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Abstract We indicate that the problem of prioritized criteria arises in situations in
which there exists a relationship between the criteria so that lack of satisfaction by
the higher priority criteria cannot be readily compensated for by satisfaction by lower
priority criteria. Typical of this situation is the relationship between safety and cost.
We consider the problem of criteria aggregation in this environment. Central to our
approach is the use of importance weights to enforce this prioritization imperative.
We apply our use of priority based importance weights to the case where the scope of
the criteria aggregation is an OWA type aggregation.

Keywords Multi-criteria · Aggregation operators · Decision-making · Lexicographic

1 Introduction

Many applications of modern computational technology involve the task of selecting
some object from a set of alternatives based upon the satisfaction of specified criteria.
With the wide spread use of database technologies underlying many commercial web-
sites this has become an important problem in E-commerce. Search and information
retrieval involve this task. Website personalization and customization to take advan-
tage of knowledge of consumer preferences and buying habits is based upon these
types of selections. Multi-criteria decision-making is also an application that involves
this task.

Central to this task is the aggregation of individual criteria satisfactions to obtain
an overall score for an alternative. These aggregated values can then be used to help
select between alternatives.
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246 R. R. Yager

If C = {C1, . . . , Cn} are a collection of criteria and C j (x) ∈ [0, 1] indicates the
satisfaction of alternative x to criteria C j then we indicate the overall satisfaction of x
to the collection of criteria, C(x), as C(x) = F(C1(x), …, Cn(x)). It is some function
of these individual satisfactions. In addition to the individual scores the formulation of
F depends upon the relationship between the criteria. Do we require “all” the criteria
or will just satisfying some of them be sufficient. We shall refer to this as the scope
of the organization of the criteria. Often the scope of the criteria organization can
be expressed using linguistic quantifiers Zadeh (1983); Yager (1996) such as “most”,
“almost all”, “some” or “any”. Generally the scope associated with a collection of
criteria is cardinality based and makes no distinction between the criteria.

The operators Mini [Ci (x)], Maxi [Ci (x)] and 1
n

∑
i Ci (x) are aggregation opera-

tors reflecting different scopes associated with the criteria. Linguistically they corre-
spond respectively to the quantifiers, “all”, “any” and “some”.

In Yager (1988) we introduced the OWA operator that provides a parameterized
class of aggregation operators that allows for the modeling of a wide array of different
expressions of the organizational scope associated with a collection of criteria. As
noted the scope associated with the organization of a collection of criteria is simply
cardinality based and makes no distinction between the criteria.

Other considerations that can effect the formulation of F are any distinction among
the criteria and interrelationship between the criteria. One such distinction is different
importance’s associated with the criteria.

Our comprehension of the meaning of importance is dependent upon the type of
aggregation being performed. In some cases it can be seen as reflecting the strength of
a criterion’s need for satisfaction. This is particularly the case for “anding” type aggre-
gation. In other cases the importance associated with a criteria can be seen to reflect
the ability of a criteria to contribute to the overall satisfaction. This is particularly the
case for the averaging operator.

Another interpretation of the concept of importance is as measuring the ability of an
increase of one criteria to compensate for a decrease in satisfaction in another criteria.
Here it is reflecting an idea of tradeoffs between criteria. From this perspective if wk

and wi are the importances of criteria Ck and Ci then the importances are telling us
we can compensate for a decrease of � in satisfaction to criteria Ck by gain wK

wi
� in

satisfaction to criteria Ci .
In some applications we may not want this kind of compensation between criteria.

Consider the situation in which an airline pilot is making a decision based on con-
sideration of gasoline cost and safety. In this situation we should not allow a benefit
with respect to cost of fuel to compensate for a loss in safety. Here we have a kind of
prioritization of the criteria. The relationship between the criteria is that safety has a
higher priority than cost.

In Yager (2008), and Yager et al. (2008) we look at aggregation methods which
allow for the modeling of this type of prioritized relationships between the criteria.
Central to the approach taken in Yager (2008) was to include priorities by using impor-
tance weights in which the importance of lower priority criteria was based upon the
satisfaction to the higher priority criteria. In Yager (2008) we applied this to the cases
of Max, Min and average operator. Here we generalize this technique to the case where
the scope of the aggregation is determined by an OWA operator.
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2 Prioritized aggregation

In Yager (2008) we introduced a class of aggregation operations called Prioritized
Average (PA) operators. These operators allow for an averaging aggregation of crite-
ria satisfaction for the case in which there exists a prioritization ordering among the
criteria. In the following we describe this aggregation operator.

