
Fuzzy Optim Decis Making (2011) 10:125–152
DOI 10.1007/s10700-011-9099-0

Set covering-based surrogate approach for solving
sup-T equation constrained optimization problems

Cheng-Feng Hu · Shu-Cherng Fang

Published online: 15 March 2011
© Springer Science+Business Media, LLC 2011

Abstract This work considers solving the sup-T equation constrained optimization
problems from the integer programming viewpoint. A set covering-based surrogate
approach is proposed to solve the sup-T equation constrained optimization problem
with a separable and monotone objective function in each of the variables. This is
our first trial of developing integer programming-based techniques to solve sup-T
equation constrained optimization problems. Our computational results confirm the
efficiency of the proposed method and show its potential for solving large scale sup-T
equation constrained optimization problems.
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1 Introduction

Consider a sup-T equation constrained optimization problem in the following
form:
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(OP-T)
min z = f (x)

s.t. A ◦ x = b,

x ∈ [0, 1]n,

where f : [0, 1]n → R is a real-valued function, A = (ai j )m×n ∈ [0, 1]m×n, x =
(x j )n×1 ∈ [0, 1]n, b = (bi )m×1 ∈ [0, 1]m and ◦ stands for the specific sup-T compo-
sition with T being a continuous t-norm. In this way, A ◦x = b represents a system of
fuzzy relational equations with sup-T composition (or a system of sup-T equations
for short).

The resolution of a system of fuzzy relational equations with max- min composition
was first investigated by Sanchez (1976, 1977). It was shown in the literature that a
system of fuzzy relational equations are well defined with respect to the max-T (or
sup-T ) composite operation, with T being a continuous triangular norm. The mini-
mum operator is the most frequently used triangular norm (see, e.g., Pedrycz (1985)).
For a finite system of fuzzy relational equations with max-T composition, it is well
known that its consistency can be verified in polynomial time by constructing and
checking a potential maximum solution. Moreover, the solution set of a consistent
system of fuzzy relational equations with max-T composition can be characterized by
one maximum solution and a finite number of minimal solutions. However, as shown
in Elbassioni (2008), Li and Fang (2008), and Markovskii (2005), the detection of all
minimal solutions is a hard problem that is closely related to the hypergraph transversal
problem, for which the best known algorithm runs in incremental quasi-polynomial
time (see, e.g., Khachiyan et al. (2006)). Overviews of fuzzy relational equations and
their applications can be found in Li and Fang (2009) and Peeva and Kyosev (2004).

The problem of minimizing a linear objective function subject to a consistent
system of sup-TM equations was first investigated by Fang and Li (1999) and later by
Wu et al. (2002) and Wu and Guu (2005). Following the idea of Fang and Li (1999), the
linear optimization problem subject to a system of sup-TP equations was discussed by
Loetamonphong and Fang (2001), Guu and Wu (2002), and Ghodousian and Khorram
(2006), where TP is the product operator. Furthermore, this problem was investigated
under various composite operations by Wu and Guu (2005), Khorram and Ghodou-
sian (2006), and Abbasi Molai and Khorram (2007). However, it was pointed out by
Zimmermann (2007) and Shieh (2010) that the algorithms proposed by Khorram and
Ghodousian (2006) and Abbasi Molai and Khorram (2007), respectively, may not lead
to the optimal solution in some cases. Some other generalizations on this issue can
be found in Abbasi Molai and Khorram (2008). When the problem of minimizing a
nonlinear objective function is concerned, the situation could be very complicated.
Lu and Fang (2001) designed a genetic algorithm to solve nonlinear optimization
problems subject to a system of sup-TM equations. Yang and Cao (2007) considered a
special subclass of the problems of this type where the objective functions are posyno-
mials. Fuzzy relational equation constrained geometric programming was investigated
by Yang and Cao (2005), which is a generalization of the so-called latticized linear
programming problem considered in Wang et al. (1991). The multi-objective opti-
mization problem was discussed in Wang (1995) and Loetamonphong et al. (2002).
These papers considered solving the sup-T equation constrained optimization prob-
lems with some specific compositions as well as the relatively small size instances.
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When larger scale sup-T equation constrained optimization problems are faced, a sys-
tematic method is needed. Most recently, it was shown by Li and Fang (2008) that the
problem of minimizing an objective function subject to a system of fuzzy relational
equations can be reduced to a 0−1 mixed integer programming problem in polynomial
time. If the objective function is linear, or more generally, separable and monotone in
each of the variables, then it can be further reduced to a set covering problem.

The set covering problem (SCP) is known to be one of Karp’s 21 NP-complete
problems and has been extensively studied. See, for instance, Caprara et al. (2000)
and Golumbic and Hartman (2005). Many algorithms have been proposed in the liter-
ature for finding the exact solution to the problem (see Balas and Ho (1980), Beasley
(1987), Fisher and Kedia (1990), and Balas and Carrera (1996).) Since the computa-
tional time is long for any exact algorithm, large set covering problems are usually
solved by means of a greedy type heuristic. Classical greedy algorithms are very fast in
practice, but typically do not provide high quality solutions, as reported in Balas and
Ho (1980) and Balas and Carrera (1996). The most effective heuristic approaches
to SCP are those based on Lagrangian relaxation with subgradient optimization,
following the work of Balas and Ho (1980), and then the improvements of Beasley
(1990), Fisher and Kedia (1990), and Balas and Carrera (1996). An alternative for
Lagrangian relaxation is the surrogate relaxation. Lopes and Lorena (1994) proposed
an effective heuristic approach based on continuous surrogate relaxation and subgra-
dient optimization. The experimental results reported in Lopes and Lorena (1994)
suggested that the use of surrogate instead of Lagrangian relaxation with subgradient
optimization allows one to obtain near optimal multipliers in a shorter computing time.
Beasley and Chu proposed a genetic algorithm-based heuristic approach in Beasley
and Chu (1996). Their computational results showed that the genetic algorithm is
capable of producing high-quality solutions for the set covering problems.

This paper follows the idea of Li and Fang (2008) and considers the solutions to
the sup-T equation constrained optimization problems. Taking advantage of the well
developed techniques and clarity of exposition in the theory of integer programming,
a set covering-based surrogate approach is proposed to solve the sup-T equation con-
strained optimization problem with a separable and monotone objective function in
each of the variables. This approach essentially provides a systematic method for
solving the sup-T equation constrained optimization problems from an integer pro-
gramming viewpoint. Computational results of our experiments confirm the efficiency
of the proposed method and show its potential for solving large scale sup-T equation
constrained optimization problems.

The rest of this paper is organized as follows. Some basic concepts and important
properties associated with fuzzy relational equations are provided in Sect. 2. In Sect. 3,
we summarize the related results in Li and Fang (2008), which shows that the sup-T
equation constrained optimization problem with a separable and monotone objective
function in each of the variables can be polynomially reduced to a set covering prob-
lem. To solve the resulting set covering problem, a surrogate heuristic algorithm is
presented in Sect. 4. Numerical examples are included in Sect. 5 to illustrate the set
covering-based surrogate approach for solving the sup-T equation constrained opti-
mization problems. Conclusions are provided in Sect. 6.
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2 Preliminaries

In this section, we recall some basic concepts and important properties associated with
fuzzy relational equations, which are indispensable for the introduction of the sup-T
equation constrained optimization problems in this context. All proofs are omitted
to keep the paper succinct and readable. Readers may refer to Klement et al. (2000)
for a rather complete overview of triangular norms, and to Li and Fang (2008), Li
et al. (2008), and Li and Fang (2009) for the detailed analysis on the resolution and
optimization of a system of sup-T equations.

2.1 Triangular norms

It is well known that a system of fuzzy relational equations can be well defined with sup-
T composition, where T is a continuous triangular norm. A triangular norm (t-norm
for short) is a binary operator T : [0, 1]2 → [0, 1], such that for all x, y, z ∈ [0, 1],
the following four axioms are satisfied:

(T1) T (x, y) = T (y, x), (commutativity);
(T2) T (x, T (y, z)) = T (T (x, y), z), (associativity);
(T3) T (x, y) ≤ T (x, z), whenever y ≤ z,(monotonicity);
(T4) T (x, 1) = x, (boundary condition).

