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Abstract We propose a fuzzy model for the portfolio selection problem which takes
into account the vagueness of the investor’s preferences regarding the assumed risk.
We also describe an exact method for solving it as well as a hybrid meta-heuristic
procedure which is more adequate for medium and large-sized problems or in cases in
which a quick solution is needed. As an application, we solve several problems based
on data from the IBEX35 index and the Spanish Stock Exchange Interconnection
System.

Keywords Fuzzy mathematical programming · Portfolio selection ·
Heuristic strategies · Genetic algorithms

1 Introduction

The modern portfolio selection problem is a classical model for determining the opti-
mal composition of a portfolio according to an investor’s preferences. The model
is credited to Markowitz (1952, 1959), who is rightfully regarded as the founder
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30 J. M. Cadenas et al.

of modern portfolio theory (Fama 1977). In a first approach, given n securities
S1, S2, . . . , Sn in which we can invest non-negative quantities x1, x2, . . . , xn , a port-
folio consists of a subset of securities in which all the capital should be invested,
satisfying the investor’s preferences. These preferences must take into account the
risk that the investor is willing to assume, the expected return and, to a lesser extent,
some diversification criteria.

Obviously, portfolio selection, like most financial problems, is related with uncer-
tainty because it consists of taking a decision about future events. Therefore, we do
not have at our disposal more than historical data which are usually managed with
statistical methods (Markowitz 1959; Fama 1977). Moreover, it is not easy to model
the investor’s preferences. After the seminal work by Markowitz, attention has been
given to the study of alternative models (Lai and Hwang 1992; Vercher et al. 2007)
which try to deal more efficiently with the uncertainty of the data. Most of these models
are based on probability distributions, which are used to characterize risk and return.
For instance, in the Markowitz model, variance and mean were generally deemed
satisfactory measures of risk and return, respectively (Markowitz 1959; Sharpe 1970;
Konno and Wijayanayake 2001). However, according to the chosen modellization of
the expected risk and return, different models coexist to select the best portfolio. Some
of them propose to describe the risk by means of mean-absolute deviation (Konno and
Yamazaki 1991), while other authors propose linear programming (Speranza 1993) or
multiobjective (Arenas et al. 2001; Steuer et al. 2006) models.

Another way of dealing with uncertainty is to work with models based on soft com-
puting. Watada (1997) solves this problem by using imprecise aspiration levels for an
expected biobjective approach, where the membership functions of the goals are of a
logistic-type. In 2000, Tanaka et al. (2000) propose using possibility distributions to
model uncertainty on the expected returns and to incorporate the knowledge of finan-
cial experts by means of a possibility degree of similarity between the future state
of financial markets and the state in previous periods (Inuiguchi and Tanino 2000).
Multiobjective programming has also been used to design fuzzy models of portfolio
selection, either for compromise solutions (Wang and Zhu 2002) or by introducing
multi-indices (Arenas et al. 2001). Specific methods have even been proposed for
dealing with the unfeasibility provoked by conflict between the expected return and
the investor’s diversification requirements (León et al. 2002; León and Liern 2001).

However, in this paper we are concerned with a very different class of vagueness
related to the portfolio problem, namely the vagueness of the investor’s criteria for
selecting a satisfactory trade off between the risk he or she considers acceptable and
the return he or she wishes to obtain. In other words, the investor must choose a point
at the efficient frontier of the problem, i.e. the set of risk-return pairs (R, r) which
are nondominated in the multiobjective sense (such that R is the minimum risk for a
given level of return r or r is the maximum return level for a given risk R). From a
theoretical point of view, the investor’s preferences are usually formalized by means of
utility functions, so that the final choice is that efficient portfolio maximizing a given
utility function, but when we try to reflect the preferences of a real specific investor
we must ask him or her directly for a point in the efficient frontier. Nevertheless, it is
obvious that the investor’s preferences are essentially vague, so that it is unnatural to
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Fig. 1 Scheme of our proposal

force him or her to choose a specific point. In practice, he or she could only determine
a zone or a fuzzy point.

We present several ways of dealing with the uncertainty associated with the portfo-
lio selection problem. Namely, we are going to show that the techniques used by the
authors in logistical problems (Canós et al. 2001, 2008; Cadenas et al. 2011) can be
generalized to deal with risk and return fuzziness in the portfolio selection problem.
These techniques allow us to include in our fuzzy model the vagueness related to the
fact that the investor arbitrarily fixes the risk that he/she will assume. The uncertainty
concerning the valuation of risk and returns is modeled by means of the usual variance
and mean.

