1 − γ )(SL + 4SU )]
6(1 − γ )2(SL + SU )2

]

dγ

= 1

6(SL + SU )2

⎡

⎢
⎢
⎢
⎢
⎣

S3
Lγ 4(SL+4SU )

4 − 2S2
Lγ 3(SL (SL+4SU )−6SU (d+z))

3

+ SLγ 2(S3
L+4SU (S2

L+3(d−z)2)−6S2
L (d−z)(d−z+2SU ))

2−4γ (d − z)3(2SL − SU ) − ln |1 − γ |
× [

(d − z)3(3(d − z) + 4(2SL − SU ))
] − 3(d−z)4

1−γ

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

0

If d < z ≤ d + SU , then γ ′ = 1 − z−d
SU

MSII+
d =

γ ′
∫

0

γ

[ [(d − z) − (1 − γ )SL ]3[3(z − d) − (1 − γ )(SL + 4SU )]
6(1 − γ )2(SL + SU )2

]

dγ

+
1∫

γ ′
γ

[
(1 − γ )2(SL + SU )2

6

]

dγ

= 1

6(SL + SU )2

⎡

⎢
⎢
⎢
⎢
⎣

S3
Lγ 4(SL+4SU )

4 − 2S2
Lγ 3(SL (SL+4SU )−6SU (d+z))

3

+ SLγ 2(S3
L+4SU (S2

L+3(d−z)2)−6S2
L (d−z)(d−z+2SU ))

2−4γ (d − z)3(2SL − SU ) − ln |1 − γ |
× [

(d − z)3(3(d − z) + 4(2SL − SU ))
] − 3(d−z)4

1−γ

⎤

⎥
⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

γ ′

0

+ γ 2(SL + SU )2(3γ 2 − 8γ + 6)

72

∣
∣
∣
∣

1

γ ′

The case of MSII for uncertain demand is shown above. The MSII of shortage and
surplus for other fuzzy numbers, recovery, and landfill rates can be derived using
similar methods.

RMSII is the root of MSII. RMSII is an index to test the perturbation of solutions.
Therefore, the goals are to reduce both the RMSII and cost as much as possible, so the
model should be formulated as a multi-objective problem. If all the uncertain param-
eters are described by the symmetric triangular fuzzy numbers, the prediction interval
with the known possibilistic mean and RMSII are relatively easy to obtain.

A prediction interval is an estimate of an interval in which future observations will
fall under a certain probability, and the probability can be derived by calculating the
area using the possibility theory (De Groot 2007). The prediction interval of a normal
probability distribution with known mean and variance between μ+2σ and μ−2σ is
95.44%. Adapting this to a symmetric triangular possibility distribution with known

123



192 H.-F. Wang, H.-W. Hsu

Fig. 2 Framework of GSC logistics

mean and variance, the prediction interval [M
−
d − 2RM SI I, M

−
d + 2RM SI I ] for

the shortage of customer demand is approximated to be 96.63%. For example, for
an uncertain demand with symmetric triangular fuzzy number, D̃ = (400, 100, 100),
the possibilistic mean is 400 from Eq. (2), and the MSII is 1666.667 from Eq. (11). The
prediction interval [M

−
d − 2RM SI I, M

−
d + 2RM SI I ] is [318.3503, 381.6497]. The

total area of the symmetric triangular fuzzy number is 100, and the area between
318.3503 and 381.6497 is 96.63266. The probability that future observations will fall
in the interval [318.3503, 381.6497] is 96.63266

100 = 96.63%.
Extending to nonsymmetric cases, the area of the range can also be used to calculate

the probability. For example, if the goal is to obtain 95% of the prediction interval for
mean, 2.5% can be excluded from both the left and right areas to determine the range.
This information can help decision makers clearly understand the uncertainty under
probability.

4 The mathematical model for uncertainty

Wang and Hsu (2010a) mentioned that past studies have not shown a high degree
of correlation between forward and reverse chains and that their solutions can be
obtained separately. The operations of transportation are often subcontracted sepa-
rately to a third-party logistics service provider. To reduce operational cost, Hsu and
Wang (2009) developed a model to determine the relationship between the forward
and reverse chains to facilitate delivery and pick-up operations conducted by the same
fleet of vehicles. The framework is presented in Fig. 2.

