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Abstract This paper provides a thorough investigation on the resolution of a finite
system of fuzzy relational equations with sup-T composition, where T is a continuous
triangular norm. When such a system is consistent, although we know that the solution
set can be characterized by a maximum solution and finitely many minimal solutions,
it is still a challenging task to find all minimal solutions in an efficient manner. Using
the representation theorem of continuous triangular norms, we show that the systems
of sup-T equations can be divided into two categories depending on the involved
triangular norm. When the triangular norm is Archimedean, the minimal solutions
correspond one-to-one to the irredundant coverings of a set covering problem. When
it is non-Archimedean, they only correspond to a subset of constrained irredundant
coverings of a set covering problem. We then show that the problem of minimizing a
linear objective function subject to a system of sup-T equations can be reduced into
a 0–1 integer programming problem in polynomial time. This work generalizes most,
if not all, known results and provides a unified framework to deal with the problem of
resolution and optimization of a system of sup-T equations. Further generalizations
and related issues are also included for discussion.
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1 Introduction

The notion of fuzzy relational equations is associated with the composition of fuzzy
binary relations. Fuzzy relational equations have been intensively investigated both
from a theoretical standpoint and in view of applications since they were first intro-
duced by Sanchez (1974, 1976). It has been pointed out that fuzzy relational equations
play an important role as a uniform platform in many applications of fuzzy sets and
fuzzy systems. See, e.g. Pedrycz (1989, 1991), Mordeson and Malik (2002) and Peeva
and Kyosev (2004).

Fuzzy relational equations can be presented in many different forms which depend
on their interpretation in the specific contexts. Generally, most of these forms can be
easily converted to the matrix form of A ◦ x = b or xT ◦ A = bT with composable
consistency and a well defined composite operation “◦” when the underlying universes
of discourse are finite and discrete. Usually, the coefficient matrix A and the right hand
side vector b, as well as the unknown vector x , are defined on the real unit interval
[0, 1]. The most fundamental type of fuzzy relational equations is those with sup-T
composition, or more accurately max-T composition for finite scenarios, where T is
typically a continuous triangular norm among which the minimum TM is the most
frequently used one.

The solvability criteria of sup-T equations were first established by Sanchez (1976)
for sup-TM equations and then extended by Pedrycz (1982b, 1985) and Miyakoshi
and Shimbo (1985). The structure of the complete solution set of sup-TM equations
was first characterized by Sanchez (1977) and generalized to sup-T equations by Di
Nola et al. (1982, 1984). It now becomes well known that the complete solution set
of a consistent finite system of sup-T equations can be determined by a maximum
solution and a finite number of minimal solutions. The consistency of a system of
sup-T equations can be easily verified by checking the potential maximum solution.
However, as shown in Chen and Wang (2002, 2007) and Markovskii (2004, 2005),
the detection of all the minimal solutions is closely related to the set covering problem
and hence an NP-hard problem. Various methods have been developed to detect the
minimal solutions for sup-T equations with a specific triangular norm. Approaches
based on some type of quasi-characteristic matrix were proposed by Peeva (1985,
1992), Han and Sekiguchi (1992), Li (1994), Wang and Hsu (1992) and Peeva and
Kyosev (2004, 2007). Some rule-based methods were proposed by Arnould and Tano
(1994a, b). More discussions on the minimal solutions may be found in Xu (1978),
Prévot (1981), Xu et al. (1982), Czogała et al. (1982), Higashi and Klir (1984), Di
Nola (1984), Pappis and Sugeno (1985), Miyakoshi and Shimbo (1986), Bour and
Lamotte (1987), Klir and Yuan (1995), Bourke and Fisher (1998), Loetamonphong
and Fang (1999), Luoh et al. (2002, 2003) and Wu and Guu (2008).

Some other issues related to the resolution of fuzzy relational equations were also
discussed in the literature. The unique solvability of a system of sup-T equations, as
well as the existence of the minimum solution, was investigated by Di Nola and Sessa
(1983, 1988), Sessa (1984), Lettieri and Liguori (1984, 1985), Cechlárová (1990,
1995), Li (1990), Gavalec (2001) and Gavalec and Plávka (2003). Various estimates
of the number of the minimal solutions can be found in Czogała et al. (1982), Wang
et al. (1984), Shi (1987), Peeva (1992, 2006) and Peeva and Kyosev (2004, 2007).
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The resolution of a system of sup-T equations with infinite number of equations
and/or infinite number of unknowns was also investigated by Wagenknecht and Hart-
mann (1990), Imai et al. (1997, 1998), Perfiliva and Tonis (2000), Wang (2003) and
Xiong and Wang (2005). The structure of the complete solution set of a system of
sup-T equations in infinite situations may differ from that of finite scenarios. Up to
now, it is still a challenge to characterize the solution set of a system of fuzzy relational
equations with infinite number of equations and/or infinite number of unknowns.

It has also been noticed that some properties of triangular norms, e.g. associativity
and commutativity, are not necessary in defining fuzzy relational equations and hence
some general composite operators can be used without losing any particular property
of interest. As a consequent, some generalizations have been made by Cheng and Peng
(1988), Di Nola et al. (1988), Kawaguchi and Miyakoshi (1998), Han and Li (2005),
Li et al. (2005), Wang and Xiong (2005) and Han et al. (2006).

Clearly, fuzzy relational equations can be regarded as a generalization of the
classical linear algebraic equations as well as a generalization of Boolean equations,
see e.g., Rudeanu (1974, 2001). Moreover, Goguen (1967) indicated that fuzzy sets,
as well as fuzzy relations, can be considered in a general mathematical framework
of lattices. De Cooman and Kerre (1994) also pointed out that the triangular norms
can be defined on bounded lattices. Fuzzy relational equations defined on a general
lattice were investigated by Drewniak (1982, 1983), Di Nola (1985, 1990), Zhao
(1987), Di Nola and Lettieri (1989), De Baets (1995a, 1998), Wang (2001) and Wang
and Xiong (2005).

The theory and applications of fuzzy relational equations developed up to 1989
were well documented by Di Nola et al. (1989) in the first monograph on this issue.
De Baets (2000) provided an extensive investigation in a unified framework on the
analytical methods for solving different types of fuzzy relational equations on various
lattices. The most recent monograph on fuzzy relational equations and their appli-
cations is due to Peeva and Kyosev (2004). Good overviews can also be found in
Di Nola et al. (1991), Gottwald (1993, 2000), Klir and Yuan (1995), Pedrycz (1989,
1991) and Li and Fang (2008).

The problem of minimizing a linear objective function subject to a consistent system
of sup-TM equations was first investigated by Fang and Li (1999). It was shown that this
problem can be decomposed into two subproblems by separating the nonnegative and
negative coefficients of the objective function, both of which are subject to the same
constraints. The objective function with negative coefficients assumes its optimum
at the maximum solution while the objective function with nonnegative coefficients
assumes its optimum at one of the minimal solutions which can be determined by
solving a 0–1 integer programming problem. Clearly, this observation holds true for
any continuous triangular norm utilized in the composition as well as some other
composite operators such as arithmetic average. The branch-and-bound method with
jump-tracking technique used in Fang and Li (1999) to solve the 0-1 integer program-
ming problem was improved by Wu et al. (2002) and Wu and Guu (2005) by providing
the proper upper bounds for the branch and bound procedure.

Following the idea of Fang and Li (1999), the linear optimization problem sub-
ject to a system of sup-TP equations was discussed by Loetamonphong and Fang
(2001), Guu and Wu (2002) and Ghodousian and Khorram (2006a), where TP is
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the product operator. Khorram and Ghodousian (2006) and Wu (2007) considered
this problem under the max-average composition. However, it was pointed out by
Zimmermann (2007) that one of the algorithms proposed by Khorram and Ghodousian
(2006) may not lead to the optimal solution in some cases. Similar deficiencies
were detected in Ghodousian and Khorram (2006a, b) and Khorram et al. (2006) and
amended by Abbasi Molai and Khorram (2007a, b) in which fuzzy relational equation
constrained linear optimization problems were investigated under various composite
operations. Some other generalizations on this issue can be found in Wu and Guu
(2004a), Pandey (2004), Guo and Xia (2006), Abbasi Molai and Khorram (2007) and
Ghodousian and Khorram (2007). Note that the algorithm proposed by Pandey (2004)
only works for strict triangular norms but not for general continuous triangular norms as
claimed.

Lu and Fang (2001) designed a genetic algorithm to solve nonlinear optimization
problems subject to a system of sup-TM equations. Yang and Cao (2007) consid-
ered a special subclass of the problems of this type where the objective functions are
posynomials. Wu et al. (2007) explored the linear fractional programming problem
subject to a system of sup-T equations where T is a continuous Archimedean tri-
angular norm. Note that the preprocessing procedure proposed in Wu et al. (2007)
is not exactly correct. Fuzzy relational equation constrained geometric programming
was investigated by Yang and Cao (2005a, b) and Wu (2006), which is a general-
ization of the so-called latticized linear programming problem considered in Wang
and Zhang (1987) and Wang et al. (1991). The multi-objective optimization prob-
lem was discussed in Wang (1995), Loetamonphong et al. (2002) and Wu and Guu
(2004b).

This paper deals with the problem of solving a finite system of sup-T equations with
a general continuous triangular norm T , as well as the linear optimization problem
subject to a system of sup-T equations. Some basic results on triangular norms are
summarized in Sect. 2. The well known representation theorem of continuous triangu-
lar norms is introduced as well, which plays a key role in classifying systems of sup-T
equations. In Sect. 3, the resolution of a system of sup-T equations is investigated
in detail. The procedure to determine all minimal solutions is introduced respectively
based on whether the involved triangular norm is Archimedean or not. In Sect. 4, it
is shown that the linear optimization problem can be reduced to a 0–1 integer pro-
gramming problem in polynomial time. Some generalizations and related issues are
discussed as well in Sect. 5.

2 Triangular norms

In this section, we recall some basic concepts and important properties associated
with triangular norms, which are indispensable and crucial in the construction and
resolution of fuzzy relational equations. However, all proofs are omitted to keep the
paper succinct and readable. The reader may refer to the monograph by Klement et al.
(2000), as well as the position papers by Klement et al. (2004a, b, c), for a detailed and
rather complete overview of triangular norms.
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2.1 Basic definitions and properties

Definition 2.1 A triangular norm (t-norm for short) is a binary operator T : [0, 1]2 →
[0, 1] such that for all x, y, z ∈ [0, 1] the following four axioms are satisfied:

(T1) T (x, y) = T (y, x). (commutativity)
(T2) T (x, T (y, z)) = T (T (x, y), z). (associativity)
(T3) T (x, y) ≤ T (x, z), whenever y ≤ z. (monotonicity)
(T4) T (x, 1) = x . (boundary condition)

Definition 2.2 A triangular conorm (t-conorm or s-norm for short) is a binary opera-
tor S : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1] the following four axioms are
satisfied:

(S1) S(x, y) = S(y, x). (commutativity)
(S2) S(x, S(y, z)) = S(S(x, y), z). (associativity)
(S3) S(x, y) ≤ S(x, z), whenever y ≤ z. (monotonicity)
(S4) S(x, 0) = x . (boundary condition)

Since t-norms and t-conorms are binary algebraic operators on the real unit inter-
val [0, 1], the infix notations like x ∧t y and x ∨t y are usually used in the literature
instead of the prefix notations T (x, y) and S(x, y), respectively, while x ∧ y and x ∨ y
typically stand for the minimum TM (x, y) and the maximum SM (x, y), respectively.

From an axiomatical point of view, t-norms and t-conorms differ only with respect
to their respective boundary conditions. Actually, t-norms and t-conorms are dual to
each other in some sense. With the standard negator Ns(x) = 1 − x,∀ x ∈ [0, 1], a
t-norm T induces a dual t-conorm via

S(x, y) = N−1
s (T (Ns(x), Ns(y))) = 1 − T (1 − x, 1 − y),

while a t-conorm S induces a dual t-norm via

T (x, y) = N−1
s (S(Ns(x), Ns(y))) = 1 − S(1 − x, 1 − y).

It is obvious that a t-norm and its dual t-conorm form a dual pair with respect to the
standard negator Ns . Therefore, any concept or property concerned with t-norms can
be induced dually for t-conorms.

