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Abstract The aim of this paper is to develop a new fuzzy closeness (FC) methodology
for multi-attribute decision making (MADM) in fuzzy environments, which is an
important research field in decision science and operations research. The TOPSIS
method based on an aggregating function representing “closeness to the ideal solu-
tion” is one of the well-known MADM methods. However, while the highest ranked
alternative by the TOPSIS method is the best in terms of its ranking index, this does
not mean that it is always the closest to the ideal solution. Furthermore, the TOPSIS
method presumes crisp data while fuzziness is inherent in decision data and decision
making processes, so that fuzzy ratings using linguistic variables are better suited for
assessing decision alternatives. In this paper, a new FC method for MADM under
fuzzy environments is developed by introducing a multi-attribute ranking index based
on the particular measure of closeness to the ideal solution, which is developed from
the fuzzy weighted Minkowski distance used as an aggregating function in a com-
promise programming method. The FC method of compromise ranking determines a
compromise solution, providing a maximum “group utility” for the “majority” and a
minimum individual regret for the “opponent”. A real example of a personnel selec-
tion problem is examined to demonstrate the implementation process of the method
proposed in this paper.
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1 Introduction

Multi-attribute decision making (MADM) problems are wide spread in real life deci-
sion situations (Deng et al. 2000; Lai et al. 1994; Li and Yang 2004; Li 2005a, Li 2005b;
Opricovic and Tzeng 2004). A MADM problem is to find a best compromise solu-
tion among all feasible alternatives assessed on the basis of multiple attributes, both
quantitative and qualitative. Such problems can be dealt with using several existing
methods such as the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) developed by Hwang and Yoon (1981), which is one of the well-known
MADM methods. In the TOPSIS method, the decision data are given as crisp values
a priori. The basic principle of the TOPSIS method is that the chosen alternative should
have the shortest distance from the ideal solution and the farthest distance from the
negative, i.e., least, ideal solution. However, while the highest ranked alternative by
the TOPSIS method is the best in terms of the ranking index, this does not mean that
it is always the closest to the ideal solution (Sect. 4.1).

In addition, in many situations, crisp data are inadequate or insufficient to model
real-life decision problems (Chen 2000; Chen and Lu 2001; Chen and Hwang 1992).
Indeed, human judgments are vague or fuzzy in nature and thus it may not be appro-
priate to represent them by precise numerical values. A more realistic approach could
be to use linguistic variables to model human judgments (Carlsson and Fuller 2000).
In this paper, a new fuzzy closeness methodology for solving MADM problems under
fuzzy environments is proposed. In this methodology, linguistic variables are used to
capture fuzziness in decision information and decision making processes by means
of a fuzzy decision matrix. A multi-attribute ranking index is introduced based on
a particular measure of closeness to the ideal solution which is developed from the
fuzzy weighted Minkowski distance between triangular fuzzy numbers used as an
aggregating function in a compromise programming method. The fuzzy closeness
method of compromise ranking determines a compromise solution, providing a maxi-
mum “group utility” for the “majority” and a minimum of an individual regret for the
“opponent”. The implementation process of the fuzzy closeness method proposed in
this paper is illustrated with a real example of a personnel selection problem.

2 The TOPSIS method

Suppose there is one decision maker who has to choose one of (or to rank) n feasible
alternatives x j ( j = 1, 2, . . . , n) on the basis of the attribute set Z = {z1, z2, . . . , zm}.
Denote the alternative set by X = {x1, x2, . . . , xn}. In general, Z can be divided into
Z1 and Z2, where Z1 is the subset of benefit attributes and Z2 is the subset of cost
attributes. zi j is the value of alternative x j with respect to attribute zi , i.e., zi j = zi (x j ).
Denote the decision matrix by Z = (zi j )m×n .

The procedure of the TOPSIS method is as follows.
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A fuzzy closeness approach 239

Firstly, calculate the weighted normalized value vi j (i = 1, 2, . . . , m; j = 1,

2, . . . , n) of ri j as follows
vi j = ωi ri j (1)

where the normalized value ri j is calculated as follows

ri j = zi j√∑n
j=1 z2

i j

(2)

and ωi is the relative weight of attribute zi ∈ Z , where ωi ≥ 0 (i = 1, 2, . . . , m) and∑m
i=1 ωi = 1.
Then, determine the ideal solution x∗+ and the negative ideal solution x∗−, whose

weighted normalized value vectors are denoted by v∗+ = (v∗+
1 , v∗+

2 , . . . , v∗+
m )T and

v∗− = (v∗−
1 , v∗−

2 , . . . , v∗−
m )T, respectively, where

v∗+
i =

⎧
⎨
⎩

max
1≤ j≤n

{vi j } (zi ∈ Z1)

min
1≤ j≤n

{vi j } (zi ∈ Z2)
(3)

and

v∗−
i =

⎧
⎨
⎩

min
1≤ j≤n

{vi j } (zi ∈ Z1)

max
1≤ j≤n

{vi j } (zi ∈ Z2)
(4)