Based on the report by Hsu and Wang, the model can be extended to an uncertain
model with insufficient and surplus amounts. Uncertain parameters are described in
terms of fuzzy numbers. The possibilistic mean of the shortage and surplus amounts
for all uncertain parameters are applied to obtain the possibilistic mean objection
function of the model proposed by Hsu and Wang. Based on the literature, demand,
landfill, and recovery rates are the basic factors that contribute to the uncertainty in
GSC logistics (Biehl et al. 2007; Zikopoulos and Tagaras 2007; Kongar 2004). The
notations of indices are listed below.
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Indices:

I : The number of suppliers with i = 1, 2, . . ., I
J : The number of manufactories with j = 1, 2, . . ., J
K : The number of distribution centers (DCs) with k = 1, 2, . . ., K
L: The number of customers with l = 1, 2, . . ., L
M : The number of dismantlers with m = 1, 2, . . ., M

The insufficient costs or shortage costs are C−
d , C−

r , and C−
l for the uncertain

demand, recovery rate, and landfill rate, respectively. The surplus costs are C+
d , C+

r ,
and C+

l , for the uncertain demand, recovery rate, and landfill rate, respectively.
The total cost of uncertainty TUC would be

T UC = C−
d

∑

l

M
−
d,l + C−

r

∑

l

M
−
r,l + C−

l

∑

m

M
−
l,m + C+

d

∑

l

M
+
d,l

+C+
r

∑

l

M
+
r,l + C+

l

∑

m

M
+
l,m (19)

where M
−
d,l , M

−
r,l , and M

−
l,m are the possibilistic means of the insufficient amounts for

the lth customer with demand and recovery, and mth is the dismantler with landfilling
rate. Here, M

+
d,l , M

+
r,l , and M

+
l,m are the possibilistic means of the surplus amounts

for lth customer with demand and recovery, and mth is the dismantler with landfilling
rate.

The relationship between insufficiency and surplus cost can then be discussed. For
costs of the uncertain demands, C−

d > C+
d because managers always aim to satisfy

all the needs of the customers. The shortage cost may include the loss of expected
benefits and of business goodwill. In some situations, C−

d < C+
d because these kinds

of goods have a short lifecycle, and the benefits will be lost immediately.
For costs of the uncertain recovery rates, C−

r > C+
r because managers always aim

to deliver all the recovered items. If the recovery cannot be delivered to the disman-
tler, the high recovery rate will be insignificant. If the product has a short lifecycle,
the situation will be sufficient, that is, C−

r � C+
r . Here, C−

r < C+
r if and only

if the recovery materials are inexpensive. However, if that is the case, the materials
may not be recovered. For the costs of uncertain landfilling rates, C−

l > C+
l because

of environmental protection. If the actual landfilling amounts cannot be addressed,
environmental problems may emerge.

The costs of the uncertain factors are presented as Eq. (19). A possibilistic-based
mathematical programming model with shortage and surplus is proposed accordingly.
The notations of this programming model, as well as the possibilistic mean-based
green closed-loop logistics (GCLL) model, are defined in the following.

Parameters:

ai : Capacity of supplier i

b j : Capacity of manufactory j
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Sck : Capacity of the DC k

pcL
l : The lower bound of uncertain recovery percentage of customer l

pcU
l : The upper bound of uncertain recovery percentage of customer l

pl L
m : The lower bound of uncertain landfilling rate for dismantler m

plU
m : The upper bound of uncertain landfilling rate for dismantler m

d L
l : The lower bound of uncertain demand of the customer l

dU
l : The upper bound of uncertain demand of the customer l

em : Capacity of dismantler m

si j : Unit cost of production in manufactory j using materials from supplier i

t jk : Unit cost of transportation from each manufactory j to each DC k

ukl : Unit cost of transportation from DC k to customer l

vkm : Unit cost of transportation from DC k to dismantler m

wmj : Unit cost of transportation from dismantler m to manufactory j

Rulk : Unit cost of recovery in DC k from customer l

f j : Fixed cost for operating Manufactory j

gk : Fixed cost for operating DC k

hm : Fixed cost for operating dismantler m

LC : Fixed cost for landfilling per unit.

Decision Variables:

xi j : Quantity produced at manufactory j using raw materials from supply i

y jk : Amount shipped from manufactory j to DC k

zkl : Amount shipped from DC k to customer l

okm : Amount shipped from DC k to dismantler m

Rdmj : Amount shipped from dismantler m to manufactory j

Rzlk : Quantity recovered at DC k from customer l

ppcl : Percentage in range (pcL
l , pcU

l ) of recovery rate for customer l

pplm : Percentage in range (pl L
m, plU

m ) of landfilling rate for dismantler m

pdl : Percentage in range (d L
l , dU

l ) of demand for customer l.