There exist uncountably many t-norms among which four basic t-norms are remark-
able from different points of view and are defined by, respectively,

TM (x, y) = min(x, y), (minimum, Gödel t-norm, Zadeh t-norm)
TP (x, y) = x · y, (probabilistic product, Goguen t-norm)
TL(x, y) = max(x + y − 1, 0), (bounded difference, Łukasiewicz t-norm)

TD(x, y) =
{

0, if (x, y)∈ [0, 1)2

min(x, y), otherwise.
(drastic product)

Their dual t-conorms with respect to the standard negator Ns are given by, respectively,
SM (x, y) = max(x, y), (maximum, Gödel t-conorm, Zadeh t-conorm)
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SP (x, y) = x + y − x · y, (probabilistic sum, Goguen t-conorm)
SL(x, y) = min(x + y, 1), (bounded sum, Łukasiewicz t-conorm)

SD(x, y) =
{

1, if (x, y)∈ (0, 1]2

max(x, y), otherwise.
(drastic sum)

Since t-norms are just functions from unit square into the unit interval, they can
be compared by the pointwise comparison. A t-norm T1 is said to be weaker than a
t-norm T2 and is denoted by T1 ≤ T2, if the inequality T1(x, y) ≤ T2(x, y) holds for
all (x, y)∈ [0, 1]2. Equivalently, T2 is said to be stronger than T1 if T1 ≤ T2. Moreover,
the notation T1 < T2 is used whenever T1 ≤ T2 and T1 �= T2. It is well known that the
drastic product TD is the weakest and the minimum TM is the strongest t-norm, i.e.,
for any t-norm T , it holds that

TD ≤ T ≤ TM .

Furthermore, it is obvious that

TD < TL < TP < TM .

The associativity of t-norms allows us to uniquely extend each t-norm T in a
recursive way to an n-ary operator, i.e.,

T (x1, . . . , xn) = T (T (x1, . . . , xn−1), xn)

for each n-tuple (x1, . . . , xn)∈ [0, 1]n with the integer n ≥ 3. In particular, T (
n︷ ︸︸ ︷

x, . . . , x)
is denoted as x (n)T for each x ∈ [0, 1] and called the n-th power of x with respect to T ,

with the convention that x (0)T = 1 and x (1)T = x .
A t-norm T , viewed as a real function with two arguments, is said to be continuous

if for all convergent sequences {xn}∞n=1 and {yn}∞n=1 with xn, yn ∈ [0, 1], it holds that

T
(

lim
n→∞ xn, lim

n→∞ yn

)
= lim

n→∞ T (xn, yn).

The continuity, as well as the left- and right-continuity, plays an important role in
many applications of t-norms. In general, a real function with two arguments, e.g.,
with domain [0, 1]2, may be continuous in each argument but fail to be continuous on
[0, 1]2. However, t-norms are exceptions since a function, which is non-decreasing
in its both arguments, is continuous if and only if it is continuous in each argument.
Moreover, due to the commutativity of t-norms, the continuity of a t-norm is equiva-
lent to its continuity in one of the arguments, i.e., a t-norm T is continuous if and only
if its partial mappings T (x, ·),∀ x ∈ [0, 1] are continuous. Consequently, a t-norm T is
said to be left-continuous (right-continuous) if for all non-decreasing (non-increasing)
sequences {xn}∞n=1 with xn ∈ [0, 1], it holds that

T
(

lim
n→∞ xn, y

)
= lim

n→∞ T (xn, y), ∀ y ∈ [0, 1].
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Clearly, a t-norm T is continuous if and only if it is both left- and right-continuous.
The minimum TM , the product TP and the Łukasiewicz t-norm TL are all continuous
while the drastic product TD is right-continuous but not left-continuous.

Another two related concepts are the lower and upper semicontinuity of t-norms.
However, they coincide respectively with the left- and right-continuity for t-norms,
i.e., a t-norm is lower (upper) semicontinuous if and only if it is left-continuous (right-
continuous). This well known result allows us to speak about left-continuous and right-
continuous t-norms instead of lower and upper semicontinuous t-norms, respectively.
Moreover, note that the left- and right-continuity mean exactly the interchangeability
of the supremum operation and the infimum operation, respectively, with the t-norm,
which plays a crucial role in the resolution of fuzzy relational equations.

To better understand t-norms, some additional algebraic properties of t-norms are
necessary to be presented, most of which are well known from the general theories of
semigroups and lattices since t-norms can be viewed as a special class of commutative
semigroups.

Definition 2.3 Let T be a t-norm.

(i) An element a ∈ [0, 1] is called an idempotent element of T if T (a, a) = a.
(ii) An element a ∈ (0, 1) is called a nilpotent element of T if there exists some

positive integer n such that a(n)T = 0.
(iii) An element a ∈ (0, 1) is called a zero divisor of T if there exists some b ∈ (0, 1)

such that T (a, b) = 0.

Clearly, no element of (0, 1) can be both idempotent and nilpotent. The numbers
0 and 1 are idempotent elements for each t-norm T and hence called trivial idem-
potent elements of T while each idempotent element in (0, 1) is called a non-trivial
idempotent element of T . Moreover, the idempotent elements of t-norms can be well
characterized in the following way:

Theorem 2.1
(i) An element a ∈ [0, 1] is an idempotent of a t-norm T if and only if T (a, x) =

min(a, x) for all x ∈ [a, 1].
(ii) An element a ∈ [0, 1] is an idempotent of a continuous t-norm T if and only if

T (a, x) = min(a, x) for all x ∈ [0, 1].
The product TP , the Łukasiewicz t-norm TL and the drastic product TD possess

only trivial idempotent elements. The set of idempotent elements of the minimum TM

is [0, 1]. Actually, TM is the only t-norm with this property. Furthermore, the minimum
TM and the product TP have neither nilpotent elements nor zero divisors while each
a ∈ (0, 1) is both a nilpotent element and a zero divisor of the Łukasiewicz t-norm TL

as well as the drastic product TD .
Generally, each nilpotent element of a t-norm T is also a zero divisor of T but not

vice versa, which means that the set of nilpotent elements is a subset of the set of
zero divisors. However, the existence of zero divisors is equivalent to the existence of
nilpotent elements for each t-norm, i.e., a t-norm T has zero divisors if and only if it
has nilpotent elements. Moreover, if a ∈ (0, 1) is a zero divisor of a t-norm T , each
number b ∈ (0, a) is also a zero divisor of T due to the monotonicity of T . This also
holds for nilpotent elements.
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Definition 2.4

(i) A t-norm T is called strictly monotone if T (x, y) < T (x, z) whenever x > 0
and y < z.

(ii) A t-norm T is called strict if it is continuous and strictly monotone.
(iii) A t-norm T is called nilpotent if it is continuous and each x ∈ (0, 1) is a nilpotent

element of T .
(iv) A t-norm T is called Archimedean if for each (x, y)∈ (0, 1)2 there exists a

positive integer n such that x (n)T < y.

An Archimedean t-norm has only trivial idempotent elements. It was shown by
Kolesárová (1999) that the left-continuity of an Archimedean t-norm implies its conti-
nuity. Furthermore, a continuous t-norm T is Archimedean if and only if T (x, x) < x
for all x ∈ (0, 1), which leads to the fact that each strict and each nilpotent t-norm is
Archimedean. Moreover, it turns out that a continuous Archimedean t-norm is either
strict or nilpotent. Clearly, the product TP is a strict t-norm and the Łukasiewicz
t-norm TL is a nilpotent t-norm. The minimum TM is a continuous but not Archime-
dean t-norm. The drastic product TD is a non-continuous Archimedean t-norm for
which each x ∈ (0, 1) is a nilpotent element.

2.2 Construction of triangular norms

From an algebraic point of view, t-norms, as well as t-conorms, are a special class of
commutative semigroups and hence can be constructed via various methods.

It is straightforward that, given a t-norm T , any strictly increasing bijection ψ :
[0, 1] → [0, 1] defines a t-norm by

Tψ(x, y) = ψ−1(T (ψ(x), ψ(y))). (2.1)

Furthermore, T and Tψ are called isomorphic in the sense that

ψ(Tψ(x, y)) = T (ψ(x), ψ(y)) (2.2)

for all (x, y)∈ [0, 1]2. Clearly, T and Tψ share many common structural features,
e.g., the continuity, the Archimedean property and the existence of idempotent and
nilpotent elements as well as the existence of zero divisors. The only invariants under
arbitrary strictly increasing bijections are the two extremal t-norms, i.e., the minimum
TM and the drastic product TD .

A more general method to construct new t-norms involves the pseudo-inverses of
monotone functions.

Definition 2.5 Let f : [a, b] → [c, d] be a monotone function where [a, b] and [c, d]
be two closed subintervals of the extended real line [−∞,+∞]. The pseudo-inverse
f (−1) : [c, d] → [a, b] is defined as

f (−1)(y) = sup {x ∈ [a, b] | ( f (x)− y)( f (b)− f (a)) < 0} .
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Obviously, the pseudo-inverse of f coincides with the inverse of f if and only if f
is a bijection. For more details on pseudo-inverses of monotone functions, the reader
may refer to Klement et al. (1999). With the aid of pseudo-inverses, some t-norms can
be constructed via appropriate functions.

Theorem 2.2 Let t : [0, 1] → [0,+∞]be a strictly decreasing function with t (1) = 0
such that t is right-continuous at 0 and

t (x)+ t (y)∈ Ran(t) ∪ [t (0),+∞] (2.3)

for all (x, y)∈ [0, 1]2, where Ran(t) = {t (x) | x ∈ [0, 1]}. The function T : [0, 1]2 →
[0, 1] defined by

T (x, y) = t (−1)(t (x)+ t (y)) (2.4)

is a t-norm.

A function t : [0, 1] → [0,+∞] satisfying the conditions in Theorem 2.2 is called an
additive generator of the t-norm T . It is obvious that a multiplication of the addictive
generator of a t-norm T by a positive constant remains to be an additive generator of
T . Moreover, there is a strong connection between the continuity of a t-norm and the
continuity of its additive generators.

Theorem 2.3 Let T be a t-norm with an additive generator t : [0, 1] → [0,+∞].
The following statements are equivalent:

(i) T is continuous.
(ii) T is left-continuous in the point (1, 1).

(iii) t is continuous.
(iv) t is left-continuous in 1.

It is well known that triangular norms constructed by means of additive generators
are always Archimedean. The converse, however, is not true, i.e., an Archimedean
t-norm, which is necessarily not continuous, may have no additive generators. How-
ever, a t-norm is continuous Archimedean if and only if it has a continuous additive
generator which is uniquely determined up to a positive multiplicative constant. More-
over, the value of the continuous additive generator at the point 0 determines whether
the induced t-norm is strict or nilpotent.

Theorem 2.4 Let t : [0, 1] → [0,+∞] be an additive generator of a continuous
Archimedean t-norm T .

(i) T is strict if and only if t (0) = +∞.
(ii) T is nilpotent if and only if t (0) < +∞.

The functions t (x) = − ln x and t (x) = 1 − x are the additive generators of the
product TP and the Łukasiewicz t-norm TL , respectively, while the drastic product
TD can be induced by

t (x) =
{

2 − x, x ∈ [0, 1),
0, x = 1.

(2.5)
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Clearly, no additive generator exists for any t-norm with a non-trivial idempotent
element, in particular, the minimum TM . See, e.g., Ling (1965) and Krause (1983).

A similar method to construct t-norms is via so-called multiplicative generators
which are completely dual to additive generators in some sense.

Let T be a t-norm with an additive generator t : [0, 1] → [0,+∞]. The t-norm T
can also be induced via

T (x, y) = θ(−1)(θ(x) · θ(y)) (2.6)

where the function θ(x) = e−t (x) is called a multiplicative generator of T . Clearly,
any additive generator t : [0, 1] → [0,+∞] defines a multiplicative generator θ :
[0, 1] → [0, 1] with θ(1) = 1 and right-continuous at 0 such that

θ(x) · θ(y)∈ Ran(θ) ∪ [0, θ(0)] (2.7)

for all (x, y)∈ [0, 1]2. Conversely, such a function θ(x) also defines an additive gen-
erator t (x) = − ln θ(x) and hence induces a t-norm.

Another method to construct t-norms also originates from semigroup theory. The
basic idea goes back to Clifford (1954) and has been applied for constructing a new
t-norm from a family of t-norms. See e.g., Schweizer and Sklar (1963), Ling (1965)
and Frank (1979).

Theorem 2.5 Let {Tα}α ∈ A be a family of t-norms and {(aα, bα)}α ∈ A be a family of
non-empty, pairwise disjoint open subintervals of (0, 1), where the index set A is finite
or countably infinite. The function T : [0, 1]2 → [0, 1] defined by

T (x, y) =

⎧⎪⎨
⎪⎩

aα+(bα−aα) · Tα

(
x−aα

bα−aα
,

y−aα
bα−aα

)
, if (x, y)∈ [aα, bα]2,

min{x, y}, otherwise.

(2.8)

is a t-norm and called the ordinal sum of the summands 〈aα, bα, Tα〉, α ∈ A. It is
usually denoted by T = (〈aα, bα, Tα〉)α ∈ A.