Since t-norms are just binary algebraic operators on the real unit interval [0, 1], the
infix notation like x ∧t y is usually used in the literature instead of the prefix notation
T (x, y).

A t-norm T is said to be continuous if it is continuous as a real function of two
arguments. Due to its commutativity and monotonicity properties, a t-norm is contin-
uous if and only if it is continuous in one of its arguments. Analogously, a t-norm is
said to be left- or right-continuous if it is left- or right-continuous, respectively, in one
of its arguments. The three most important continuous t-norms are the minimum TM ,

the product TP , and the Łukasiewicz t-norm TL defined, respectively, by

TM (x, y) = min(x, y), (minimum, Gödel t-norm, Zadeh t-norm),
TP (x, y) = x · y, (probabilistic product, Goguen t-norm),
TL(x, y) = max(x + y − 1, 0), (bounded difference, Łukasiewicz t-norm).

To characterize the solution set of the system of sup-T equations, two residual oper-
ators can be defined with respect to a continuous t-norm T .

Definition 2.1 The binary residual operators IT : [0, 1]2 → [0, 1] and JT :
[0, 1]2 → [0, 1] with respect to a t-norm T are defined, respectively, by

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y},
JT (x, y) = inf{z ∈ [0, 1] | T (x, z) ≥ y}.

The residual operator IT is known as a residual implicator or briefly an R-implicator
in fuzzy logic while the residual operator JT has no particular logical interpreta-
tion. The infix notations are usually used to denote these two residual operators, i.e.,
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Table 1 Residual operators of the Gödel, Goguen, and Łukasiewicz t-norms

T IT (x, y) JT (x, y)

TM

{
1, if x ≤ y,

y, otherwise.

{
1, if x < y,

y, otherwise.

TP

{
1, if x ≤ y,
y
x , otherwise.

⎧⎨
⎩

1, if x < y,
y
x , if 0 < y ≤ x,

0, otherwise.

TL min(1− x + y, 1)

⎧⎨
⎩

1, if x < y,

1− x + y, if 0 < y ≤ x,

0, otherwise.

IT (x, y) = xϕt y and JT (x, y) = xσt y, respectively. In the literature of fuzzy rela-
tional equations, the residual implicators are also known as ϕ-operators which were
introduced by Pedrycz (1985) in a different approach to describing the solutions of
sup-T equations. The residual operator JT was also discussed in Di Nola et al. (1989)
with a slightly different definition.

Theorem 2.1 Let T be a left-continuous t-norm and IT its associated residual
implicator. It holds for all a, b ∈ [0, 1] that T (a, x) ≤ b if and only if x ≤ IT (a, b).

Theorem 2.2 Let T be a continuous t-norm and IT and JT its associated residual
operators. The equation T (a, x) = b has a solution for given a, b ∈ [0, 1] if and only
if b ≤ a, in which case the solution set of T (a, x) = b is given by the closed interval
[JT (a, b), IT (a, b)].

Theorem 2.1 plays a crucial role in the resolution of sup-T equations, which is actu-
ally a special scenario of the general theory of Galois connections Blyth and Janowitz
(1972). The residual operators IT and JT of the three most important continuous
t-norms are listed in Table 1.

2.2 Resolution of systems of sup-T equations

2.2.1 Solvability and the solution set

In this section, we focus on the resolution of a finite system of fuzzy relational equations
A ◦ x = b with sup-T composition where T is a continuous t-norm and the coeffi-
cient matrix A = (ai j )m×n ∈ [0, 1]mn, the unknown vector x = (x j )n×1 ∈ [0, 1]n
and the right hand side constants b = (bi )m×1 ∈ [0, 1]m . For the convenience of
description, two index sets are defined by M = {1, 2, . . . , m} and N = {1, 2, . . . , n}.
The set of all solutions to A ◦ x = b is called its complete solution set and denoted
by S(A, b) = {x ∈ [0, 1]n | A ◦ x = b}. A partial order can be defined on S(A, b)

by extending the natural order such that for any x1, x2 ∈ S(A, b), x1 ≤ x2 if and
only if x1

j ≤ x2
j for all j ∈ N . A system of sup-T equations A ◦ x = b is called

consistent if S(A, b) �= ∅, otherwise, it is inconsistent. Due to the monotonicity of
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the t-norm involved in the composition, if x1, x2 ∈ S(A, b) and x1 ≤ x2, any x such
that x1 ≤ x ≤ x2 is also in S(A, b). Therefore, the attention could be focused on the
so-called extremal solutions as defined below.

Definition 2.2 A solution x̌ ∈ S(A, b) is called a minimal or lower solution if for any
x ∈ S(A, b), the relation x ≤ x̌ implies x = x̌. A solution x̂ ∈ S(A, b) is called the
maximum or greatest solution if x ≤ x̂,∀ x ∈ S(A, b).

Theorem 2.3 Let A ◦ x = b be a system of sup-T equations. A vector x ∈ [0, 1]n is
a solution to A ◦ x = b if and only if there exists an index ji ∈ N for each i ∈ M such
that

ai ji ∧t x ji = bi and ai j ∧t x j ≤ bi , i ∈ M, j ∈ N .

Theorem 2.3 holds in a straightforward way due to the non-interactivity property of
the maximum operator, i.e., a∨b ∈ {a, b}. Theorems 2.2 and 2.3 lead to the following
well-known solvability criteria of a system A ◦ x = b and the characterization of its
solution set, both of which were first seen in Sanchez (1976, 1977).

Theorem 2.4 Let A ◦ x = b be a system of sup-T equations with a continuous
t-norm T . The system is consistent if and only if the vector AT ϕt b with its components
defined by

(AT ϕt b) j = inf
i∈M

IT (ai j , bi ), j ∈ N ,

is a solution to A ◦ x = b. Moreover, if the system is consistent, the complete solution
set S(A, b) can be determined by a unique maximum solution and a finite number of
minimal solutions, i.e.,

S(A, b) =
⋃

x̌∈Š(A,b)

{x ∈ [0, 1]n | x̌ ≤ x ≤ x̂},

where Š(A, b) is the set of all minimal solutions to A ◦ x = b and x̂ = AT ϕt b.

Clearly, the consistency of a system A ◦ x = b can be detected by constructing
and checking the potential maximum solution in a time complexity of O(mn). The
detection of all minimal solutions is rather complicated and a very interesting issue
for investigation. It has been observed for a long time that the detection of minimal
solutions is closely related with the set covering problem. See, e.g., Markovskii (2005).

2.2.2 Minimal solutions and set covering problems

The close relation between minimal solutions of a system of sup-T equations and some
set covering problems has been noticed and described from various aspects since the
structure of the complete solution set was fully understood. It provides some important
information for the analysis of the number of minimal solutions and the development
of algorithms to obtain all the minimal solutions.
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With the potential maximum solution x̂, the characteristic matrix Q̃ = (q̃i j )m×n of
a system A ◦ x = b can be defined by

q̃i j =
{ [JT (ai j , bi ), x̂ j ], if T (ai j , x̂ j ) = bi ,

∅, otherwise,

and obtained in a time complexity of O(mn). It was reported in Li and Fang (2008) that
when T is a continuous Archimedean t-norm of which the product operator TP and the
Łukasiewicz t-norm TL are typical representatives, the nonempty elements in Q̃ are
always singletons with their values determined by the potential maximum solution.
The characteristic matrix Q̃ in this case can be further simplified as Q = (qi j )m×n

with

qi j =
{

1, if q̃i j �= ∅,
0, otherwise.