In this paper we propose a fuzzy model for the portfolio selection problem. To
solve our model, meta-heuristic techniques are often needed because of the size of
the problem or because a quick solution is required in order to reflect real-time cases.
Therefore, we present a hybrid meta-heuristic method as outlined in Fig. 1. This pro-
cedure can be applied to any biobjective problem.

The paper is organized as follows: The next section introduces the framework for
portfolio selection used in this paper. Section 3 examines the portfolio selection with
flexible constraints, incorporating this flexibility into a fuzzy model. In Sect. 4 we
present a hybrid meta-heuristic to solve the portfolio selection problem with flexible
constraints. Finally, Sect. 5 outlines the most important conclusions.

2 Portfolio selection

We could consider the problem of an investor who intends to invest money in securities
in such a way that the rate of return is maximized and a given level of risk cannot be
surpassed. If we have n securities, ri is the return on the i th security and xi is the pro-
portion of total investment funds devoted to the i th security, then we have the constraint

n∑

i=1

xi = 1.

The risk of investment can be measured by the variance xt Sx , where S = [si j ] is
the variance-covariance matrix. If R is the maximum risk accepted by the investor, we
have the constraint

n∑

i, j=1

si j xi x j ≤ R.
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32 J. M. Cadenas et al.

Then, one of the simplest models for the portfolio selection problem is:

(MV) Max.
n∑

i=1

ri xi

s.t.
n∑

i=1

xi = 1, (1)

n∑

i, j=1

si j xi x j ≤ R, (2)

xi ≥ 0, i = 1, . . . , n. (3)

Alternatively, we could have considered its economic dual model,

Min

⎧
⎨

⎩

n∑

i, j=1

si j xi x j |
∑

i∈IN

xi = 1,

n∑

i=1

ri xi ≥ r0, xi ≥ 0, 1 ≤ i ≤ n

⎫
⎬

⎭ (4)

consisting of minimizing the risk subject to a given minimum expected return. Model
(4) is the most widely used in the literature, mainly because by being a quadratic
problem it is more easily handled from a mathematical point of view. However, we
will deal with (MV) since it is more realistic to ask an investor what risk he or she
considers acceptable rather than forcing him or her to fix a minimum return without
having any reference about the risk it carries. In fact, it is the usual practice for small
investors [see for instance (http://www.santander.com)].

In general, the covariance matrix S is knwon to be positive semi-definite. However,
assuming that the returns are independent as random variables, S is a positive definite
matrix, and we will restrict ourselves to this case. This assumptions is reasonable in
practice since we can slightly modify (in a non significant way) the diagonal of S to
make it a regular matrix (Steuer et al. 2006). Under this hypothesis, the solution of
problem (MV) is unique.

Choosing the best investment options for a portfolio is a difficult task due to uncer-
tainty in the economic environment and the problem of suitably reflecting decision-
maker wishes in the model. Both stochastic and fuzzy programming provide different
ways of handling the first kind of uncertainty (Inuiguchi and Ramík 2000). This paper
presents a fuzzy approach for the second kind, in which the portfolio problem includes
the subjective criteria of the decision-maker when determining the level of risk that
he or she is willing to bear and the level of satisfaction to be assigned to a possible
increase in return.

3 Portfolio selection with flexible constraints

The portfolio selection problem has two data concerning a decision-maker’s prefer-
ences, namely the capital to be invested and the risk to be assumed. The investor can be
assumed to know with certainty the capital that he/she would like to consider, and in
fact in the model this quantity has been normalized to the unit. However, determining
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Procedures for solving the fuzzy portfolio selection problem 33

the risk to be assumed could be more flexible. As a result, it is worth incorporating
this flexibility into a fuzzy model.

The main idea is to consider partially feasible solutions involving slightly greater
risk than that fixed by the decision-maker, and to study the possibilities that they offer
in order to improve the expected return. When compared with the logistic models
[actually with the p-median case (Canós et al. 2001, 2008; Cadenas et al. 2011)],
this problem happens to be more complicated because the p-median problem is lin-
ear, whereas the risk constraint in the portfolio model is quadratic. Moreover, in the
p-median case, a small reduction in the demand covered affected optimal cost in a
simple linear way, whereas the way in which the maximum expected return depends
on the accepted risk is rather more complicated.

