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Abstract Fuzzy relational equations play an important role in fuzzy set theory and
fuzzy logic systems. To compare and evaluate the accuracy and efficiency of various
solution methods proposed for solving systems of fuzzy relational equations as well
as the associated optimization problems, a test problem random generator for sys-
tems of fuzzy relational equations is needed. In this paper, procedures for generating
test problems of fuzzy relational equations with the sup-T composition are proposed
for the cases of sup-TM , sup-TP , and sup-TL compositions. It is shown that the test
problems generated by the proposed procedures are consistent. Some properties are
discussed to show that the proposed procedures randomly generate systems of fuzzy
relational equations with various number of minimal solutions. Numerical examples
are included to illustrate the proposed procedures.

Keywords Fuzzy relational equations · Triangular norms · Random generator

1 Introduction

The study of fuzzy relational equations based upon the max-min composition was first
investigated by Sanchez (1976, 1977) in his pioneering work on the applications of
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2 C.-F. Hu, S.-C. Fang

fuzzy relations in approximate reasoning and decision making. Since then, solving
various types of fuzzy relational equations has become one of the most appealing
issues in fuzzy set theory. The basic type of fuzzy relational equations are those with
the sup-T composition, or more accurately, the max-T composition for finite sce-
narios, where T is typically a continuous triangular norm (t-norm for short). Such a
system with n variables and m constraints can be stated as follows:

sup
j∈N

T (ai j , x j ) = bi , ∀ i ∈ M, (1)

where M = {1, 2, . . . , m} and N = {1, 2, . . . , n} are two index sets, ai j , x j and
bi are real numbers in the unit interval for each i ∈ M and j ∈ N . Denote A =
(ai j )m×n, x = (x j )n×1, and b = (bi )m×1. A system of fuzzy relational equations
with the sup-T composition is also referred to as a system of sup-T equations for
short and can be represented in the matrix form of A ◦ x = b where “◦” stands for the
specific sup-T composition. Usually, the t-norm T is required to be continuous, i.e.,
continuous as a function of two arguments. The commonly seen minimum operator
TM (x, y) = min(x, y), product operator TP (x, y) = x · y, and Łukasiewicz t-norm
TL(x, y) = max(x + y − 1, 0) are all continuous. The study of sup-T equations with
T being a continuous t-norm can be reduced, in some sense, to the study of sup-TM

equations, sup-TP equations, and sup-TL equations, respectively (see, e.g., Li and
Fang 2008).

The resolution of a system of sup-T equations is to determine the unknown vector
x for a given coefficient matrix A and a right hand side vector b such that A ◦ x = b.

The set of all solutions, when it is non-empty, is a finitely generated root system
which can be fully determined by a unique maximum solution and a finite number
of minimal solutions (see, e.g., Li and Fang 2009). For a finite system of fuzzy rela-
tional equations with max-T composition, it is well known that its consistency can
be verified by constructing and checking a potential maximum solution. However, the
detection of all minimal solutions is closely related to the set covering problem and
remains a challenging problem [see, e.g., Li and Fang (2009), Klir and Yuan (1995),
Markovskii (2005), and Pedrycz (1991)]. Overviews of fuzzy relational equations and
their applications can be found in Li and Fang (2009) and Peeva and Kyosev (2004).

The problem of minimizing a linear objective function subject to a system of fuzzy
relational equations with max-min composition was first investigated in Fang and Li
(1999) and later in Wu et al. (2002) and Wu and Guu (2005). Following the idea pro-
posed in Fang and Li (1999), some variants of this type of optimization problems were
discussed in Abbasi Molai and Khorram (2007), Abbasi Molai and Khorram (2008),
Ghodousian and Khorram (2006), Guo and Xia (2006), Guu and Wu (2002), Khorram
and Ghodousian (2006), Loetamonphong and Fang (2001) and Wu and Guu (2004).
Most recently, it was shown in Li and Fang (2008) that the problem of minimizing an
objective function subject to a system of fuzzy relational equations can be reduced to
a 0-1 mixed integer programming problem in polynomial time. A set covering-based
surrogate approach was proposed in Hu and Fang (2011) to solve the sup-T equation
constrained optimization problems with a separable and monotone objective function
of its variables.
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Various solution methods have been developed for solving systems of fuzzy rela-
tional equations as well as the associated optimization problems. Examination of the
accuracy and efficiency of the proposed solution methods is of theoretical and practical
importance. This work intends to develop a test problem random generator for sys-
tems of fuzzy relational equations. Procedures for generating test problems of fuzzy
relational equations with the sup-TM , sup-TP , and sup-TL compositions are proposed.
It is shown that the test problems generated by the proposed procedures are always
consistent. Moreover, since the solution set of a system of fuzzy relational equations,
when it is nonempty, can be characterized by one unique maximum solution and a finite
number of minimal solutions, test problems with various number of minimal solutions
are required for a fair assessment of a developed solution method. It is shown that the
proposed procedures can generate systems of fuzzy relational equations with a unique
minimal solution if m ≥ n, and systems of fuzzy relational equations with up to 2� n

2 �
minimal solutions if m ≥ � n

2 	.
The rest of this paper is organized as follows. In Sect. 2, some basic concepts and

properties associated with fuzzy relational equations are provided. In Sect. 3, pro-
cedures for generating test problems for systems of fuzzy relational equations with
the sup-T composition are proposed. Numerical examples are included in Sect. 4 to
illustrate the proposed procedures. Conclusions are given in Sect. 5 while the pseudo
codes are included in the Appendix.

2 Preliminaries

In this section, we recall some basic concepts and properties associated with the fuzzy
relational equations. All proofs are omitted to keep the paper succinct and readable.
Readers may refer to Klement et al. (2000) for a rather complete overview of triangular
norms, and to Li and Fang (2008), Li et al. (2008), Li and Fang (2009), and Li (2009)
for the detailed analysis on the resolution of a system of sup-T equations.

2.1 Triangular norms

A triangular norm (t-norm for short) is a binary operator T : [0, 1]2 → [0, 1], such
that, for all x, y, z ∈ [0, 1], the following four axioms are satisfied:

(T1) T (x, y) = T (y, x) (commutativity);
(T2) T (x, T (y, z)) = T (T (x, y), z) (associativity);
(T3) T (x, y) ≤ T (x, z), whenever y ≤ z (monotonicity);
(T4) T (x, 1) = x (boundary condition).

Since t-norms are binary algebraic operators on the real unit interval [0, 1], the infix
notation like x ∧t y is also used in the literature instead of the prefix notation T (x, y).

A t-norm T is said to be continuous if it is continuous as a real function of two argu-
ments. Due to its commutativity and monotonicity properties, a t-norm is continuous
if and only if it is continuous in one of its arguments. Analogously, a t-norm is said
to be left- or right-continuous if it is left- or right-continuous, respectively, in one of
its arguments. The three most important continuous t-norms are the minimum t-norm
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TM , product t-norm TP and Łukasiewicz t-norm TL . They are defined, respectively,
by

TM (x, y) = min(x, y) (minimum, Gödel, Zadeh t-norm),
TP (x, y) = x · y (probabilistic product, Goguen t-norm),
TL(x, y) = max(x + y − 1, 0) (bounded difference, Łukasiewicz t-norm).
To characterize the solution set of a system of sup-T equations, two residual oper-

ators are defined with respect to a continuous t-norm T .