α j =
{

1, if production takes place at manufactory j
0, otherwise

βk =
{

1, if DCk is opened
0, otherwise

δm =
{

1, if dismantlerm is opened
0, otherwise
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Possibilistic-GCLL model

Object function:

min T C =
∑

i

∑

j

si j xi j+
∑

j

∑

k

t jk y jk+
∑

k

∑

l

ukl zkl +
∑

k

∑

m

vkmokm

+
∑

m

∑

j

wmj Rdmj +
∑

l

∑

k

Rulk Rzlk +
∑

j

fiα j +
∑

k

gkβk

+
∑

m

hmδm + LC
∑

m

[
pl L

m + pplm(plU
m − pl L

m)
] ∑

k

okm + T UC (20)

Subject to:
∑

j

xi j ≤ai , ∀i (21)

∑

k

y jk − b jα j ≤0, ∀ j (22)

∑

i

xi j +
∑

m

Rdmj −
∑

k

y jk =0, ∀ j (23)

∑

l

zkl +
∑

m

okm − Sckβk ≤0, ∀k (24)

∑

j

y jk −
∑

l

zkl = 0, ∀k (25)

∑

l

Rzlk −
∑

m

okm = 0, ∀k (26)

∑

k

Rzlk −
[

pcL
l + ppcl(pcU

l − pcL
l )

]∑

k

zkl ≥ 0, ∀l (27)

∑

k

zkl ≥ d L
l + pdl(d

U
l − d L

l ), ∀l (28)

∑

j

Rdmj +
[

pl L
m + pplm(plU

m − pl L
m)

] ∑

k

okm − emδm ≤ 0, ∀m (29)

∑

k

okm −
∑

j

Rdmj −
[

pl L
m + pplm(plU

m − pl L
m)

] ∑

k

okm = 0, ∀m (30)

α j , βk, δm ∈ {0, 1} , ∀ j, k, m (31)

0 ≤ ppcl , pplm, pdl ≤ 1, ∀l, m (32)

xi j , y jk, zkl , okm, Rdmj , Rzlk ∈ N ∪ {0} ∀i, j, k, l, m (33)

pl L
m + pplm(plU

m − pl L
m), pcL

l + ppcl(pcU
l − pcL

l ) and d L
l + pdl(dU

l − d L
l ) in

the objective function and constraints (27), (28), (29), (30) are used to make the deci-
sions between the range of uncertain landfilling rates, recovery rates, and demands.
pplm , ppcl , and pdl are the decision variables between 0 and 1, and pplm, ppcl ,
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and pdl percentages of the uncertain ranges (plU
m − pl L

m, pcU
l − pcL

l , and dU
l − d L

l )
are added from the lower bounds (pl L

m, pcL
l , and d L

l ) of these uncertain factors. For
example, if an uncertain demand with symmetric triangular fuzzy number is D̃ =
(400, 100, 100), and pdl = 0.5 is a feasible solution, the decision of demand equal to
400 (300 + 0.5(500 − 300) = 400) is made. Then, the possibilistic mean and MSII of
shortage can be calculated under this triangular fuzzy number (i.e., possibilistic mean

of shortage from Eq. (4) equal to
S2

U
6(SL+SU )

= 1002

6×200 = 8.3333). The details of the
objective and constraints are explained below.

The objective is to minimize the possible total cost (TC) of transportation, opera-
tions, and uncertain possible loss. The constraints are categorized into two, namely,
limited capacities and the law of flow conservation. Constraints (21) and (22) repre-
sent the possible amounts that could be provided by the suppliers and manufacturers
in forward logistics, respectively. Constraint (24) is the joint-capacity limit between
the forward and reverse in DCs. Constraint (29) is the uncertain reverse capacity limit
of the dismantlers. Constraint (27) describes the possible recovery amount of the cus-
tomers from an uncertain recovery rate. Constraints (23), (25), (26), and (30) ensure
the law of flow conservation through the possible in/out flows. Constraint (28) refers
to the customer demands that need to be satisfied. Constraint (31) denotes the binary
decision variables, and Constraint (33) is the non-negative, integral condition of the
proposed model.