Note that the index set A may be empty, in which case the ordinal sum equals to
the minimum TM . It is obvious that a summand Tα = TM in the representation of an
ordinal sum can be omitted and each t-norm T can be viewed as a trivial ordinal sum,
i.e., T = (〈0, 1, T 〉). Clearly, if T = (〈aα, bα, Tα〉)α ∈ A is an ordinal sum of t-norms,
the endpoints aα, bα, α ∈ A are all idempotent elements of the t-norm T . Therefore,
any t-norm T defined by a non-trivial ordinal sum (〈aα, bα, Tα〉)α ∈ A, i.e., A �= ∅ and
(aα, bα) ⊂ (0, 1),∀ α ∈ A, cannot be Archimedean. Moreover, the continuity of an
ordinal sum of t-norms is equivalent to the continuity of all its summands.

Theorem 2.6 Let T = (〈aα, bα, Tα〉)α ∈ A be an ordinal sum of t-norms with A �= ∅.
The t-norm T is continuous if and only if Tα is continuous for each α ∈ A.

Some other methods related to ordinal sums were also developed for constructing
t-norms. The reader may refer to Drossos and Navara (1996) and Jenei (2001, 2002)
and references therein.

123



The resolution and optimization 179

2.3 Representation of continuous triangular norms

There is no universal representation theorem so far for all t-norms, which is actually
related to the solution of the still unsolved general associativity equation. See, for
instance, Alsina et al. (2006). However, all continuous t-norms can be well character-
ized and classified. The representation theorems of continuous t-norms by means of
additive generators and ordinal sums of Archimedean summands were first developed
by Ling (1965) in the framework of triangular norms although they can be derived
from the results in Mostert and Shields (1957) in the framework of semigroups.

As an immediate consequence of Theorem 2.4, a continuous Archimedean t-norm
T is either strict or nilpotent, which is fully determined by the value t (0) of its con-
tinuous additive generator t : [0, 1] → [0,+∞]. Moreover, each continuous Archi-
medean t-norm is isomorphic either to the product TP or to the Łukasiewicz t-norm
TL . This fact makes TP and TL the most important prototypes of strict and nilpotent
t-norms, respectively. Unfortunately, no such characterization exists for continuous
non-Archimedean t-norms.

Theorem 2.7
(i) Let T be a strict t-norm with an additive generator t . The t-norm T is isomorphic

to the product TP and

T (x, y) = ψ−1(TP (ψ(x), ψ(y))) (2.9)

for all (x, y)∈ [0, 1]2 where ψ(x) = e−t (x).
(ii) Let T be a nilpotent t-norm with an additive generator t . The t-norm T is iso-

morphic to the Łukasiewicz t-norm TL and

T (x, y) = ψ−1(TL(ψ(x), ψ(y))) (2.10)

for all (x, y)∈ [0, 1]2 where ψ(x) = 1 − t (x)/t (0).

Theorem 2.8 A t-norm T is continuous if and only if it is an ordinal sum of continuous
Archimedean t-norms (〈aα, bα, Tα〉)α ∈ A where the summands 〈aα, bα, Tα〉, α ∈ A are
uniquely determined.

A remarkable result following Theorems 2.7 and 2.8 is the important classification
of continuous t-norms.

Theorem 2.9 A t-norm T is continuous if and only if exactly one of the following
statements is true:

(i) T = TM .
(ii) T is strict.

(iii) T is nilpotent.
(iv) T is a non-trivial ordinal sum of continuous Archimedean t-norms.

Consequently, a continuous non-Archimedean t-norm, which definitely has non-
trivial idempotent elements, is either the minimum TM or a non-trivial ordinal sum of
continuous Archimedean t-norms.
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Fig. 1 Continuous t-norms with typical representatives of each class

A further classification of continuous t-norms arises for the distinction between
t-norms with zero divisors and t-norms without zero divisors. It is clear that a contin-
uous Archimedean t-norm with zero divisors must be a nilpotent t-norm and hence
isomorphic to the Łukasiewicz t-norm TL . For a continuous non-Archimedean t-norm
T with zero divisors, it must contain 〈0, b1, T1〉 in its summands where b1 ∈ (0, 1) is the
smallest non-trivial idempotent element of T and T1 is a nilpotent t-norm. Obviously,
the converse is also true. An interesting family of such t-norms is the ordinal sums
T MT
λ = (〈0, λ, TL 〉),∀ λ∈ (0, 1), also known as the Mayor–Torrens t-norms. See

Mayor and Torrens (1991). The minimum TM is without doubt a typical but not unique
representative of continuous non-Archimedean t-norms without zero divisors. Another
example is the family of Dubois-Prade t-norms, T DY

λ = (〈0, λ, TP 〉),∀ λ∈ (0, 1),
which was introduced by Dubois and Prade (1980). Note that it was sometimes erro-
neously claimed that the minimum TM is the only continuous t-norm which is not
Archimedean. See, e.g., Stamou and Tzafestas (2001) and Shieh (2007). An illustra-
tion of the classification of continuous t-norms is shown in Fig. 1. The reader may
refer to Klement et al. (2000) for the classification of general t-norms.

2.4 Residual operators of triangular norms

Definition 2.6 The binary residual operators IT : [0, 1]2 → [0, 1] and JT : [0, 1]2 →
[0, 1] with respect to a t-norm T are defined, respectively, by

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}, (2.11)

JT (x, y) = inf{z ∈ [0, 1] | T (x, z) ≥ y}. (2.12)

The residual operator IT with respect to a left-continuous t-norm is known as a
residual implicator or briefly an R-implicator in fuzzy logic while the residual opera-
tor JT has no particular logical interpretation. Recall that when the t-norm T is lower
semicontinuous, or equivalently left-continuous, it holds that

T
(
a, supx ∈ X x

) = supx ∈ X T (a, x) (2.13)
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for all a ∈ [0, 1] and X ⊆ [0, 1]. Similarly, when the t-norm T is upper semicontinuous,
or equivalently right-continuous, it holds that

T (a, inf x ∈ X x) = inf x ∈ X T (a, x) (2.14)

for all a ∈ [0, 1] and ∅ �= X ⊆ [0, 1]. These properties lead to the following important
results.

Theorem 2.10 Let T be a left-continuous t-norm and IT its associated residual
implicator. It holds for all a, b ∈ [0, 1] that T (a, x) ≤ b if and only if x ≤ IT (a, b).

Theorem 2.11 Let T be a continuous t-norm and IT and JT its associated residual
operators. The equation T (a, x) = b has a solution for given a, b ∈ [0, 1] if and only
if b ≤ a, in which case the solution set of T (a, x) = b is given by the closed interval
[JT (a, b), IT (a, b)].

Clearly, it could happen that T (a, IT (a, b)) > b for some a, b ∈ [0, 1] with b ≤ a
when the t-norm T fails to be left-continuous. Similarly, the right-continuity of the
t-norm T helps to make the solution set of T (a, x) = b closed from the lower side.
Furthermore, given a strictly increasing bijection ψ : [0, 1] → [0, 1], the equation
Tψ(a, x) = b and the equation T (ψ(a), x) = ψ(b) are isomorphic in the sense that
Tψ(a, x) = b implies T (ψ(a), ψ(x)) = ψ(b) and vice versa.

In the literature of fuzzy relational equations, the residual implicators are also
known as ϕ-operators which were introduced by Pedrycz (1982a, 1985) in a different
approach to describe the solutions of sup-T equations. They are essentially the general-
ization of the α-operation defined by Sanchez (1976, 1977), which now is the specific
ϕ-operator with respect to the minimum TM . The connection between a ϕ-operator
and its corresponding t-norm has been characterized in full generality by Gottwald
(1984, 1986). See also Gottwald (1993, 2000), Höhle (1995) and Demirli and De
Baetes (1999). The residual operator JT was also discussed in Di Nola et al. (1989)
with a slightly different definition. The infix notations are usually used to denote these
two residual operators, i.e., IT (x, y) = xϕt y and JT (x, y) = xσt y, respectively. Note
that in the context of fuzzy logic, x →t y is the more commonly used notation for
IT (x, y). For any x, y ∈ [0, 1], the element xϕt y is also called the pseudo-complement
of x relative to y with respect to the t-norm T . The residual operators IT and JT of the
three most important continuous t-norms are listed in Table 1. Note that IT and JT do
not differ too much, which means that the equation T (a, x) = b just has one solution
except for some special cases. The fact that each continuous Archimedean t-norm has
a continuous additive generator immediately leads to the following important property
of continuous Archimedean t-norms.

Theorem 2.12 Let T be a continuous Archimedean t-norm and t : [0, 1] → [0,+∞]
its additive generator. The residual operators IT and JT can be represented,
respectively, by
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Table 1 Residual Operators of
the Gödel, Goguen and
Łukasiewicz t-norms

T IT (x, y) JT (x, y)

TM

{
1, if x ≤ y

y, otherwise.

{
1, if x < y

y, otherwise.

TP

{
1, if x ≤ y

y/x, otherwise.

⎧⎪⎪⎨
⎪⎪⎩

1, if x < y

y/x, if 0 < y ≤ x

0, otherwise.

TL min(1 − x + y, 1)

⎧⎪⎪⎨
⎪⎪⎩

1, if x < y

1 − x + y, if 0 < y ≤ x

0, otherwise.

IT (x, y) = t (−1) (max(t (y)− t (x), 0)) , (2.15)

JT (x, y) =
{

t (−1) (max(t (y)− t (x), 0)) , if y �= 0,

0, if y = 0.
(2.16)

Theorem 2.13 Let T be a continuous Archimedean t-norm. The equation T (a, x) = b
has a unique and nonzero solution when b ≤ a and a, b ∈ (0, 1].
Theorem 2.13 was stated by Klement et al. (2000) in a slightly different form and
restated by Stamou and Tzafestas (2001). It is a direct consequence of Theorems
2.11 and 2.12. It can also be validated simply by checking the product TP and the
Łukasiewicz t-norms TL due to Theorem 2.7. Note that the exception of Theorem
2.13 occurs when b = 0 for nilpotent t-norms and a = b = 0 for strict t-norms.
However, these trivial cases can be easily dealt with when solving a system of sup-
T equations. Clearly, Theorem 2.13 suggests a separate consideration of continuous
Archimedean t-norms for the resolution and optimization of sup-T equations.

For a continuous non-Archimedean t-norm T , the situation turns out to be a little
bit complicated, especially when T is an ordinal sum of Archimedean t-norms and
involves a nilpotent summand.

Theorem 2.14 Let T = (〈aα, bα, Tα〉)α ∈ A be an ordinal sum of continuous Archi-
medean t-norms. The residual operators IT and JT can be obtained, respectively, by

IT (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x ≤ y,

aα+(bα−aα) · ITα

(
x − aα
bα−aα

,
y−aα

bα−aα

)
, if aα<y<x ≤ bα,

y, otherwise.

(2.17)

JT (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x < y,

aα+(bα−aα) · JTα

(
x − aα
bα−aα

,
y−aα

bα−aα

)
, if aα<y ≤ x≤bα,

y, otherwise.

(2.18)
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Fig. 2 Illustrations of functions T1(0.6, x) and T2(0.6, x)

Theorem 2.15 Let T be a continuous non-Archimedean t-norm. The equation T (a, x)
= b with 0 < b ≤ a ≤ 1 has multiple solutions only when b = a < 1 or b =
aα ∈ (0, 1) if T involves a nilpotent summand 〈aα, bα, Tα〉 and a ∈ (aα, bα).

Theorem 2.15 is a direct consequence of Theorems 2.11 and 2.14. Similarly, the
behavior of the equation T (a, x) = 0 depends on whether T has zero divisors or
not. As an example, suppose that T1 = (〈0.4, 0.8, TP 〉) and T2 = (〈0.4, 0.8, TL 〉),
the functions T1(0.6, x) and T2(0.6, x) are both piecewise linear and illustrated in
Fig. 2. It is obvious that the equations T1(0.6, x) = 0.6, T2(0.6, x) = 0.6 and
T2(0.6, x) = 0.4 have multiple solutions, respectively. Note the solution set of the
equation T (a, x) = b was characterized by Klement et al. (2000) under the name of
the preimage.

It should be noted that the calculation of the residual operators IT and JT with
respect to a given continuous t-norm T may be not easy although they are well
defined theoretically. This is because the evaluation of the value T (x, y) for any pair
of (x, y)∈ [0, 1]2 may require much computational time when the t-norm T has a
complicated structure.

3 Resolution of sup-T equations

In this section, we focus on the resolution of a finite system of fuzzy relational equations
A◦ x = b with sup-T composition where T is a continuous t-norm and the coefficient
matrix A = (ai j )m×n ∈ [0, 1]mn , the unknown vector x = (x j )n×1 ∈ [0, 1]n and the
right hand side constants b = (bi )m×1 ∈ [0, 1]m , i.e.,⎧⎨

⎩
(a11 ∧t x1) ∨ (a12 ∧t x2) ∨ · · · ∨ (a1n ∧t xn) = b1,

· · · · · · · · · · · ·
(am1 ∧t x1) ∨ (am2 ∧t x2) ∨ · · · ∨ (amn ∧t xn) = bm .