Finally, calculate the closeness coefficient of each alternative x j with respect to the
ideal solution x∗+ as follows

C∗(x j ) = D∗−(x j )

D∗+(x j ) + D∗−(x j )
(5)

where the separation of alternative x j from x∗+ is given as

D∗+(x j ) =
√√√√

m∑

i=1

(vi j − v∗+
i )2 (6)

and the separation of x j from x∗− is given as

D∗−(x j ) =
√√√√

m∑

i=1

(vi j − v∗−
i )2 (7)

The alternatives in set X are ranked in decreasing order of C∗(x j ) ( j = 1, 2, . . . , n)

with the alternative corresponding to the largest C∗(x j ) being regarded as the best.
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3 Fuzzy closeness method

Before describing the method itself, we first introduce some important concepts which
are used in the rest of the paper.

3.1 Triangular fuzzy numbers

For the sake of simplicity and without loss of generality, throughout the paper we
assume that any fuzzy number is a triangular fuzzy number (TFN).

Let m̃ = (l, m, r) be a TFN, where the membership function µm̃ of m̃ is given by

µm̃(x) =

⎧
⎪⎨
⎪⎩

x − l

m − l
(l ≤ x ≤ m)

r − x

r − m
(m ≤ x ≤ r)

Obviously, a TFN m̃ = (l, m, r) is reduced to a real number m if l = m = r .
Conversely, m can be written as a TFN m̃ = (m, m, m).

3.2 Linguistic variable

A linguistic variable (LV) is a variable whose values are linguistic terms (Chen 2000;
Chen and Lu 2001; Cheng 1998; Choobineh and Huishen 1993).

The concept of LV is very useful in situations where decision problems are too
complex or too ill-defined to be described properly using conventional quantitative
expressions. For example, the performance ratings of alternatives on qualitative attri-
butes could be expressed using a LV which has linguistic values such as “low”, “high”
and “very high”. Such linguistic values can be represented using positive TFNs. For
example, “high” can be represented by a positive TFN (0.3, 0.4, 0.5).

3.3 Distance between two TFNs

Let m̃ = (m1, m2, m3) and ñ = (n1, n2, n3) be two TFNs. Then the vertex method is
defined to calculate the distance between them as follows (Chen 2000; Li and Yang
2004)

d(m̃, ñ) =
√∑3

k=1 (mk − nk)2

3
(8)

It is easily seen that the distance measurement d(m̃, ñ) is identical to the Euclidean
distance if both m̃ and ñ are real numbers and d(m̃, ñ) = 0 if and only if m̃ and ñ are
identical.
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A fuzzy closeness approach 241

3.4 The normalization method

Suppose the rating of the alternative x j on attribute zi given by the decision maker is
a TFN z̃i j = (ai j , bi j , ci j ), and suppose ω̃i is the relative weight of attribute zi , where
ω̃i = (ωl

i , ωi , ω
r
i ) is a TFN. A fuzzy multi-attribute decision making (FMADM)

problem can be concisely expressed in matrix format as follows

Ỹ = (z̃i j )m×n

which is referred to as a fuzzy decision matrix.
To ensure compatibility between the fuzzy (or non-fuzzy) evaluation values (or rat-

ings) of all attributes, the fuzzy (or non-fuzzy) evaluation values of attributes must be
converted into a compatible scale (or into dimensionless indices). The normalization
formula is chosen as follows

r̃i j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ai j − amin

i

cmax
i − amin

i

,
bi j − amin

i

cmax
i − amin

i

,
ci j − amin

i

cmax
i − amin

i

)pi

(zi ∈ Z1)

(
cmax

i − ci j

cmax
i − amin

i

,
cmax

i − bi j

cmax
i − amin

i

,
cmax

i − ai j

cmax
i − amin

i

)pi

(zi ∈ Z2)

(9)

where cmax
i = max

1≤ j≤n
{ci j

∣∣z̃i j = (ai j , bi j , ci j )}, amin
i = min

1≤ j≤n
{ai j

∣∣z̃i j = (ai j , bi j ,

ci j )}, and pi > 0 is a distance parameter. Denote r̃i j by r̃i j = (rl
i j , ri j , rr

i j ). The trans-
form function in Eq. 9 ensures that the range of a normalized TFN r̃i j belongs to the
interval [0, 1]. Hence, Ỹ is transformed into the weighted normalized fuzzy decision
matrix Ṽ = (ṽi j )m×n , where

ṽi j = (ωl
i r

l
i j , ωi ri j , ω

r
i rr

i j ) (10)

is a TFN, denoted by ṽi j = (vl
i j , vi j , v

r
i j ).