In this model, Constraint (32) plays an important role in making decisions among
the ranges of uncertain parameters. The total cost, TC, with the cost of uncertainty,
TUC, is used to obtain the best estimation of uncertainty with minimal expected cost.
The problem is a logistics problem with transportation; therefore, the reduction of total
cost is the primary objective. Except for total cost, a stable solution is necessary for
reducing the risk in an uncertain environment. Therefore, after obtaining a possible
good solution, the second objective is to minimize the RMSII.

min RMSII(TC) = RMSII(TUC) (34)

Formula (34) describes the perturbation for the solution obtained from Formula
(20).

5 Revised spanning tree-based genetic algorithm

A closed-loop logistics problem is a kind of capacitated location-allocation issue and
can be viewed as a multiple-choice knapsack problem. This issue is known to be
an NP-hard problem (Gen and Cheng 1997; Jo et al. 2007; Wang and Hsu 2010a).
Although this model has an issue of uncertainty, the problem is visibly difficult in
nature. Therefore, an efficient algorithm should be developed to solve the model.

In a spanning-tree network with n nodes, n−1 arcs are present. Yao and Hsu (2009)
showed that no more than (n −1) links exist when optimality is reached in two consec-
utive stages in a logistics problem. Wang and Hsu (2010a) emphasized that the rules of
spanning tree properties can be relaxed and a possibility of simultaneously improving
the solution exists. The primary details and processes of the spanning tree-based GA
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Fig. 3 Chromosome in revised spanning tree-based GA

for a closed-loop logistics problem are based on the model of Wang and Hsu (2010a).
The main steps and the different revisions for the uncertain environment are described
in the following subsection.

5.1 Revised determinant encoding

Determinate encoding

Encoding:
Assume there are N nodes,

Step 1: Generate an N − 1 length of determinate encoding;
Step 2: Use the random or heuristic method to set the codes.

Decoding:
The decoding algorithm addresses each allele of the gene corresponding to its

position in the chromosome, and the position represents its direct connecting node.
The first gene is decoded as fixed-position 2, the second as fixed-position 3, and so
on.

The procedure for the determinate decoding process is as follows:

Step 1: Let C be the given determination string and l be its length. If C( j) is the j-th
allele in the chromosome and 1 ≤ j ≤ l, the number of the nodes in the given
graph G is l + 1, where a node is denoted as node (x) and 1 ≤ x ≤ l + 1.

Step 2: Set j = 1, if 0 < j < l + 1, go to Step 3; otherwise, stop.
Step 3: Connect node ( j + 1) with node C( j). Set j = j + 1. Go back to Step 2.

Three “illegal” situations are present in the determinant encoding, namely, cycling,
reflexivity, and missing node 1. Only the situation of the missing node 1 may occur
in this problem. However, solving the problem while simultaneously improving the
solution is easy. The repairing process tests the nodes at the fixed positions with the
costs connecting to Node 1, and the node with the minimum cost will be replaced by
Node 1. Thus, the missing node 1 problem is resolved.

Figure 3 shows an example of chromosome presentation.
The chromosome has three parts. The first part is the real-number encoding to

address the uncertainty, which is used to design the estimated amount of uncertain
parameters. The second is binary encoding to design the places, whether open or
otherwise. The third is the evaluation of the determinant encoding for establishing the
flows.
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A heuristic of the revised determinant encoding was used to establish the flows in
the problem. To ensure the feasibility of a substring in determinant encoding, the range
of the encoding value should be restricted. The units are restricted to flow only between
different stages of the network. The cases of “reflexivity” and “cycling” will never
occur, provided that the range of the encoding value is restricted to certain values.
Initialization procedure:

Two kinds of algorithms for establishing determinate encoding are used, namely,
random and heuristic encoding. Let ρ% of the population be randomly generated, and
(100 − ρ)% of the population be heuristically generated.

The process of heuristic generation is as follows: (Let q = 2)

Step1: The heuristic method begins from the qth fixed position in the determinant
encoding, wherein the gene with the minimum cost is allocated to the fixed
position. If more than one of the minimum points exists, any one will be arbi-
trarily selected.

Step 2: Set q = q + 1+. If q ≤ I + J (If it is in the first stage of I suppliers and J
manufacturers), then go to Step 1; otherwise, stop.

The ratio for the use of the heuristic and random settings is 9:1 (ρ% = 10%) in the
initial population. The heuristic setting can effectively help in the determination of a
good solution, and the random setting is used to avoid the optimum generated from a
local population.