A fuzzy set S̃, of partially feasible solutions, is defined so that the membership
degree of a given portfolio depends on how much its risk exceeds the risk R0 fixed
by the investor. On the other hand, a second fuzzy set G̃ is defined, whose member-
ship function reflects the improvement on the return provided by a partially feasible
solution with respect to the optimal crisp return z∗. In practice, we consider piecewise
linear membership functions

μS̃(x) =
⎧
⎨

⎩

1 if r ≤ R0,

1 − r−R0
p f

if R0 < r < R0 + p f ,

0 if r ≥ R0 + p f ,

μG̃(x) =
⎧
⎨

⎩

0 if z ≤ z∗,
z−z∗

pg
if z∗ < z < z∗ + pg,

1 if z ≥ z∗ + pg,

where r and z are the risk and the return provided by the portfolio x (which is assumed
to satisfy the constraints of (MV), except the second one); the parameter p f is the max-
imum increment in the risk that the decision-maker can accept, and pg is the increment
on the return that the decision-maker would consider completely satisfactory.

We have chosen piecewise linear membership functions because they are the sim-
plest possibility in absence of a more precise criterion about the investor’s preferences.
But the proposed method can be applied with any reasonable alternative.

From this, we can define a global degree of satisfaction

λ(x) = min{μG̃(x), μS̃(x)},
which is the membership degree for the fuzzy intersection of S̃ ∩ G̃. The fuzzy
portfolio model becomes

(FMV) Max. λ(x)

s.t. μS̃(x) ≥ λ(x),

μG̃(x) ≥ λ(x),
n∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , n.

(5)
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In order to solve this, the optimal solution of (MV) will be calculated for each
risk level R. Therefore, we explicitly solve the Kuhn-Tucker conditions of problem
(MV). To carry out the computations in a generic framework, we start by making some
simplifications.

We can assume that the risk constraint (2) is active, since it will be active unless
the risk level R cannot be attained by an efficient portfolio. However, it is important
that the optimal portfolio that we obtain under this assumption remains optimal on
the feasible set defined with (2), since this set is convex and this ensures that the
Kuhn-Tucker points are optimal.

We start by solving the crisp portfolio (MV). Hence, we know the optimal crisp
portfolio x , i.e. the optimal solution of the crisp corresponding the risk R0. Call IN

to the set indexes i such that xi is non-zero. Next we construct the auxiliary problem
(AP), consisting of removing in (MV) the variables xi with i /∈ IN ,

(AP) = Max

⎧
⎨

⎩
∑

i∈IN

ri xi |
∑

i∈IN

xi = 1,
∑

i, j∈IN

si j xi x j ≤ R, xi ≥ 0, i, j ∈ IN

⎫
⎬

⎭ (6)

Let us look for solutions xN of (AP) with xi > 0. This means that the sign constraints
are not active and they can be removed from (AP) and this will simplify Kuhn-Tucker
conditions substantially. Later we will see that we can get the optimal solution of (MV)
from them.

Calling SN the submatrix of S resulting from removing the raws and columns cor-
responding to indexes i /∈ IN , standard linear algebra theory ensures us that we can
decompose

SN = At D A, (7)

where the matrix D is diagonal and A is regular. Then the change of variables y = Ax
transforms the problem (AP) into

Max.
∑

i∈IN

r ′
i yi

s.t.
∑

i∈IN

bi yi = 1,

∑

i∈IN

di y2
i ≤ R,

A−1 y ≥ 0,

(8)

where r ′ = r t A−1, b = (1, . . . , 1)A−1.
In order to find the Kuhn–Tucker point, we construct the Lagrangian function

L =
∑

i∈IN

r ′
i yi + δ

⎛

⎝1 −
∑

i∈IN

bi yi

⎞

⎠ + η

⎛

⎝R −
∑

i∈IN

di y2
i

⎞

⎠ − νT A−1 y, (9)

where δ, η are real numbers (the Lagrange multipliers of the capital and risk constraints
respectively) and ν is a vector.
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As we are assuming that the risk constraint is active and the nonnegative conditions
are inactive, their multipliers νi are null, and the Kuhn-Tucker conditions are

∑

i∈IN

bi yi = 1,
∑

i∈IN

di y2
i = R, r ′

i − biδ − 2di yiη = 0, η ≥ 0. (10)

Moreover, we must have η > 0 since on the contrary (10) would have an infinite
number of solutions which would give rise to an infinite number of Kuhn-Tucker points
of (MV). They would be optimal solutions but we are assuming that the solution of
(MV) is unique.

Hence:

yi = r ′
i − biδ

2diη
, (11)

and, from the first constraint, we get:

∑

i∈IN

bir ′
i

2di
−

∑

i∈IN

b2
i

2di
δ = η.