Definition 2.1 Given a t-norm T , the binary residual operators IT : [0, 1]2 → [0, 1]
and JT : [0, 1]2 → [0, 1] are defined, respectively, by

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}

and

JT (x, y) = inf{z ∈ [0, 1] | T (x, z) ≥ y}.

The residual operator IT is known as a residual implicator or briefly an R-implicator
in fuzzy logic while the residual operator JT has no particular logical interpretation.
In the literature, the residual implicators are also known as ϕ-operators which were
introduced by Pedrycz (1985) in a different approach to describe the solutions of sup-
T equations. The residual operator JT was discussed in Di Nola et al. (1989) with a
slightly different definition. The infix notations are used to denote these two residual
operators, i.e., xϕt y = IT (x, y) and xσt y = JT (x, y), respectively.

Theorem 2.1 (see, e.g., Li and Fang 2008) Let T be a left-continuous t-norm and IT
its associated residual implicator. It holds for all a, b ∈ [0, 1] that T (a, x) ≤ b if and
only if x ≤ IT (a, b).

Theorem 2.2 (see, e.g., Li and Fang 2008) Let T be a continuous t-norm with IT
and JT being the associated residual operators. The equation T (a, x) = b has a
solution for any given a, b ∈ [0, 1] if and only if b ≤ a, in which case the solution set
of T (a, x) = b is given by the closed interval [JT (a, b), IT (a, b)].

Theorem 2.1 plays a crucial role in the resolution of sup-T equations, which is
actually a special scenario of the general theory of Galois connections (see, e.g., Blyth
and Janowitz 1972). The residual operators IT and JT of the three most important
continuous t-norms are listed in Table 1.

2.2 Resolution of systems of sup-T equations

In this section, we focus on the resolution of a finite system of fuzzy relational equa-
tions with sup-T composition described in (1) or represented in the matrix form as
A ◦ x = b. Without loss of generality, we may assume that b1 ≥ b2 ≥ · · · ≥ bm > 0
(see, e.g., Li and Fang 2008).
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Table 1 Residual operators of
the Gödel, Goguen, and
Łukasiewicz t-norms

T IT (x, y) JT (x, y)

TM

{
1, if x ≤ y,

y, otherwise.

{
1, if x < y,

y, otherwise.

TP

{
1, if x ≤ y,
y

x
, otherwise.

⎧⎪⎨
⎪⎩

1, if x < y,
y

x
, if 0 < y ≤ x,

0, otherwise.

TL min(1 − x + y, 1)

⎧⎨
⎩

1, if x < y,

1 − x + y, if 0 < y ≤ x,

0, otherwise.

2.2.1 Solvability and solution set

Given a system of sup-T equations A ◦ x = b with a continuous t-norm T , the
set of all solutions to A ◦ x = b is called its complete solution set and denoted
by S(A, b) = {x ∈ [0, 1]n | A ◦ x = b}. A partial order can be defined on S(A, b)

by extending the natural order such that for any x1, x2 ∈ S(A, b), x1 ≤ x2 if and
only if x1

j ≤ x2
j for all j ∈ N . A system of sup-T equations A ◦ x = b is called

consistent if S(A, b) 
= ∅. Otherwise, it is inconsistent. Due to the monotonicity of
the t-norm involved in the composition, if x1, x2 ∈ S(A, b) and x1 ≤ x2, any x sat-
isfying x1 ≤ x ≤ x2 is also in S(A, b). Therefore, the attention could be focused on
the so-called extremal solutions as defined below.

Definition 2.2 A solution x̌ ∈ S(A, b) is called a minimal or lower solution if, for
any x ∈ S(A, b), the relation x ≤ x̌ implies x = x̌. A solution x̂ ∈ S(A, b) is called
the maximum or greatest solution if x ≤ x̂,∀ x ∈ S(A, b).

Theorem 2.3 (see, e.g., Li and Fang 2008) Let A ◦ x = b be a system of sup-T
equations. A vector x ∈ [0, 1]n is a solution to A ◦ x = b if and only if there exists an
index ji ∈ N for each i ∈ M such that

ai ji ∧t x ji = bi and ai j ∧t x j ≤ bi , ∀ i ∈ M, j ∈ N .

Theorem 2.3 holds in a straightforward way due to the non-interactivity property
of the maximum operator, i.e., a ∨ b ∈ {a, b}. Theorems 2.2 and 2.3 lead to the next
well-known solvability criterion of a system A ◦ x = b and the characterization of its
solution set, both of which were first seen in Sanchez (1976, 1977).

Theorem 2.4 (see, e.g., Li and Fang 2008) Let A ◦ x = b be a system of sup-T equa-
tions with a continuous t-norm T . The system is consistent if and only if the vector
AT ϕt b with its components defined by
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6 C.-F. Hu, S.-C. Fang

(AT ϕt b) j = inf
i∈M

IT (ai j , bi ), ∀ j ∈ N , (2)

is a solution to A ◦ x = b. Moreover, if the system is consistent, the complete solution
set S(A, b) can be determined by a unique maximum solution and a finite number of
minimal solutions, i.e.,

S(A, b) =
⋃

x̌∈Š(A,b)

{x ∈ [0, 1]n | x̌ ≤ x ≤ x̂}, (3)

where Š(A, b) is the set of all minimal solutions to A ◦ x = b and x̂ = AT ϕt b is the
maximum solution defined in (2).

The consistency of a system A ◦ x = b can be detected by constructing and check-
ing the potential maximum solution x̂ = AT ϕt b in a time complexity of O(mn).

The detection of all minimal solutions is a complicated and very interesting issue for
investigation. It follows from Theorems 2.2 and 2.3 that the complete solution set of
the i-th equation, i ∈ M, in a consistent system A ◦ x = b is a finitely generated root
system with a set of minimal solutions given by

Ši = {x̌k | bi ≤ aik, k ∈ N },

where the vector x̌k is defined by

x̌ k
j =

{
JT (aik, bi ), if j = k,

0, otherwise,
∀ j ∈ N .

The complete solution set of A ◦ x = b is therefore the intersection of these root
systems which remains to be a finitely generated root system. However, a minimal
solution of a single equation may not necessarily be a minimal solution of the system.
It has been observed that the detection of minimal solutions is closely related to the
set covering problem (see, e.g., Markovskii 2005).

2.2.2 Minimal solutions and set covering problems

The close relation between the minimal solutions of a system of sup-T equations and
the set covering problem has been noticed and described from various aspects since the
structure of the complete solution set was fully understood. It provides some important
information for the analysis of the number of minimal solutions and the development
of algorithms to find all the minimal solutions.

With the potential maximum solution x̂ in hand, the characteristic matrix Q̃ =
(q̃i j )m×n of a system A ◦ x = b can be defined by

q̃i j =
{ [JT (ai j , bi ), x̂ j ], if T (ai j , x̂ j ) = bi ,

∅, otherwise.
(4)
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It was reported in Li and Fang (2008) that when T is a continuous Archimedean
t-norm of which the product operator TP and the Łukasiewicz t-norm TL are typical
representatives, the nonempty elements in Q̃ are always singletons with their values
being determined by the potential maximum solution x̂. The characteristic matrix Q̃
in this case can be simplified as Q = (qi j )m×n with

qi j =
{

1, if q̃i j 
= ∅,

0, otherwise.
(5)

Definition 2.3 Let A ◦ x = b be a system of sup-T equations with Q̃ = (q̃i j )m×n

being its characteristic matrix. A column j of Q̃ is said to be in the kernel Ker(Q̃) if
there exists a row i such that q̃i j is the unique nonempty element in row i.