(3.1)

For the convenience of description, two index sets are defined by M = {1, 2, . . . ,m}
and N = {1, 2, . . . , n}.

Among all fuzzy relational equations of this type, sup-TM equations are of the
most importance and were first investigated by Sanchez (1974, 1976). As indicated
by Zimmermann (2001), the sup-TM composition is commonly used when a system
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requires conservative solutions in the sense that the goodness of one value cannot
compensate the badness of another value. However, it has been reported by Oden
(1977), Thole et al. (1979), Zimmermann and Zysno (1980) and Dubois and Prade
(1986) that the minimum TM may not be the best operator for composition and the
product TP would be preferred in some situations when the values of a solution vector
are allowed to compensate for each other. The Łukasiewicz t-norm TL turns out to be
a special candidate for composition when the general form of the law of noncontra-
diction is concerned. Moreover, Bellman and Zadeh (1977) stated that the appropriate
composite operator strongly depends on the application context and has no universal
definition in the situations where the intersection connector acts interactively. Gupta
and Qi (1991) studied the performance of the fuzzy logic controllers with various
combinations of t-norms and t-conorms implemented and concluded that the perfor-
mance very much depends on the choice of the composite operators. Van de Walle
et al. (1998) and De Baets et al. (1998) discussed the requirements of choosing a
suitable t-norm for modeling a fuzzy preference structure. Di Martino et al. (2003)
and Loia and Sessa (2005) reported that the Łukasiewicz t-norm TL would be pre-
ferred in image processing. Some outlines for selecting an appropriate t-norm has
been provided by Yager (1982). So far, the applications and implementations of fuzzy
relational equations are developed mainly for sup-TM equations. However, they can
be extended under some conditions to fuzzy relational equations defined on more
general structures or with general compositions. See, for instance, Peeva and Kyosev
(2004).

A system of sup-T equations A ◦ x = b is said to be in the normal form if its right
side elements are arranged in a non-increasing order, i.e.,

b1 ≥ b2 ≥ · · · ≥ bm . (3.2)

The notion of normal form of a system of fuzzy relational equations was introduced
in Czogała et al. (1982) and Miyakoshi and Shimbo (1986). Any system of fuzzy
relational equations can be converted into its normal form in polynomial time, see for
instance Cormen et al. (2001). Obviously, systems of sup-T equations with a same
normal form have same solutions and therefore are equivalent. Typically for sup-TM

equations, solving sup-T equations in the normal form will possibly offer the conve-
nience of theoretical analysis as well as the reduction of computations.

Furthermore, one can assume that bi > 0 for all i ∈ M in a system of sup-T equa-
tions A ◦ x = b as long as the t-norm T has no zero divisors. Otherwise, denote
M0 = {i ∈ M | bi = 0}. Any solution of the system A ◦ x = b must have x j = 0 for
all j ∈ N0 where N0 = { j ∈ N | ai j > 0, i ∈ M0}. Therefore it is possible to delete the
equations with indices from M0 and the columns of the matrix A with indices from
N0. Each solution of the reduced system can be reconstructed to be a solution of the
original system by setting x j = 0 for j ∈ N0. Moreover, it will be shown later that
the existence of zero divisors of the t-norm T actually does not make a lot of trouble.
The equations with zero right hand side in a system of sup-T equations can always be
eliminated after the characteristic matrix of the system has been obtained. However,
the corresponding column reduction cannot be performed any more when the involved
t-norm T has zero divisors.
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3.1 Solvability and the complete solution set

Given a system of sup-T equations A ◦ x = b with a continuous t-norm T , the
set of all solutions of A ◦ x = b is called its complete solution set and denoted by
S(A, b) = {x ∈ [0, 1]n | A ◦ x = b}. A partial order can be defined on S(A, b) by
extending the natural order such that for any x1, x2 ∈ S(A, b), x1 ≤ x2 if and only if
x1

j ≤ x2
j for all j ∈ N . A system of sup-T equations A ◦ x = b is called consistent

if S(A, b) �= ∅, otherwise, it is inconsistent. Due to the monotonicity of the t-norm
involved in the composition, the complete solution set of any consistent system of
sup-T equations preserves “convexity of the order”, a term used in De Baets (2000),
i.e., if x1, x2 ∈ S(A, b), any x such that x1 ≤ x ≤ x2 is also in S(A, b). Therefore,
the attention could be focused on the so called extremal solutions as defined below.

Definition 3.1 A solution x̌ ∈ S(A, b) is called a minimal or lower solution if for any
x ∈ S(A, b), the relation x ≤ x̌ implies x = x̌ . A solution x̂ ∈ S(A, b) is called the
maximum or greatest solution if x ≤ x̂,∀ x ∈ S(A, b).

Definition 3.2 A generalized vector x̃ = (x̃1, x̃2, . . . , x̃n)
T with x̃ j = [x j , x j ], j ∈ N

is called an interval solution of the system of sup-T equations A ◦ x = b if any vector
x = (x1, x2, . . . , xn)

T with x j ∈ [x j , x j ], j ∈ N is a solution of A◦x = b. An interval
solution x̃ is called a maximal interval solution if its components are determined by a
minimal solution from the left and by the maximum solution from the right.

The maximum solution of a system of sup-T equations A ◦ x = b, if it exists, is
obviously unique. Any solution of A ◦ x = b marks a possible way to satisfy all the
equations in the system simultaneously, while a maximal interval solution indicates
how far each component of the solution vector can be expanded when the input A and
the output b are fixed.

Generally, solving fuzzy relational equations is not easy due to the lack of proper
inverse operations. However, it is well known how to solve a finite system of sup-T
equations and characterize its complete solution set when T is a continuous t-norm.

Theorem 3.1 Let A ◦ x = b be a system of sup-T equations. A vector x ∈ [0, 1]n is a
solution of A ◦ x = b if and only if there exists an index ji ∈ N for each i ∈ M such
that

ai ji ∧t x ji = bi and ai j ∧t x j ≤ bi , i ∈ M, j ∈ N . (3.3)

Theorem 3.1 holds in a straightforward way due to the non-interactivity of the
maximum SM . As a consequence, it is clear that in any case the inequalities

bi ≤ sup
j ∈ N

ai j , i ∈ M, (3.4)

are necessary conditions for the existence of a solution to a system of sup-T equations
A ◦ x = b. They are generally not sufficient conditions unless the t-norm T is con-
tinuous and the system A ◦ x = b involves only one equation. However, the results in
Theorems 2.10 and 2.11 imply a direct way to solve the system A ◦ x = b, which is
well known since the very beginning of the investigation of fuzzy relational equations.
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Theorem 3.2 Let A ◦ x = b be a system of sup-T equations where the t-norm T
is left-continuous. The system is consistent if and only if the vector ATϕt b with its
components defined by

(ATϕt b) j = inf
i ∈ M

IT (ai j , bi ) =
∧

i ∈ M

(
ai jϕt bi

)
, j ∈ N , (3.5)

is a solution of A◦x = b. Moreover, if the system is consistent, ATϕt b is the maximum
solution in the complete solution set S(A, b).

Therefore, the consistency of the system A ◦ x = b can be detected by constructing
and checking the potential maximum solution in a time complexity of O(mn). In the
context of fuzzy relations, the transposed matrix AT is also denoted by A−1 as the
inverse relation of A and hence the potential maximum solution ATϕt b, also known
as the principle solution, is denoted by A−1ϕt b as well.

Furthermore, if the t-norm T is also right-continuous and hence continuous, the
complete solution set S(A, b), when it is not empty, can be well characterized and
determined by a unique maximum solution and a finite number of minimal solutions,
i.e.,

S(A, b) =
⋃

x̌ ∈ Š(A,b)

{
x ∈ [0, 1] | x̌ ≤ x ≤ x̂

}
, (3.6)

where Š(A, b) is the set of all minimal solutions of A ◦ x = b and x̂ = ATϕt b. This
particular structure of the complete solution set S(A, b) is called a finitely generated
root system by De Baets (1995b, 2000). It also forms a “join semilattice”, see, e.g.,
Di Nola et al. (1989), in the sense that x1 ∨ x2 ∈ S(A, b) for any x1, x2 ∈ S(A, b).

The detection of all minimal solutions is rather complicated and a very interest-
ing issue for investigation although it is sufficient to know the maximum solution of
A ◦ x = b in most practical considerations. It follows from Theorems 2.11 and 3.1
that the complete solution set of each single equation in a consistent system A ◦ x = b
is a finitely generated root system with the minimal solutions given by the set

Ši = {x̌ k | bi ≤ aik, k ∈ N }, i ∈ M, (3.7)

where the vector x̌ k ∈ Ši , i ∈ M , is defined by

x̌ k
j =

{
JT (aik, bi ), if j = k,
0, otherwise,

j ∈ N . (3.8)

The complete solution set of A◦x = b is therefore the intersection of these root systems
and remains to be a finitely generated root system. However, a minimal solution of a
single equation may not necessarily be a minimal solution of the system. Clearly, as
indicated by De Baets (1995b), any algorithm designed in this way for determining
the minimal solutions can always be applied independent of the t-norm involved. Of
course, this does not means that none of the algorithms could be more efficient for

123



The resolution and optimization 187

Fig. 3 The complete solution set of sup-T equations in the 2-dimensional space (a) S(A, b) with an
Archimedean t-norm (b) S(A, b) with a non-Archimedean t-norm

some specific cases. Actually, it will be shown later that sup-T equations with a contin-
uous Archimedean t-norm are somehow easier to solve than those with a continuous
non-Archimedean t-norm. However, the problem to obtain all minimal solutions of a
consistent system of sup-T equations is inevitably NP-hard in terms of computational
complexity. Chen and Wang (2002) provided a proof by transforming polynomially
the minimum covering problem, which is a well known NP-complete problem, into the
problem of solving a system of sup-TM equations. Markovskii (2004, 2005) showed
that determining all minimal solutions of a system of sup-TP equations is equivalent
to the problem of finding all irredundant coverings of a set covering problem.

A system of sup-T equations A ◦ x = b is called homogeneous if b = 0, otherwise
it is called nonhomogeneous. Solving a homogeneous system is trivial. It has a unique
minimal solution x̌ = 0 and a maximum solution x̂ with x̂ j = inf

i ∈ M
IT (ai j , 0), j ∈ N .

Possible shapes of the complete solution set of a nonhomogeneous system of sup-T
equations with two variables are illustrated in Fig. 3. Note that for a system of sup-
T equations with a continuous Archimedean t-norm, the nonzero elements in each
minimal solution can only assume the same values as those in the maximum solution
(as x̌1 and x̌2 shown in Fig. 3a). This phenomenon is a consequence of Theorem 2.13
and has been observed for a long time when solving sup-TP equations. See, for
instance, Loetamonphong and Fang (1999), Markovskii (2004, 2005) and Peeva and
Kyosev (2007), as well as Wu and Guu (2004a) for strict t-norms. A version for con-
tinuous Archimedean t-norms is due to Stamou and Tzafestas (2001) and restated by
Wu et al. (2007) and Wu and Guu (2008). However, when a continuous non-Archi-
medean t-norm is involved in the composition, the nonzero elements in a minimal
solution may assume different values as those in the maximum solution (as x̌1 and x̌2

shown in Fig. 3b), which without doubt will impose some additional difficulties on
the resolution procedure.

Moreover, note that any strictly increasing bijection ψ : [0, 1] → [0, 1] is order
preserving and hence a system of sup-Tψ equations A◦Tψ x = b and a system of sup-T
equations Aψ ◦T x = bψ are isomorphic in the sense that A ◦Tψ x = b implies Aψ ◦T

xψ = bψ and vice versa, where Aψ =(ψ(ai j )
)

m×n , xψ = (ψ(x1), ψ(x2), . . . ,ψ(xn))
T

and bψ = (ψ(b1), ψ(b2), . . . , ψ(bm))
T . Therefore, any system of sup-T equations

with a continuous Archimedean t-norm T can be converted in principle to either a
system of sup-TP equations or a system of sup-TL equations. The specific strictly
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increasing bijection ψ can be determined by Theorem 2.7 as long as the additive
generator of T is known.