Definition 2.3 Let Q = (qi j )m×n ∈ {0, 1}mn be a binary matrix. A column j is said
to cover a row i if qi j = 1. A set of nonzero columns P forms a covering of Q if each
row of Q is covered by some column from P. A column j in a covering P is called
redundant if the set of columns P\{ j} remains to be a covering of Q. A covering P
is irredundant if it has no redundant columns. The set of all coverings of Q is denoted
by P(Q) while the set of all irredundant coverings of Q is denoted by P̌(Q).

It is well-known that the set of all coverings P(Q) of a binary matrix Q can be well
represented by the feasible solution set of a set covering problem, i.e.,{u ∈ {0, 1}n |
Qu ≥ e} where e = (1, 1, . . . , 1)T ∈ {0, 1}m, while the irredundant coverings of Q
correspond to the minimal elements in {u ∈ {0, 1}n | Qu ≥ e}.
Theorem 2.5 Let A ◦ x = b be a system of sup-T equations with T being a con-
tinuous Archimedean t-norm. The set of all minimal solutions Š(A, b) of the system
A ◦ x = b is one-to-one corresponding to the set of all irredundant coverings P̌(Q)

of its simplified characteristic matrix Q.

Theorem 2.5 indicates that determining all minimal solutions to a system A◦x = b
with a continuous Archimedean t-norm T is equivalent to determining all irredun-
dant coverings of its simplified characteristic matrix, which can be interpreted as a
procedure of finding the minimal cover of Q.

When the system of sup-T equations A ◦ x = b with T being a continuous non-
Archimedean t-norm, the situation turns out to be a little bit complicated. Denote
r j the numbers of different values in {JT (ai j , bi ) | T (ai j , x̂ j ) = bi , i ∈ M} for
each j ∈ N , r = ∑

j∈N r j , K j = {1, 2, . . . , r j }, and v̌ jk, for k ∈ K j , the differ-
ent values in {JT (ai j , bi ) | T (ai j , x̂ j ) = bi , i ∈ M} for every j ∈ N . Let v̌ =
(v̌11, . . . , v̌1r1 , . . . , v̌n1 , . . . , v̌nrn )

T ∈ [0, 1]r and

x j =
∑

k∈K j

v̌ jku jk, j ∈ N

123



132 C.-F. Hu, S.-C. Fang

where u jk ∈ {0, 1},∀ k ∈ K j , j ∈ N . Obviously, for each j ∈ N , at most one of
u jk, k ∈ K j can be 1, i.e.,

∑
k∈K j

u jk ≤ 1, j ∈ N . These restrictions are called the
innervariable incompatibility constraints and can be represented by Gu ≤ en, where
en = (1, 1, · · · , 1)T ∈ {0, 1}n, u = (u11, · · · , u1r1 , · · · , un1, . . . , unrn )

T ∈ {0, 1}r
and G = (g jk)n×r with

g jk =

⎧⎪⎨
⎪⎩

1, if
j−1∑
s=1

rs < k ≤
j∑

s=1

rs,

0 otherwise.

Actually, the incompatibility constraints with r j = 1 are redundant and hence can
be removed. Clearly, if r j = 1 for all j ∈ N , all the incompatibility constraints are
redundant and no additional difficulties will be imposed. In this case, the values of the
nonzero elements in a minimal solution are uniquely determined although they may
be different from those in the maximum solution.

As a consequence of this transformation, the characteristic matrix Q̃ can be con-
verted to its augmented characteristic matrix Q = (qik)m×r ∈ {0, 1}mr where

qik =

⎧⎪⎨
⎪⎩

1, if
j−1∑
s=1

rs < k ≤
j∑

s=1

rs, v̌k ∈ q̃i j , j ∈ N ,

0. otherwise.

Definition 2.4 Let Q = (qik)m×r ∈ {0, 1}mr and G = (q jk)n×r ∈ {0, 1}nr be two
binary matrices. A column k of Q is said to cover a row i of Q if qik = 1. A set of
nonzero columns P forms a G-covering of Q if each row of Q is covered by some
column in P, i.e., QuP ≥ em, and also satisfies GuP ≤ en where uP = (u P

k )r×1 and

u P
k =

{
1, if k ∈ P,

0, otherwise.

A column k in a G-covering P is called redundant if the set of columns P\{k}
remains to be a G-covering of Q. A G-covering P is irredundant if P has no redun-
dant columns. The set of all G-coverings of Q is denoted by PG(Q) while the set of
all irredundant G-coverings of Q is denoted by P̌G(Q).

Theorem 2.6 Let A ◦ x = b be a system of sup-T equations with T being a con-
tinuous non-Archimedean t-norm. Each minimal solution to A ◦ x = b corresponds
to an irredundant G-covering of Q, where Q and G are the augmented characteris-
tic matrix and the coefficient matrix of the innervariable incompatibility constraints,
respectively.

3 The sup-T equation constrained optimization problem with a separable
and monotone objective function in each of the variables

In this section, we discuss the sup-T equation constrained optimization problem with
a separable and monotone objective function in each of the variables. The material
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presented in this section is essentially based on Li and Fang (2008) with some modi-
fication.

When the problem (OP-T) has a linear objective function, it is of the form

(LO-T)
min z = cT x
s.t. A ◦ x = b,

x ∈ [0, 1]n,

where c = (c1, c2, . . . , cn)T ∈ Rn is the weight (or cost) vector, and c j represents the
weight associated with the variable x j , j = 1, 2, . . . , n.

Theorem 3.1 Let A◦x = b be a consistent system of sup-T equations with T being a
continuous t-norm. The maximum solution x̂ is an optimal solution that minimizes the
objective function z = cT x over S(A, b) if c j ≤ 0 for all j ∈ N . One of the minimal
solutions is an optimal solution that minimizes the objective function z = cT x over
S(A, b) if c j ≥ 0 for all j ∈ N .

Theorem 3.1 was first stated by Fang and Li (1999) for sup-TM equations, which
is valid for general continuous t-norms since it only depends on the structure of the
complete solution set S(A, b).

With the aid of Theorem 3.1, any given weight vector c = (c1, c2, . . . , cn)T ∈
Rn can be separated into two parts, i.e., c+ = (c+1 , c+2 , . . . , c+n )T and c− =
(c−1 , c−2 , . . . , c−n )T such that, for every j ∈ N ,

c+j =
{

c j , if c j > 0,

0, if c j ≤ 0,
and c−j =

{
0, if c j > 0,

c j , if c j ≤ 0.

Hence, c = c+ + c− with c+ ≥ 0 and c− ≤ 0. Two subproblems can be defined,
respectively, as

min z+ =
∑
j∈N

c+j x j

s.t. A ◦ x = b,

x ∈ [0, 1]n,

and

min z− =
∑
j∈N

c−j x j

s.t. A ◦ x = b,

x ∈ [0, 1]n .

Theorem 3.2 Let A ◦ x = b be a consistent system of sup-T equations with T being
a continuous t-norm. For any weight vector c = (c1, c2, . . . , cn)T ∈ Rn, the vector
x∗ = (x∗1 , x∗2 , . . . , x∗n )T with
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x∗j =
{

x+∗j , if c j > 0,

x̂ j , if c j ≤ 0,

is an optimal solution that minimizes the objective function cT x over S(A, b), where
x+∗ = (x+∗1 , x+∗2 , . . . , x+∗n )T is a solution that minimizes

∑
j∈N c+j x j over S(A, b),

and x̂ = (x̂1, x̂2, . . . , x̂n)T is the maximum solution that minimizes
∑

j∈N c−j x j over
S(A, b).

By Theorem 3.2, for an arbitrary weight vector, solving the linear optimization
problem subject to a system of sup-T equations can be decomposed into two subprob-
lems, one of which can be solved analytically while another is not easy to handle. The
subproblem with nonnegative weight vector is inevitably an NP-hard problem since
the classical set covering problem can be regarded as a special scenario of this problem.
On the other hand, this problem can be polynomially reduced to a set covering problem
or a constrained set covering problem, where the existence of additional constraints
depends on whether the involved continuous triangular norm is Archimedean or not.