Here we assume we have a collection of criteria C = {C1, . . . , Cn} and that there
is a prioritization between the criteria expressed by the linear ordering

C1 > C2 > C3 . . . > Cn .

In this ordering criteria Ci has a higher priority than Ck if i < k. In addition for
any alternative x and criteria C j the value Ci (x) ∈ [0, 1] indicates the satisfaction of
criteria Ci by x . The PA operator provides a weighted averaging aggregation of these
criteria satisfactions that reflects the prioritization of the criteria. For the above

C(x) = F(Ci (x)) =
n∑

i=1

wi Ci (x)

Here the weights, wi , are obtained using the prioritization relationship and the criteria
satisfactions in a method described in the following1. It is important here to emphasize
that the resulting form for C(x) is non-linear.

To obtain the weights we proceed as follows

1. We denote Sk = Ck(x)

2. With each criterion we associate a value ui = Ti , called its un-normalized weight,
defined as follows.

(i) Ti = 1

(ii) Ti =
i−1∏

k=1
SK for i = 2 to n (Ti = Si−1Ti−1)

From these un-normalized weights we obtain the normalized importance weights
as

wi = ui
∑n

j=1 u j

We see the importance weights of criteria are determined by the satisfaction of
the higher priority criteria. This situation enforces the goal of restricting the effect of
lower order criteria to compensate for lack of satisfaction of higher order criteria. In
particular, except for the first category, the weight of a criterion is proportional to the
product of the satisfaction of the criteria in the higher priority categories.

1 More formally, we should use wi (x) to represent the weights, as the weights are dependent on x .
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We make some observations about this approach. First in calculating Ti we used
Ti = Si−1Ti−1 an alternative is to use Ti = Min[Si−1, Ti−1]. In this case Ti is essen-
tially the value of the least satisfied alternative in class higher than Ci . The use of
product will allocate more importance to the higher priority items.

In Yager (2008) we showed that this operator has the necessary properties to be a
mean operator, it was monotonic, symmetrical and bounded.

In the following in order to get some feel for the performance of the PA operator
we look at it for some cases where the scores are drawn from the space {0, 1}. We
first consider the case of three criteria A, B, C where the priority is A > B > C

A B C F(A, B, C)

1 1 1 1
1 1 0 2/3
1 0 1 1/2
1 0 0 1/2
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

We observe that when the satisfaction to A is zero under no conditions do we get any
compensation from B and C . In the case when the satisfaction to A is one but the
satisfaction to B is zero we don’t get any compensation from C even if it is satisfied.

We now look at the case of four criteria with A > B > C > D. Again we see lack
of satisfaction to A blocks any compensation. Furthermore lack of satisfaction to B
blocks any possible contribution from C or D.

A B C D F(A, B, C, D)

1 1 1 1 1
1 1 1 0 3/4
1 1 0 1 2/3
1 1 0 0 2/3
1 0 1 1 1/2
1 0 1 0 1/2
1 0 0 1 1/2
1 0 0 0 1/2
0 1 1 1 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 0
0 0 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

In the preceding we indicated the values to be aggregated, the Ci (x), must be num-
bers in the unit interval. It is possible to relax this constraint. Let us assume Ci (x) ∈ Ri

where Ri is a subset of the real line. We can look at Ri as the range of values that Ci (x)
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can take. We can now associate with each criterion Ci a function Gi : Ri → [0, 1].
Here, Gi (r) indicates our degree of satisfaction with a value of r for criteria Ci . Using
this function we can modify our approach to allow for values of Ci (x) not in the unit
interval.

In particular for each criterion Ci we calculate Gi (Ci (x)). For simplicity we denote
this as di . Using this we proceed as follows

1. For each criterion we let Sk = dk

2. Again we calculate

(i) T1 = 1

(ii) Ti =
i−1∏

k=1
SK for i = 2 to n

Using these we then calculate wi = Ti∏n
i=1 Ti

and then finally we obtain as our evaluation

of alternative x

C(x) =
n∑

i=1

wi Ci (x)

In this situation while we aggregate the Ci (x) the weights are determined using the
Gi (Ci (x)).

Our objective now is to extend this prioritized type aggregation to the more general
class of OWA operators. In what follows we shall assume unless otherwise noted that
the Ci (x) ∈ [0, 1].