Call

K =
∑

i∈IN

bir ′
i

2di
, L =

∑

i∈IN

b2
i

2di
,

so that η = K − Lδ. Hence:

yi (δ) = r ′
i − biδ

2di (K − Lδ)
.

The second constraint gives us:

∑

i∈IN

(r ′
i − biδ)

2

4di
= R(K − Lδ)2

or

∑

i∈IN

r ′2
i

4di
− K δ + L

2
δ2 = R(K 2 − 2K Lδ + L2δ2).

If

M =
∑

i∈IN

r ′2
i

4di
(12)
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we get

(RL2 − L/2)δ2 + (K − 2K L R)δ + RK 2 − M = 0.

This is an algebraic second degree equation on δ, a(R)δ2 + b(R)δ + c(R) = 0,
whose discriminant, �(R) = b2(R) − 4a(R)c(R), is given by

�(R) = K 2 − 2M L + (4M L2 − 2K 2L)R.

Hence, the well-known formula for the second degree equation allows us to the
express the multiplier δ as a function of R:

δ(R) = 2K L R − K ± √
�(R)

2L2 R − L
,

and the multiplier η is given by

η(R) = K − Lδ(R) = ±√
�(R)

1 − 2L R
.

The sign must be chosen so that η(R) ≥ 0 (the Kuhn-Tucker sign condition). Once
the right sign is chosen, this function δ(R) allows us to calculate yi (R) and, from this,
we get the optimal portfolio xi (R) for each R such that xi (R) > 0 and �(R) > 0.
Thus we have solved (AP) parametrically on R.

Next, we make use of the following result, in which we call xN to the vector of vari-
ables of (AP) and xZ to the vector of those variables of (MV) that have been removed
in (AP), so that the variables of (MV) are (xN , xZ ). Analogously, the corresponding
multipliers of the sign constraints in (AP) are denoted by νN and those of (MV) by
(νN , νZ ).

Proposition 1 Given an optimal solution x∗ of (MV) providing a risk R0, there is an
interval I = [R−, R+] containing R0 so that for each Kuhn-Tucker point (x, δ, η, νN )

of (AP) providing a risk R ∈ I , a vector νZ of multipliers can be found such that
(x, 0, δ, η, νN , νZ ) is a Kuhn-Tucker point of (MV).

Proof This is obtained by comparing the Kuhn-Tucker conditions of the problems
(MV) and (AP). We have obtained a parametrization (x(R), δ(R), η(R), νN (R)) of
the Kuhn-Tucker point of (AP). Introducing it into the Kuhn-Tucker conditions of
(MV) and setting xZ = 0, all of them are automatically satisfied, except that, for
indexes i such that xi 	= 0, the stationary point conditions are reduced to

∂L
∂xi

= ci (R) − νi = 0, (13)

where L is the Lagrangian function of (MV) and ci (R) is a constant. And the dual
feasibility conditions are νi ≤ 0. Since (13) is satisfied by R = R0, we can find
an interval I = [R−, R+] containing R0 such that for all R ∈ I , the vector νN (R)
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Table 1 Returns on five assets

Year AmT ATT USS GM ATS

1937 −0.305 −0.173 −0.318 −0.477 −0.457

1938 0.513 0.098 0.285 0.714 0.107

1940 0.055 0.2 −0.047 0.165 −0.424

1941 −0.126 0.03 0.104 −0.043 −0.189

1942 −0.003 0.067 −0.039 0.476 0.865

1943 0.428 0.3 0.149 0.225 0.313

1944 0.192 0.103 0.26 0.29 0.637

1945 0.446 0.216 0.419 0.216 0.373

1946 −0.088 −0.046 −0.078 −0.272 −0.037

determined by (13) satisfies the dual feasibility conditions. Hence, the vector(x(R), 0,

δ(R), η(R), νN (R), νZ (R)) is a Kuhn-Tucker point of (MV). 
�
Now we have an interval I on which the efficient frontier is parametrized by

F(R) =
∑

i∈IN

r ′
i yi (R).

Introducing the values of δ and η in (11) , we get

F(R) = ∓2L R − 1

2
√

�(R)

∑

i∈IN

(
r ′2

i

di
− r ′

i bi

di

2K L R − K ± √
�(R)

2L2 R − L

)
.

This expression allows us to calculate the degree of improvement of the goal μg(R)

in the best portfolio with risk R ∈ I , whereas its degree of feasibility μ f (R) is trivially
computed.