Theorem 3.3 Let A◦x = b be a consistent system of sup-T equations with T being a
continuous Archimedean t-norm. Denote x̂ its maximum solution and Q its associated
simplified characteristic matrix. For any given weight vector c = (c1, c2, . . . , cn)T ,

the following problem

(LO− Ar)

min z+x =
∑
j∈N

c+j x j

s.t. A ◦ x = b,

x ∈ [0, 1]n,

is equivalent to the set covering problem

(SCP)

min z+u =
∑
j∈N

(c+j x̂ j )u j

s.t. Qu ≥ em,

u ∈ {0, 1}n,

in the sense that any optimal solution u∗ = (u∗1, u∗2, . . . , u∗n)T to problem (SCP)
defines an optimal solution x+∗ = (x̂1u∗1, x̂2u∗2, . . . , x̂nu∗n)T to problem (LO-Ar).

Theorem 3.4 Let A ◦ x = b be a consistent system of sup-T equations with T being
a continuous non-Archimedean t-norm. Denote x̂ its maximum solution, Q its aug-
mented characteristic matrix, and G the associated coefficient matrix of the innervari-
able incompatibility constraints. For any given weight vector c = (c1, c2, . . . , cn)T ,

the following problem

(LO− nAr)

min z+x =
∑
j∈N

c+j x j

s.t. A ◦ x = b,

x ∈ [0, 1]n,
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is equivalent to the constrained set covering problem

(CSCP)

min z+u =
∑
j∈N

∑
k∈K j

(c+j v̌ jk)u jk

s.t. Qu ≥ em,

Gu ≤ en,

u ∈ {0, 1}r ,

in the sense that any optimal solution u∗ = (u∗11, . . . , u∗1r1
, . . . , u∗n1, · · · , u∗nrn

)T to
problem (CSCP) defines an optimal solution

x+∗ =
⎛
⎝ ∑

k∈K1

v̌1ku∗1k,
∑

k∈K2

v̌2ku∗2k, . . . ,
∑

k∈Kn

v̌nku∗nk

⎞
⎠

T

to problem (LO-nAr).

Once the optimal solutions x+∗ to problems (LO-Ar) and (LO-nAr) are obtained
for any given weight vector c, the corresponding optimal solution that minimizes the
objective function cT x over S(A, b) can be obtained according to Theorem 3.2. More-
over, note that the weight c+j v̌ jk in problem (CSCP) is nonnegative for each k ∈ K j

and j ∈ N , and hence, the constraint Gu ≤ en can be further removed and the problem
(CSCP) consequently becomes a set covering problem.

The procedure for solving sup-T equation constrained linear optimization prob-
lems can be directly extended to the case where the objective function is separable and
monotone in each of the variables, i.e., z =∑

j∈N f j (x j ) with f j : [0, 1] → R being
a monotone function for every j ∈ N . Without loss of generality, we may assume that
f j (0) = 0 for every j ∈ N .

Theorem 3.5 Let A◦x = b be a consistent system of sup-T equations with T being a
continuous Archimedean t-norm. Denote x̂ its maximum solution and Q its associated
simplified characteristic matrix. Given the objective function z =∑

j∈N f j (x j ) with

f j : [0, 1] → R being a monotone function for every j ∈ N . Let N− 
= { j ∈ N |
f j i sadecreasing f unction}, N+ 
= N \ N−. The following problem

(SMO− Ar)

min z+x =
∑

j∈N+
f j (x j )

s.t. A ◦ x = b,

x ∈ [0, 1]n,

is equivalent to the set covering problem

(SMSCP)

min z+u =
∑

j∈N+
f j (x̂ j )u j

s.t. Qu ≥ em,

u ∈ {0, 1}n,
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in the sense that any optimal solution u∗ = (u∗1, u∗2, . . . , u∗n)T to problem (SMSCP)
defines an optimal solution x+∗ = (x̂1u∗1, x̂2u∗2, . . . , x̂nu∗n)T to problem (SMO-Ar).

Theorem 3.6 Let A ◦ x = b be a consistent system of sup-T equations with T
being a continuous non-Archimedean t-norm. Denote x̂ its maximum solution, Q its
augmented characteristic matrix, and G the associated coefficient matrix of the inner-
variable incompatibility constraints. Given the objective function z = ∑

j∈N f j (x j )

with f j : [0, 1] → R being a monotone function for every j ∈ N . The following
problem

(SMO− nAr)

min z+x =
∑

j∈N+
f j (x j )

s.t. A ◦ x = b,

x ∈ [0, 1]n,

is equivalent to the constrained set covering problem

(SMCSCP)

min z+u =
∑

j∈N+

∑
k∈K j

f j (v̌ jk)u jk

s.t. Qu ≥ em,

Gu ≤ en,

u ∈ {0, 1}r ,

in the sense that any optimal solution u∗ = (u∗11, . . . , u∗1r1
, . . . , u∗n1, . . . , u∗nrn

)T to
problem (SMCSCP) defines an optimal solution

x+∗ =
⎛
⎝ ∑

k∈K1

v̌1ku∗1k,
∑

k∈K2

v̌2ku∗2k, . . . ,
∑

k∈Kn

v̌nku∗nk

⎞
⎠

T

to problem (SMO-nAr).

Once the optimal solutions x+∗ = (x+∗1 , x+∗2 , . . . , x+∗n )T to problems (SMO-Ar)
and (SMO-nAr) are obtained, the corresponding optimal solution that minimizes the
objective function

∑
j∈N f j (x j ) over S(A, b), i.e. x∗ = (x∗1 , x∗2 , . . . , x∗n )T , can be

obtained with

x∗j =
{

x+∗j , if j ∈ N+,

x̂ j , if j ∈ N−.

Similarly, the weight f j (v̌ jk) in problem (SMCSCP) is nonnegative for each k ∈ K j

and j ∈ N+, and hence, the constraint Gu ≤ en can be further removed. Consequently,
the problem (SMCSCP) becomes a set covering problem.

According to above theorems, the problem of minimizing a separable and monotone
objective function in each of the variables subject to a system of sup-T equations, with
T being a continuous t-norm, can be polynomially reduced to a set covering problem.
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This reduction can be completed in a time complexity of O(mn) if the t-norm T is
Archimedean, or in a time complexity of O(m2n) if it is non-Archimedean.

The set covering problem is a well-known NP-hard combinatorial optimization
problem and, therefore, difficult to solve, i.e., computational time is high for any exact
algorithm. Hence, large set covering problems are usually solved by means of a greedy
type heuristic for quickly find optimal or near optimal solutions. However, classical
greedy algorithms typically do not provide high quality solutions, an effective heuristic
approach based upon continuous surrogate relaxations and subgradient optimization
has been proposed for solving set covering problems. The computational results in
Lopes and Lorena (1994) show that the surrogate heuristic approach is faster and more
stable than the well considered heuristic algorithms based on Lagrangian relaxations.

4 A surrogate heuristic for set covering problems

In this section, a surrogate heuristic for solving the resulting set covering problem of
the sup-T equation constrained optimization problem is presented.

Consider the set covering problem

min z =
∑
j∈J

c′j u j

s.t. Qu ≥ em,

u j ∈ {0, 1}, j ∈ J,

(1)

where c′j ≥ 0 represents the weight associated with the variable u j , j ∈ J

=

{1, 2, . . . , n′}, Q is a matrix (m× n′) of zeros and ones, em is the m-vector of 1’s, and
u j = 1 if column j is in the solution, u j = 0 otherwise.