3 OWA operators

In Yager (1988) we introduced a parameterized class of mean type aggregation opera-
tors called the OWA operator, Ordered Weighted Averaging Operator. These operators
have been widely used in the task of multi-criteria aggregation Chiclana et al. (2000);
Herrera et al. (2003); Kacprzyk and Zadrozny (1997); Mitchell and Schaefer (2000);
Xu and Da (2002); Yager and Kacprzyk (1997).

Definition An OWA operator of dimension n is a mapping F : Rn → R so that

F(a1, . . . , an) =
n∑

j=1

w j b j

where b j is the j th largest of the ai and w j is a weight so that w j ∈ [0, 1] and∑
j w j = 1.

We can associate with an OWA operator a vector W , called the OWA weighting
vector, so that w j is the j th component of W . Here then the OWA operator is param-
eterized by W . Furthermore we can associate with the OWA aggregator an index
function, ind, so that ind(j) is the index of the j th largest of the ai . Using this we can
express F(a1, . . . , an) = ∑n

j=1 w j aind( j)
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250 R. R. Yager

Various different aggregation operators can be obtained by appropriate selection of
W . Some notable examples are the following. If w j = 1/n for all j then we get the
simple average. If w1 = 1 and w j = 0 for j �= 1 then we get the Max. If wn = 1 and
w j = 0 for j �= n we get the Min.

A useful parameter that can be associated with an OWA aggregator is its attitudinal
character. For an OWA aggregator with weighting vector W we define

A − C(W ) =
n∑

j=1

w j
n − j

n − 1

It can be shown that A − C(W ) ∈ [0, 1]. In the framework multi-criteria decision
making it has been shown the closer A − C(W ) is to one the more “orlike” the rela-
tionship between the criteria. On the other hand the closer A − C(W ) is to zero the
more “andlike” the relationship between the criteria. We also note that for the case
where w j = 1/n then we have A − C(W ) = 0.5.

Another characterizing feature of the weighting vector W is its degree of dispersion

H(W ) = −
n∑

j=1

w j ln(w j ).

As noted in Yager (1988) this indicates how much of the argument information is
used. For w j = 1/n for all j it assumes its maximal value of ln(n). For wk = 1 for
some argument it assumes the value zero. This is the minimal value. We can intro-
duce E(W ) = H(W )

ln(n)
as the normalized version of the measure of dispersion. Here,

E(W ) = [0, 1].
An important issue in the use of OWA operators is the determination of the weights.

Among the most common methods used for obtaining the weights are the following:

1. Direct choice of weight
2. Learn weights from data
3. Select a notable type of aggregation
4. Using a characterizing feature
5. Linguistic-functional specification

We shall just comment on the last three. There are many notable types of aggre-
gation that are OWA operators. As we already indicated the simple average is one of
these. Other examples are the Max, Min and Median. In Yager (1993) describes many
notable examples of the operator. In these cases the associated OWA weights are easily
identified. For example for the Max we have w1 = 1 and all other w j = 0. For the
Min we have wn = 1 and all others are zero. The median has w j = 1 for j = n+1

2 if
n is odd otherwise w j = 1/2 for j = n

2 and j = n
2 + 1. Thus in these special cases

we essentially have the associated weights.
The use of characterizing features was introduced by O’Hagan (1988, 1990). In

this approach we provide a value α ∈ [0, 1] as the desired attitudinal characterization
of the weighting vector. Using this we determine the weights that have the maximal
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dispersion. Thus in this method we solve the following mathematical programming
problem for the w j

Max −
n∑

j=1
w j ln(w j )

S/t
n∑

j=1
w j

n− j
n−1 = α

n∑

j=1
w j = 1

0 ≤ w j ≤ 1

As a result of solving this problem we end up with a set of OWA weights.
The use of linguistic-functional specification was introduced by Yager (1996). As-

sume f is a BUM2 function, a mapping f : [0, 1] → [0, 1] such that f (0) = 0, f (1) =
1 and f (x) ≥ f (y) if x > y. In Yager (1996) we showed that we could obtain the
set of n weights needed to define an OWA operator from this type of function by
assigning

w j = f

(
j

n

)

− f

(
j − 1

n

)

for j = 1 to n

It can be shown that the w j obtained satisfy the properties required of OWA weights:
w j ∈ [0, 1] and

∑
j w j = 1.