3.5 Principle and procedure

The fuzzy closeness method determines a compromise ranking-list and the compro-
mise solution for the decision maker. It introduces the multi-attribute ranking index
based on the particular measure of closeness to an ideal solution xc+. The compromise
ranking is performed by comparing alternatives based on the measure of closeness to
xc+. The compromise ranking algorithm of the fuzzy closeness method can be sum-
marized as follows:

Step 1: Determine the ideal solution xc+, whose attribute vector ṽc+ = (ṽc+
1 , ṽc+

2 , . . . ,

ṽc+
m )T is defined as follows

ṽc+
i = (v+

i , v+
i , v+

i )(i = 1, 2, . . . , m)
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where

v+
i = max

1≤ j≤n
{vr

i j |ṽi j = (vl
i j , vi j , v

r
i j )}

Step 2: Compute S(x j ) and R(x j ) for each alternative x j using the relations

S(x j ) =
m∑

i=1

d(ṽi j , ṽ
c+
i ), R(x j ) = max

1≤i≤m
{d(ṽi j , ṽ

c+
i )} (11)

(where d(ṽi j , ṽ
c+
i ) is the distance between two TFNs ṽi j and ṽc+

i ) using Eq. 8.

Step 3: Compute Q(x j ) for each alternative x j by the relation

Q(x j ) = λ
S(x j ) − S∗

S− − S∗ + (1 − λ)
R(x j ) − R∗

R− − R∗ (12)

where
S∗ = min

1≤ j≤n
{S(x j )}, S− = max

1≤ j≤n
{S(x j )} (13)

and
R∗ = min

1≤ j≤n
{R(x j )}, R− = max

1≤ j≤n
{R(x j )} (14)

and λ ∈ [0, 1] is introduced to reflect the importance of the decision making strategy
of “the majority of attributes,” or “the maximum group utility”.

Step 4: Rank the alternatives x j ∈ X , sorting by S(x j ), R(x j ) and Q(x j ) in increasing
order to yield three ranked lists.

Step 5: Propose as the compromise solution the alternative x ′ ∈ X which is ranked
the best by Q(x j ) (where Q(x ′) = min

1≤ j≤n
{Q(x j )}) if the following two conditions,

(a) and (b), are satisfied

(a) “Acceptable advantage”:

Q(x ′′) − Q(x ′) ≥ 1

n − 1

where x ′′ ∈ X is the alternative in the second position in the list ranked by Q(x j ).
(b) “Acceptable stability in decision making”: x ′ must also be the best ranked by

S(x j ) or/and R(x j ). This compromise solution is stable within a decision making
process, which could be: “voting by majority rule” (when λ > 0.5), or “by con-
sensus” (when λ ≈ 0.5), or “with veto” (when λ < 0.5).
If one of the conditions (c) and (d) is not satisfied, then a set of compromise
solutions is proposed, which consists of:

(c) Alternatives x ′ and x ′′ if only the condition (b) is not satisfied, or
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(d) Alternatives x ′, x ′′, . . . , x N if the condition (a) is not satisfied where N is the
largest j such that Q(x j ) − Q(x ′) < 1/(n − 1), which means that the positions
of these alternatives are “in closeness”.

The best alternative, ranked by Q(x j ), is the one with the minimum value of Q(x j ).
The main ranking result is the compromise ranked list of alternatives, and the com-
promise solution with the “advantage rate”.

The preference stability of the obtained compromise solution may be analyzed
using the fuzzy closeness method. Ranking by the fuzzy closeness method may be
performed with different ratings of attribute weights, analyzing the impact of attribute
weights on the proposed compromise solution. The fuzzy closeness method may be
used to determine weight stability intervals. The compromise solution obtained with
initial weights ω̃i (i = 1, 2, . . . , m) will be replaced if the rating of a weight is not
within the stability interval. The analysis of the weight stability interval for a single
attribute is performed for all attribute functions, with the same (given) initial values
of weights.

The fuzzy closeness method is a helpful tool in MADM, particularly in situations
where the decision maker is not able, or does not know how to express his/her prefer-
ence at the beginning of the system design process The obtained compromise solution
could be accepted by the decision maker because it provides a maximum “group
utility” (represented by min

1≤ j≤n
{S(x j )} in Eq. 11) of the “majority”, and a minimum

of the individual regret (represented by min
1≤ j≤n

{R(x j )} in Eq. 11) of the “opponent”.