Definition 2.4 Let Q = (qi j )m×n ∈ {0, 1}mn be a binary matrix. A column j is said
to cover a row i if qi j = 1. A set of nonzero columns P forms a covering of Q if
each row of Q is covered by some column of P. A column j in a covering P is called
redundant if the set of columns P\{ j} remains to be a covering of Q. A covering P
is irredundant if it has no redundant columns. The set of all coverings of Q is denoted
by P(Q) while the set of all irredundant coverings of Q is denoted by P̌(Q).

It is well-known that the set of all coverings P(Q) of a binary matrix Q can be well
represented by the feasible solution set of a set covering problem, i.e.,

Find u ∈ {0, 1}n

s.t. Qu ≥ e,
(6)

where e = (1, 1, . . . , 1)T
1×m . The relation between fuzzy relational equations and the

set covering problem was presented by Markovskii (2005) for sup-TP equations, and
extended to continuous t-norms by Li and Fang (2008).

Theorem 2.5 (see., e.g., Li 2009) Let A ◦ x = b be a system of sup-T equations with
T being a continuous Archimedean t-norm, and Q be the corresponding simplified
characteristic matrix. Then, each minimal solution of A ◦ x = b corresponds to an
irredundant covering of Q, in a one-to-one manner.

Theorem 2.5 indicates that determining all minimal solutions to a system A◦x = b
with a continuous Archimedean t-norm T is equivalent to determining all irredun-
dant coverings of its simplified characteristic matrix, which can be interpreted as a
procedure of finding the minimal cover of Q.

When the system A ◦ x = b of sup-T equations with T being a continu-
ous non-Archimedean t-norm, the situation turns out to be a little bit complicated.
For each j ∈ N , denote r j the number of different values in {JT (ai j , bi ) |
T (ai j , x̂ j ) = bi , i ∈ M}, set K j = {1, 2, . . . , r j } and denote the different values
in {JT (ai j , bi ) | T (ai j , x̂ j ) = bi , i ∈ M} by v̌ jk for k ∈ K j . Let r = ∑

j∈N r j

and v̌ = (v̌11, . . . , v̌1r1 , . . . , v̌n1, . . . , v̌nrn )
T ∈ [0, 1]r . In this case, the characteristic

123



8 C.-F. Hu, S.-C. Fang

matrix Q̃ can be converted to an augmented characteristic matrix Q′ = (q ′
ik)m×r ∈

{0, 1}mr where

q ′
ik =

⎧⎪⎨
⎪⎩

1, if
j−1∑
s=1

rs < k ≤
j∑

s=1

rs and v̌ jk ∈ q̃i j for some j ∈ N ,

0, otherwise.

(7)

Let u = (u11, . . . , u1r1 , . . . , un1, . . . , unrn )
T ∈ {0, 1}r such that

∑
k∈K j

u jk ≤ 1
for each j ∈ N , i.e., at most one of u jk can be 1 for k ∈ K j . These restrictions
are called the innervariable incompatibility constraints and can be represented by
Gu ≤ en, where en = (1, 1, . . . , 1)T

1×n and G = (g jk)n×r with

g jk =

⎧⎪⎨
⎪⎩

1, if
j−1∑
s=1

rs < k ≤
j∑

s=1

rs,

0, otherwise.

(8)

Definition 2.5 Let Q′ = (q ′
ik)m×r ∈ {0, 1}mr and G = (g jk)n×r ∈ {0, 1}nr be two

binary matrices. A column k of Q′ is said to cover a row i of Q′ if q ′
ik = 1. A set of

nonzero columns P forms a G-covering of Q′ if each row of Q′ is covered by some
column in P, i.e., Q′uP ≥ em, and GuP ≤ en is satisfied with uP = (u P

k )r×1 where

u P
k =

{
1, if k ∈ P,

0, otherwise.
(9)

A column k in a G-covering P is called redundant if the set of columns P\{k} remains
to be a G-covering of Q′. A G-covering P is irredundant if P has no redundant col-
umns.

Theorem 2.6 (see, e.g., Li 2009) Let A ◦ x = b be a system of sup-T equations with
T being a continuous non-Archimedean t-norm, Q′ be the corresponding augmented
characteristic matrix and G be the associated coefficient matrix of the innervariable
incompatibility constraints. Then, each minimal solution to A ◦ x = b corresponds to
an irredundant G-covering of Q′.

3 Procedures for generating test problems of fuzzy relational equations
with sup-T composition

Our aim is to generate test problems for systems of sup-T equations. Given a ran-
domly generated maximum solution, the proposed procedures randomly construct the
associated coefficient matrix and right hand side vector of a consistent system of fuzzy
relational equations. Moreover, since test problems with various number of minimal
solutions are required for a fair assessment of a developed solution method, some
properties are discussed to show that the proposed procedures randomly indeed gen-
erate systems of fuzzy relational equations with various number of minimal solutions.
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The test problem random generator (TPRG) for systems of fuzzy relational equations
with the sup-TM composition is proposed in Sect. 3.1. Since the discussion presented
in Sect. 3.1 can be extended in an analogous manner to the system of sup-T equations
with T being a continuous Archimedean t-norm, some of the proofs in Sects. 3.2 and
3.3 are omitted to make it succinct and readable.

3.1 System of sup-TM equations

In this section, a procedure for generating test problems for systems of fuzzy rela-
tional equations with the sup-TM composition is studied. We start with deriving two
theorems.

Theorem 3.1.1 Let A ◦ x = b be a consistent system of sup-TM equations with
x̂ = (x̂1, x̂2, . . . , x̂n)T being the maximum solution. Then, we have the following
results:

(i) For each j ∈ N with 0 < x̂ j < 1, there exists an i ∈ M such that x̂ j = bi .

(ii) bi ≤ max
j∈N

{x̂ j } for all i ∈ M.

(iii) For each i ∈ M, there exists a j ∈ N such that

{
ai j = bi , if x̂ j > bi ,

ai j ∈ [bi , 1], if x̂ j = bi .

Proof (i) According to Theorem 2.4, for each j ∈ N , there exists an i ∈ M such
that

x̂ j = ITM (ai j , bi ).

Moreover, if 0 < x̂ j < 1, according to Definition 2.1, we have

x̂ j = ITM (ai j , bi ) = bi .

(ii) Since x̂ is a solution to A ◦x = b, Theorem 2.3 says that, for each i ∈ M, there
exists j ∈ N such that

bi = T (ai j , x̂ j ) = min{ai j , x̂ j } ≤ x̂ j ≤ max
j∈N

{x̂ j }.

Therefore, bi ≤ max
j∈N

{x̂ j } for all i ∈ M.

(iii) According to Theorem 2.3, since x̂ is a solution to A ◦ x = b, for each i ∈ M,

there exists j ∈ N such that

bi = T (ai j , x̂ j ) = min{ai j , x̂ j } =
{

ai j , if ai j < x̂ j ,

x̂ j , if ai j ≥ x̂ j ,

which implies that
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{
ai j = bi , if x̂ j > bi ,

ai j ∈ [bi , 1], if x̂ j = bi .

��
Theorem 3.1.2 Let A ◦ x = b be a consistent system of sup-TM equations with
x̂ = (x̂1, x̂2, . . . , x̂n)T being the maximum solution. For each j ∈ N , if x̂ j = 1, then

ai j ∈ [0, bi ],∀ i ∈ M;

if x̂ j 
= 1, then there exists an ī ∈ M such that x̂ j = bī . In the latter case, we have
aī j ∈ (bī , 1] and

{
ai j ∈ [0, bi ], if bi < bī ,

ai j ∈ [0, 1], if bi ≥ bī ,
∀ i ∈ M\{ī}.