Now we can determine the risk R∗ such that μ f (R∗) = μg(R∗), which is easily
shown to be the risk of the portfolio maximizing λ. The portfolio x(R∗) corresponding
to y(R∗)by the change of variables is the optimal solution of (5). If the functionsμ f (R)

and μg(R) did not meet in the interval I , we would need to repeat the computations
from a bigger risk R0 with a different set of non-zero variables.

3.1 A numerical example

In order to show the performance of our method in a simple example, let us use
five assets from the historical data introduced by Markowitz (1959). Table 1 shows
the returns of American Tobacco, AT&T, United States Steel, General Motors and
Atcheson, Topeka & Santa Fe.

We have fixed a risk level R = 0.03. The optimal crisp portfolio is formed by assets
AmT, ATT, GM, ATS and provides an optimal return z∗ = 0.103926. For the fuzzy
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Fig. 2 Membership functions for the degree feasibility and degree of improvement on the expected return.
Option (a) corresponds to R = 0.03 and option (b) to R = 0.0152

model, we have fixed p f = 0.02, pg = 0.02 and solved it by using Mathematica.
The optimal return for a given risk R, happens to be

F(R) = −0.02355 + 52.6832R + 2.6136
√−0.77841 + 52.6832R

9.09494 × 10−13 R + 33.84051
√−0.77841 + 52.6832R

Computations are valid for risks in the interval I = [0.025826, 0.083341]. The
functions μ f (R) and μg(R) are shown in Fig. 2a. They intersect at R∗ = 0.041381,
corresponding toλ = 0.430977. The return on the fuzzy portfolio is 0.112545, whereas
the crisp return was 0.103926.

We observe that the global degree of satisfaction is low. This means that the risk
has to be increased greatly in order to obtain a not very significant increase in the
return on the asset. Hence, it is not useful to replace the initial crisp portfolio by the
fuzzy one. However, if the investor had chosen an initial risk R = 0.0152, the global
degree of satisfaction would be λ = 0.676198 and the fuzzy portfolio would have a
risk R∗ = 0.021676, the expected return passing from 0.0816547 to 0.0951787 (see
Fig. 2b). It has yet to be studied how solutions depend on the chosen membership
functions by means of a suitable sensitivity analysis, analogous to that developed by
Canós et al. (2008).

Remark 1 Notice that we have calculated the functions μ f (R) and μg(R) over the
interval I and we have found that both meet on it. This means that starting from a single
efficient portfolio, we have parametrized a large enough piece of the efficient frontier to
solve the fuzzy portfolio problem. The calculations we have made are computationally
simpler than calculating many points of the frontier, since they are just algebraic oper-
ations without any iterative steps. If the intersection point had not been on the interval
I , we should have calculated a second interval from a new efficient portfolio. However,
for reasonable/realistic values of p f and pg , the intersection point will be found after
a small number of iterations. For large instances of the problem, instead of using the
Kuhn-Tucker conditions, it could be more efficient to work with a dotted representation
of the efficient frontier calculated by means of a meta-heuristic procedure.
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Procedures for solving the fuzzy portfolio selection problem 39

4 A hybrid meta-heuristic for solving the portfolio selection problem

When the size of the problem increases, classical methods (exact and deterministic)
become useless as they would need too much time, due to the combinatorial explo-
sion in the solution space. In these situations, meta-heuristics have shown their utility
and effectiveness. The term meta-heuristic was coined by Glover in 1986 and refers
to a master strategy that guides and modifies other heuristics to produce solutions
beyond those that are normally generated in a quest for local optimality. The heu-
ristics guided by such a meta-strategy may be high level procedures or may embody
nothing more than a description of available moves for transforming one solution into
another, together with an associated evaluation rule. Meta-heuristics in their modern
forms are based on a variety of interpretations (Glover and Kochenberger 2003) and
they have evolved rapidly. In particular, Genetic Algorithms (Mitchell 1996; Cadenas
et al. 2008) are meta-heuristic methods that have already shown their effectiveness in
solving optimization problems.

In this section we describe a hybrid meta-heuristic for the portfolio selection prob-
lem with flexible constraints, called GAFUZ-PF (Genetic algorithm + simulated
Annealing + FUZzy PortFolio). This meta-heuristic uses a hybrid scheme, mixing
the ideas of Simulated Annealing techniques with the classic Genetic Algorithm.
Notice that in the definition of the portfolio selection problem (MV) the optimal
crisp return z∗ appears because μG̃(x) depends on it. Hence, GAFUZ-PF will cal-
culate the crisp solution z∗ as well as the fuzzy solution (this means solving two
NP-hard problems). In order to realize this idea, we use three different populations
on three stages of the genetic algorithm. First of all, it uses a population to achieve
feasible solutions to the problem (with a risk less than or equal to R fixed) which
will be part of the population of the algorithm. Once feasible solutions are found, in
the second stage, the algorithm uses another population that evolves searching the
best return. The third stage uses another population, which looks for the best fitness
λ(x).