3.2 Minimal solutions and set covering problems

The close relation between minimal solutions of a system of sup-T equations and some
set covering problems has been noticed and described from various aspects since the
structure of the complete solution set was fully understood. It provides some important
information for the analysis of the number of minimal solutions and the development
of algorithms to obtain all the minimal solutions. See, for instance, Prévot (1981),
Czogała et al. (1982), Higashi and Klir (1984), Wang et al. (1984), Miyakoshi and
Shimbo (1986), Peeva (1992, 2006), Wang and Hsu (1992), Cechlárová (1995), Luoh
et al. (2002, 2003), Peeva and Kyosev (2004, 2007), Markovskii (2004, 2005) and
Chen and Wang (2002, 2007). However, with a small portion for sup-TP equations,
most of these results were developed for sup-TM equations. In this subsection, a sys-
tematic and unified analysis will be performed to illustrate that the minimal solutions
of a system of sup-T equations correspond one-to-one to the irredundant coverings of
a set covering problem when the involved t-norm is Archimedean. However, they just
correspond to a subset of constrained irredundant coverings of a set covering problem
when the t-norm is non-Archimedean. Some concepts and ideas are borrowed from
Markovskii (2004, 2005), Peeva (1992, 2006) and Peeva and Kyosev (2004, 2007)
and will be extended to the general situations.

For a given system of sup-T equations A ◦ x = b with a continuous t-norm T , a
variable x j , j ∈ N is called essential if b j ≤ ai j holds for some i ∈ M , and non-essen-
tial otherwise. Clearly, non-essential variables have no influence on the consistency
of the system and hence the presence of essential variables is a necessary condition.
Moreover, all the non-essential variables can be excluded to simplify a system since
they will assume the value 1 in the maximum solution and 0 in any minimal solution.

With the potential maximum solution x̂ , the characteristic matrix Q̃ = (q̃i j )m×n of
the system A ◦ x = b can be defined by

q̃i j =
{[

JT (ai j , bi ), x̂ j
]
, if T (ai j , x̂ j ) = bi ,

∅, otherwise,
(3.9)

and obtained in a time complexity of O(mn). It should be noted that similar types of
matrices have been introduced in the literature under various names, e.g., the index sets
by Miyakoshi and Shimbo (1986), Fang and Li (1999) and Wu and Guu (2008), the
covering matrix by Cheng and Peng (1988), the help matrix by Peeva (1992, 2006)
and Peeva and Kyosev (2004, 2007), the solution-base matrix by Chen and Wang
(2002, 2007), the matrix pattern by Luoh et al. (2002, 2003), the covering table by
Markovskii (2004, 2005) and etc.

It is clear that each element q̃i j of the characteristic matrix Q̃ indicates all the
possible values for the variable x j to satisfy the i th equation without violating other
equations from the upper side. The column corresponding to a non-essential variable
contains only empty elements while the column corresponding to an essential variable
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contains at least one nonempty element. The system A◦x = b is consistent if and only
if each row of Q̃ contains at least one nonempty element. Furthermore, any solution
of the system A ◦ x = b can be verified via the characteristic matrix Q̃.

Theorem 3.3 Let A◦ x = b be a system of sup-T equations with a continuous t-norm
T . Given its potential maximum solution x̂ and its characteristic matrix Q̃, a vector
x ∈ [0, 1]n is a solution of A ◦ x = b if and only if x ≤ x̂ and the induced matrix
Qx = (q ′

i j )m×n has no zero rows where

q ′
i j =

{
1, if x j ∈ q̃i j ,

0, otherwise.
(3.10)

Since JT (a, 0) = 0 for all a ∈ [0, 1], it is obvious that q̃i j ⊆ [
JT (ai j , 0), x̂ j

]
holds

for all i ∈ M and j ∈ N . Hence, all the rows of Q̃ corresponding to the index set
M0 = {i ∈ M | bi = 0} can be removed since the induced matrix Qx of any vector
x ∈ [0, 1]n with x ≤ x̂ has no zero rows if and only if its submatrix, with the rows of
the index set M0 removed, has no zero rows. Consequently, in case that the t-norm
T has zero divisors and the index set M0 is not empty, the corresponding equations
can be removed after the characteristic matrix Q̃ has been obtained. However, the
corresponding column reduction cannot be performed in this case since the equa-
tion T (a, x) = 0 with a ∈ (0, 1] is not trivial due to the existence of zero divisors.
Of course, this reduction can be performed before calculating Q̃ if the t-norm T has no
zero divisors. A variable is called pseudo-essential if its corresponding column in Q̃
contains only empty elements after the rows of the index set M0 have been removed.
Clearly, the role of pseudo-essential variables is trivial.

Consequently, without loss of generality, one can always assume that bi > 0, i ∈ M
for a system of sup-T equations A ◦ x = b if a resolution method based on the char-
acteristic matrix will be applied.

3.2.1 Archimedean property and irredundant coverings

The Archimedean property shows its importance in calculating the characteristic
matrix Q̃ of a system of sup-T equations A ◦ x = b. Theorem 2.13 indicates that
for a continuous Archimedean t-norm T , the nonempty elements in Q̃ are always
singletons with their values determined by the potential maximum solution. The
characteristic matrix Q̃ in this case can be further simplified as Q = (qi j )m×n with

qi j =
{

1, if q̃i j �= ∅,
0, otherwise.

(3.11)

Definition 3.3 Let Q = (qi j )m×n ∈ {0, 1}mn be a binary matrix. A column j is said
to cover a row i if qi j = 1. A set of nonzero columns P forms a covering of Q if
each row of Q is covered by some column in P . A column j in a covering P is called
redundant if the set of columns P\{ j} remains to be a covering of Q. A covering P
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is irredundant if it has no redundant columns. The set of all coverings of Q is denoted
by P(Q) while the set of all irredundant coverings of Q is denoted by P̌(Q).

It is well known that the set of all coverings P(Q) of a binary matrix Q can be well
represented by the feasible solution set of a set covering problem, i.e., {u ∈ {0, 1}n |
Qu ≥ e} where e = (1, 1, . . . , 1)T ∈ {0, 1}m . The set covering problem is known to
be one of Karp’s 21 NP-complete problems and has been extensively studied. See, for
instance, Balas and Padberg (1976), Caprara et al. (2000) and Golumbic and Hartman
(2005). The relation between fuzzy relational equations and the set covering prob-
lem was presented by Markovskii (2004, 2005) for sup-TP equations, which can be
extended without any difficulty to the case of continuous Archimedean t-norms.

Theorem 3.4 Let A ◦ x = b be a system of sup-T equations with a continuous
Archimedean t-norm T . Given its potential maximum solution x̂ and its simplified
characteristic matrix Q, a vector x ∈ [0, 1]n with x ≤ x̂ is a solution of A ◦ x = b if
ux = ( f̂ (x1), f̂ (x2), . . . , f̂ (xn))

T ∈ {u ∈ {0, 1}n | Qu ≥ e} where

f̂ (x j ) =
{

1, if x j = x̂ j ,

0, otherwise,
j ∈ N . (3.12)

Conversely, a binary vector u belongs to the set {u ∈ {0, 1}n | Qu ≥ e} if xu =(
x̂1u1, x̂2u2, . . . , x̂nun

)T
is a solution of A ◦ x = b. Moreover, if S(A, b) �= ∅, the set

of all minimal solutions Š(A, b) corresponds one-to-one to the set of all irredundant
coverings P̌(Q).

Obviously, determining all irredundant coverings of a binary matrix is very difficult.
Actually, it is NP-hard even for finding some specific one, e.g., the minimum weighted
covering. However, there does exist a method to represent all irredundant coverings
from a point view of propositional calculus. It is well known that a binary vector u
can be viewed as a group of atomic propositions and hence each inequality in the
system Qu ≥ e is equivalent to a disjunctive clause. Therefore, the consistency of the
system Qu ≥ e can be expressed by the conjunction of these disjunctive clauses which
defines a truth function FQ in conjunctive normal form (CNF), while the irredundant
coverings correspond to the irreducible conjunctive clauses in the disjunctive normal
form (DNF) of the truth function FQ . More specifically, FQ can be represented in
CNF as well as DNF, i.e.,

FQ =
∧

i ∈ M

∨
j ∈ Ci

u j =
∨
s ∈ S

∧
j ∈ C ′

s

u j (3.13)

where Ci = { j ∈ N | qi j = 1} and C ′
s is the index set which forms an irredundant

covering of Q. Clearly, each irreducible conjunctive clause
∧

j ∈ C ′
s

u j defines a min-
imal solution of A ◦ x = b. One need to convert the truth function FQ in CNF to
its DNF to obtain all the irreducible conjunctive clauses. This conversion can lead to
an exponential explosion of the expression in some cases, i.e., the cardinality of S
may increase exponentially as the input size grows. See, e.g., Wengener (1987) and
Milterson et al. (2005) for more details.
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Example 3.1 Consider a system of sup-TL equations A ◦ x = b with

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0.5 1 0.6 0.8
0.9 0.2 1 0.8 0.4 1
0.7 0.8 0.3 0.6 0.8 0.5
0.2 0.7 0.9 0.3 0.5 0.5
0.3 0.5 0.7 0.1 0.3 0.4
0 0.1 0.4 0 0.1 0.3

⎞
⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0.8
0.6
0.4
0.2
0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

It can be verified that the system is consistent and the maximum solution is

x̂ = (0.9, 0.7, 0.5, 1, 0.8, 0.7)T .

Hence, the characteristic matrix Q̃ and its simplified form can be obtained, respec-
tively, as

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ ∅ ∅ 1 ∅ ∅
0.9 ∅ ∅ 1 ∅ ∅
0.9 ∅ ∅ 1 0.8 ∅
∅ 0.7 0.5 ∅ ∅ ∅

0.9 0.7 0.5 ∅ ∅ ∅
[0, 0.9] [0, 0.7] [0, 0.5] [0, 1] [0, 0.8] [0, 0.7]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 1 0

0 1 1 0 0 0

1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

It is clear that x6 is pseudo-essential and can be excluded in the further analysis. The
associated truth function FQ can be expressed in DNF as

FQ = (u4) ∧ (u1 ∨ u4) ∧ (u1 ∨ u4 ∨ u5) ∧ (u2 ∨ u3) ∧ (u1 ∨ u2 ∨ u3) (3.14)

= (u2 ∧ u4) ∨ (u3 ∧ u4). (3.15)

Therefore, according to Theorem 3.4, the concerned system A◦x = b has two minimal
solutions, i.e.,

x̌1 = (0, 0.7, 0, 1, 0, 0)T , (3.16)

x̌2 = (0, 0, 0.5, 1, 0, 0)T . (3.17)
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Hence, the two maximal interval solutions are

x̃1
max =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0, 0.9]
0.7

[0, 0.5]
1

[0, 0.8]
[0, 0.7]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x̃2

max =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0, 0.9]
[0, 0.7]

0.5

1

[0, 0.8]
[0, 0.7]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.18)

and the union of them forms the complete solution set S(A, b).

Example 3.2 Consider a system of sup-TP equations A◦ x = e where A ∈ {0, 1}m×2m

and

A =

⎛
⎜⎜⎜⎝

1 1
1 1

. . .
. . .

1 1

⎞
⎟⎟⎟⎠ .

Clearly, the system is consistent and has the maximum solution x̂ = e. However,
it has 2m minimal solutions. This example was presented by Markovskii (2005) to
illustrate that the total length of all minimal solutions of a system of sup-T equations
can considerably exceed the length of the input data.

The resolution technique via the conversion of a truth function was proposed by
Markovskii (2004, 2005) and Peeva and Kyosev (2007) for sup-TP equations which,
as has been shown, is valid for continuous Archimedean t-norms. A similar procedure
was also proposed by Stamou and Tzafestas (2001). Furthermore, taking the advan-
tage of well developed techniques in integer and combinatorial optimization, some
methods can be applied to reduce the complexity of an instance of the set covering
problem. The most frequently used technique is to remove of the redundant rows.

Definition 3.4 Let Q = (qi j )m×n ∈ {0, 1}mn be a binary matrix.

(i) A row i is said to be redundant if there is a set of rows such that any covering of
these rows also covers row i .

(ii) A row i1 is said to dominate a row i2 if any covering of row i2 also covers row
i1, or equivalently, if qi2 j = 1 implies qi1 j = 1 for all j ∈ N .

Theorem 3.5 Let Q = (qi j )m×n ∈ {0, 1}mn be a binary matrix. A row of Q is redun-
dant if and only if it dominates some other row.

Clearly, redundant rows can be removed from the matrix Q without changing the
set of all irredundant coverings P̌(Q). Some columns may contain only zero elements
after removing the redundant rows. The variables corresponding to such type of col-
umns are called semi-essential since they also assume the value 0 in each minimal
solution. Besides, each of the left nonzero columns belongs to at least one of the
irredundant coverings of Q.
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The elimination of redundant rows has to be applied in a careful way since the
identification of all redundant rows may be time consuming for large scale instances.
However, it may considerably reduce the size of an instance concerned.

Definition 3.5 Let Q = (qi j )m×n ∈ {0, 1}mn be a binary matrix. The kernel Ker(Q)
is the set of columns that belongs to each covering of Q.

It is clear that a column is in Ker(Q) if and only if there exists a row which is
covered only by that column. The variables corresponding to Ker(Q) are called super-
essential. Consequently, Ker(Q) and the rows covered by Ker(Q) can be removed
to reduce the size of Q. Moreover, the following results are straightforward due to
Theorem 3.4.