Proof According to Definition 2.1 and Theorem 2.4, we have

ITM (ai j , bi ) =
{

1, ai j ≤ bi ,

bi , ai j > bi ,
∀ i ∈ M and j ∈ N ,

and

x̂ j = inf
i∈M

ITM (ai j , bi ),∀ j ∈ N .

For each j ∈ N , if x̂ j = 1, we have

ITM (ai j , bi ) = 1,∀ i ∈ M,

or equivalently,

ai j ∈ [0, bi ],∀ i ∈ M.

If x̂ j 
= 1, there exists an ī ∈ M, such that

x̂ j = ITM (aī j , bī ) = bī ,

or equivalently,

bī < aī j ≤ 1.

Moreover, for each i ∈ M\{ī}, since x̂ j = bī , we have

ITM (ai j , bi ) ≥ x̂ j = bī .

123



Randomly generating test problems 11

If bi ≥ bī , we have ai j ∈ [0, 1] such that

ITM (ai j , bi ) ≥ bi ≥ bī .

If bi < bī , we have 0 ≤ ai j ≤ bi such that

ITM (ai j , bi ) = 1 ≥ x̂ j .

��
Based on Theorems 3.1.1 and 3.1.2, we propose the following procedure for randomly
generating test problems of sup-TM equations:

Procedure TPRG sup-TM

Step 0. [Input]
Input positive integers m and n.

Step 1. [Generate a maximum solution x̂ = (x̂1, x̂2, . . . , x̂n) of the system of sup-
TM equations.]
Step 1.1. If m < n, then go to step 1.2; otherwise, go to step 1.3.
Step 1.2. Randomly generate x̂ j ∈ [0, 1] for each j ∈ M. Let X = {x̂ j |

x̂ j 
= 1, j ∈ M}, r be the number of different values in X, and
vi , i = 1, 2, . . . , r, be the different values in X. For j = m +
1, . . . , n, randomly choose j ′ ∈ M and let x̂ j = x̂ j ′ .

Step 1.3. Randomly generate x̂ j ∈ [0, 1] for each j ∈ N . Let X = {x̂ j |
x̂ j 
= 1, j ∈ N }, r be the number of different values in X, and
vi , i = 1, 2, . . . , r, be the different values in X.

Step 2. [Construct b = (bi )m×1 of the system of sup-TM equations.]
For i = 1, 2, . . . , r, let bi = vi . If m > r, randomly assign the value of
bi ∈ [0, max

j∈N
{x̂ j }], for i = r + 1, r + 2, . . . , m.

Step 3. [Construct A = (ai j )m×n of the system of sup-TM equations.]
For each j ∈ N , if x̂ j = 1, then randomly assign the value of ai j ∈
[0, bi ],∀ i ∈ M; otherwise, find an ī ∈ {1, 2, . . . , r} such that x̂ j = bī ,

randomly assign the value of aī j ∈ (bī , 1] and

{
ai j ∈ [0, bi ], if bi < bī ,

ai j ∈ [0, 1], if bi ≥ bī .
∀ i ∈ M\{ī}.

Step 4. [Guarantee the consistency of the system of sup-TM equations.]
For i = r + 1, r + 2, . . . , m, randomly choose ji ∈ N such that x̂ ji ≥ bi .

Update matrix A with

{
ai ji = bi , if x̂ ji > bi ,

ai ji ∈ [bi , 1], if x̂ ji = bi .
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12 C.-F. Hu, S.-C. Fang

Step 5. [Output]
Output A ∈ [0, 1]mn and b ∈ [0, 1]m .

Proposition 3.1.1 Let A ◦ x = b be a system of fuzzy relational equations generated
by TPRG sup-TM . Then, A ◦ x = b is consistent.

Proof According to Steps 2 and 3 of TPRG sup-TM , for each i = 1, 2, . . . , r, there
exists an index ji ∈ N such that

x̂ ji = bi < ai ji ,

which implies that

T (ai ji , x̂ ji ) = min{ai ji , x̂ ji } = bi , ∀ i = 1, 2, . . . , r. (10)

For each i = r + 1, r + 2, . . . , m, according to Step 4 of TPRG sup-TM , there exists
an index ji ∈ N such that

{
ai ji = bi , if x̂ ji > bi ,

ai ji ∈ [bi , 1], if x̂ ji = bi ,

which implies that

T (ai ji , x̂ ji ) = min{ai ji , x̂ ji } = bi , ∀ i = r + 1, r + 2, . . . , m. (11)

Moreover, according to Step 3 of TPRG sup-TM , for each i ∈ M, we have

{
ai j ∈ [0, bi ], if x̂ j > bi ,

ai j ∈ [0, 1], otherwise,
∀ j ∈ N ,

which implies

T (ai j , x̂ j ) = min{ai j , x̂ j } ≤ bi , ∀ i ∈ M and j ∈ N . (12)

By Theorem 2.3, Eqs. (10)–(12) imply that the generated system of sup-TM equations
A ◦ x = b is consistent. ��
Proposition 3.1.2 A system of sup-TM equations A ◦ x = b with a unique minimal
solution can be generated by TPRG sup-TM , if m ≥ n.

Proof Consider generating a system of sup-TM equations by TPRG sup-TM . Since
m ≥ n, we can randomly generate n different numbers x1, x2, . . . , xn ∈ [0, 1) and let
x̂ j = x j for each j ∈ N in Step 1 of TPRG sup-TM .
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Let b j = x̂ j , for each j ∈ N , and randomly assign the value of bi such that
0 ≤ bi ≤ max

j∈N
{x̂ j } for all i = n + 1, n + 2, . . . , m.

According to Step 3 of TPRG sup-TM , for each j ∈ N , we have

a j j ∈ (b j , 1] (13)

and
{

ai j ∈ [0, bi ], if x̂ j > bi ,

ai j ∈ [0, 1], if x̂ j ≤ bi ,
∀ i ∈ M\{ j}.

For each i ∈ N , let

{
ai j ∈ [0, bi ), if x̂ j > bi ,

ai j ∈ [0, 1], if x̂ j < bi ,
∀ j ∈ N\{i}. (14)

Equations (13) and (14) imply that

T (a j j , x̂ j ) = b j , ∀ j ∈ N (15)

and, for each i ∈ N ,

T (ai j , x̂ j ) 
= bi , ∀ j ∈ N\{i}, (16)

respectively.
Let A ◦ x = b be a system of sup-TM equations generated by the above procedure,

and Q̃ = (q̃i j )m×n be the corresponding characteristic matrix. Equations (15) and
(16) imply that

q̃ j j 
= ∅, ∀ j ∈ N , (17)

and

q̃i j = ∅, ∀ i ∈ N and j ∈ N\{i}, (18)

respectively.
Based on Definition 2.3, Eqs. (17) and (18) directly lead to the result that j ∈

Ker(Q̃), for each j ∈ N . According to Theorem 3.3 in Li and Fang (2011), A ◦ x = b
has a unique minimal solution. ��
Proposition 3.1.3 Let A ◦ x = b be a system of fuzzy relational equations generated
by TPRG sup-TM with x̂ = (x̂1, x̂2, . . . , x̂n)T being the maximum solution. For each
i ∈ M, let Ji = { j ∈ N | x̂ j ≥ bi } and ki =| Ji | . Then, the system of sup-TM

equations A ◦ x = b has at most
m∏

i=1

ki minimal solutions.
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Proof Let A ◦ x = b be a system of sup-TM equations generated by TPRG sup-TM

and Q̃ = (q̃i j )m×n be the corresponding characteristic matrix. According to Peeva
and Kyosev (2004), the upper bound of the number of minimal solutions of A ◦ x = b
is related to the number of nonempty elements in each row of Q̃.