Thus using this method we can obtain an OWA weighted vector from a specified
function. In Yager (1996) we enhanced the useful of this approach. It was suggested
that starting with a linguistic specification describing the type of aggregation we can
express this linguistic specification as a fuzzy subset of the unit interval. Then the
membership function of this fuzzy subset can provide the function needed to generate
the weights as described above. A particularly important type of linguistic specifica-
tion is provided by linguistic quantifiers, such as most, almost, some etc. Thus here
we would have a specification such as “Most of the criteria must be satisfied”. Using
the technology provided by in Zadeh (1983) we would the express Most as a fuzzy
subset of the unit interval. This membership function is then used to obtain the OWA
Weights.

Since it is not our purpose here to dwell on the linguistic formulation of aggrega-
tion specifications we shall assume the availability of a functional specification of the
aggregation imperative.

4 Importance weighted OWA aggregation

When using OWA operators in the construction of multi-criteria aggregation functions
we must be able to include importance associated with each of the criteria. Here, we
assume a collection C1, . . . , Cn of criteria, and an importance weight v j ∈ [0, 1]

2 BUM is an acronym for Basic, Unit Interval, and Monotonic.
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associated with each criterion. For a given alternative x we allow Ci (x) ∈ [0, 1] to be
its satisfaction to the i th criteria. For notational simplicity, if no confusion arises, we
shall denote Ci (x) = ai . In this environment our task becomes the evaluation of

C(x) = OWA((a1, v1), (a2, v2), . . . , (an, vn))

That is we need provide the OWA aggregation of these tuples.
In Yager (1997) we suggested an approach to performing this type of aggregation

for the case in which the scope of OWA aggregation imperative is specified in terms
of a BUM function f of the type described above. We now review this approach.

In the following we shall again assume ind is an index function so that ind( j) is the
index of the j th largest of the ai . Here the aind( j) is the j th largest of ai and vind( j) is
its associated importance weight. We shall let R = ∑n

j=1 vind( j), it is the sum of the
importance weights. We are now in the position to obtain the OWA weights, u j , that
will be used in the aggregation. In this situation we calculate

u j = f

(
R j

R

)

− f

(
R j−1

R

)

where R j = ∑ j
k=1 Vind (k). We note R0 = 0. Thus R j is the sum of the importance

weights associated with the j th most satisfied criteria. Using these weights we obtain

OWA((a1, v1), . . . , (an, vn)) =
n∑

j=1

u j aind( j).

We should point out that if vind( j) = 0 then R j = R j−1 and hence f
(

R j
R

)
=

f
(

R j−1
R

)
and, therefore, u j = 0. Thus we see if the importance of an argument is

zero, its OWA weight is also zero.
In the preceding we suggested an approach to formulate the aggregation

OWA((a1, v1), (a2, v2), . . . (an, vn)) where the scope of the aggregation is guided
by a BUM function f . We shall now consider the situation when we start with an
OWA weighting vector W . Thus here we have a set of weights w j , j = 1 to n. We
must now modify these weights to include the different importance. In Torra (1997);
Torra and Narukawa (2007) Torra suggested an approach to obtaining these modified
weights.

The basic idea of the approach is described in the following. We assume there is
some unknown underlying BUM function f that has generated the original weights,

the w j . In particular w j = f
(

j
n

)
− f

(
j−1
n

)
. While we don’t completely know the

function f we know some of its properties. For example f (0) = 0 and f (1) = 1.

Furthermore, we also observe that f
(

j
n

)
= w j + f

(
j−1
n

)
. Since f (0) = 0 we

obtain that f
( 1

n

) = w1 and this allows us to obtain f
( 2

n

) = w2 + f
( 1

n

) = w2 + w2.

More generally we can obtain that for any j = 1 to n we have f
(

j
n

)
= ∑ j

k=1 wk and
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f (0) = 0. Denoting w0 = 0 we can express this as f
(

j
n

)
= ∑ j

k=0 wk for j = 0 to n.

Thus from the given weights can obtain the value of f (x) at the points x = j
n for

j = 0 to n. We are now faced with the question of selecting a function f that satisfies
these conditions.

Many possibilities exist for choosing this function. In Torra (1997); Torra and
Narukawa (2007) the author suggests modeling f as a piecewise linear function. In
particular it is suggested that with j = 1 to n we let

f (x) = m j x + b j for
j − 1

n
≤ x ≤ j

n
.