Theorem 3.6 Let A ◦ x = b be a system of sup-T equations with a continuous
Archimedean t-norm T and the binary matrix Q its simplified characteristic matrix.
The system has a unique solution, i.e., |S(A, b)| = 1, if and only if all the variables
x j , j ∈ N are super-essential while the system has a unique minimal solution, i.e.,
|Š(A, b)| = 1, if and only if Ker(Q)∈ P̌(Q).

In Example 3.1, rows 2, 3 and 5 of Q are redundant and column 4 is in Ker(Q).
Hence the reduced matrix can be obtained as

Q D =

⎛
⎜⎜⎝

u1 u2 u3 u4 u5

0 0 0 1 0

0 1 1 0 0

⎞
⎟⎟⎠ �⇒

(
u2 u3

1 1

)
, K er(Q) = {u4}. (3.19)

Clearly, x4 is super-essential while x1 and x5 are semi-essential. Two irredundant
coverings (0, 1, 0, 1, 0, 0)T and (0, 0, 1, 1, 0, 0)T can be read from Q D which, by
Theorem 3.4, correspond to the minimal solutions x̌1 = (0, 0.7, 0, 1, 0, 0)T and x̌2 =
(0, 0, 0.5, 1, 0, 0)T , respectively.

3.2.2 Non-Archimedean property and constrained irredundant coverings

Consider a system of sup-T equations A ◦ x = b with a continuous non-Archimedean
t-norm T . Without loss of generality, one can always assume that bi > 0, i ∈ M and
all the variables x j , j ∈ N are essential.

In this case, some nonempty elements of the characteristic matrix Q̃ may not be
singletons. Clearly, more efforts are required to figure out all minimal solutions of
the system A ◦ x = b. However, if all the nonempty elements happen to be single-
tons, the exactly same procedure can be followed to obtain the complete solution set
S(A, b) of the system A ◦ x = b. Such a system is hence called simple. By Theo-
rem 2.15, a system is simple if for all i ∈ M, bi �= ai j ,∀ j ∈ N and also bi �= aα if
the t-norm T involves a nilpotent summand 〈aα, bα, Tα〉 and ai j ∈ [aα, bα] for some
j ∈ N . A straightforward check of these sufficient conditions can be implemented
in most cases with a time complexity of O(mn). However, particular efforts may
be required when the t-norm T involves countably infinite nilpotent summands, for
instance, T = (〈1/2k+1, 1/2k, TL〉)∞k=0.

123



194 P. Li, S.-C. Fang

When a system A ◦ x = b is not simple, a variable is called multi-essential if its
corresponding column in the characteristic matrix Q̃ contains a nonempty element
that is not singleton. A multi-essential variable x j can assume the value other than x̂ j

and 0 in a minimal solution. Actually, by Theorem 2.11, the values x j can assume in
minimal solutions are determined by the set {JT (ai j , bi ) | T (ai j , x̂ j ) = bi , i ∈ M}.
Moreover, for different values of x j , the number of equations satisfied by x j may
be different. Therefore, a minimal solution is determined by the combination of the
essential variables as well as the values of those multi-essential variables involved.
Peeva (1992) and Peeva and Kyosev (2004) proposed a method to obtain all mini-
mal solutions for a system of sup-TM equations, which is based on the definition of
the characteristic matrix and Theorem 3.3 and hence essentially independent of the
t-norm involved. Consequently, this method can be extended for general continuous
non-Archimedean t-norms. However, it should be noted that this method can be traced
back to Cheng and Peng (1988) in which it was developed in a more general frame-
work. The notations used below for the resolution are due to Peeva (1992) and Peeva
and Kyosev (2004).

Denote r j the number of different values in {JT (ai j , bi ) | T (ai j , x̂ j ) = bi , i ∈ M}
and r = ∑

j ∈ N r j . Clearly, r j = 1 if x j is not multi-essential and r j ≥ 1 if x j is
multi-essential. Denote K j = {1, 2, . . . , r j } and v̌ jk, k ∈ K j the different values in
{JT (ai j , bi ) | T (ai j , x̂ j ) = bi , i ∈ M} for all j ∈ N . By definition of the characteristic
matrix Q̃, JT (ai j , bi ) indicates the minimum value that x j can assume to satisfy the
i th equation if q̃i j �= ∅, and hence

∨
j ∈ Ci

〈
JT (ai j , bi )

x j

〉
, Ci = { j ∈ N | q̃i j �= ∅} (3.20)

indicates the possible ways to satisfy the i th equation with the minimum values of the
involved variables. Consequently,

FQ̃ =
∧

i ∈ M

∨
j ∈ Ci

〈
JT (ai j , bi )

x j

〉
(3.21)

provides all lower bound information of the variables to satisfy the system A ◦ x = b.
The function FQ̃ can be regarded as a fuzzy truth function. Clearly, it would reduce to
a classical truth function when all the lower bounds are unique for each variable, i.e.,
r j = 1,∀ j ∈ N . The function FQ̃ is obviously in its fuzzy version of CNF and needs
to be converted to its fuzzy version of DNF, i.e.,

FQ̃ =
∧

i ∈ M

∨
j ∈ Ci

〈
JT (ai j , bi )

x j

〉
=
∨
s ∈ S

∧
j ∈ C ′

s

〈
v̌ jks

x j

〉
(3.22)

where C ′
s is an index set and v̌ jks is the value of x j such that

∧
j ∈ C ′

s

〈
v̌ jks

x j

〉
forms an

irreducible fuzzy conjunctive clause. Some rules are needed to perform this conversion.
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Rule 1: commutativity.

〈
v̌ j1k1

x j1

〉 〈
v̌ j2k2

x j2

〉
=
〈
v̌ j2k2

x j2

〉 〈
v̌ j1k1

x j1

〉
, j1 �= j2, k1 ∈ K j1 , k2 ∈ K j2 . (3.23)

Rule 2: absorption for conjunction.

〈
v̌ j1k1

x j1

〉 〈
v̌ j1k2

x j1

〉
=
〈
v̌ j1k1 ∨ v̌ j1k2

x j1

〉
, k1, k2 ∈ K j1 . (3.24)

Rule 3: distributivity for disjunction.

〈
v̌ j1k1

x j1

〉 (〈
v̌ j1k2

x j2

〉∨〈
v̌ j3k3

x j3

〉)
=
〈
v̌ j1k1

x j1

〉 〈
v̌ j2k2

x j2

〉∨〈
v̌ j1k1

x j1

〉 〈
v̌ j3k3

x j3

〉
,

k1 ∈ K j1, k2 ∈ K j2, k3 ∈ K j3. (3.25)

Rule 4: absorption for disjunction.

〈
v̌ j1k1

x j1

〉
· · ·
〈
v̌ j1kp

x jp

〉∨〈
v̌ j1k′

1

x j1

〉
· · ·
〈
v̌ j1k′

p

x jp

〉 〈
v̌ jp+1k′

p+1

x jp+1

〉
· · ·
〈
v̌ jp+q k′

p+q

x jp+q

〉

=
〈
v̌ j1k1

x j1

〉
· · ·
〈
v̌ j1kp

x jp

〉
, if v̌ j1k1 ≤ v̌ j1k′

1
, . . . , v̌ jpkp ≤ v̌ jpk′

p
. (3.26)

Example 3.3 Consider a system of sup-T equations A◦x = b with T = (〈0.4, 0.8, TL 〉)
and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.8 1 0.9 1 1

0.9 0.7 0.8 0.8 1

0.4 0.4 0.6 0.5 0.2

0.6 0.3 0.1 0.4 0.9

0.2 0 0.2 0.1 0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0.8

0.6

0.4

0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

It can be verified that the system is consistent and the maximum solution is

x̂ = (0.6, 1, 1, 1, 0.2)T .
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Hence, the characteristic matrix Q̃ can be obtained as

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∅ 1 ∅ 1 ∅
∅ ∅ [0.8, 1] [0.8, 1] ∅
∅ ∅ [0.8, 1] ∅ ∅

[0.4, 0.6] ∅ ∅ [0.4, 1] ∅
[0.2, 0.6] ∅ [0.2, 1] ∅ 0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

It is obvious that the system is not simple. The associated fuzzy truth function FQ̃ can
be expressed in DNF as

FQ̃ =
(〈

1

x2

〉∨〈
1

x4

〉)∧(〈
0.8

x3

〉∨〈
0.8

x4

〉)∧(〈
0.8

x3

〉)

∧(〈
0.4

x1

〉∨〈
0.4

x4

〉)∧(〈
0.2

x1

〉∨〈
0.2

x3

〉∨〈
0.2

x5

〉)
(3.27)

=
(〈

0.4

x1

〉 〈
1

x2

〉 〈
0.8

x3

〉)∨(〈
1

x2

〉 〈
0.8

x3

〉 〈
0.4

x4

〉)∨(〈
0.8

x3

〉 〈
1

x4

〉)
. (3.28)

Therefore, the concerned system A ◦ x = b has three minimal solutions, i.e.,

x̌1 = (0.4, 1, 0.8, 0, 0)T , (3.29)

x̌2 = (0, 1, 0.8, 0.4, 0)T , (3.30)

x̌3 = (0, 0, 0.8, 1, 0)T . (3.31)

Hence, the three maximal interval solutions are

x̃1
max =

⎛
⎜⎜⎜⎜⎜⎜⎝

[0.4, 0.6]
1

[0.8, 1]
[0, 1]

[0, 0.2]

⎞
⎟⎟⎟⎟⎟⎟⎠
, x̃2

max =

⎛
⎜⎜⎜⎜⎜⎜⎝

[0, 0.6]
1

[0.8, 1]
[0.4, 1]
[0, 0.2]

⎞
⎟⎟⎟⎟⎟⎟⎠
, x̃3

max =

⎛
⎜⎜⎜⎜⎜⎜⎝

[0, 0.6]
[0, 1]

[0.8, 1]
1

[0, 0.2]

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.32)

and the union of them forms the complete solution set S(A, b).
Similarly, the redundant rows of a characteristic matrix Q̃ can be removed to reduce

the size of Q̃.

Definition 3.6 Let Q̃ = (q̃i j )m×n be the characteristic matrix of a system of sup-T
equations A ◦ x = b.

(i) A row i of Q̃ is said to be redundant if there exists a set of rows of Q̃ such that
for all x ≤ x̂ , the corresponding rows of the induced matrix Qx have no zero
rows implies row i of Qx is also a nonzero row.
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(ii) A row i1 is said to dominate a row i2 in Q̃ if for all x ≤ x̂ , row i1 dominates
row i2 in the induced matrix Qx , or equivalently, q̃i2 j �= ∅ implies q̃i2 j ⊆ q̃i1 j

for all j ∈ N .
(iii) A column j of Q̃ is said in the kernel Ker(Q̃) if there exists a row i such that

q̃i j is the unique nonempty element of row i .

Clearly, when a continuous Archimedean t-norm is involved for composition, the
concepts of redundant rows, dominant rows and the kernel are equivalent to those in
Definitions 3.4 and 3.5, respectively. By Theorem 3.5, it is straightforward that a row
of Q̃ is redundant if and only if it dominates some other row. Moreover, for a system
of sup-TM equations A ◦ x = b, if a row i1 dominates a row i2, it always holds that
bi1 ≤ bi2 since JTM (a, b) = b whenever 0 ≤ b ≤ a ≤ 1. Hence, the normal form
of sup-TM equations provides some convenience in detecting the redundant rows.
However, as shown in Example 3.3, this is not valid in general cases.

Some columns of Q̃ may contain only empty elements after removing the redundant
rows. The variables corresponding to such type of columns are called semi-essential
and assume the value 0 in each minimal solution. The variables corresponding to the
columns in Ker(Q̃) are called sup-essential. However, Ker(Q̃) and the corresponding
rows can not be removed in general since the super-essential variables can assume
different non-zero values in minimal solutions. Furthermore, the condition that all
the variables are super-essential can only guarantee that the uniqueness of the mini-
mal solution. Some discussion on the unique solvability of sup-TM equations can be
found in Sessa (1984), Lettieri and Liguori (1984, 1985), Di Nola and Sessa (1988),
Cechlárová (1990, 1995), Li (1990) and Gavalec (2001).

In Example 3.3 rows 2 and 5 of Q̃ are redundant and column 3 is in Ker(Q̃). Hence
the reduced matrix can be obtained as

Q̃ D =

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5

∅ 1 ∅ 1 ∅
∅ ∅ [0.8, 1] ∅ ∅

[0.4, 0.6] ∅ ∅ [0.4, 1] ∅

⎞
⎟⎟⎟⎟⎟⎠ . (3.33)

Clearly, x3 is super-essential while x5 is semi-essential. The same result of minimal
solutions can be obtained from Q̃ D . Note that in this example the super-essential
variable assume a same value in each minimal solution.