The continuous surrogate relaxation of the set covering problem (1) can be defined
as follows:

(Sw)

min z =
∑
j∈J

c′j u j

s.t. wT Qu ≥ wT em,

u j ∈ [0, 1], j ∈ J,

where w = (w1, w2, . . . , wm)T ∈ Rm+ is the surrogate multiplier vector. It is easy
to observe that the continuous surrogate relaxation, (Sw), corresponds to a very par-
ticular case of a classical knapsack problem; in this case, its optimal solution can be
achieved resorting to the well known properties established for such problems. To find
the optimal solution of (Sw), for a given w ∈ Rm+, the efficiency of the j th variable of
(Sw) is defined as follows:

d j

= c′j

wT q j
, j ∈ J,
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where q j is the j th column of matrix Q. If the optimal solution uw =
(uw1, uw2, . . . , uwn′)T of (Sw) is assumed to be ordered according to their efficiency,
i.e., dw1 ≤ dw2 ≤ . . . ≤ dwn′ , then

uw =
⎛
⎝1, 1, 1, . . . , 1,

wT em −∑ j∗−1
j=1 wT qw j

wT qw j∗
, 0, 0, 0, . . . , 0

⎞
⎠ ,

where
∑ j∗−1

j=1 wT qw j ≤ wT em ≤∑ j∗
j=1 wT qw j and w j∗ is the index of the fractional

variable.
Let v(·) denotes the optimal value of problem (·). The problem to find a surrogate

multiplier vector w ∈ Rm+ that maximizes v(Sw) is called the surrogate dual problem.
We assume the reader is familiar with the duality theory in the combinatorial optimi-
zation (see, e.g., Parker (1988) for details). The surrogate heuristic is a procedure that
approximates the solution of the surrogate dual and provides a lower bound for the set
covering problem (1). A subgradient method is employed in the surrogate heuristic
to determine the optimal (near optimal) surrogate multipliers for the surrogate dual.
The use of subgradient procedure in the context of Lagrangian duality to solve struc-
tured combinatorial optimization problems has been shown to be very effective and to
work better than classical gradient procedures or column generation techniques Held
et al. (1974), Nemhauser and Wolsey (1988). For a given w ∈ Rm+, the subgradient
procedure in the surrogate heuristic uses the direction

G(w) = (G1(w), G2(w), . . . , Gm(w))T 
= em − Quw,

where uw is the optimal solution of (Sw) and uw j∗ is set to be 0. It generates a sequence
of nonnegative surrogate multiplier vectors w(0), w(1), . . . , where w(0) is a given initial
vector and w(l+1) is updated from w(l), l = 0, 1, 2, . . . , by the following formula:

w
(l+1)
i ← max{0, w

(l)
i + ρ

fub − flb

‖ G(w(l)) ‖2 Gi (w(l))}, i = 1, 2, . . . , m,

with fub and flb being the upper and lower bounds of the set covering problem (1),
respectively, and ρ being a parameter associated with the step size. It has been assured
that the direction G(w), for w ∈ Rm+, is a subgradient for the Lagrangian function

(Lλ)
min z =

∑
j∈J

c′j u j + λT (em − Qu),

s.t. u j ∈ {0, 1}, j ∈ J,

by setting λ = (c′w j∗/wT qw j∗)·w, and it is also immediate that v(Lλ) = v(Sw) Lorena
and Plateau (1988). As a consequence it can be conjectured that the surrogate heuristic
is also a Lagrangian heuristic. Computational tests in Lopes and Lorena (1994) for
large scale set covering problems (up to 1,000 rows and 12,000 columns) indicate the
surrogate heuristic approach produces better-quality results than algorithms based on
Lagrangian relaxations in terms of final solutions and mainly in computer times.
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A surrogate heuristic algorithm based upon continuous surrogate relaxations (Sw),

and subgradient optimization for solving the set covering problem (1) can be stated
as follows.

Surrogate heuristic algorithm

Step 1. Initialize. Let fub = +∞, flb = −∞ and w = em (w ≥ 0 and w �= 0);
Step 2. Solve (Sw) and let the solution be uw = (uw1, uw2, . . . , uwn′)T with optimal

value v(Sw) and w j∗ the index of the fractional variable.
Step 3. Construct a feasible solution for the set covering problem (1) using uw. Set

uw j∗ = 1 and construct a feasible solution u f = (u f1 , u f2 , . . . , u fn′ )
T for

(1) with value z(w) =∑
j∈J c′j u f j . This is done by extending uw by means

of a greedy heuristic.
Step 4. Update fub and flb. Let fub = min( fub, z(w)) and flb = max( flb, v(Sw)).

Step 5. Check the stopping rules in Sect. 4.1.3. If none holds, go to step 6. Otherwise,
stop and output u f as the optimal (near optimal) solution for the set covering
problem (1).

Step 6. Find the subgradient direction G(w) and the step size tw. Set uw j∗ = 0 and

define ρ

= α/dw j∗ for the new step size

tw

= ρ( fub − flb),

with α being a parameter, and update the vector w with

wi ← max{0, wi + twGi (w)/ ‖ G(w) ‖2}, i = 1, 2, . . . , m,

where

G(w) = em −
∑
j∈J

qw j uw j .

Return to step 2.

4.1 Implementation issues on the surrogate heuristic algorithm

In this section, some implementation issues on the surrogate heuristic algorithm
discussed in Lopes and Lorena (1994) are considered.

4.1.1 The construction of a feasible solution

Assume that the columns are ordered in increasing cost order, and the columns with
equal cost are ordered in decreasing order of number of rows that they cover. The pro-
cedure used for construction of a feasible solution u f using uw is similar to that one in
Beasley (1990). Set uw j∗ = 1 and for each row i which is uncovered (

∑
j∈J qi j uw j =

0) set uwk = 1, where k is the column corresponding to min{ j | qi j = 1, j ∈ J }.
After that, try to reduce the redundancies. To get a better feasible solution of the set

123



140 C.-F. Hu, S.-C. Fang

covering problem (1), a replacement heuristic Lopes and Lorena (1994) is consid-
ered to be applied after constructing a feasible solution u f in step 3 of the surrogate
heuristic algorithm.

Replacement Heuristic

Step RH1. For each variable equal to one in u f , set the variable equal to zero and
repeat the procedure above to obtain a feasible solution of the set covering
problem (1).

Step RH2. A number of different feasible solutions are defined in step RH1. Take
the best of these solutions and denoted it by ub with cost fb. If fb < z(w)

then set u f ← ub, z(w) ← fb, and return to step RH1. If fb ≥ z(w)

then stop.

4.1.2 The subgradient direction G(w) and the step size tw

Subgradient optimization can be viewed as a generalization of the steepest descent
method. It is well known that slow convergence and non-monotonic behavior are two
main undesirable features of subgradient methods (Lopes and Lorena (1994)). To pre-
vent these problems, an easily computational expression, suggested in Lorena and
Plateau (1988), can be used for the step size

tw = ρ · ( fub − flb), setting ρ = α/dw j∗ .

According to the discussion in Lopes and Lorena (1994), the parameter α is empir-
ically initialized to obtain tw/ ‖ G(w) ‖2= 20, in the first iteration. If flb has not
been increased in the last 6 iterations then set α = 0.90α. In some instances the value
of the step size can be too large at the initial iterations, and a superior limit of 20 is
imposed to tw/ ‖ G(w) ‖2 .

4.1.3 Stopping rules

The algorithm stops when one of the following conditions is satisfied. These condi-
tions determine when the algorithm stops either because the optimum (near optimum)
has been found or because the rate of convergence is too slow.

(a) The number of iterations is greater than 1000; or
(b) fub− flb < ε with a sufficiently small ε > 0, fub is an optimal value for the set

covering problem; or
(c) the value flb has not increased more than 1% in the last 10 computed values.

4.1.4 An initial reduction

For the implementation of the surrogate heuristic algorithm, an initial reduction of the
set covering problem (1) is considered. A number of reduction tests are well known in
the literature (Beasley (1987)). Some of those found to be more effective are employed
in our implementation. The initial reduction tests are conducted before the surrogate
heuristic algorithm.
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(i) Column domination. Any column j whose rows {i | qi j = 1, i = 1, 2, . . . , m}
can be covered by other columns for a cost less than c′j can be deleted from the
problem. Assume that the columns are ordered in increasing cost order, and the
columns with equal cost are ordered in decreasing order of number of rows that
they cover. Let

βi = min{ j | qi j = 1, j ∈ J }, i = 1, 2, · · · , m,

and

Hj =
m⋃

i=1

{βi | qi j = 1}, j ∈ J.