For each i ∈ M, consider

{
ai j = bi , if x̂ j > bi ,

ai j ∈ [bi , 1], if x̂ j = bi ,
∀ j ∈ N . (19)

Equation (19) implies that, for each i ∈ M, if there exists a j ∈ N such that x̂ j ≥ bi ,

then

T (ai j , x̂ j ) = bi ,

or equivalently,

q̃i j 
= ∅.

In this case, for each i ∈ M, let Ji = { j ∈ N | x̂ j ≥ bi } and ki =| Ji | . According
to Eq. (3.25) in Peeva and Kyosev (2004), the system of sup-TM equations A ◦ x = b

has at most
m∏

i=1

ki minimal solutions. ��

For n ∈ R, denote �n� the largest integer no greater than n and �n	 the smallest
integer no less than n.

Proposition 3.1.4 A system of sup-TM equations A ◦ x = b with 2� n
2 � minimal solu-

tions can be generated by TPRG sup-TM , if m ≥ � n
2 	.

Proof Consider generating a system of sup-TM equations A ◦ x = b by TPRG sup-
TM .Since m ≥ � n

2 	,we can randomly generate � n
2 	different numbers x1, x2, . . . , x� n

2 	 ∈
[0, 1) and let x̂ j+� n

2 � = x j ,∀ j = 1, 2, . . . , � n
2 	 and x̂ j = x̂ j+� n

2 �,∀ j = 1, 2, . . . , � n
2 �

in Step 1 of TPRG sup-TM .

For each i = 1, 2, . . . , � n
2 	, let bi = x̂i+� n

2 � and randomly assign the value of

bi ∈ [0, max
j∈N

{x̂ j }],∀ i = �n

2
	 + 1, �n

2
	 + 2, . . . , m.

According to Step 3 of TPRG sup-TM , for each j ∈ N , there exists an i ∈
{1, 2, . . . , � n

2 	} such that x̂ j = bi . In this case, for each j ∈ N , we have ai j > bi , or
equivalently,

T (ai j , x̂ j ) = bi . (20)
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Let j∗ ∈ N satisfying x̂ j∗ = max
j=1,2,...,� n

2 �
{x̂ j }. For each j ∈ N\{ j∗, j∗ + � n

2 �}, let

{
ai ′ j ∈ [0, bi ′), if bi ′ < bi ,

ai ′ j ∈ [0, 1], if bi ′ ≥ bi ,
∀ i ′ ∈ M\{i},

which implies that, for each j ∈ N\{ j∗, j∗ + � n
2 �},

T (ai ′ j , x̂ j ) 
= b′
i , ∀ i ′ ∈ M\{i}. (21)

Moreover, for each j ∈ { j∗, j∗ + � n
2 �}, there exists an i ∈ {1, 2, . . . , � n

2 	} such that
x̂ j∗ = x̂ j∗+� n

2 � = bi . Then, let

ai ′ j∗ ∈ [0, bi ′) and ai ′ j∗+� n
2 � ∈ [0, bi ′),∀ i ′ ∈ {1, 2, . . . , �n

2
	}\{i}, (22)

and

{
ai ′ j∗ = ai ′ j∗+� n

2 � = bi ′ , if x̂ j∗ > bi ′ ,
ai ′ j∗ ∈ [bi ′ , 1] and ai ′ j∗+� n

2 � ∈ [bi ′ , 1], if x̂ j∗ = bi ′ ,

∀ i ′ ∈
{⌈n

2

⌉
+ 1,

⌈n

2

⌉
+ 2, . . . , m

}
. (23)

Equations (22) and (23) imply that

T (ai ′ j∗ , x̂ j∗) 
= bi ′ and T (ai ′ j∗+� n
2 �, x̂ j∗+� n

2 �) 
= bi ′ ,

∀ i ′ ∈ {1, 2, . . . , �n

2
	}\{i}, (24)

and

T (ai ′ j∗ , x̂ j∗) = bi ′ and T (ai ′ j∗+� n
2 �, x̂ j∗+� n

2 �) = bi ′

∀ i ′ ∈
{⌈n

2

⌉
+ 1,

⌈n

2

⌉
+ 2, . . . , m

}
, (25)

respectively.
According to Li and Fang (2009) and Eqs. (7)–(9), (20), (21), (24) and (25) directly

lead to the result that x̌ = {x̌1, x̌2, . . . , x̌n} = {
� n

2 �︷ ︸︸ ︷
0, 0, . . . , 0, x̂� n

2 �+1, x̂� n
2 �+2, . . . , x̂n}

is a minimal solution of the above generated system of sup-TM equations A ◦ x = b.

Moreover, since x̂ j = x̂� n
2 �+ j = b j ,∀ j = 1, 2, . . . , � n

2 �, and

T (a j j , x̂ j ) = T (a j j+� n
2 �, x̂ j+� n

2 �) = b j , ∀ j = 1, 2, . . . , �n

2
�,
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16 C.-F. Hu, S.-C. Fang

replacing the value of x̌ j by x̂ j and the value of x̌� n
2 �+ j by 0 in x̌, for each j ∈

{1, 2, . . . , � n
2 �}, results in another minimal solution of A ◦ x = b. Therefore, the

system of sup-TM equations A ◦ x = b has 2� n
2 � minimal solutions. ��

3.2 System of sup-TP equations

In this section, a procedure for generating test problems for systems of fuzzy relational
equations with the sup-TP composition is studied. We start with deriving the following
theorem:

Theorem 3.2.1 Let A ◦ x = b be a consistent system of sup-TP equations with
x̂ = (x̂1, x̂2, . . . , x̂n)T being the maximum solution. Then, we have the following
results:

(i) For each i ∈ M, there exists a j ∈ N such that bi = ai j × x̂ j .

(ii) ai j ∈ [0,
bi

x̂ j
],∀ i ∈ M and j ∈ N .

(iii) For each j ∈ N , if x̂ j 
= 1, then there exists an i ∈ M such that ai j = bi

x̂ j
.

Proof (i) Since x̂ is a solution to A◦x = b, Theorem 2.3 says that, for each i ∈ M,

there exists a j ∈ N such that

bi = T (ai j , x̂ j ) = ai j × x̂ j .

(ii) According to Theorem 2.4, the maximum solution x̂ is defined as

x̂ j = inf
i∈M

I(ai j , bi ), ∀ j ∈ N .

Therefore, we have

I(ai j , bi ) ≥ x̂ j ,∀ i ∈ M, and j ∈ N ,

or equivalently,

0 ≤ ai j ≤ bi

x̂ j
,∀i ∈ M and j ∈ N .

(iii) Similarly, according to Theorem 2.4, for each j ∈ N , there exists an i ∈ M
such that

I(ai j , bi ) = x̂ j .
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If x̂ j 
= 1, we have

I(ai j , bi ) = bi

ai j
= x̂ j ,

or equivalently,

ai j = bi

x̂ j
.