Example 3.4 Consider a system of sup-TM equations A ◦ x = b with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0.4 0.6 1

0.6 1 0.8 0.9

0.6 0.8 0.5 0.4

0.3 1 0.2 0.4

0.1 0.8 0.1 0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

0.8

0.6

0.4

0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.
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It can be verified that the system is consistent and the maximum solution is

x̂ = (1, 0.2, 1, 0.8)T .

Hence, the characteristic matrix Q̃ can be obtained as

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ∅ ∅ ∅
∅ ∅ [0.8, 1] 0.8

[0.6, 1] ∅ ∅ ∅
∅ ∅ ∅ [0.4, 0.8]
∅ 0.2 ∅ [0.2, 0.8]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, row 3 dominates row 1 and row 5 dominates row 4. Columns 1 and 4 are in
Ker(Q̃). The reduced matrix can be obtained as

Q̃ D =

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4

1 ∅ ∅ ∅
∅ ∅ [0.8, 1] 0.8

∅ ∅ ∅ [0.4, 0.8]

⎞
⎟⎟⎟⎟⎟⎠ .

The variables x1 and x4 are sup-essential while x2 is semi-essential. The system has
two minimal solutions, i.e.,

x̌1 = (1, 0, 0.8, 0.4)T , (3.34)

x̌2 = (1, 0, 0, 0.8)T . (3.35)

Note that the super-essential variable x4 assumes different values in the two minimal
solutions.

Another method to deal with multi-essential variables is to represent each of them
by a set of binary variables.

Recall that r j , j ∈ N are the numbers of different values in {JT (ai j , bi ) | T (ai j ,

x̂ j ) = bi , i ∈ M} and v̌ jk, k ∈ K j are the different values in {JT (ai j , bi ) | T (ai j ,

x̂ j ) = bi , i ∈ M} for all j ∈ N . Let v̌ = (v̌11, . . . , v̌1r1 , . . . , v̌n1, . . . , v̌nrn )
T ∈ [0, 1]r

and

x j =
∑

k ∈ K j

v̌ jku jk, j ∈ N (3.36)

where u jk ∈ {0, 1},∀ k ∈ K j , j ∈ N . Obviously, for each j ∈ N , at most one of u jk,

k ∈ K j can be 1, i.e.,
∑

k ∈ K j
u jk ≤ 1, j ∈ N . These restrictions are called the inner-

variable incompatibility constraints and can be represented by Gu ≤ en , where

123



The resolution and optimization 199

en = (1, 1, . . . , 1)T ∈ {0, 1}n, u = (u11, . . . , u1r1 , . . . , un1, . . . , unrn )
T ∈ {0, 1}r and

G = (g jk)n×r with

g jk =

⎧⎪⎨
⎪⎩

1, if
j−1∑
s=1

rs < k ≤
j∑

s=1
rs,

0, otherwise.

(3.37)

Actually, the incompatibility constraints with r j = 1 are redundant and hence can
be removed. Clearly, if r j = 1 for all j ∈ N , all the incompatibility constraints are
redundant and no additional difficulties will be imposed. In this case, the values of the
nonzero elements in a minimal solution are uniquely determined although they may
be different from those in the maximum solution.

As a consequence of this transformation, the characteristic matrix Q̃ can be con-
verted to its augmented characteristic matrix Q = (qik)m×r ∈ {0, 1}mr where

qik =

⎧⎪⎨
⎪⎩

1, if
j−1∑
s=1

rs < k ≤
j∑

s=1
rs, v̌k ∈ q̃i j , j ∈ N ,

0, otherwise.

(3.38)

Definition 3.7 Let Q = (qik)m×r ∈ {0, 1}mr and G = (q jk)n×r ∈ {0, 1}nr be two
binary matrices. A column k of Q is said to cover a row i of Q if qik = 1. A set of
nonzero columns P forms a G-covering of Q if each row of Q is covered by some
column in P , i.e., Qu P ≥ em , and also satisfies Gu P ≤ en where u P = (u P

k )r×1 and

u P
k =

{
1, if k ∈ P,

0, otherwise.
(3.39)

A column k in a G-covering P is called redundant if the set of columns P\{k} remains
to be a G-covering of Q. A G-covering P is irredundant if P has no redundant col-
umns. The set of all G-coverings of Q is denoted by PG(Q) while the set of all
irredundant G-coverings of Q is denoted by P̌G(Q).

Theorem 3.7 Let A ◦ x = b be a system of sup-T equations with a continuous non-
Archimedean t-norm T . Given its potential maximum solution x̂ and its characteristic
matrix Q̃, denote r j the number of different values in {JT (ai j , bi ) | T (ai j , x̂ j ) =
bi , i ∈ M}, r = ∑

j ∈ N r j and K j = {1, 2, . . . , r j }. Let v̌ jk, k ∈ K j be the different
values in {JT (ai j , bi ) | T (ai j , x̂ j ) = bi , i ∈ M} for all j ∈ N , v̌ = (v̌11, . . . , v̌1r1 , . . . ,

v̌n1, . . . , v̌nrn )
T ∈ [0, 1]r and Q and G the corresponding augmented characteristic

matrix and the coefficient matrix of the inner-variable incompatibility constraints,
respectively. A vector x ∈ [0, 1]n with x ≤ x̂ is a solution of A ◦ x = b if ux =
( f̂ ′(x1), f̂ ′(x2), . . . , f̂ ′(xn))

T ∈ {u ∈ {0, 1}r | Qu ≥ em, Gu ≤ en} where f̂ ′(x j ) =
(u j1, u j2, . . . , u jr j ) and

u jk =
{

1, if k = argmax{v̌ jk | v̌ jk ≤ x j },
0, otherwise,

j ∈ N . (3.40)
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Conversely, a binary vector u with Gu ≤ en belongs to the set {u ∈ {0, 1}r | Qu ≥ em}
if

xu =
⎛
⎝∑

k ∈ K1

v̌1ku1k,
∑

k ∈ K2

v̌2ku2k, · · · ,
∑

k ∈ Kn

v̌nkunk

⎞
⎠

T

(3.41)

is a solution of A ◦ x = b. Moreover, the vector u defines an irredundant G-covering
of Q if xu is a minimal solution of A ◦ x = b.

Proof If x ≤ x̂ and ux ∈ {u ∈ {0, 1}r | Qu ≥ em, Gu ≤ en}, it is clear the induced
matrix Qx has no zero rows and hence x is a solution of A ◦ x = b by Theorem 3.3.
Conversely, if the binary vector u satisfies Gu ≤ en and xu is a solution of A ◦ x = b,
there exists an index ji for each i ∈ M such that T (ai ji ,

∑
k ∈ K ji

v̌ ji ku ji k) = bi and

hence Qu ≥ en according to the definition of the matrix Q. Moreover, if the vector
u is not irredundant when xu is a minimal solution of A ◦ x = b, there must exist
an index k′ ∈ K j ′ with u j ′k′ = 1 for some j ′ ∈ N such that Qu′ ≥ em and Gu′ ≤ en

where u′ ∈ {0, 1}r and

u′
jk =

{
0, if j = j ′, k = k′,

u jk, otherwise.
(3.42)

Consequently, xu′ with

(xu′) j =
{
(xu) j , if j �= j ′,

0, if j = j ′,
(3.43)

is also a solution of A ◦ x = b and xu′ ≤ xu . However, (xu) j ′ �= 0 since u j ′k′ = 1,
which leads to a contradiction. Hence, the vector u defines an irredundant G-covering
of Q if xu ∈ Š(A, b).

By Theorem 3.7 and the properties of the transformations between Š(A, b) and
P̌G(Q), the binary vector u corresponding to a minimal solution defines an irre-
dundant G-covering. Unfortunately, the vector x corresponding to an irredundant
G-covering may not necessarily be a minimal solution. Due to the existence of multi-
essential variables, the coexistence of some columns in an irredundant G-covering,
say u j1k1 = u j2k2 = 1 with j1 �= j2, k1 ∈ K j1, k2 ∈ K j2 , may fail to induce a minimal
solution.

Example 3.5 Consider a system of sup-TM equations A ◦ x = b with

A =

⎛
⎜⎜⎝

0.8 0 0.8

0.6 0.6 0

0 0.4 0.2

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

0.8

0.6

0.4

⎞
⎟⎟⎠ .
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This example is adapted from the one in Markovskii (2005). Clearly, the system is
consistent and has the maximum solution x̂ = (1, 1, 1)T . Hence, the characteristic
matrix Q̃ can be obtained as

Q̃ =

⎛
⎜⎜⎝

[0.8, 1] ∅ [0.8, 1]
[0.6, 1] [0.6, 1] ∅

∅ [0.4, 1] ∅

⎞
⎟⎟⎠ .

Therefore, the concerned system has three minimal solutions, i.e.,

x̌1 = (0.8, 0.4, 0)T , (3.44)

x̌2 = (0.6, 0.4, 0.8)T , (3.45)

x̌3 = (0, 0.6, 0.8)T . (3.46)

Let u = (u11, u12, u21, u22, u31)
T ∈ {0, 1}5 and

v̌ = (v̌11, v̌12, v̌21, v̌22, v̌31)
T = (0.8, 0.6, 0.6, 0.4, 0.8)T . (3.47)

The augmented characteristic matrix Q can be obtained as

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11 u12
... u21 u22

... u31

1 0
... 0 0

... 1

1 1
... 1 0

... 0

0 0
... 1 1

... 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.48)

The coefficient matrix G of the inner-variable incompatibility constraints is

G =
(

1 1 0 0 0

0 0 1 1 0

)
. (3.49)

Note that the constraint for u31 is redundant and has been omitted. In this case, five
irredundant G-coverings can be obtained, i.e.,

P̌1
G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, P̌2

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

1

1

⎞
⎟⎟⎟⎟⎟⎟⎠
, P̌3

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
, P̌4

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠
, P̌5

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.50)
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However, only the first three irredundant G-coverings induce a minimal solution,
respectively. In P̌4

G , the variables u11 and u21 are actually incompatible to induce
a minimal solution since the columns corresponding to u11 and u22 cover the same
rows as those corresponding to u11 and u21 but with a smaller value v̌22 for x2 in the
induced solution of A ◦ x = b. The similar situation occurs in P̌5

G where u12 and u21
can be replaced by u21 and u22 in order to induce a minimal solution. Furthermore, it
is also possible that a group of variables are incompatible but pairwise compatible for
inducing a minimal solution. This phenomenon is called the inter-variable incompat-
ibility and essentially equivalent to the rule of absorption for disjunction introduced
for converting a fuzzy truth function in CNF to its DNF.

It is possible but not worthwhile to detect all inter-variable incompatibility
constraints for a system of sup-T equations since they do not offer any computa-
tional convenience in the determination of all minimal solutions. Moreover, the inner-
variable incompatibility constraints, which are easy to define, are usually sufficient
when a specific minimal solution of the system is concerned.

4 Linear optimization subject to sup-T equations

In this section, we discuss the linear optimization problem subject to a system of sup-T
equations with a continuous t-norm T , i.e.,

min z = ∑
j ∈ N c j x j

s.t.
A ◦ x = b,

x ∈ [0, 1]n,

(4.1)

where c = (c1, c2, . . . , cn)
T ∈ Rn is the weight (or cost) vector and c j represents the

weight associated with the variable x j for all j ∈ N . Clearly, it is in general a noncon-
vex optimization problem. However, it can be polynomially reduced to a classical 0-1
integer programming problem based on the relation between the feasible domain and
a set covering problem.

Theorem 4.1 Let A ◦ x = b be a consistent system of sup-T equations with a con-
tinuous t-norm T . The maximum solution x̂ is an optimal solution with respect to the
objective function z = cT x if c j ≤ 0 for all j ∈ N. One of the minimal solutions is
an optimal solution with respect to the objective function z = cT x if c j ≥ 0 for all
j ∈ N.

Theorem 4.1 was first stated by Fang and Li (1999) for sup-TM equations, which
is valid for general continuous t-norms since it only depends on the structure of the
complete solution set S(A, b).

With the aid of Theorem 4.1, any given wight vector c = (c1, c2, . . . , cn)
T ∈ Rn

can be separated into two parts, i.e., c+ = (c+
1 , c+

2 , . . . , c+
n )

T and c− = (c−
1 , c−

2 , . . . ,

c−
n )

T such that for all j ∈ N ,
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c+
j =

{
c j , if c j ≤ 0,

0, if c j < 0,
and c−

j =
{

0, if c j ≤ 0,

c j , if c j < 0.
(4.2)

Obviously, c = c+ + c− with c+ ≥ 0 and c− ≤ 0. Two subproblems can be defined
as

min z+ = ∑
j ∈ N c+

j x j

s.t.
A ◦ x = b,

x ∈ [0, 1]n,

(4.3)

and

min z− = ∑
j ∈ N c−

j x j

s.t.
A ◦ x = b,

x ∈ [0, 1]n,

(4.4)

By Theorem 4.1, when S(A, b) �= ∅, one of the minimal solutions, say x̌∗, is
an optimal solution with respect to

∑
j ∈ N c+

j x j and the maximum solution x̂ is an

optimal solution with respect to
∑

j ∈ N c−
j x j . Consequently, an optimal solution with

respect to
∑

j ∈ N c j x j can be constructed via x̌∗ and x̂ .