Then if
∑

k∈Hj
c′k < c′j , the column j can be deleted from the problem. This proce-

dure differs from the one suggested by Beasley (1987) since it avoids to add the cost
of a column more than once time. It is therefore about 20% more efficient in terms of
column reduction, with a very low overhead in computational time (Lopes and Lorena
(1994)).

(ii) Column inclusion. If a row i, i = 1, 2, . . . , m, is covered by only one column,
this column must be at the optimal solution. Note that when a column is set to be
at the optimal solution, all the rows (constraints) that are covered by this column
are automatically satisfied and can be deleted from the problem.

(iii) Null column reduction. Applying the tests above may result in columns which
cover no rows, i.e. they are null columns. Those columns must be deleted from
the problem.

5 Numerical examples

In this section, numerical examples are provided to illustrate the set covering-based
surrogate approach for solving the sup-T equation constrained optimization problems.

Example 5.1 Consider a system of sup-TP equations A◦x = b with a linear objective
function studied in Loetamonphong and Fang (2001).

min zx = −4x1 + 3x2 + 2x3 + 3x4 + 5x5 + 2x6 + x7 + 2x8 + 5x9 + 6x10

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.6 0.5 0.1 0.1 0.3 0.8 0.4 0.6 0.2 0.1
0.2 0.6 0.9 0.6 0.8 0.4 0.5 0.3 0.5 0.3
0.5 0.9 0.4 0.2 0.8 0.1 0.4 0.4 0.7 0.6
0.3 0.5 0.7 0.5 0.8 0.1 0.8 0.3 0.4 0.6
0.7 0.8 0.5 0.4 0.8 0.2 0.4 0.1 0.9 0.6
0.5 0.9 0.7 0.1 0.5 0.8 0.7 0.2 0.9 0.4
0.2 0.3 0.4 0.7 0.5 0.8 0.3 0.5 0.7 0.4
0.8 0.8 0.7 0.5 0.8 0.3 0.4 0.7 0.2 0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
◦ x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.48
0.56
0.72
0.56
0.64
0.72
0.42
0.64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x j ∈ [0, 1], j = 1, 2, . . . , 10. (2)

The system of sup-TP equations has the maximum solution x̂=(0.8, 0.8, 0.622, 0.6,

0.7, 0.525, 0.7, 0.8, 0.6, 0.8)T .
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The associated characteristic matrix is:

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8 0 0 0 0 0 0 0.8 0 0
0 0 0.622 0 0.7 0 0 0 0 0
0 0.8 0 0 0 0 0 0 0 0
0 0 0 0 0.7 0 0.7 0 0 0
0 0.8 0 0 0 0 0 0 0 0
0 0.8 0 0 0 0 0 0 0 0
0 0 0 0.6 0 0.525 0 0 0.6 0

0.8 0.8 0 0 0 0 0 0 0 0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The associated set covering problem is:

min z+u = 0u1 + 2.4u2 + 1.244u3 + 1.8u4 + 3.5u5 + 1.05u6 + 0.7u7 + 1.6u8

+3u9 + 0.48u10

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0
1 1 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
u2
u3
u4
u5
u6
u7
u8
u9
u10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u1, u2, u3, u4, u5, u6, u7, u8, u9, u10 ∈ {0, 1}. (3)

Initial reduction tests are conducted for the set covering problem (3) before the heu-
ristic surrogate algorithm with β1 = 1, β2 = 3, β3 = 2, β4 = 7, β5 = 2, β6 = 2,

β7 = 6, β8 = 1.

Since
∑

k∈Hj
c′k < c′j , j = 4, 5, 8, 9, 10, the columns j = 4, 5, 8, 9, 10, can be

deleted from the problem and the reduced problem can be stated as follows:

min z+u = 0u1 + 2.4u2 + 1.244u3 + 1.8u4 + 3.5u5 + 1.05u6 + 0.7u7 + 1.6u8

+3u9 + 0.48u10

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u1
u2
u3
u6
u7

⎞
⎟⎟⎟⎟⎠ ≥

⎛
⎜⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎟⎠

u1, u2, u3, u4, u5, u6, u7, u8, u9, u10 ∈ {0, 1}. (4)
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Applying the heuristic surrogate algorithm for the set covering problem (4), we
first find the solution for the linear surrogate relaxation (Sw) of (4).

At iteration #1:
For a given w = (1, 1, 1, 1, 1, 1, 1, 1)T , the continuous surrogate relaxation (Sw)

of (4) is

min z+u = 0u1 + 2.4u2 + 1.244u3 + 1.8u4 + 3.5u5 + 1.05u6 + 0.7u7

+1.6u8 + 3u9 + 0.48u10

s.t. 2u1 + 4u2 + u3 + u6 + u7 ≥ 8

u1, u2, u3, u4, u5, u6, u7, u8, u9, u10 ∈ {0, 1}.

Compute d1 = 0
2 , d2 = 2.4

4 , d3 = 1.244
1 , d6 = 1.05

1 , d7 = 0.7
1 , we have

d1 ≤ d2 ≤ d7 ≤ d6 ≤ d3,

and dw1 = d1, dw2 = d2, dw3 = d7, dw4 = d6, dw5 = d3.

Since wT q1+wT q2 +wT q7 ≤ wT e8 ≤ wT q1+wT q2 +wT q7+wT q6, we have
w j∗ = 6. The optimal solution

uw = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10)
T

= (1, 1, 0, 0, 0, 1, 1, 0, 0, 0)T

with the optimal value v(Sw) = 4.15.

To construct a feasible for the set covering problem (4) using uw and setting
uw j∗ = u6 = 1. For row 2 which is uncovered (

∑
j∈J q2 j uw j = 0) set u3 = 1.

A feasible solution

u f = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10)
T = (1, 1, 1, 0, 0, 1, 1, 0, 0, 0)T

is then obtained with z(w) = 5.394.

Update fub ← 5.394 and flb ← 4.15.

To compute the subgradient direction and step size, set uw j∗ = u6 = 0 and the
direction

G(w) = em −
∑
j∈J

q j uw j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
1
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The step size

tw = ρ · (5.394− 4.15), setting ρ = α/d6.
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Since the parameter α is initialized to obtain tw/ ‖ G(w) ‖2= 20, we have

w1 ← max{0, 1+ 0 · 20} = 1,

w2 ← max{0, 1+ 1 · 20} = 21,

w3 ← max{0, 1+ 0 · 20} = 1,

w4 ← max{0, 1+ 0 · 20} = 1,

w5 ← max{0, 1+ 0 · 20} = 1,

w6 ← max{0, 1+ 0 · 20} = 1,

w7 ← max{0, 1+ 1 · 20} = 21,

w8 ← max{0, 1− 1 · 20} = 0.

At iteration #2
For w = (1, 21, 1, 1, 1, 1, 21, 0)T , the continuous surrogate relaxation Sw is

min z+u = 0u1 + 2.4u2 + 1.244u3 + 1.8u4 + 3.5u5 + 1.05u6 + 0.7u7

+1.6u8 + 3u9 + 0.48u10

s.t. u1 + 3u2 + 21u3 + 21u6 + u7 ≥ 47

u1, u2, u3, u4, u5, u6, u7, u8, u9, u10 ∈ {0, 1}.

Compute d1 = 0
1 , d2 = 2.4

3 , d3 = 1.244
21 , d6 = 1.05

21 , d7 = 0.7
1 , we have

d1 ≤ d6 ≤ d3 ≤ d7 ≤ d2,

and dw1 = d1, dw2 = d6, dw3 = d3, dw4 = d7, dw5 = d2.

Since wT q1 + wT q6 + wT q3 + wT q7 ≤ wT e8 ≤ wT q1 + wT q6 + wT q3 + wT

q7 + wT q2, we have w j∗ = 2. The optimal solution

uw = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10)
T

= (1, 1, 1, 0, 0, 1, 1, 0, 0, 0)T

with the optimal value v(Sw) = 5.394.