The parameters (m j , b j ) are determined so that the following pair of equations are
satisfied for each j

f

(
j − 1

n

)

= j − 1

n
m j + b j

f

(
j

n

)

= j

n
m j + b j

In this case f
(

j
n

)
− f

(
j−1
n

)
= m j

n and since also f
(

j
n

)
− f

(
j−1
n

)
= w j ; we

have
m j
n = w j and therefore m j = n w j . In addition, we have that

f

(
j

n

)

=
j∑

k=1

wk = nw j
j

n
+ b j

From this we get

b j =
j∑

k=1

(wk − w j ) =
j−1∑

k=1

(wk − w j ) =
j−1∑

k=1

wk − (n − 1)w j

therefore,

f (x) =
j−1∑

k=1

wk − nw j

(

x − j − 1

n

)

for
j − 1

n
≤ x ≤ j

n

or equivalently

f (x) = f

(
j − 1

n

)

+ w j (nx − ( j − 1)) for
j − 1

n
≤ x ≤ j

n

Using this function we can now obtain the weights u j that take into account both
the w j and individual importance weights of the criteria. In the following we shall
assume ri = Vi

R , it is the normalized weight. Thus ri ∈ [0, 1] and
∑

i ri = 1. With

123



254 R. R. Yager

rind( j) being the normalized importance weight of the j th largest ai we can calculate
∑ j

k=1 rind(k) = R j
R . Using this and our just determined formula for f we obtain as in

the preceding

u j = f

(
R j

R

)

− f

(
R j−1

R

)

Using this we can obtain the OWA aggregation

OWA((a1, v1), (a2, v2), . . . , (an, vn)) =
n∑

j=1

u j aind( j)

We note for the special case when w j = 1/n for all j we then have for any
j − 1 ≤ x < j .

f (x) =
(

j − 1

n

)

+ 1

n
(nx − ( j − 1)) = x

Here then f is simply a linear function, f (x) = 1. In this case we obtain that u j =
R j
R − R j−1

R = rind( j). Here then OWA((a1, v1), . . . , (an, v1)) = 1
R

∑
i vi ai . It is the

usual weighted average.
For the case where the importance weights are all the same, v j = 1/n, then

R j
R = j

n

and hence u j = f
(

j
n

)
− f

(
j−1
n

)
= w j . This is the same as the original when we

did not consider individual criteria importance.
We also observe if rind( j) = 0 then u j = 0, hence objects with zero importance

have zero weight.
Another special case is where wk = 1. In this case,

f (x) = 0 for x ≤ k−1
n

f (x) = nx − (k − 1) for k−1
n ≤ x ≤ k

n
f (x) = 1 for x ≥ k

n

We plot this function in Fig. 1. In this case, w j = 0 for all j such that R j ≤ k−1
n and

R j ≥ k
n . For those j such that k−1

n < R j < k
n the weight get proportionally divided

Another special case is where w1 = 1 − α and wn = α. Here, we get

f (x) = (1 − α)(nx) 0 ≤ x ≤ 1
n

f (x) = 1 − α 1
n ≤ x ≤ n−1

n

f (x) = (1 − α) + α
(

x − (n−1)
n

)
n−1

n ≤ x ≤ 1

In Fig. 2, we plot this form of f .
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1

1k
nk-1

n

Fig. 1 Form of f when wk = 1

1

11
n

n-1
n

Fig. 2 Form of f when w1 = 1 − α and wn = α

5 Prioritized OWA aggregation

We now describe the formulation of the prioritized OWA operator, POWA aggrega-
tion operator. While we shall embed our discussion within the context of multi-criteria
aggregation the formal framework presented here is appropriate for the aggregation
of any prioritized collection of arguments.

Here, we assume a collection of criteria C = {C1, C2, . . . , Cn} that are prioritized
such that Ci > Ck if i < k. This is a linear ordering with C1 having the highest
priority. We shall assume for a given alternative x, Ci (x) = ai ∈ [0, 1] is the degree
of satisfaction to criterion Ci by alternative x . Our interest is to provide C(x), the
overall satisfaction of x to the multiple criteria as an OWA aggregation of the individ-
ual criteria satisfaction in such a way as to reflect the organization of the criteria with
respect to both the scope and priority relationships between the criteria.