The compromise solutions could be the basis for negotiations, involving the decision
maker’s preference by attribute weights.

4 Comparative analysis between the fuzzy closeness method and the TOPSIS

The fuzzy closeness method and the TOPSIS method (Hwang and Yoon 1981) as
well as the fuzzy extension of the TOPSIS method (Chen 2000) are based on an
aggregating function representing closeness to the reference point(s) such as the ideal
solution and/or the negative ideal solution. Our comparative analysis points out that
both methods introduce different forms of aggregating function (L p-metric) for rank-
ing of alternatives, where p ≥ 1 is an arbitrary distance parameter. The fuzzy closeness
method introduces functions Q(x j ) ( j = 1, 2, . . . , n) of L1 and L∞. The TOPSIS
method introduces functions C∗(x j ) ( j = 1, 2, . . . , n) of L2. Both methods use dif-
ferent kinds of normalization methods to eliminate the units of attribute functions.
The fuzzy closeness method uses the pi -power normalization in Eq. 9, whereas the
TOPSIS method uses the vector normalization in Eq. 2.

4.1 Aggregating function

The fuzzy closeness method is based on the following aggregating function derived
from the L p-metric:
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L p(x j ) = p

√√√√√
∑

i :zi ∈Z1

(
ωi

zb∗
i − zi j

zb∗
i − zb−

i

)p

+
∑

i :zi ∈Z2

(
ωi

zc∗
i − zi j

zc∗
i − zc−

i

)p

where zb∗
i (or zc∗

i ) and zb−
i (or zc−

i ) are the best value and the worst value for each
attribute zi (i = 1, 2, . . . , m), respectively. The measure L p(x j ) represents the dis-
tance of the alternative x j from the ideal solution xc+. In the fuzzy closeness method,
S(x j ) and R(x j ) in Eq. 11 are introduced as “boundary measures” for each alter-
native x j ( j = 1, 2, . . . , n). The solution obtained by S∗ = min

1≤ j≤n
{S(x j )} is asso-

ciated with a maximum “group utility” or “majority” rule. The solution obtained by
R∗ = min

1≤ j≤n
{R(x j )} is associated with a minimum individual regret of an “opponent”.

According to Eq. 12, the fuzzy closeness method’s decision result applies only for the
given set of alternatives. Inclusion (or exclusion) of another alternative could affect
the fuzzy closeness method’s ranking of current alternatives. By fixing the best values
zb∗

i (or zc∗
i ) and the worst values zb−

i (or zc−
i ) for all attributes zi (i = 1, 2, . . . , m),

this effect could be avoided, but this would require that the decision maker be able to
define a fixed ideal solution.

The TOPSIS method uses the aggregating function for ranking in Eq. 5. According
to the formulation of the ranking index C∗(x j ) ( j = 1, 2, . . . , n), an alternative x j is
better than xk if C∗(x j ) > C∗(xk), i. e.,

D∗−(x j )

D∗+(x j ) + D∗−(x j )
>

D∗−(xk)

D∗+(xk) + D∗−(xk)

which will hold if one of the following conditions (A) and (B) is satisfied.

(A) D∗+(x j ) < D∗+(xk) and D∗−(x j ) > D∗−(xk)

(B) D∗+(x j ) > D∗+(xk) and D∗−(x j ) > D∗−(xk), but
D∗+(x j ) < D∗+(xk)D∗−(x j )/D∗−(xk).

Condition (A) corresponds to the “regular” situation, when an alternative x j is better
than xk because it is closer to the ideal solution x∗+ and farther from the negative
ideal solution x∗−. In contrast, condition (B) allows an alternative x j to be better than
xk even though x j is farther from the ideal solution x∗+ than xk . For example, let
xk be the alternative with D∗+(xk) = D∗−(xk) and C∗(xk) = 0.5. In this case, all
alternatives x j with D∗+(x j ) > D∗+(xk) and D∗+(x j ) < D∗−(x j ) are better ranked
than xk , although xk is closer to the ideal solution x∗+.

4.2 Normalization effects

Normalization is used to eliminate the units of attribute functions so that values of
all the attribute functions are dimensionless. The same attribute function could be
evaluated in different units. These “evaluation units” may be related as follows

ỹi j = αz̃i j + β (15)
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where α > 0 and β are constants. Denote the TFN ỹi j by ỹi j = (ei j , fi j , gi j ), i.e.,

(ei j , fi j , gi j ) = (αai j + β, αbi j + β, αci j + β) (16)

Does evaluation of the i th attribute function as ỹi j = ỹi (x j ) or z̃i j = z̃i (x j ) affect the
decision result of the MADM method? The answer should be NO. However, as we
will illustrate below, there are some normalization procedures with which the normal-
ized value and thus the final MADM result can depend on the evaluation unit of the
attribution function.