Theorem 4.2 Let A ◦ x = b be a consistent system of sup-T equations with a con-
tinuous t-norm T . For any weight vector c = (c1, c2, . . . , cn)

T ∈ Rn, the vector x∗ =
(x∗

1 , x∗
2 , . . . , x∗

n )
T with

x∗
j =

{
x̌∗

j , if c j ≥ 0,

x̂ j , if c j < 0,
j ∈ N . (4.5)

is an optimal solution with respect to
∑

j ∈ N c j x j where x̂ is the maximum solution

and x̌∗ is the optimal solution with respect to
∑

j ∈ N c+
j x j . The optimal value is

z∗ = cT x∗ = ∑
j ∈ N (c

−
j x̂ j + c+

j x̌∗
j ).

Proof For any x ∈ S(A, b) �= ∅, one has

cT x = (c+ + c−)T x = (c+)T x + (c−)T x

≥ (c+)T x̌∗ + (c−)T x̂ = (c+)T x∗ + (c−)T x∗

= cT x∗. (4.6)

Hence, x∗ is an optimal solution with respect to z = cT x .
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By Theorem 4.2, for an arbitrary weight vector, solving the linear optimization
problem subject to a system of sup-T equations can be decomposed into two subprob-
lems, one of which can be solved analytically while another is not easy to handle. The
subproblem with nonnegative weight vector is inevitably an NP-hard problem since
the classical set covering problem can be regarded as a special scenario of this problem.
On the other hand, this problem can be polynomially reduced to a set covering problem
or a constrained set covering problem, where the existence of additional constraints
depends on whether the involved continuous triangular norm is Archimedean or not.

Theorem 4.3 Let A ◦ x = b be a consistent system of sup-T equations with a con-
tinuous Archimedean t-norm T and Q its associated simplified characteristic matrix.
For any given weight vector c = (c1, c2, . . . , cn)

T, the following problem

(LO-Ar)

min zx = ∑
j ∈ N c j x j

s.t.
A ◦ x = b,

x ∈ [0, 1]n,

(4.7)

is equivalent to the set covering problem

(SCP)

min zu = ∑
j ∈ N (c j x̂ j )u j

s.t.
Qu ≥ e,

u ∈ {0, 1}n,

(4.8)

in the sense that any optimal solution u∗ = (u∗
1, u∗

2, . . . , u∗
n)

T to (SCP) defines an opti-
mal solution x∗ = (x̂1u∗

1, x̂2u∗
2, . . . , x̂nu∗

n)
T to (LO-Ar) and any optimal solution x∗ =

(x∗
1 , x∗

2 , . . . , x∗
n )

T to (LO-Ar) defines an optimal solution u∗ = ( f̂ (x∗
1 ), f̂ (x∗

2 ), . . . ,

f̂ (x∗
n ))

T to (SCP) where

f̂ (x∗
j ) =

{
1, if x∗

j = x̂ j ,

0, otherwise,
j ∈ N . (4.9)

Besides, the optimal values of both problems are equal, i.e., z∗
x = z∗

u .

Proof It is straightforward by Theorems 3.4 and 4.2.

Theorem 4.4 Let A ◦ x = b be a consistent system of sup-T equations with a contin-
uous non-Archimedean t-norm T and Q and G its associated augmented characteris-
tic matrix and the coefficient matrix of the inner-variable incompatibility constraints,
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respectively. For any given weight vector c = (c1, c2, . . . , cn)
T , the following problem

(LO-nAr)

min z+
x = ∑

j ∈ N c+
j x j

s.t.
A ◦ x = b,

x ∈ [0, 1]n,

(4.10)

is equivalent to the constrained set covering problem

(CSCP)

min z+
u = ∑

j ∈ N
∑

k ∈ K j
(c+

j v̌ jk)u jk

s.t.
Qu ≥ em,

Gu ≤ en,

u ∈ {0, 1}r ,

(4.11)

in the sense that any optimal solution ǔ∗ = (ǔ∗
11, . . . , ǔ∗

1r1
, . . . , ǔ∗

n1, . . . ǔ
∗
nrn
)T to

(CSCP) defines an optimal solution

x̌∗ =
⎛
⎝∑

k ∈ K1

v̌1k ǔ∗
1k,

∑
k ∈ K2

v̌2k ǔ∗
2k, . . . ,

∑
k ∈ Kn

v̌nk ǔ∗
nk

⎞
⎠

T

(4.12)

to (LO-nAr) and any optimal solution x̌∗ = (x̌∗
1 , x̌∗

2 , . . . , x̌∗
n )

T to (LO-nAr) defines

an optimal solution ǔ∗ = ( f̂ ′(x∗
1 ), f̂ ′(x∗

2 ), . . . , f̂ ′(x∗
n ))

T to (CSCP) where f̂ ′(x∗
j ) =

(ǔ∗
j1, ǔ∗

j2, . . . , ǔ∗
jr j
)T and

ǔ∗
jk =

{
1, if k = argmax{v̌ jk | v̌ jk ≤ x̌∗

j },
0, otherwise,

j ∈ N . (4.13)

Besides, the optimal values of both problems are equal, i.e., (z+
x )

∗ = (z+
u )

∗.

Proof It is straightforward by Theorems 3.7 and 4.2.
Actually, if there exists an index j ∈ N such that c j < 0, the corresponding vari-

ables u jk, k ∈ K j can be aggregated as a single variable with the weight c j x̂ j in the
constrained set covering problem. With this modification, one can obtain the optimal
solution immediately after solving the constrained set covering problem.

Therefore, it is clear that the linear optimization problem subject to a system of
sup-T equations with a continuous t-norms T can be polynomially reduced to a 0–1
integer programming problem which is known to be NP-hard. This reduction can be
completed in a time complexity of O(mn) if the t-norm T is Archimedean or in a time
complexity of O(m2n) if it is non-Archimedean. Furthermore, taking the advantage
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of well developed techniques and clarity of exposition in the theory of integer pro-
gramming, some methods may be applied to efficiently solve the linear optimization
problem subject to a system of sup-T equations.

Example 4.1 Reconsider the system of sup-TM equations in Example 3.5 with an
objective function z = −2x1 + 2x2 + x3.

By Theorem 4.2, it is clear that the optimal solution of this problem is x∗ = (1, 0.4, 0)T

by evaluating the maximum solution and the three minimal solutions. On the other
hand, one has c+ = (0, 2, 1)T and

v̌ = (v̌11, v̌12, v̌21, v̌22, v̌31)
T = (0.8, 0.6, 0.6, 0.4, 0.8)T . (4.14)

Hence, the corresponding constrained set covering problem can be constructed as

min z+
u = 0u11 + 0u12 + 1.2u21 + 0.8u22 + 0.8u31

s.t.⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1

1 1 1 0 0

0 0 1 1 0

−1 −1 0 0 0

0 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u11

u12

u21

u22

u31

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

−1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

u ∈ {0, 1}5.

(4.15)

and the optimal solution can be obtained as ǔ∗ = (1, 0, 0, 1, 0)T which corresponds
to the minimal solution x̌∗ = (0.8, 0.4, 0)T . Hence, the optimal solution can be con-
structed as x∗ = (1, 0.4, 0)T with the optimal value z∗ = −1.2 by Theorem 4.2.

Moreover, since c1 < 0, one can obtain the optimal solution directly by solving the
following problem

min zu = −2u11 + 1.2u21 + 0.8u22 + 0.8u31

s.t.⎛
⎜⎜⎜⎜⎜⎝

1 0 0 1

1 1 0 0

0 1 1 0

0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u11

u21

u22

u31

⎞
⎟⎟⎟⎟⎟⎠ ≥

⎛
⎜⎜⎜⎜⎜⎝

1

1

1

−1

⎞
⎟⎟⎟⎟⎟⎠ ,

u ∈ {0, 1}4.

(4.16)

It is clear that the procedure for solving linear optimization problem subject to a sys-
tem of sup-T equations can be directly extended to the case that the objective function is
separable and monotone in each variable, i.e., zx = ∑

j ∈ N f j (x)where f j (x), j ∈ N
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are monotone functions defined on [0, 1]. Without loss of generality, we may assume
that f j (0) = 0, j ∈ N . In case that the continuous t-norm T is Archimedean, a sys-
tem of sup-T equations A ◦ x = b with an objective function zx = ∑

j ∈ N f j (x) is
equivalent to the set covering problem

min zu = ∑
j ∈ N f j (x̂ j )u j

s.t.
Qu ≥ e,

u ∈ {0, 1}n,

(4.17)

where Q is the associated simplified characteristic matrix. When T is non-
Archimedean, this problem is equivalent to the constrained set covering problem

min zu = ∑
j ∈ N− f j (x̂ j )u j1 +∑

j ∈ N+
∑

k ∈ K j
f j (v̌ jk)u jk

s.t.
Q′u ≥ em,

G ′u ≤ en,

u ∈ {0, 1}r ′
,

(4.18)

where Q′ and G ′ are the associated augmented characteristic matrix and the coeffi-
cient matrix of inner-variable incompatibility constraints, respectively, with necessary
modification, and N− = { j ∈ N | f j (x) is a descresing function.} and N+ = N\N−.

It is clear that similar properties as in Theorem 4.2 may still hold when the objective
function is monotone in each variable separately. See, e.g., Wang et al. (1991), Yang
and Cao (2005a, 2007). However, for general nonlinear objective functions, the opti-
mization problem can be very complicated and deserves further investigation since
the reduction used for linear optimization problems may be no longer valid.

5 Concluding remarks

It has been shown in this paper that systems of sup-T equations can be generally
divided into two categories based on whether the involved continuous t-norm is Ar-
chimedean or not, while the linear optimization problem subject to a system of sup-T
equations can be reduced to a 0–1 integer programming in polynomial time. It is
clear that the structures of the complete solution set and the characteristic matrix of
a system of sup-T equations play the crucial roles in the resolution and optimization
procedures. Similar analysis can be performed on a system of fuzzy relational equa-
tions or inequalities with sup-O composition where O : [0, 1]2 → [0, 1] is some
general binary operator, as long as the complete solution set can be characterized by a
maximum solution and a finite number of minimal solutions, i.e., preserves the struc-
ture of a finitely generated root system. Consequently, the t-norm can be replaced by
a weak t-norm, t-seminorm or strong pseudo-t-norm. See Fodor (1991), De Cooman
and Kerre (1994), Han and Li (2005), Wang and Xiong (2005) and Han et al. (2006)
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for details. More general composite operators were also investigated in Cuninghame-
Green (1979, 1995), Kawaguchi and Miyakoshi (1998), Cheng and Peng (1988),
Noskoá (2005), Khorram and Ghodousian (2006) and Wu (2007).

Besides, given a solution of a system of sup-T equations, algorithms can be designed
based on the associated characteristic matrix to obtain all minimal solutions which are
less than or equal to the given solution. See, for instance, Yeh (2008).

On the other hand, it is well known that any system of sup-T equations defines a
dual system of inf-S equations where S is the dual t-conorm of T . Therefore, the results
derived in this paper can be applied dually on a system of inf-S equations, of which the
complete solution set, when it is nonempty, can be determined by a minimum solution
and a finite number of maximal solutions.

In the literature, fuzzy relational equations with inf-I composition are also
considered, where I : [0, 1]2 → [0, 1] is an implicator. See, e.g., Miyakoshi and
Shimbo (1985), De Baets (2000), Luo and Li (2004) and Noskoá (2005). Similar to
inf-S equations, the complete solution set of a consistent system of inf-I equations
is also determined by a minimum solution and a finite number of maximal solutions.
Actually, when concerning a model implicator I , any system of inf-I equations can
be defined dually by a system of sup-T equations where T is the dual t-norm of the
implicator I with respect to a strong negator, particularly, the standard negator Ns .
Consequently, the results presented in this paper would apply for inf-I equations as
well. The readers may refer to De Baets (1995c, 1997) for more details on model im-
plicators and model coimplicators and to Li and Fang (2008) for a detailed discussion
on the relationship between various types of fuzzy relational equations.

Since fuzzy relational equations can be considered in a general framework of lattice,
it would be an interesting topic of finding all minimal/maximal solutions, as well as
some specific ones, in an efficient manner for a system of fuzzy relational equations
defined on a bounded lattice. It certainly depends on the properties of the composite
operator and the specific structure of the underlying lattice.
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