To construct a feasible for the set covering problem (4) using uw and setting
uw j∗ = u2 = 1. A feasible solution

u f = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10)
T

= (1, 1, 1, 0, 0, 1, 1, 0, 0, 0)T

is then obtained with z(w) = 5.394.

Update fub ← 5.394 and flb ← 5.394.

Since fub = flb, x∗ = (0.8, 0.8, 0.622, 0, 0, 0.525, 0.7, 0, 0, 0) is an optimal
solution with the objective value zx = 2.194 for the set covering problem (4).
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Example 5.2 Consider a system of sup-TM equations A◦x = b with a linear objective
function studied in Wu et al. (2002).

min zx = 0.7x1 + x2 + 1.1x3 + 1.4x4 + 1.5x5 + 2x6

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎝

0.6 0.5 0.6 0.6 0.6 0.2
0.1 0.6 0.8 0.5 0.6 0.7
0.8 0.8 0.5 0.8 0.2 0.8
0.8 0.95 0.1 0.3 0.9 0.9
0.9 0.8 0.4 0.95 0.4 1
1 0.8 0.4 1 1 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠
◦ x =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.6
0.7
0.8
0.9

0.95
1

⎞
⎟⎟⎟⎟⎟⎟⎠

x j ∈ [0, 1], j = 1, 2, . . . , 6. (5)

The system of sup-TM equations has the maximum solution x̂ = (1, 0.9, 0.7, 1,

1, 0.95)T .

The associated characteristic matrix is:

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

[0.6, 1] ∅ [0.6, 0.7] [0.6, 1] [0.6, 1] ∅
∅ ∅ 0.7 ∅ ∅ [0.7, 0.95]

[0.8, 1] [0.8, 0.9] ∅ [0.8, 1] ∅ [0.8, 0.95]
∅ 0.9 ∅ ∅ [0.9, 1] [0.9, 0.95]
∅ ∅ ∅ [0.95, 1] ∅ 0.95
1 ∅ ∅ 1 1 ∅

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and v̌= (v̌11, v̌12, v̌13, v̌21, v̌22, v̌31, v̌32, v̌41, v̌42, v̌43, v̌44, v̌51, v̌52, v̌53, v̌61, v̌62, v̌63,

v̌64)
T= (0.6, 0.8, 1,0.8, 0.9, 0.6.0.7, 0.6, 0.8, 0.95, 1,0.6, 0.9, 1,0.7, 0.8, 0.9,0.95)T.

The associated set covering problem is

min z+u = 0.42u11 + 0.56u12 + 0.7u13 + 0.8u21 + 0.9u22 + 0.66u31 + 0.77u32 + 0.84u41

+1.12u42 + 1.33u43 + 1.4u44 + 0.9u51 + 1.35u52 + 1.5u53 + 1.4u61 + 1.6u62

+1.8u63 + 1.9u64

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1
0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

u ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

u = (u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64)T ∈ {0, 1}18. (6)

Initial reduction tests are conducted for the set covering problem (6) before the sur-
rogate heuristic algorithm with β1 = 11, β2 = 32, β3 = 12, β4 = 22, β5 = 43,

β6 = 13. Since
∑

k∈Hj
c′k < c′j , j = 21, 31, 41, 42, 51, 52, 61, 62, the associated

columns can be deleted from the problem and the reduced problem is stated as follows:
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min z+u = 0.42u11 + 0.56u12 + 0.7u13 + 0.8u21 + 0.9u22 + 0.66u31 + 0.77u32

+ 0.84u41 + 1.12u42 + 1.33u43 + 1.4u44 + 0.9u51 + 1.35u52

+1.5u53 + 1.4u61 + 1.6u62 + 1.8u63 + 1.9u64

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 1 1 1 0 0
0 0 0 0 1 0 0 0 1 1
0 1 1 1 0 1 1 0 1 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11
u12
u13
u22
u32
u43
u44
u53
u63
u64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64 ∈ {0, 1}. (7)

Applying the surrogate heuristic algorithm for the set covering problem (7),
we first find the solution for the continuous surrogate relaxation (Sw) of (7).

At iteration #1:
For a given w = (1, 1, 1, 1, 1, 1)T , the continuous surrogate relaxation (Sw) of

(7) is

min z+u = 0.42u11 + 0.56u12 + 0.7u13 + 0.8u21 + 0.9u22 + 0.66u31 + 0.77u32

+0.84u41 + 1.12u42 + 1.33u43 + 1.4u44 + 0.9u51 + 1.35u52 + 1.5u53

+1.4u61 + 1.6u62 + 1.8u63 + 1.9u64

s.t. u11 + 2u12 + 3u13 + 2u22 + 2u32 + 3u43 + 4u44 + 3u53 + 3u63

+ 4u64 ≥ 6, u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51,

u52, u53, u61, u62, u63, u64 ∈ {0, 1}.

Compute d11= 0.42
1 , d12= 0.56

2 , d13= 0.7
3 , d22= 0.9

2 , d32= 0.77
2 , d43= 1.33

3 ,

d44 = 1.4
4 , d53 = 1.5

3 , d63 = 1.8
3 , d64 = 1.9

4 we have

d13 ≤ d12 ≤ d44 ≤ d32 ≤ d11 ≤ d43 ≤ d22 ≤ d64 ≤ d53 ≤ d23,

and dw1 = d13, dw2 = d12, dw3 = d44, dw4 = d32, dw5 = d11, dw6 = d43,

dw7 = d22, dw8 = d64, dw9 = d53, dw10 = d23.

Since wT q13 + wT q12 ≤ wT e6 ≤ wT q13 + wT q12 + wT q44, we have w j∗ = 44.
The optimal solution can be obtained as

uw = (u12, u13, u44, u11, u21, u22, u31, u32, u41, u42, u43, u51, u52, u53,

u61, u62, u63, u64)
T = (1, 1,

1

4
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

with the optimal value v(Sw) = 1.61.
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To construct a feasible for the set covering problem (7) using uw and setting uw j∗ =
u44 = 1. By using replacement heuristic, a feasible solution

u f = (u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64)
T = (0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T

is then obtained with z(w) = 3.07.

Update fub ← 3.07 and flb ← 1.61.
To compute the subgradient direction and step size, set uw j∗ = u44 = 0 and the

direction

G(w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠
− 1 ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
− 1 ·

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
1
−1
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The step size tw = ρ · (3.07− 1.61), setting ρ = α/d44.

Since the parameter α is initialized to obtain tw/ ‖ G(w) ‖2= 20, we have

w1 ← max{0, 1+ (−1) · 20} = 0,

w2 ← max{0, 1+ 1 · 20} = 21,

w3 ← max{0, 1+ (−1) · 20} = 0,

w4 ← max{0, 1+ 1 · 20} = 21,

w5 ← max{0, 1+ 1 · 20} = 21,

w6 ← max{0, 1+ 0 · 20} = 1.

At iteration #2
For w = (0, 21, 0, 21, 21, 1)T , the continuous surrogate relaxation (Sw) of (7) is

minz+u = 0.42u11 + 0.56u12 + 0.7u13 + 0.8u21 + 0.9u22 + 0.66u31 + 0.77u32

+ 0.84u41 + 1.12u42 + 1.33u43 + 1.4u44 + 0.9u51 + 1.35u52 + 1.5u53

+1.4u61 + 1.6u62 + 1.8u63 + 1.9u64

s.t. u13 + 21u22+21u32 + 21u43+22u44 + 22u53 + 42u63 + 63u64 ≥ 64,

u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64 ∈ {0, 1}.

Compute d13 = 0.7
1 , d22 = 0.9

21 , d32 = 0.77
21 , d43 = 1.33

21 , d44 = 1.4
22 , d53 =

1.5
22 , d63 = 1.8

42 , d64 = 1.9
63 , we have

d64 ≤ d32 ≤ d63 ≤ d22 ≤ d43 ≤ d44 ≤ d53 ≤ d13
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and dw1 = d64, dw2 = d32, dw3 = d63, dw4 = d22, dw5 = d43, dw6 = d44, dw7 =
d53, dw8 = d13.