If x̂ j = 1, we have

I(ai j , bi ) = x̂ j = 1,

or equivalently,

ai j ≤ bi .

��
Based on Theorem 3.2.1, we propose the following procedure for generating test prob-
lems of sup-TP equations:

Procedure TPRG sup-TP

Step 0. [Input]
Input positive integers m and n.

Step 1. [Generate a maximum solution x̂ = (x̂1, x̂2, . . . , x̂n) of the system of
sup-TP equations.]
Randomly generate x̂ j ∈ [0, 1] for each j ∈ N .

Step 2. [Construct b = (bi )m×1 of the system of sup-TP equations.]

Step 2.1. For each i ∈ M, randomly choose ji ∈ N , assign the value of
ai ji ∈ (0, 1] and let bi = ai ji × x̂ ji .

Step 2.2. If min
i∈M

{bi } ≤ min
j∈N

{x̂ j }, go to step 3; otherwise, go to step 2.1.

Step 3. [Construct A = (ai j )m×n of the system of sup-TP equations.]

For each i ∈ M, randomly assign the value of ai j ∈ [0, min{1,
bi

x̂ j
}] for each

j ∈ N\{ ji }.
Step 4. [Guarantee the consistency of the system of sup-TP equations.]

For each j ∈ N\{ j1, j2, . . . , jm}, if x̂ j 
= 1, then randomly choose i ∈ M

such that bi ≤ x̂ j and update matrix A with ai j = bi

x̂ j
.

Step 5. [Output]
Output A ∈ [0, 1]mn and b ∈ [0, 1]m .
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18 C.-F. Hu, S.-C. Fang

Noticed that if min
i∈M

{bi } > min
j∈N

{x̂ j } in Step 2.2 of Procedure TPRG sup-TP , the

procedure might have problem in randomly choose i ∈ M such that bi ≤ x̂ j in Step 4.
Therefore, if min

i∈M
{bi } ≤ min

j∈N
{x̂ j } in Step 2.2, then the procedure goes to Step 2.1 to

regenerate bi , for each i ∈ M.

To be parallel to propositions in Sect. 3.1, we have the following results for the
system of sup-TP equations. The proofs are omitted here.

Proposition 3.2.1 Let A ◦ x = b be a system of fuzzy relational equations generated
by TPRG sup-TP . Then, A ◦ x = b is consistent.

Proposition 3.2.2 A system of sup-TP equations A ◦ x = b with a unique minimal
solution can be generated by TPRG sup-TP , if m ≥ n.

Proposition 3.2.3 A system of sup-TP equations A ◦ x = b with 2� n
2 � minimal solu-

tions can be generated by TPRG sup-TP , if m ≥ � n
2 	.

3.3 System of sup-TL equations

In this section, a procedure for generating test problems for systems of fuzzy relational
equations with the sup-TL composition is studied. We start with deriving the following
theorem.

Theorem 3.3.1 Let A ◦ x = b be a consistent system of sup-TL equations with
x̂ = (x̂1, x̂2, . . . , x̂n)T being the maximum solution. Then, we have the following
results:

(i) For each i ∈ M, there exists a j ∈ N such that bi = ai j + x̂ j − 1.

(ii) ai j ∈ [0, 1 − x̂ j + bi ],∀ i ∈ M and j ∈ N .

(iii) For each j ∈ N , if x̂ j 
= 1, then there exists an i ∈ M such that ai j = bi +1− x̂ j .

Proof Following the same process of Theorem 3.2.1 leads to the results. ��
Based on Theorem 3.3.1, we propose the following procedure for generating test

problems of sup-TL equations:

Procedure TPRG sup-TL

Step 0. [Input]
Input positive integers m and n.

Step 1. [Generate a maximum solution x̂ = (x̂1, x̂2, . . . , x̂n) of the system of
sup-TL equations.]
Randomly generate x̂ j ∈ [0, 1] for each j ∈ N .

Step 2. [Construct b = (bi )m×1 of the system of sup-TL equations.]
For each i ∈ M, randomly choose ji ∈ N , assign the value of ai ji ∈
(1 − x̂ ji , 1] and let bi = ai ji + x̂ ji − 1.
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Step 3. [Construct A = (ai j )m×n of the system of sup-TL equations.]
For each i ∈ M, randomly assign the value of ai j ∈ [0, min{1, 1 + bi − x̂ j }]
for each j ∈ N\{ ji }.

Step 4. [Guarantee the consistency of the system of sup-TL equations.]
For each j ∈ N\{ j1, j2, . . . , jm}, if x̂ j 
= 1, then randomly choose i ∈ M
such that bi ≤ x̂ j and update matrix A with ai j = bi + 1 − x̂ j .

Step 5. [Output]
Output A ∈ [0, 1]mn and b ∈ [0, 1]m .

To be parallel to Propositions 3.2.1–3.2.3, we have the following results for the
system of sup-TL equations. The proofs are omitted here.

Proposition 3.3.1 Let A ◦ x = b be a system of fuzzy relational equations generated
by TPRG sup-TL . Then, A ◦ x = b is consistent.

Proposition 3.3.2 A system of sup-TL equations A ◦ x = b with a unique minimal
solution can be generated by TPRG sup-TL , if m ≥ n.

Proposition 3.3.3 A system of sup-TL equations A ◦ x = b with 2� n
2 � minimal solu-

tions can be generated by TPRG sup-TL , if m ≥ � n
2 	.

4 Numerical examples

In this section, numerical examples are provided to illustrate the procedures for gen-
erating test problems for systems of fuzzy relational equations with the sup-T com-
position.

Example 1 For a system of sup-TM equations A ◦ x = b with n = 4 and m = 6,

the associated coefficient matrix and right hand side vector can be constructed by
TPRG sup-TM as follows.

Step 1. Randomly generate a maximum solution x̂ = (0.4, 0.8, 0.6, 0.8)T with r = 3.

Let {v1, v2, v3} = {0.8, 0.6, 0.4}.
Step 2. Let bi = vi , for i = 1, 2, 3, and randomly assign b4 = 0.2, b5 = 0.4 and

b6 = 0.7.

Step 3. Since x̂1 = 0.4 = b3, we have a31 ∈ (0.4, 1], and a11 ∈ [0, 1], a21 ∈
[0, 1], a41 ∈ [0, 0.2], a51 ∈ [0, 1], a61 ∈ [0, 1].
Since x̂2 = 0.8 = b1, we have a12 ∈ (0.8, 1], and a22 ∈ [0, 0.6], a32 ∈
[0, 0.4], a42 ∈ [0, 0.2], a52 ∈ [0, 0.4], a62 ∈ [0, 0.7].
Since x̂3 = 0.6 = b2, we have a23 ∈ (0.6, 1], and a13 ∈ [0, 1], a33 ∈
[0, 0.4], a43 ∈ [0, 0.2], a53 ∈ [0, 0.4], a63 ∈ [0, 1].
Since x̂4 = 0.8 = b1, we have a14 ∈ (0.8, 1], and a24 ∈ [0, 0.6], a34 ∈
[0, 0.4], a44 ∈ [0, 0.2], a54 ∈ [0, 0.4], a64 ∈ [0, 0.7].

Step 4. For i = 4, since x̂2 ≥ b4, choose j = 2 and let a42 = 0.2.

For i = 5, since x̂2 ≥ b5, choose j = 2 and let a52 = 0.4.