5.2 Fitness function

Flows and cost of determinate encoding

A random number stream is generated to determine the order of flows, and the details
are described using the example between suppliers and manufacturers with a stream
established by a random number between 1 and i + j − 1.

Step 1: Use the random stream to choose from among the fixed positions. Then, select
the smaller capacity to be the flow between the fixed positions and the cor-
responding gene in the chromosome. This means that assigning the available
amount of units to xi j = min{ai , b j } is needed.

Step 2: Update the availability ai = ai − xi j and b j = b j − xi j .
Step 3: If the number of units to assign is not available, stop. If a remaining supply of

node r and demand of node s are present, then add edge (r, s) to the tree, and
assign the available amount of units xrs = min{ar , bs} to the edge.

After assigning the delivered amounts for each variable using determinate encod-
ing, Eq. (20) can be used to calculate the total cost to be minimized. The information
on assigned amounts also allows for the obtainment the RMSII of the total cost using
Eq. (34) with the possibilistic approach. In the first five iterations of the algorithm,
the GA is conducted with only the first priority of the objective, which is the fitness
function of total cost. After the cost converges to a better solution set, the second
priority of the objective is added, that is, the RMSII of total cost, as one of the fitness
functions. Then, 80% of the population follows the total cost as a fitness function to
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select the next generation, whereas 20% of the population follows the RMSII of the
total cost. This process helps in the determination of a solution with a lower RMSII
or risk, and the best solution in each iteration should be simultaneously compared
with cost and RMSII. If both the cost and RMSII for the solution are better than the
current best solution, the best solution is then updated. In other words, the solution is
non-dominated.

In a closed-loop supply chain, there are two kinds of systems, namely, push for
reverse and pull for forward. In the proposed GA, the push system is first employed
to determine the reverse amounts, and then how much the suppliers should assign to
the manufacturers can be determined using the pull system.

5.3 Genetic operations

Based on the reports by Chou et al. (2001), Yao and Hsu (2009), and Wang and Hsu
(2010a), the proper methods for the crossover and mutation of spanning-tree problems
are the two-point crossover and exchange mutation. For these methods, the heuristic
is applied to restrict the connection of the same stage and to improve the solution. The
details can be found in the study by Wang and Hsu (2010a).

To address the uncertain property, real-number encoding is used to pre-assign a
percentage for the range of uncertainty. This percentage provides the decision maker
a suitable estimation for the uncertainty. The operator of the real code is shown as
follows:

Operator of real-number coded GA

AMXO:
The basic concept of this method is borrowed from the convex set theory. Simple

arithmetic operators are defined as the combination of two vectors (chromosomes):

x ′
1 = λ1x1 + λ2x2

x ′
2 = λ2x2 + λ1x1

If the multipliers are restricted as

λ1 + λ2 = 1, λ1 > 0, λ2 > 0

where λ1 is a uniformly distributed random variable between 0 and 1, then a convex
crossover occurs.

The convex crossover is the most commonly used method for the operator of a
real-number code. When restricting λ1 = λ2 = 0.5, a special case is generated, which
is called the ACXO or intermediate crossover.
Power mutation (PM) operator:
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The proposed mutation operator is based on power distribution, and its distribution
function is given by

f (x) = px p−1, 0 ≤ x ≤ 1

and the density function is given by

F(x) = x p, 0 ≤ x ≤ 1

where p is the index of the distribution. PM is used to create a solution y in the
vicinity of a parent solution x̄ in the following manner: First, a uniform random num-
ber x between 0 and 1 is created, and a random number s is created following the
above-mentioned distribution. The following formula is then used to create the muted
solution:

y =
{

x̄ − s(x̄ − xl), if t < r
x̄ + s(xu − x̄), if t ≥ r

where t = x̄−xl

xu−xl and xl and xu are lower and upper bounds of the decision variable,
and r is a uniformly distributed random number between 0 and 1. The strength of
the mutation is governed by the index of the mutation (p). For small values of p,
less perturbation in the solution is expected. For large values of p, more diversity is
achieved. In the present research, p is set as 2.

The selection approach adopts the (μ+λ) method suggested by Chou et al. (2001),
where the μ parents and λ offsprings compete for survival, and the μ best solutions
are selected for the next generation.