The fuzzy closeness method uses the normalized formula in Eq. 9, i.e.,

r̃i j (z̃i j ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ai j − amin

i

cmax
i − amin

i

,
bi j − amin

i

cmax
i − amin

i

,
ci j − amin

i

cmax
i − amin

i

)pi

(zi ∈ Z1)

(
cmax

i − ci j

cmax
i − amin

i

,
cmax

i − bi j

cmax
i − amin

i

,
cmax

i − ai j

cmax
i − amin

i

)pi

(zi ∈ Z2)

where cmax
i = max

1≤ j≤n
{ci j

∣∣z̃i j = (ai j , bi j , ci j )} and amin
i = min

1≤ j≤n
{ai j

∣∣z̃i j = (ai j,

bi j , ci j )}.
The corresponding normalized value of ỹi j is calculated as follows

r̃i j (ỹi j ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ei j − emin

i

gmax
i − emin

i

,
fi j − emin

i

gmax
i − emin

i

,
gi j − emin

i

gmax
i − emin

i

)pi

(zi ∈ Z1)

(
gmax

i − gi j

gmax
i − emin

i

,
gmax

i − fi j

gmax
i − emin

i

,
gmax

i − ei j

gmax
i − emin

i

)pi

(zi ∈ Z2)

(17)

According to Eq. 16, since α > 0 and β are constants, it follows that

gmax
i = max

1≤ j≤n
{gi j |ỹi j = (ei j , fi j , gi j )}

= max
1≤ j≤n

{αci j + β|(αai j + β, αbi j + β, αci j + β)} = αcmax
i + β

and

emin
i = min

1≤ j≤n
{ei j |ỹi j = (ei j , fi j , gi j )}

= min
1≤ j≤n

{αai j + β|(αai j + β, αbi j + β, αci j + β)} = αamin
i + β
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Combining Eqs. 9, 16 and 17, it follows that

r̃i j (ỹi j ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
αai j +β−(αamin

i +β)

αcmax
i +β−(αamin

i +β)
,

αbi j +β−(αamin
i +β)

αcmax
i +β−(αamin

i +β)
,

αci j +β−(αamin
i +β)

αcmax
i +β−(αamin

i +β)

)pi

(zi ∈ Z1)

(
αcmax

i +β−(αci j +β)

αcmax
i +β−(αamin

i +β)
,

αcmax
i +β−(αbi j +β)

αcmax
i +β−(αamin

i +β)
,

αcmax
i +β−(αai j +β)

αcmax
i +β−(αamin

i +β)

)pi

(zi ∈ Z2)

It is easy to see that

r̃i j (ỹi j ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ai j − amin

i

cmax
i − amin

i

,
bi j − amin

i

cmax
i − amin

i

,
ci j − amin

i

cmax
i − amin

i

)pi

(zi ∈ Z1)

(
cmax

i − ci j

cmax
i − amin

i

,
cmax

i − bi j

cmax
i − amin

i

,
cmax

i − ai j

cmax
i − amin

i

)pi

(zi ∈ Z2)

Therefore,

r̃i j (ỹi j ) = r̃i j (z̃i j )

This means that the normalized value in the fuzzy closeness method does not depend
on the evaluation unit of an attribute function.

The normalized value of z̃i j in the TOPSIS method (Hwang and Yoon, 1981) is
calculated as follows (Eq. 2) when it is a real number (i.e., z̃i j = zi j )

ri j (zi j ) = zi j√∑n
j=1 z2

i j

whereas

ri j (yi j ) = yi j√∑n
j=1 y2

i j

= αzi j + β√∑m
i=1 (αzi j + β)2

Obviously, the normalized value in the TOPSIS method could depend on the evalua-
tion unit of the attribute function if yi j = αzi j + β. The equality ri j (yi j ) = ri j (zi j )

holds only if yi j = αzi j or β = 0.
Linear normalization such as that in Eq. 9 with pi = 1, was subsequently introduced

into the TOPSIS method by Lai et al. (1994) as follows

ri j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

zi j − zmin
i

zmax
i − zmin

i

(zi ∈ Z1)

zmax
i − zi j

zmax
i − zmin

i

(zi ∈ Z2)