For i = 6, since x̂4 ≥ b6, choose j = 4 and let a64 = 0.7.
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According to above procedure, the coefficient matrix A and right hand side vector
b of the system of sup-TM equations can be described as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

[0, 1] (0.8, 1] [0, 1] (0.8, 1]
[0, 1] [0, 0.6] (0.6, 1] [0, 0.6]
(0.4, 1] [0, 0.4] [0, 0.4] [0, 0.4]
[0, 0.2] 0.2 [0, 0.2] [0, 0.2]
[0, 1] 0.4 [0, 0.4] [0, 0.4]
[0, 1] [0, 0.7] [0, 1] 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

and b =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8
0.6
0.4
0.2
0.4
0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Therefore, for example,

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8 0.9 0.3 1
0.2 0.4 0.9 0.5
0.8 0.4 0.1 0.2
0 0.2 0.2 0.1
0.4 0.4 0.1 0.4
0.5 0.7 0.6 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

◦ x =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8
0.6
0.4
0.2
0.4
0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

is a system of sup-TM equations with the dimensions of input data n = 4 and m = 6.

Example 2 For a system of sup-TP equations A ◦ x = b with n = 10 and m = 8,

the associated coefficient matrix and right hand side vector can be constructed by
TPRG sup-TP as follows.

Step 1. Randomly generate a maximum solution x̂ = (0.8, 0.8, 0.622, 0.6, 0.7,

0.525, 0.7, 0.8, 0.6, 0.8)T .

Step 2. Randomly choose j1 = 1, j2 = 3, j3 = 2, j4 = 7, j5 = 2, j6 = 2, j7 = 9,

j8 = 2, and
assign a1 j1 = a11 = 0.6 and b1 = a1 j1 × x̂ j1 = 0.6 × 0.8 = 0.48.

assign a2 j2 = a23 = 0.9 and b2 = a2 j2 × x̂ j2 = 0.9 × 0.622 = 0.56.

assign a3 j3 = a32 = 0.9 and b3 = a3 j3 × x̂ j3 = 0.9 × 0.8 = 0.72.

assign a4 j4 = a47 = 0.8 and b4 = a4 j4 × x̂ j4 = 0.8 × 0.7 = 0.56.

assign a5 j5 = a52 = 0.8 and b5 = a5 j5 × x̂ j5 = 0.8 × 0.8 = 0.64.

assign a6 j6 = a62 = 0.9 and b6 = a6 j6 × x̂ j6 = 0.9 × 0.8 = 0.72.

assign a7 j7 = a79 = 0.7 and b7 = a7 j7 × x̂ j7 = 0.7 × 0.6 = 0.42.

assign a8 j8 = a82 = 0.8 and b8 = a8 j8 × x̂ j8 = 0.8 × 0.8 = 0.64.

Step 3. For each i = 1, 2, . . . , 8, randomly assign ai j ∈ [0, min{1,
bi

x̂ j
}] for each

j ∈ {1, 2, . . . , 10}\{ ji }.
Step 4. For j = 4, randomly choose i = 7 and update a74 = b7

x̂4
= 0.42

0.6
= 0.7.

For j = 5, randomly choose i = 2 and update a25 = b2

x̂5
= 0.56

0.7
= 0.8.

For j = 6, randomly choose i = 7 and update a76 = b7

x̂6
= 0.42

0.525
= 0.8.
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For j = 8, randomly choose i = 1 and update a18 = b1

x̂8
= 0.48

0.8
= 0.6.

For j = 10, randomly choose i = 8 and update a810 = b8

x̂10
= 0.64

0.8
= 0.8.

According to the above procedure, the coefficient matrix A and right hand side vector
b of the system of sup-TP equations can be described as follows:

A =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.6
[
0, 0.48

0.8

] [
0, 0.48

0.622

] [
0, 0.48

0.6

] [
0, 0.48

0.7

] [
0, 0.48

0.525

] [
0, 0.48

0.7

]
0.6

[
0, 0.48

0.6

] [
0, 0.48

0.8

]

[0, 0.56
0.8 ]

[
0, 0.56

0.8

]
0.9

[
0, 0.56

0.6

]
0.8 [0, 1]

[
0, 0.56

0.7

] [
0, 0.56

0.8

] [
0, 0.56

0.6

] [
0, 0.56

0.8

]

[0, 0.72
0.8 ] 0.9 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

[
0, 0.72

0.8

]
[0, 1]

[
0, 0.72

0.8

]

[0, 0.56
0.8 ]

[
0, 0.56

0.8

] [
0, 0.56

0.622

] [
0, 0.56

0.6

] [
0, 0.56

0.7

]
[0, 1] 0.8

[
0, 0.56

0.8

] [
0, 0.56

0.6

] [
0, 0.56

0.8

]

[0, 0.64
0.8 ] 0.8 [0, 1] [0, 1]

[
0, 0.64

0.7

]
[0, 1]

[
0, 0.64

0.7

] [
0, 0.64

0.8

]
[0, 1]

[
0, 0.64

0.8

]
[0, 0.72

0.8 ] 0.9 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
[
0, 0.72

0.8

]
[0, 1]

[
0, 0.72

0.8

]
[0, 0.42

0.8 ] [
0, 0.42

0.8

] [
0, 0.42

0.622

]
0.7

[
0, 0.42

0.7

]
0.8

[
0, 0.42

0.7

] [
0, 0.42

0.8

]
0.7

[
0, 0.42

0.8

]
[0, 0.64

0.8 ] 0.8 [0, 1] [0, 1]
[
0, 0.64

0.7

]
[0, 1]

[
0, 0.64

0.7

] [
0, 0.64

0.8

]
[0, 1] 0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

b = (0.48, 0.56, 0.72, 0.56, 0.64, 0.72, 0.42, 0.64)T .

Therefore, for example,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.6 0.5 0.1 0.1 0.3 0.8 0.4 0.6 0.2 0.1
0.2 0.6 0.9 0.6 0.8 0.4 0.5 0.3 0.5 0.3
0.5 0.9 0.4 0.2 0.8 0.1 0.4 0.4 0.7 0.6
0.3 0.5 0.7 0.5 0.8 0.1 0.8 0.3 0.4 0.6
0.7 0.8 0.5 0.4 0.8 0.2 0.4 0.1 0.9 0.6
0.5 0.9 0.7 0.1 0.5 0.8 0.7 0.2 0.9 0.4
0.2 0.3 0.4 0.7 0.5 0.8 0.3 0.5 0.7 0.4
0.8 0.8 0.7 0.5 0.8 0.3 0.4 0.7 0.2 0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

◦ x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.48
0.56
0.72
0.56
0.64
0.72
0.42
0.64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is a system of sup-TP equations with the dimensions of input data n = 10, and m = 8,

which is consistent with the example studied in Loetamonphong and Fang (2001).

Example 3 For a system of sup-TL equations A ◦ x = b with n = 5 and m = 5,

the associated coefficient matrix and right hand side vector can be constructed by
TPRG sup-TL as follows.

Step 1. Randomly generate a maximum solution x̂ = (0.9, 0.7, 0.5, 1, 0.8)T .