Since wT q64 ≤ wT e6 ≤ wT q64+wT q32, we have w j∗ = 32. The optimal solution

uw = (u64, u32, u11, u12, u13, u21, u22, u31, u41, u42, u43, u44, u51, u52, u53, u61,

u62, u63)
T = (1,

1

21
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

with the optimal value v(Sw) = 1.9367.

To construct a feasible solution for the set covering problem (7) using replacement
heuristic, a feasible solution

u f = (u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64)
T = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T

is then obtained with z(w) = 2.6.

Update fub ← 2.6 and flb ← 1.9367.

Taking ε = 1, since fub − flb < ε, x+∗ = (1, 0, 0, 0, 0, 0.95)T . By Theorem 2.2,
an optimal solution to problem (5) can be constructed as x∗ = (1, 0, 0, 0, 0, 0.95)T

with the optimal value z∗ = 2.6.

Example 5.3 Consider the system of sup-TM equations in Example 5.1 with a sepa-
rable and monotone objective function in each of the variables described as follows:

min zx = x1(x1 − 4)+ (x2)
2 + (x3)

2 + x4 + (x5)
2 + x6

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎝

0.6 0.5 0.6 0.6 0.6 0.2
0.1 0.6 0.8 0.5 0.6 0.7
0.8 0.8 0.5 0.8 0.2 0.8
0.8 0.95 0.1 0.3 0.9 0.9
0.9 0.8 0.4 0.95 0.4 1
1 0.8 0.4 1 1 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠
◦ x =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.6
0.7
0.8
0.9

0.95
1

⎞
⎟⎟⎟⎟⎟⎟⎠

x j ∈ [0, 1], j = 1, 2, · · · , 6. (8)

As shown in Example 5.1, the system of sup-TM equations has the maximum solu-
tion x̂ = (1, 0.9, 0.7, 1, 1, 0.95)T . Its associated characteristic matrix is

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

[0.6, 1] ∅ [0.6, 0.7] [0.6, 1] [0.6, 1] ∅
∅ ∅ 0.7 ∅ ∅ [0.7, 0.95]

[0.8, 1] [0.8, 0.9] ∅ [0.8, 1] ∅ [0.8, 0.95]
∅ 0.9 ∅ ∅ [0.9, 1] [0.9, 0.95]
∅ ∅ ∅ [0.95, 1] ∅ 0.95
1 ∅ ∅ 1 1 ∅

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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In this case, N− = {1}, N+ = {2, 3, 4, 5, 6} and

v̌ = (v̌11, v̌12, v̌13, v̌21, v̌22, v̌31, v̌32, v̌41, v̌42, v̌43, v̌44, v̌51, v̌52, v̌53, v̌61, v̌62, v̌63, v̌64)T

= (0.6, 0.8, 1, 0.8, 0.9, 0.6.0.7, 0.6, 0.8, 0.95, 1, 0.6, 0.9, 1, 0.7, 0.8, 0.9, 0.95)T .

The associated set covering problem is

min z+u = 0 · u11 + 0 · u12 + 0 · u13 + 0.64u21 + 0.81u22 + 0.36u31 + 0.49u32 + 0.6u41

+ 0.8u42 + 0.95u43 + u44 + 0.36u51 + 0.81u52 + u53 + 0.7u61 + 0.8u62

+ 0.9u63 + 0.95u64

s.t.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1
0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

u ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

u = (u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64)T ∈ {0, 1}18. (9)

Initial reduction tests are conducted for the set covering problem (1) with β1 =
13, β2 = 32, β3 = 13, β4 = 22, β5 = 64, β6 = 13. Since

∑
k∈Hj

c′k < c′j , j = 21,

31, 41, 42, 44, 51, 53, 61, 62, the associated columns can be deleted from the prob-
lem. Moreover, after conducting column domination row 6 is covered by only column
13, hence rows 1, 3, 6 and the associated null columns can be deleted from the problem
with u13 = 1. The reduced problem is stated as follows:

min z+u = 0 · u11 + 0 · u12 + 0 · u13 + 0.64u21 + 0.81u22 + 0.36u31 + 0.49u32

+ 0.6u41 + 0.8u42 + 0.95u43 + u44 + 0.36u51 + 0.81u52 + u53

+ 0.7u61 + 0.8u62 + 0.9u63 + 0.95u64

s.t.

⎛
⎝ 0 1 0 0 1 1

1 0 0 1 1 1
0 0 1 0 0 1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u22
u32
u43
u52
u63
u64

⎞
⎟⎟⎟⎟⎟⎟⎠
≥

⎛
⎝ 1

1
1

⎞
⎠

u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64 ∈ {0, 1}. (10)

Applying the surrogate heuristic algorithm for the set covering problem (10), we
first find the solution for the continuous surrogate relaxation (Sw) of (10).

At iteration #1:
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For a given w = (1, 1, 1)T , the continuous surrogate relaxation (Sw) of (10) is

min z+u = 0 · u11 + 0 · u12 + 0 · u13 + 0.64u21 + 0.81u22 + 0.36u31 + 0.49u32

+0.6u41 + 0.8u42 + 0.95u43 + u44 + 0.36u51 + 0.81u52 + u53

+0.7u61 + 0.8u62 + 0.9u63 + 0.95u64

s.t.u22 + u32 + u43 + u52 + 2u63 + 3u64 ≥ 3,

u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63, u64 ∈ {0, 1}.

Compute d22 = 0.81
1 , d32 = 0.49

1 , d43 = 0.95
1 , d52 = 0.81

1 , d63 = 0.9
2 , d64 = 0.95

3 ,

we have

d64 ≤ d63 ≤ d32 ≤ d22 ≤ d52 ≤ d43

and dw1 = d64, dw2 = d63, dw3 = d32, dw4 = d22, dw5 = d52, dw6 = d43.

Since 0 ≤ wT e3 ≤ wT q64, we have w j∗ = 64. The optimal solution

uw = (u64, u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u63)
T = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

with the optimal value v(Sw) = 0.95.

To construct a feasible for the set covering problem (10) using uw, a feasible solu-
tion

u f = (u11, u12, u13, u21, u22, u31, u32, u41, u42, u43, u44, u51, u52, u53,

u61, u62, u64)
T = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T

is then obtained with z(w) = 0.95.

Update fub ← 0.95 and flb ← 0.95.

Since fub = flb, x+∗ = (1, 0, 0, 0, 0, 0.95)T . An optimal solution to problem (8)
can be constructed as x∗ = (1, 0, 0, 0, 0, 0.95)T with the optimal value z∗ = −2.05.

Notice that our results in Examples 5.1 and 5.2 are consistent with the results in
the literature Loetamonphong and Fang (2001) and Wu et al. (2002), respectively,
and indicate that the set covering-based surrogate approach finds the solutions very
quickly (at very early iterations).

6 Conclusions

This paper studies the optimal solutions to the sup-T equation constrained optimiza-
tion problems, with T being a continuous triangular norm. Taking advantage of the
well developed techniques and clarity of exposition in the theory of integer program-
ming, a set covering-based surrogate approach is proposed to solve the sup-T equation
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constrained optimization problem with a separable and monotone objective function
in each of the variables. Computational results show that the proposed method can
efficiently solve the sup-T equation constrained optimization problems. In fact, the
proposed method has been tested on most examples reported in the literature Fang and
Li (1999), Li and Fang (2008), Peeva and Kyosev (2004), and it finds the solutions
at very early iterations. This validates the properties of faster convergence and less
oscillation of the surrogate heuristic. With the aid of the initial reduction technique
and the replacement heuristic in the implementation, the performance of the proposed
method can be further improved. This study provides, for the first time, an opportunity
to solve the large scale sup-T equation constrained optimization problems.
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