Simulated Annealing (Aarts and Korst 1990; Kirkpatrick et al. 1983) is a meta-
heuristic used for optimization problems. This heuristic replaces the current solution
by a random “nearby” solution, chosen with a probability that depends on the dif-
ference between the corresponding function values and a global parameter T (called
the temperature), which is gradually decreased during the process. The hybridization
of Genetic Algorithms with other meta-heuristics has appeared in different papers in
the literature (Mitchell 1996; Blum et al. 2008). We apply Simulated Annealing to
define the mutation function of the Genetic Algorithm. Having a mutation function
with a big mutation rate helps us to keep diversity in the population, but it introduces
distortion into the population when the algorithm approaches the optimum. There-
fore, it seems a good idea to use Simulated Annealing with a temperature depend-
ing on the number of generations and the fitness of the solution in order to make a
big mutation rate possible at the beginning, and reduce it as the number of genera-
tions and the fitness increases. Now we specify our options and we give a general
outline of our approach. Figure 3 shows the scheme of GAFUZ-PF hybrid meta-
heuristic.
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40 J. M. Cadenas et al.

Fig. 3 Scheme of hybrid meta-heuristic

4.1 Encoding, fitness function and population size

Each element in the population of the algorithm represents a solution to the portfolio
problem described. The population encoding is made having an array of n-elements,
where each gene represents the investment in one asset. The size of the population
is fixed at 50 individuals, as this is known to be the best average size to avoid to
slow the algorithm excessively (Mitchell 1996). Furthermore, we use three different
populations at the same time: the first one evolves by searching for individuals to
satisfy the second constraint of the problem (MV). When it finds a suitable solution,
it changes to the second stage, where it improves the return on the portfolio, taking
account of the flexible constraint of R (R + p f ). Once the algorithm gets a state with
λ(x) > 0, it changes the population and evolves taking into account p f and pg . The
fitness function is the objective function of the problem (5).

The algorithm scheme is the classical one, with selection, crossover, mutation,
invasion and having the number of generations as stop criteria.

4.2 Selecting the individuals

In order to select individuals for the crossover operator, we use Stochastical Universal
Sampling (SUS), as it has been shown to be better than Roulette Wheel (Cadenas et al.
2008). Based on their fitness, SUS places the individuals on a Roulette and spins it
once with n selectors equally separated to select n individuals.

4.3 Crossover: generating new individuals

The crossover operator is the single-point crossover (Mitchell 1996) adapted to the
problem constraints: there is a fixed part from one parent that goes directly to the off-
spring; the genes from the second part (from the second parent) are added to the son
(choosing them randomly) while the sum of its genes is less than or equal to one.
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4.4 Mutation

When we talk about mutation, there are certain parameters used. The mutation rate
(MU R) refers to the percentage of population individuals that will be mutated. On the
other hand, we have the number of genes that will change (N R). As a mutation method
we use Boltzmann mutation, which is based on Simulated Annealing (Cadenas et al.
2008), with the following annealing function:

r = 1 − e−1/(n∗max(λ(x)))

It defines the mutation rate across the algorithm, reducing it as the algorithm evolves
in order not to disturb the good solutions achieved when the algorithm is finishing.
This rate specifies the percentage of individuals that will be mutated. As it remains
near to 1, according to (Reeves 2002), it is a good choice. A mutation consists of
subtracting a random value from a gene and adding this amount to another gene, both
of them chosen randomly.

4.5 Invasion

Finally, invasion is another genetic operator that helps to keep diversity in the popu-
lation. It introduces a number of new randomly generated individuals, which replace
individuals at random in the population (except the best individual). This helps to
introduce new genes into the population, as mutation does. The invasion rate (I R)
selected is 1%.

4.6 Stop criteria

The detention criterion is the number of generations (N G).

4.7 General outline of the GAFUZ-PF meta-heuristic

Now we have shown the configuration of the algorithm, let us see its general outline
in Algorithm 1.

4.8 Experiments

To test the GAFUZ-PF hybrid meta-heuristic we have used various test problems. The
PC used for the executions has the following features: Intel Pentium IV 3.00 GHz
2,048 MB RAM.