Several termination conditions are established based on the number of generations,
computing time, and fitness convergence. Fitness convergence occurs when all the
chromosomes in the population have the same fitness value. In the present work, fit-
ness convergence is selected as the termination criterion. The evolutionary process
in GA is stopped when the best chromosome on hand did not improve in the last 15
generations (Max_bestonhand). The iteration number of the best solution on hand
is denoted as Num_bestonhand. Simultaneously, if the number of generations is
greater than 750 (Max_i teration), the algorithms are also stopped. These termina-
tion parameters result in the development of the dynamic adjustable crossover and
mutation rate described below.

Dynamic adjustable crossover and mutation rate

In the proposed GA, a dynamic adjustable crossover and mutation policy are applied
to improve search efficiency. The initial crossover rate (pc) and mutation rate (pm)

are equal to 0.8 and 0.2, respectively, according to the following rules:

Step 1. If the best solution in the current iteration does not improve, go to Step 2.
Otherwise, go to Step 3.
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Step 2. The crossover rate will increase and the mutation rate will decrease as the
following function to raise the possible improvement of the best solution:

pc = pc + (1 − pc)/(Max_iteration + 1 − current_iteration)

pm = pm − pm/(Max_iteration + 1 − current_iteration)

Step 3. The crossover rate will decrease and the mutation rate will increase as the
following function to raise the possible global search.

pc = pc − (pc − pm)/2(Max_bestonhand + 1 − Num_bestonhand)

pm = pm + (pc − pm)/2(Max_bestonhand + 1 − Num_bestonhand)

5.4 Summary of the proposed algorithm

Based on the above-mentioned description, real-number, binary, and revised determi-
nate encoding methods are used with the heuristic initial population to build up the
chromosome in a spanning tree-based GA. The fitness functions with cost and RMSII
are considered in searching for a solution with lower perturbation. The final result is
a non-dominated solution for a decision maker. By applying AMXO and PM as the
operators for a real-number code, uncertain parameters can be addressed. The dynamic
adjustable crossover and mutation rate methods are proposed to improve efficiency.
The above-mentioned process is repeated until the termination condition is satisfied.

6 Numerical experiments and the evaluation

Accuracy and efficiency are the basic concerns in developing an algorithm. No appro-
priate commercial software is available for comparison because of the nonlinearity
of the objective function. Therefore, the results developed by Wang and Hsu (2010a)
will be adopted for the crisp closed-loop logistics problems.

To test for accuracy, the uncertain parameters were transformed into crisp forms
by giving a zero spread of fuzzy numbers. Then, the commercial software LINGO
was used to find the solutions for comparison. To test for efficiency, different sizes of
the test problems were generated by doubling the numbers of the nodes at each stage,
and the averaged time was compared by running each problem thirty times. These
experiments were conducted using a PC with IntelR PentiumR M processor 1.86 GHz
and 1.0 G RAM.

6.1 Test the accuracy

The test is based on the same problem used for the illustration, containing three sup-
pliers (I ), five manufactories (J ), three distributors (K ), four customers (L), and two
dismantlers (M) with a $5 unit landfilling cost (LC). By consulting the most possible
value and its range from a DM with different scenarios, the input data is similar to
that of Wang and Hsu (2010a) and Hsu and Wang (2009) with fuzzified parameters
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Table 1 Input scale and data for the example

Suppliers Manufactories DCs Customers Dismantlers p̃cl p̃lm LC

3 5 3 4 2 (0.1, 0.1) (0.1, .0.1) 5

Table 2 Input fuzzy demand d̃l (mode, spread)

d̃1 d̃2 d̃3 d̃4

(500, 100) (300, 100) (400, 100) (300, 100)

Table 3 Results of GA for different crisp problems (30 instances)

Population size I=3, J=5, K=3, L=4, M=2 (A1) I=6, J=10, K=6, L=8, M=4 (A2)

Minimum Average Average Minimum Average Average
cost cost time (s) cost cost time (s)

100 29815* 29927.83 2.7730 58110* 58792.53 12.3386

50 29815* 29975.83 2.1681 58350 59261 5.9002

20 29815* 30007.5 1.4205 58480 59591.77 2.5608

LINGO 29815* 6 58110* 13

* The global optimal solution
The bold italicized numbers mean the best values of different size problems

p̃cl , demand d̃l for each customer l, and p̃lm for dismantler m, as listed in Tables 1
and 2, wherein the triangular membership functions are assumed to have similar left
and right spreads.

If same data are run without the spread, the results with different population sizes
are shown in Table 3.