(18)
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where zmax
i = max

1≤ j≤n
{zi j } and zmin

i = min
1≤ j≤n

{zi j }.
The normalized value defined by Eq. 18 in the TOPSIS method does not depend

on the evaluation unit of the attribute function.
Chen (2000) proposed the following normalization formula:

r̃i jC (z̃i j ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
ai j

cmax
i

,
bi j

cmax
i

,
ci j

cmax
i

)
(zi ∈ Z1)

(
amin

i

ci j
,

amin
i

bi j
,

amin
i

ai j

)
(zi ∈ Z2)

(19)

From Eqs. 16 and 19, it follows that

r̃i jC (ỹi j ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
αai j + β

αcmax
i + β

,
αbi j + β

αcmax
i + β

,
αci j + β

αcmax
i + β

)
(zi ∈ Z1)

(
αamin

i + β

αci j + β
,
αamin

i + β

αbi j + β
,
αamin

i + β

αai j + β

)
(zi ∈ Z2)

Obviously, the normalized value in the fuzzy extension of the TOPSIS method (Chen
2000) could depend on the evaluation unit of an attribute function if ỹi j = αz̃i j + β.
The equality r̃i jC (ỹi j ) = r̃i jC (z̃i j ) holds only if ỹi j = αz̃i j or β = 0.

4.3 Essentials of the fuzzy closeness method and the TOPSIS

In order to clarify the differences between these two MADM methods, the main fea-
tures of the fuzzy closeness method and the TOPSIS method are summarized in the
following.

(1) Procedural basis. These two MADM methods assume that there exists a deci-
sion matrix obtained by the evaluation of each of the alternatives in terms of
each attribute. Normalization is used to eliminate the units of attribute function
values. An aggregating function is formulated and used as a ranking index.

(2) Normalization. The difference appears in the normalization procedure used
within these two MADM methods. The fuzzy closeness method uses the pi -
power normalization in Eq. 9, and the normalized value does not depend on the
evaluation unit of the attribute function. The TOPSIS method uses the vector
normalization in Eq. 2, and the normalized value could be different for different
evaluation unit of a particular attribute function. A later version of the TOP-
SIS method uses the linear normalization in Eq. 18. The fuzzy extension of the
TOPSIS method (Chen 2000) uses the fuzzy normalization in Eq. 19, and the nor-
malized value could differ depending on the evaluation units used for a particular
attribute function.

(3) Aggregation. The main difference appears in the aggregation approaches. The
fuzzy closeness method introduces an aggregating function representing the
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Table 1 Index values S(x j ) and R(x j )

Index values Alternatives
x1 x2 x3 x4

S(x j ) 0.3 0.4 0.1 0.5
R(x j ) 0.6 0.2 0.7 0.4

Table 2 Ranking index values Q(x j ) and ranking order of alternatives

Parameter λ Alternatives Ranking order
x1 x2 x3 x4

0 0.8 0 1 0.4 x2 � x4 � x1 � x3
1/8 0.7625 0.09375 0.875 0.475 x2 � x4 � x1 � x3
1/4 0.725 0.1875 0.75 0.55 x2 � x4 � x1 � x3
1/2 0.65 0.375 0.5 0.7 x2 � x3 � x1 � x4
3/4 0.575 0.5625 0.25 0.85 x3 � x2 � x1 � x4
7/8 0.5375 0.6563 0.125 0.925 x3 � x1 � x2 � x4
1 0.5 0.75 0 1 x3 � x1 � x2 � x4

distance from the ideal solution. This ranking index is an aggregation of all
attributes and a balance between total and individual satisfaction. However, the
parameter λ ∈ [0, 1] which is introduced to reflect the importance of the decision
making strategy of “the maximum group utility” could affect the final decision
result. For example, assume that there are four alternatives x j ( j = 1, 2, 3, 4).
The corresponding values S(x j ) and R(x j ) ( j = 1, 2, 3, 4) are listed in Table 1.
For different parameter values λ ∈ [0, 1], ranking index values Q(x j )( j =
1, 2, 3, 4) are computed in Table 2 using Eq. 12.
It is easily seen that the ranking order of the alternatives x j ( j = 1, 2, 3, 4)

is heavy affected by the parameter λ. The TOPSIS method (Hwang and Yoon
1981) and the fuzzy extension of the TOPSIS method (Chen 2000) introduces
the ranking index in Eq. 5, including the distances from the ideal solution and
from the negative ideal solution. These distances in the TOPSIS method are sim-
ply summed. However, the reference point could be a major concern in decision
making, and to be as close as possible to the ideal solution is the rationale of
human choice. Being far away from the negative ideal solution could be a goal
only in a particular situation. The relative importance of distances D∗+(x j ) in Eq.
6 and D∗−(x j ) in Eq. 7 was not considered in the TOPSIS method, although this
could be a major concern in real life decision making. Lai et al. (1994) consid-
ered this issue by introducing the satisfactory level for both criteria of the shortest
distance from the ideal solution and the farthest distance from the negative ideal
solution, and concluding “The compromise solution will exist at the point where
the satisfactory levels of both criteria are the same. In future studies, applying
compensatory operators should be emphasized”. Thus, the relative importance
of these two distances D∗+(x j ) and D∗−(x j ) remained an open question. The
TOPSIS method uses the m-dimensional Euclidean distance that by itself could
represent some balance between total and individual satisfaction, but uses it in
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Table 3 Linguistic variables for importance of attributes