Our first step is to obtain the priority induced importance weights of each of the
criteria in the case of alternative x . For each criterion we let Si = Ci (x), the degree of
satisfaction of Ci . We then use this to obtain its un-normalized priority based impor-
tance ui = Ti where Ti is such that

Ti = 1

Ti =
i−1∏

k=1
Sk = Si−1Ti−1 for i = 2 to n.
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Using this we are able to obtain a normalized priority based importance weight.

ri = ui
∑n

j=1 u j

We note that if Sk = 0 then Ti = 0 for all i > k. From this we see that in the case
of Sk = 0 we have ri = 0 for i > k. In the special case where S1 = 0 then ri = 0 for
i > 1 and hence r1 = 1.

We further observe that since Ti ≥ Tk for i < k then ri ≥ rk for i < k. Thus a cri-
terion can never have a bigger normalized priority importance weight than a criterion
that has a higher priority than it.

Once we have the normalized priority based importance we can use our previously
described approach for implementing importance weighted OWA aggregations.

Our next step then is to order the criteria by their satisfactions. Here we let ind(k)
be the index of the kth most satisfied criteria, it is the criteria with the kth largest of
the ai . We shall let rind(k) be its associated priority based importance. We now use this
to obtain the OWA weights that reflect the complete organization of the criteria, the
scope of the aggregation and priority relationship.

We first consider the case where the scope of the organization of the criteria is

expressed in terms of a BUM function f . In this case we calculate vk = f
(

R̃k

)
−

f
(

R̃k−1

)
where R̃k = ∑k

i=1 rind(i). Then we calculate C(x) using the OWA operator

C(x) =
n∑

k=1

Vkaind(k)

In the case where the scope of the criteria organization is described in terms of an
n dimension vector W with components wk we use the method described earlier. We
assume f is a piecewise linear function

f (z) =
j−1∑

i=1
wi + w j (nx − ( j − 1)) for j−1

n ≤ z ≤ j
n

Then we proceed as above to obtain vk = f
(

R̃k

)
− f

(
R̃k−1

)

Example We assume five criteria C1, C2, C3, C4, C5 with the following priority order-
ing C1 > C2 > C3 > C4 > C5

For alternative x we have

C1(x) = 0.7, C2(x) = 1.0, C3(x) = 0.6, C4(x) = 0.9, C5(x) = 0.4

Using this we have

S1 = 0.7
S2 = 1.0
S3 = 0.6
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S4 = 0.9
S5 = 0.4

From this we get Ti = Ti−1Si−1

T1 = 1
T2 = 0.7
T3 = (0.7)(1) = 0.7
T4 = (0.6)(0.7) = 0.42
T5 = (0.9)(0.42) = (0.38)

We see T = ∑
i Ti = 3.2. From this we get

r1 = 1

3.2
= 0.31

r2 = 0.7

3.2
= 0.22

r3 = 0.7

3.2
= 0.22

r4 = 0.42

3.2
= 0.13

r5 = 0.38

3.2
= 0.12

We now order the criteria satisfactions and obtain ind( j)

ind(1) = 2 aind(1) = 1.0 rind(1) = 0.22
ind(2) = 4 aind(2) = 0.9 rind(2) = 0.13
ind(3) = 1 aind(3) = 0.7 rind(3) = 0.31
ind(4) = 3 aind(4) = 0.6 rind(4) = 0.22
ind(5) = 5 aind(5) = 0.4 rind(5) = 0.12

We shall first all assume our OWA aggregation is guided by the function f (x) = x2.
Using this and the normalized priority based weights we obtain the v j

V1 = (0.22)2 = 0.048
V2 = (0.35)2 − (0.22)2 = 0.075
V3 = (0.66)2 − (0.35)2 = 0.316
V4 = (0.88)2 − (0.66)2 = 0.338
V5 = (1) − (0.88)2 = 0.223

Using these values and the criteria satisfactions we get C(x) = ∑5
j=1 v j aind( j)

= 0.63
Now we assume the scope of the aggregation is expressed by a vector W with

components

w1 = 0.1, w2 = 0.2, w3 = 0.2, w4 = 0.3, w5 = 0.2
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Using this we can get our pseudo generating function f such that

f (z) = 0.1(nz) 0 ≤ z < 0.2
f (z) = 0.1 + 0.2(5z − 1) 0.2 ≤ z < 0.4
f (z) = 0.3 + 0.2(5z − 2) 0.4 ≤ z < 0.6
f (z) = 0.5 + (0.3)(5z − 3) 0.6 ≤ z < 0.8
f (z) = 0.8 + (0.2)(5z − 4) 0.8 ≤ z ≤ 1