Example 4.1 We consider five assets from the historical data introduced by Markowitz
(1959) (see Example 3.1). We have fixed p f = 0.01 and pg = 0.01 for some values
of the maximum risk R. The results obtained are shown in Table 2.

For each maximum level of risk R (first column), Table 2 shows the composition
of the crisp and the fuzzy optimal portfolios (i.e. the solutions of (MV) and (FMV),
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Algorithm 1 - GAFUZ-PF: Hybrid meta-heuristic for the portfolio selection
GAFUZ-PF( )
Require: ri , si j , R, p f , pg
Ensure: z∗, x∗, R∗, λ(x), z, x , R

begin
Generate initial population with 50 individuals at random.
Calculate the fitness of each individual.
while Number of generations < N G do

SELECT 50 individuals
if 	 ∃ individual | risk of the individual ≤ R then

select using risk
else

if the sum of individual fitness is = 0 then
select using z∗

else
select using fitness

end if
end if
CROSS the 50 individuals to obtain 50 new individuals
Replace 49 individuals of the population with the new individuals, keeping the best (elitism)
MU R = Boltzmann(maximum λ(x),generation_number)
MUTATE M × MU R individuals, changing N R genes
Replace 50 × I R individuals with random generated individuals
Calculate the new individuals’ fitness, return and risk

end while
end

Table 2 Some solutions obtained by GAFUZ-PF

R Solution Proportion of investment Portfolio

amt att uss gm ats Return Risk λ

0.03 Crisp 0.051 0.689 0 0.209 0.051 0.104 0.030 0

Fuzzy 0.081 0.636 0 0.229 0.053 0.110 0.033 0.230

0.04 Crisp 0.151 0.512 0 0.279 0.057 0.112 0.040 0

Fuzzy 0.118 0.464 0 0.298 0.058 0.114 0.041 0.213

0.05 Crisp 0.233 0.369 0 0.337 0.061 0.118 0.050 0

Fuzzy 0.259 0.322 0 0.355 0.063 0.120 0.053 0.204

respectively) together with their corresponding return and risk. The final column shows
the global satisfaction level, λ, of the fuzzy problem.

Notice that the values of λ are low, which means that increasing the risk provides
a small increment on the expected return. However, there are initial risk values for
which the difference between fuzzy and crisp portfolios, as well as the composition
of the portfolio, can be more significant. For instance, starting from a level of risk
R = 0.0185, the corresponding results are shown in Table 3.

We see that in this case, the composition of the portfolio changes so that the investor
could prefer the fuzzy proposal for other reasons beyond its risk and return values.
Moreover, the diversification of the fuzzy portfolio is clearly better from a financial
point of view.
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Table 3 Some efficient portfolios with risk around R = 0.019

R Solution Proportion of investment Portfolio

amt att uss gm ats Return Risk λ

0.0185 Crisp 0 0.976 0 0 0.025 0.089 0.0185 0

Fuzzy 0 0.907 0 0.049 0.044 0.093 0.0203 0.353

0.0190 Crisp 0 0.950 0 0.007 0.043 0.091 0.0190 0

Fuzzy 0 0.890 0 0.065 0.045 0.094 0.0209 0.330

0.0195 Crisp 0 0.932 0 0.024 0.044 0.092 0.0195 0

Fuzzy 0 0.875 0 0.080 0.045 0.095 0.0214 0.316

Example 4.2 We have considered the returns on 20 assets from the Spanish index
IBEX35. The set of assets included in the experiment represents Acesa (ACE), Arce-
lor (ACR), ACS, Altadis (ALT), BBVA, Bankinter (BKT), Dragados (DRC), Endesa
(ELE), FCC, Iberdrola (IBE), Metrovacesa (MVC), NH Hoteles (NHH), Banco Pop-
ular (POP), Repsol (REP), SCH (SAN), Telefónica (TEF), Unión Fenosa (UNF),
Vallermoso (VAL), Acerinox (ACX), Acciona (ANA) data, respectively. We have
considered the observations of the Wednesday prices as an estimate of the weekly
prices. Hence, the return on the jth asset during the kth week is defined as rk j =
(p(k+1) − pkj )/pkj , where pkj is the price of the jth asset on the Wednesday of the
kth week. The data base used covers the period from January 1998 to March 2003.
The results obtained are shown in Table 4. The time used for the algorithm to obtain
a solution to this problem is 1.61 s on average.