Linguistic variables Triangular fuzzy numbers

Very low (LV) (0,0,0.1)
Low (L) (0,0.1,0.3)
Medium low (ML) (0.1,0.3,0.5)
Medium (M) (0.3,0.5,0.7)
Medium high (MH) (0.5,0.7,0.9)
High (H) (0.7,0.9,1)
Very high (VH) (0.9,1,1)

Table 4 Importance of the attributes and ratings of candidates given by the decision maker

Attributes Importance Candidates
x1 x2 x3

z1 ML MG G VG
z2 VH G P MG
z3 H F VG P
z4 VH VG LP F
z5 M F G G

a method very different that of the fuzzy closeness method, which employs the
“advantage weight” λ ∈ [0, 1], introduced in Eq. 12. However, λ could heavily
affect the final decision result mentioned in the above.

(4) Solution. These two MADM methods each provide a ranked list. The highest
ranked alternative by the fuzzy closeness method is the closest to the ideal solu-
tion. The main ranking result is the compromise ranked list of alternatives, and
the compromise solution with the “advantage rate”. The highest ranked alterna-
tive by the TOPSIS method is the best in terms of the ranking index, which does
not mean that it is always the closest to the ideal solution, as explained in Sect.
4.1.

5 Analysis of a real example

A modification of the real example of the personnel selection problem from Chen and
Hwang (1992) is adopted in this section. Suppose that a software company desires
to hire a system analysis engineer. After preliminary screening, three candidates (i.e.,
alternatives) x1, x2 and x3 remain for further evaluation. Denote the candidate set by
X = {x1, x2, x3}. A decision maker (the manager) has to conduct the interview and
to select the most suitable candidate. Five benefit attributes are considered, including
emotional stability (z1), oral communication skill (z2), personality (z3), past experi-
ence (z4) and self-confidence (z5). The decision maker uses the linguistic variables
shown in Table 3 to assess the importance of the five attributes and present it in Table 4.

The decision maker uses the linguistic variables shown in Table 5 to evaluate the
candidates with respect to each attribute. The results are presented in Table 4.
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Table 5 Linguistic variables for the ratings of candidates with respect to attributes

Linguistic variables Triangular fuzzy numbers

Very poor (LP) (0,0,1)
Poor (P) (0,1,3)
Medium poor (MP) (1,3,5)
Fair (F) (3,5,7)
Medium good (MG) (5,7,9)
Good (G) (7,9,10)
Very good (VG) (9,10,10)

Table 6 The fuzzy decision values of candidates and fuzzy weights of attributes

Attributes Candidates Weight
x1 x2 x3

z1 (5,7,9) (7,9,10) (9,10,10) (0.1,0.3,0.5)
z2 (7,9,10) (0,1,3) (5,7,9) (0.9,1,1)
z3 (3,5,7) (9,10,10) (0,1,3) (0.7,0.9,1)
z4 (9,10,10) (0,0,1) (3,5,7) (0.9,1,1)
z5 (3,5,7) (7,9,10) (7,9,10) (0.3,0.5,0.7)

Table 7 The normalized fuzzy decision values of candidates

Attributes Candidates
x1 x2 x3

z1 (0,0.4,0.8) (0.4,0.8,1) (0.8,1,1)
z2 (0.7,0.9,1) (0,0.1,0.3) (0.5,0.7,0.9)
z3 (0.3,0.5,0.7) (0.9,1,1) (0,0.1,0.3)
z4 (0.9,1,1) (0,0,0.1) (0.3,0.5,0.7)
z5 (0,0.29,0.57) (0.57,0.86,1) (0.57,0.86,1)

Converting the linguistic evaluation shown in Table 4 into triangular fuzzy numbers
to construct the fuzzy decision values of candidates with respect to each attribute and
determine the fuzzy weight of attributes we obtain the fuzzy values in Table 6.

Using Eq. 9, where pi = 1 for i = 1, 2, . . . , 5, the fuzzy decision values in Table
6 are transformed into the normalized fuzzy decision values as Table 7.