In this example

R0 = 0, R1 = 0.22, R2 = 0.35, R3 = 0.66, R4 = 0.88, and R5 = 1

From this we get

f (R0) = 0, f (R1) = 0.12, f (R2) = 0.25,

f (R3) = 0.59, f (R4) = 0.88, f (R5) = 1

Using this we get as our modified weight

v1 = 0.12; v2 = 0.13; v3 = 0.34; v4 = 0.29; v5 = 0.12

From this we get as our aggregated value

C(x) =
5∑

k=1

vkaind(k) = (0.12)(1) + (0.13)(0.9) + (0.34)(0.7)

+(0.24)(0.6) + (0.12)(0.4) = 0.697

Let us consider some special cases of the POWA operator. First consider the situa-
tion where C1(x) = 0. In this case Si = 0 for all i and hence T1 = 1 and Ti = 0 for
all i > 1. From this we get r1 = 1 and ri = 0 for all i > 1. Let ind( j) be the index of
the j th largest payoff. In this case with C1(x) = 0, we can always assign ind(n) = 1.
From this we see R j = ∑ j

k=1 rind(k) = 0 for j < n and Rn = 1. Using this we get

v j = f (R j ) − f (R j − 1) = 0 for j = 1 to n − 1.

vn = f (Rn) − f (Rn − 1) = 1

and hence OWA(C1, . . . , Cn) = ∑n
j=1 v j Cind(j)(x) = vnCind(j)(x) = vnC1(x) = 0.

Thus in the case where C1(x) = 0 we always get an aggregated value of zero regard-
less of the form of f or the satisfaction of the other criteria by x . There is no possibility
for any compensation.

An interesting situation is where C1(x) = a and all other C j = 1. In this case
S1 = a and S j = 1 for all j > 1. From this we get T1 = 1 and Tj = a for all j > 1.
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Using this we have

r1 = 1

1 + ∑n
j=2 a

= 1

1 + (n − 1)a

r j = a

1 + (n − 1)a
j = 2 to n

Furthermore here again we have ind(n) = 1 and hence we obtain

OWA(C1, . . . , Cn) =
n∑

j=1

v j Cind( j)(x) =
n−1∑

j=1

v j + vna

We further observe
∑n−1

j=1 v j = f (Rn−1) − f (R0) = f (Rn−1) We see Rn−1 =
(n−1)a

1+(n−1)a . In addition vn = f (Rn) − f (Rn−1) = 1 − f (Rn−1). Thus, here we get

OWA(C1, . . . , Cn) = f

(
(n − 1)a

1 + (n − 1)a

)

+
(

1 − f

(
(n − 1)a

1 + (n − 1)a

))

a = a

+ (1 − a) f

(
(n − 1)a

1 + (n − 1)a

)

We note that this is the largest value the aggregation can take when C1(x) = a.
Let us further assume that a, the satisfaction to the highest priority criteria, is

small. In the situation where there are only a few other criteria a(n − 1) is also small

and hence (n − 1) a ≈ 0. In this case then f
(

(n−1)a
1+(n−1)a

)
≈ f (0) ≈ 0 and hence

OWA(C1, . . . , Cn) = a. On the other hand, if a is small but n − 1 is large enough so
that (n − 1) a ≈ 1 then (n−1)a

1+(n−1)a ≈ 0.5 and we get that

OWA(C1, . . . , Cn) = a + (1 − a) f (0.5)

In the more extreme case where (n − 1)a � 1 then we get (n−1)a
1+(n−1)a ≈ (n−1)a

(n−1)a ≈ 1
and hence OWA(C1, . . . , Cn) = a + (1 − a) f (1) = a + (1 − a) = 1

But to attain this we need large n, a lot of additional criteria. So we see if the
satisfaction of the highest priority criteria is small the ability to compensate has been
made difficult.

We continue with this case where C1(x) = a and all other C j (x) = 1 which has

OWA(C1, . . . , Cn) = a + (1 − a) f

(
(n − 1)a

1 + (n − 1)a

)

.