Example 4.3 To consider a greater database, we have used the securities of the Span-
ish Stock Exchange Interconnection System that integrates the four existing secu-
rity exchanges in Barcelona, Bilbao, Madrid and Valencia (http://www.borsabcn.
es/bolsabcn/navegacion.nsf/vweb/p-eng?OpenDocument). We have selected daily
returns from the period April 2001 to December 2001 because in that period it con-
tained the greatest number of assets, specifically 144 securities.

Setting a risk level R =0.000015 with tolerances p f =0.000002 and pg =0.0001,
the algorithm takes 21.04 s to provide both the crisp and the fuzzy optimal portfolios
that we show in Table 5 [the names of the companies can be found in (http://www.
borsabcn.es/bolsabcn/navegacion.nsf/vweb/p-eng?OpenDocument)]. We can see that
the fuzzy portfolio return is 5.7% greater than the crisp portfolio return and the risk
that the investor is willing to assume (for the fuzzy solution) is less than or equal to
R + p f .

5 Conclusions

In this paper we have presented the problem of portfolio selection, which is a difficult
problem to solve due to uncertainty in the economic environment and the problem of
suitably reflecting a decision maker’s wishes in the model. It should be remarked that
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Table 4 Solutions obtained by applying GAFUZ-PF to the IBEX35 data (weekly returns from 1998 to
2003)

R = 0.000494 R = 0.000839

p f = 0.0002, pg = 0.002 p f = 0.0002, pg = 0.002

Crisp Fuzzy Crisp Fuzzy

ACE 0.316 0.200 0 0

ACR 0.011 0 0 0

ALT 0.168 0.199 0.207 0.162

DRC 0.019 0.205 0.353 0.461

IBE 0.165 0.014 0 0

MVC 0.050 0.102 0.157 0.098

NHH 0.011 0.033 0.056 0.065

POP 0.62 0 0 0

REP 0.031 0 0.001 0

UNF 0 0.077 0.0395 0.052

VAL 0.036 0 0 0

ACX 0.053 0.069 0.051 0.017

ANA 0.078 0.100 0.139 0.145

λ 0 0.454078 0 0.145928

Portfolio return 0.00202704 0.0029352 0.00353188 0.00382374

Portfolio risk 0.000491306 0.000603184 0.00083643 0.0010098

Table 5 Solutions obtained by applying GAFUZ-PF to the SIBE data (daily returns from April 2001 to
December 2001)

Securities Version Risk Return λ

ALT, AZC, BDL, BYB, CAF, Crisp 0.0000150 0.0013220 0

ESF, GAL, GCO, GUI, HKN,

IBG, IBP, NMQ, OMS, PAC,

SOS, SUP, UPL, ZRG

ALT, ADZ, AZC, BDL, BYB, Fuzzy 0.0000159 0.0013974 0.549034

CAF, ESF, GAL, GCO, GUI,

HKN, IBG, IBP, OMS, PAC,

SOS, SUP, UPL, ZRG

our proposal provides efficient portfolios in the Markowitz’s sense, and so we can not
expect any improvement in the chances of obtaining a better return, i.e. its aim is not to
improve the predictive power of the Markowitz model, but to find a trade-off between
risk and expected return that fits better the investor’s preferences.

We present an approach where the problem of a fuzzy portfolio includes the sub-
jective criteria of the decision-maker when determining the level of risk that he or she
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is willing to bear and the level of satisfaction to be assigned to a possible increase in
the return.

We have proposed an exact method to solve the fuzzy model of the portfolio prob-
lem with the main idea of finding partially-feasible solutions involving slightly greater
risk than that fixed by the decision-maker, and to study the possibilities that they offer
in order to improve the expected return.

We have also proposed a hybrid meta-heuristic to solve the fuzzy model for medium-
sized or large problems where the traditional methods become useless as they would
need too much time due to the combinatorial explosion in the solution space. The pro-
posed meta-heuristic uses a hybrid scheme, which combines ideas from the Simulated
Annealing technique and Genetic Algorithms. To test the proposed meta-heuristic we
have used several test problems based on data from the IBEX35, the best-known index
of Spanish Stock Markets, and the Spanish Stock Exchange Interconnection System
(SIBE). The results allow us to verify that with small problems the solutions are very
similar to those obtained with the exact model. Moreover, our proposal allows us to
work with big problems (large time series, intra-day data, etc.) and the time taken to
get the results is about 1.6 s for the IBEX35 and 21 s for the SIBE, achieving the goal
we wanted with that meta-heuristic.
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