The population size affects the time to converge for a solution and the quality.
The results for the small-sized problem (A1) in Table 3 show that even for a small
population size, the algorithm can achieve the global optimal solution. Therefore, less
time is needed to reach the optimal. When the problems have been doubled in size
to I = 6, J = 10, K = 6, L = 8, and M = 4 (A2), the optimal solution still can
be obtained. The commercial software cannot reach the optimal solution after dou-
bling the data from A2 because of memory limitations. Therefore, the results cannot
be compared. Similar situations can be correlated with the work of Wang and Hsu
(2010a).

6.2 Different types of shortage and surplus costs

The cost structure may affect the speed of search. Although the relationship between
shortage and surplus cost has been discussed in Sect. 4, a comparison for the cost
should still be conducted because of its importance in this setting. Table 4 shows two
different types of cost relations. Problem 1 shows that the shortage cost is higher than
the surplus cost. Problem 2 shows that the two costs are the same.
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Table 4 Different relation types for the cost of the uncertain factors

Problem C−
d C−

r C−
l C+

d C+
r C+

l

1 35 40 30 15 10 8

2 15 10 8 15 10 8

Table 5 Results of different cost types for shortage and surplus (30 instances each)

Problem Population size Minimum cost Minimum SD Average Average time (s)

1 20 Cost 33071.67 34020.72 34687.05 1.8444

RMSII 1093.50 725.59 1153.58

C.V. 3.3065% 2.1328% 3.3257%

50 Cost 33157.52 34919.63 34040.35 5.9075

RMSII 1160.11 570.06 997.927

C.V. 3.4988% 1.6325% 2.9316%

100 Cost 32938.86 33352.21 33646.15 10.9981

RMSII 1129.76 804.84 1085.97

C.V. 3.4299% 2.4132% 3.2567%

2 20 Cost 28833.07 29706.68 30427.84 3.3461

RMSII 752.17 402.56 666.65

C.V. 2.6087% 1.3551% 2.1909%

50 Cost 29092.74 30187.46 29852.59 9.4802

RMSII 730.32 421.04 711.92

C.V. 2.5103% 1.3948% 2.3848%

100 Cost 28777.93 28945.85 29354.07 18.6659

RMSII 764.54 483.87 727.28

C.V. 2.6567% 1.6716% 2.4776%

The bold italicized numbers mean the best values of different indices in different problems

The results of different population sizes with the information on RMSII are shown
in Table 5. The coefficient of variance (C.V.) in the table is derived when RMSII is
divided by the cost.

As shown in Table 5, when the shortage and surplus costs are similar to those in
Problem 2, the algorithm requires more time to obtain a good solution. The whole cost
of Problem 2 is smaller than that of the others. Therefore, the C.V. is also smaller than
that of the others, indicating that the risk is smaller in Problem 2 because of the lower
cost of uncertainty. However, as discussed in Sect. 4, the cost structure in Problem 2
is not realistic. Therefore, in the following section, further analysis on efficiency will
be based on the cost structure of Problem 1.

6.3 Testing for efficiency

To test for efficiency, different sizes of test problems are used by doubling the number
of nodes at each stage, as shown in Table 6, and each problem is run thirty times.
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Table 6 Different size structures of the test problems

Size Suppliers Manufactories DCs Customers Dismantlers

1 3 5 3 4 2

2 6 10 6 8 4

3 12 20 12 16 8

4 24 40 24 32 16

Table 7 Results for different-sized problems with population size = 100

Problem size Minimum cost Minimum SD Average Average time (s)

1 Cost 32938.86 33352.21 33646.15 10.9881

RMSII 1129.76 804.84 1085.97

C.V. 3.4299% 2.4132% 3.2567%

2 Cost 67116.02 69372.28 68822.94 18.2443

RMSII 1634.23 772.53 1540.34

C.V. 2.4349% 1.1136% 2.2381%

3 Cost 112264.64 115672.4 119843.26 58.7679

RMSII 1442.96 194.66 1226.43

C.V. 1.2853% 0.1683% 1.0234%

4 Cost 230358.67 257891.95 249003.94 147.0322

RMSII 2019.07 865.95 994.71

C.V. 0.8765% 0.3385% 0.3995%

* C.V.=RMSII/cost

Table 7 shows the results of different-sized problems with a population size equal
to 100. The average run time increases significantly with the problem size. Problem
size 1 is the same problem used in the crisp test discussed in Sect. 5.1, but with an
extended spread of uncertainty. When the population size is equal to 100, the average
run time for the crisp test without the spread of uncertainty in Table 3 is 2.773 (s),
and the time with the spread of uncertainty in Table 7 is 10.9881 (s). The difference is
8.2151 (s), indicating that the problem with uncertainty makes obtaining an acceptable
solution more difficult, and the uncertain problem is more complex than crisp.