Step 2. Randomly choose j1 = 2, j2 = 4, j3 = 2, j4 = 4, j5 = 4, and randomly
assign a1 j1 = a12 = 0.7 ∈ (1 − 0.7, 1] and b1 = a1 j1 + x̂ j1 − 1 =
0.7 + 0.7 − 1 = 0.4.

assign a2 j2 = a24 = 0.8 ∈ (1−1, 1] and b2 = a2 j2 + x̂ j2 −1 = 0.8+1−1 =
0.8.
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assign a3 j3 = a32 = 0.5 ∈ (1 − 0.7, 1] and b3 = a3 j3 + x̂ j3 − 1 =
0.5 + 0.7 − 1 = 0.2.

assign a4 j4 = a44 = 0.6 ∈ (1−1, 1] and b4 = a4 j4 + x̂ j4 −1 = 0.6+1−1 =
0.6.

assign a5 j5 = a54 = 1 ∈ (1−1, 1] and b5 = a5 j5 + x̂ j5 −1 = 1+1−1 = 1.

Step 3. For each i = 1, 2, . . . , 5, randomly assign the value of ai j ∈ [0, min{1, 1 +
bi − x̂ j }] for each j ∈ {1, 2, . . . , 5}\{ ji }.

Step 4. For j = 1, randomly choose i = 2 and update a21 = b2 + 1 − x̂1 = 0.9.

For j = 3, randomly choose i = 1 and update a13 = b1 + 1 − x̂3 = 0.9.

For j = 5, randomly choose i = 4 and update a45 = b4 + 1 − x̂5 = 0.8.

According to above procedure, the coefficient matrix A and right hand side vector b
of the system of sup-TL equations can be described as follows:

A =

⎛
⎜⎜⎜⎜⎝

[0, 0.5] 0.7 0.9 [0, 0.4) [0, 0.6]
0.9 [0, 1) [0, 1] 0.8 [0, 1]
[0, 0.3] 0.5 [0, 0.7] [0, 0.2] [0, 0.4]
[0, 0.7] [0, 0.9] [0, 1] 0.6 0.8
[0, 1] [0, 1] [0, 1] 1 [0, 1]

⎞
⎟⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎜⎝

0.4
0.8
0.2
0.6
1

⎞
⎟⎟⎟⎟⎠ .

Therefore, for example,

⎛
⎜⎜⎜⎜⎝

0.2 0.7 0.9 0.3 0.5
0.9 0.2 1 0.8 0.4
0.3 0.5 0.7 1 0.3
0.7 0.8 0.3 0.6 0.8
1 1 0.5 1 0.6

⎞
⎟⎟⎟⎟⎠ ◦ x =

⎛
⎜⎜⎜⎜⎝

0.4
0.8
0.2
0.6
1

⎞
⎟⎟⎟⎟⎠

is a system of sup-TL equations with dimensions of input data n = 5, and m = 5,

which is consistent with the example studied in Li (2009).

5 Conclusions

Computational efficiency analysis of different solution methods for solving systems
of fuzzy relational equations as well as the associated optimization problems needs
to use randomly generated problems with different sizes and structures. In this paper,
we propose some procedures for generating test problems of systems of fuzzy rela-
tional equations with sup-T compositions. It is shown that the proposed procedures
randomly generate consistent test problems with various number of minimal solutions
for systems of fuzzy relational equations. To the best of our knowledge, such test
problem generators for systems of fuzzy relational equations have not appeared in
the literature. The proposed procedures are easy to use and can generate large scale
systems of fuzzy relational equations. The pseudo codes of the proposed procedures
are included in the Appendix.
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Appendix: Pseudo codes

Main procedure TPRG Sup TM

Input: positive integers m and n.

If m < n
For j = 1 to m

Randomly generate the value of x̂ j ∈ [0, 1];
End
Set r = 1; v1 = x̂1;
For j = 2 to m

If x̂ j 
= x̂i for all i < j
Set r = r + 1, vr = x̂ j ;

Endif
End
For i = 1 to r

If vi = 1
Set r = r − 1;
For k = i to r

Set vk = vk+1;
End
Break;

Endif
End
For j = m + 1 to n

Randomly choose j ′ ∈ {1, 2, . . . , m};
Set x̂ j = x̂ j ′ ;

End
Else

For j = 1 to n
Randomly generate the value of x̂ j ∈ [0, 1];

End
Set r = 1; v1 = x̂1;
For j = 2 to n

If x̂ j 
= x̂i for all i < j
Set r = r + 1, vr = x̂ j ;

Endif
End
For i = 1 to r

If vi = 1
Set r = r − 1;
For k = i to r

Set vk = vk+1;
End
Break;
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Endif
End

Endif

For i = 1 to r
Set bi = vi ;

End

For i = r + 1 to m
Randomly assign bi ∈ [0, max

j=1,2,...,n
{x̂ j }];

End

For j = 1 to n
If x̂ j = 1

For i = 1 to m
Randomly assign ai j ∈ [0, bi ];

End
Else

For i = 1 to r
If x̂ j = bi

Set ī = i;
Break;

Endif
End
Randomly assign aī j ∈ (bī , 1];
For i = 1 to m

If i 
= ī
If bi < bī

Randomly assign ai j ∈ [0, bi ];
Elseif bi ≥ bī

Randomly assign ai j ∈ [0, 1];
Endif

Endif
End

Endif
End

For i = r + 1 to m
For j = 1 to n

If x̂ j ≥ bi

Set j̄ = j;
Break;

Endif
End
If x̂ j̄ > bi
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Set ai j̄ = bi ;
Elseif x̂ j̄ = bi

Randomly assign ai j̄ ∈ [bi , 1];
Endif

End

For i = 1 to m
Set b(i) = bi ;

End

For j = 1 to n
For i = 1 to m

Set A(i, j) = ai j ;
End

End

Output A, b;

Main procedure TPRG Sup TP

Input: positive integers m and n.

For j = 1 to n
Randomly generate the value of x̂ j ∈ [0, 1];

End

Do
For i = 1 to m

Randomly choose ji ∈ {1, 2, . . . , n};
Randomly assign ai ji ∈ (0, 1];
Set bi = ai ji × x̂ ji ;

End
While min

i=1,2,...,m
{bi } > min

j=1,2,...,n
{x̂ j }

For i = 1 to m
For j = 1 to n

If j 
= ji

Randomly assign ai j ∈ [0, min{1,
bi

x̂ j
}];

Endif
End

End

For j = 1 to n
If j /∈ { j1, j2, . . . , jm}
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If x̂ j 
= 1
For i = 1 to m

If bi ≤ x̂ j

Set ī = i;
Break;

Endif
End

Set aī j = bī

x̂ j
;

Endif
Endif

End

For i = 1 to m
Set b(i) = bi ;

End
For j = 1 to n

For i = 1 to m
Set A(i, j) = ai j ;

End
End
Output A, b;

Main procedure TPRG Sup TL

Input positive integers m and n.

For j = 1 to n
Randomly generate the value of x̂ j ∈ [0, 1];

End

For i = 1 to m
Randomly choose ji ∈ {1, 2, . . . , n};
Randomly assign ai ji ∈ (1 − x̂ ji , 1];
Set bi = ai ji + x̂ ji − 1;

End

For i = 1 to m
For j = 1 to n

If j 
= ji
Randomly assign the value of ai j ∈ [0, min{1, 1 + bi − x̂ j }];

Endif
End

End

For j = 1 to n
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If j /∈/∈ { j1, j2, . . . , jm}
If x̂ j 
= 1

For i = 1 to m
If bi ≤ x̂ j

Set ī = i;
Break;

Endif
End
Set aī j = bī + 1 − x̂ j ;

Endif
Endif

End

For i = 1 to m
Set b(i) = bi ;

End

For j = 1 to n
For i = 1 to m

Set A(i, j) = ai j ;
End

End

Output A, b;
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