If we assume that f is linear, f (x) = x we get
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OWA(C1, . . . , Cn) = a + (1 − a)
(n − 1)a

1 + (n − 1)a

= a + (n − 1)a2 + (n − 1)a − (n − 1)a2

1 + (n − 1)a

OWA(C1, . . . , Cn) = na

1 − na − a
= na

na + (1 − a)

More generally if assume f (x) = xλ for λ ∈ [0,∞] then

OWA(C1, . . . , Cn) = a + (1 − a)

(
(n − 1)

1 + (n − 1)a

)λ

We see that if, λ → ∞, since (n − 1)a < 1 + (n − 1) a then OWA(C1, . . . , Cn) =
a +(1−a)0 = a. If λ → 0 then

(
(n−1)a

1+(n−1)a

)λ → 1 and hence OWA(C1, . . . , Cn) ≈ 1

For the case where λ = 2 we get

OWA(C1, . . . , Cn) = a(1 + (n − 1)(a))2 + (1 − a)(n − 1)2(a2)

(1 + (n − 1)a)2

OWA(C1, . . . , Cn) = (a+2(n − 1)(a))2+(n − 1)2a3+(n − 1)2a2 − (n − 1)2(a)3

(1+(n − 1)a)2

OWA(C1, . . . , Cn) = a + (n − 1)a2(2 + n − 1) = a(1 + a(n − 1)(n + 1))

(1 + (n − 1)a)2

6 Prioritized sugeno integral aggregation

There exists another aggregation operator closely related to the OWA operators which
can be seen as a special case of the Sugeno integral Sugeno (1977); Mesiar and
Mesiarová (2008). In Yager (1992) we discussed this operator in considerable detail.
Again let f be a BUM function f (0) = 0, f (1) = 1 and f (x1) ≥ f (x2) if x1 ≥ x2.
Let Ci be a collection of criteria where Ci (x) is the satisfaction of Ci by x . Let us
denote Ci (x) = ai . Using this we can get an aggregation of the criteria satisfactions as

C(x) = Maxk

[

f

(
k

n

)

∧ aind(k)

]

where aind(k) is the kth largest of the Ci (x).
The extension of this aggregation imperative to the case where each of the Ci has

importance weight vi can be easily made. Here, we first let V = ∑
i vi be the total of

the individual criteria importance weights and we can let ri = vi
V be the normalized

importance weights. We shall further let rind(k) be the normalized importance weight
associated with the kth largest of the Ci (x). Using this we can let Rk = ∑k

i=1 rind(i)

and then we get as our aggregated value
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C(x) = Maxk[ f (Rk) ∧ aind(k)]

We can naturally extend this to the situation where the ri are determined by a priority
relationship among the criteria as in the preceding.

7 Conclusion

Fundamental to the construction of multi-criteria decision functions is what we called
the organization of the criteria. By this we meant to indicate the body of knowledge
that guides how we combine an alternatives satisfactions to the individual criteria to
obtain its overall satisfaction. Since there exists a wide variety of ways that a collection
of criteria can be organized one of the objectives of computational intelligence is to
provide tools to enable the modeling of various possibilities about our knowledge of
the organization of a collection of criteria. In this work we focused on the situation
in which our knowledge of the criteria organization was expressed in terms of two
features. One of these is what we referred to as the scope of the criteria organiza-
tion. By this we meant information about how many of the criteria we desire to be
satisfied. Notable examples of this are “all”, “most” or “any.” The OWA operators
have provided a very robust class of aggregation operators for modeling this type of
information. The second feature of the criteria organization considered here was the
specification of a prioritization relationship between the criteria reflecting the ability
of some criteria to compensate for lack of satisfaction of other criteria. We suggested
one approach to building aggregation functions that can capture this type of priority
relationship between criteria is to associate with criteria importance weights based on
the satisfaction of the higher order criteria. We then described how the importance
weighted OWA operator can be used to construct multi-criteria aggregation functions
in situations in which our knowledge of the criteria organization is described in terms
of scope and a priority relationship over the criteria.

In Yager et al. (2008) we applied the technology described in the paper in the form
of a web Personal Evaluation Tool (webPET) to the E-Commerce problem of selecting
the most suitable web service that fit a user’s needs. The webPet uses the concept of
lexicographic preferences and combines user’s criteria with customer reviews. The lex-
icographic preferences allows for mimicking user’s attitude that some criteria should
be satisfied before other criteria are considered. The criterion satisfaction levels were
defined with threshold-based satisfaction level functions built based on two thresholds
representing boundaries between acceptable and unacceptable values of attributes of
alternatives.
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