As can be observed in Table 7, when the problem size increases, the C.V. decreases.
The number of uncertain factors for demand, recovery, and landfill rates increases as
problem size increases, whereas the value of C.V. decreases significantly, implying
that the algorithm successfully controls the RMSII in a stable lower value and that
when the problem size is larger, the relative risk of uncertainty is lower. When the
problem is large, the tolerance for the estimation of uncertainty is higher, so the rel-
ative risk is lower. Also, the possibilistic mean of cost and RMSII in Table 7 can be
used to obtain the prediction interval. For example, the minimum cost of problem
1 is 32938.86, and the 96.63% prediction interval is between [30679.34, 35198.38],
which is the possibilistic mean of cost minus and plus two RMSII. In other words, if
the decision maker chooses 32938.86 as his expected cost in a certain decision, there
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Table 8 Average run time compared with that of Wang and Hsu (2010a)

Problem size Current algorithm
for uncertain
environment

Time increased
percentage

Crisp problem
Wang and Hsu
(2010a)

Time increased
percentage

1 10.9881 (s) – 2.04 (s) –

2 18.2443 (s) 0.6604 6.84 (s) 2.3529

3 58.7679 (s) 2.2212 22.49 (s) 2.2880

4 147.0322 (s) 1.5019 72.74 (s) 2.2343

Fig. 4 Time increase percentage for the current algorithm and for that of Wang and Hsu (2010a)

is a 96.63% probability that the cost will not be worse than 35198.38 and better than
30679.34. This probability is important for a decision maker to be able to realize the
uncertainty.

Proving the efficiency of the algorithm remains difficult, especially when faced with
an uncertain problem with a nonlinear objective function. No commercial software is
available for use to obtain a solution and for comparison. Based on the results, the
average run time was compared with the spanning tree-based GA for the crisp closed-
loop logistics proposed by Wang and Hsu (2010a), which has been proven accurate
and effective.

Table 8 shows the comparison of the run time between the current algorithm for
an uncertain environment and that of Wang and Hsu (2010a). The percentage of time
increase is defined as the difference between the current and last problem size divided
by the last problem size. Figure 4 shows the graph comparing the time increase per-
centage between the current algorithm and that of Wang and Hsu (2010a).

Figure 4 shows that although the problem of uncertainty is more complex than the
crisp issue, the time increase rate is still slower than that of Wang and Hsu (2010a).
This finding indicates that the current algorithm can efficiently address large problems
compared with that proposed by Wang and Hsu (2010a).
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6.4 Summary

After comparing the accuracy of the crisp problem and the efficiency with the model of
Wang and Hsu (2010a), the current spanning tree-based genetic algorithm for uncertain
environments can be confirmed as accurate and efficient. The non-dominated solution
can provide the decision marker an acceptable solution with lower perturbation. In
addition, the situation is more significant when the problem size is larger. RMSII
and C.V. are the reference values for risk and can be obtained from the possibilistic
approach. Also, the information on mean and RMSII can be used to determine the
prediction interval and to provide a solution under a certain probability in an uncertain
environment.

7 Conclusions

An uncertain environment has its own properties, including shortage and surplus. In
the present study, the focus was on the uncertain closed-loop logistics problem with
shortage and surplus for demand, recovery, and landfill amounts. To reflect a realistic
situation, the uncertainty was described using fuzzy sets, and the possibilistic approach
was used to derive the possibilistic mean and MSII of shortage and surplus and to retain
the complete information of fuzzy numbers. This approach resulted in the proposal
of a possibilistic-based closed-loop logistics model with shortage and surplus. The
objectives of this model are to reduce both the cost and RMSII so that decision makers
can understand the risk level through RMSII under certain conditions. The prediction
interval with a certain significance level can be obtained from the possibilistic mean
and RMSII, which also provide the information to realize the uncertainty.

The problem is NP-hard, so a spanning tree-based GA was developed and revised
to facilitate adjustable crossover and mutation rates. The accuracy and efficiency of
the algorithm were tested, and the proposed model was shown to have promising
results. Therefore, the current research provides decision makers with an acceptable
non-dominated solution with low perturbation for low-risk results.
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