Using Eq. 10, the normalized fuzzy decision values in Table 7 are transformed into
the weighted normalized fuzzy decision values as Table 8.

The attribute vector of the ideal solution xc+ is ṽc+ = (0.5, 1, 1, 1, 0.7)T. Using
Eqs. 11–14, the decision results are obtained as shown in the bottom portion of
Table 9.

Chen (2000) extended the TOPSIS method to the fuzzy group multi-attribute deci-
sion making under fuzzy environments. The distances and closeness coefficient used
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Table 8 The weighted normalized fuzzy decision values of candidates

Attributes Candidates
x1 x2 x3

z1 (0,0.12,0.4) (0.04,0.24,0.5) (0.08,0.3,0.5)
z2 (0.63,0.9,1) (0,0.1,0.3) (0.45,0.7,0.9)
z3 (0.21,0.45,0.7) (0.63,0.9,1) (0,0.09,0.3)
z4 (0.81,1,1) (0,0,0.1) (0.27,0.5,0.7)
z5 (0,0.15,0.4) (0.17,0.43,0.7) (0.17,0.43,0.7)

Table 9 Decision results obtained by the fuzzy closeness method and the fuzzy TOPSIS

Candidates x1 x2 x3 Ranking order

The fuzzy d(x j , x−) 2.702 1.904 2.234 x1 � x3 � x2
extension of the d(x j , x+) 2.589 3.436 2.902 x1 � x3 � x2
TOPSIS (Chen 2000) C(x j ) 0.511 0.357 0.435 x1 � x3 � x2
The fuzzy S(x j ) 2.163 2.713 2.194 x1 � x3 � x2
closeness method R(x j ) 0.883 0.968 0.879 x3 � x1 � x2

Q(x j ) 0.045(1 − λ) 1 0.056λ x3 � x1 � x2 (0 ≤ λ < 45/101)

x3 ∼ x1 � x2 (λ = 45/101)

x1 � x3 � x2 (45/101 < λ ≤ 1)

are defined as follows

d(x j , x+) =
m∑

i=1

d(ṽi j , ã+
i ) =

m∑

i=1

√
(1 − vl

i j )
2 + (1 − vi j )2 + (1 − vr

i j )
2

3
(20)

d(x j , x−) =
m∑

i=1

d(ṽi j , ã−
i ) =

m∑

i=1

√
(vl

i j )
2 + (vi j )2 + (vr

i j )
2

3
(21)

and

C(x j ) = d(x j , x−)

d(x j , x+) + d(x j , x−)
(22)

where x+ and x− are the fuzzy positive ideal solution and the fuzzy negative ideal
solution, whose weighted normalized fuzzy vectors are ã+ = (1, 1, 1, 1, 1)T and
ã− = (0, 0, 0, 0, 0)T, respectively.

Using Eqs. 20–22 and Table 8, the decision results shown in the top portion of Table
9 are obtained.

It is easily seen from Table 9 that the decision results by the fuzzy closeness method
and the fuzzy extension of the TOPSIS method (Chen 2000) are different. Using the
fuzzy extension of the TOPSIS method, the best candidate (alternative) is x1 and the
ranked order of all candidates is x1 � x3 � x2. Using the fuzzy closeness method,
the best candidate is x3 and the ranked order of all candidates is x3 � x1 � x2 if
0 ≤ λ < 45/101; the best candidate is x1 and the ranked order of all candidates is
x1 � x3 � x2 if 45/101 < λ ≤ 1; the best candidate is x1 and x3, and the ranked
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Table 10 The normalized fuzzy decision values of candidates

Attributes Candidates
x1 x2 x3

z1 (0.5,0.7,0.9) (0.7,0.9,1) (0.9,1,1)
z2 (0.7,0.9,1) (0,0.1,0.3) (0.5,0.7,0.9)
z3 (0.3,0.5,0.7) (0.9,1,1) (0,0.1,0.3)
z4 (0.9,1,1) (0,0,0.1) (0.3,0.5,0.7)
z5 (0.3,0.5,0.7) (0.7,0.9,1) (0.7,0.9,1)

Table 11 The weighted normalized fuzzy decision values of candidates

Attributes Candidates
x1 x2 x3

z1 (0.05,0.21,0.45) (0.07,0.27,0.5) (0.09,0.3,0.5)
z2 (0.63,0.9,1) (0,0.1,0.3) (0.45,0.7,0.9)
z3 (0.21,0.45,0.7) (0.63,0.9,1) (0,0.09,0.3)
z4 (0.81,1,1) (0,0,0.1) (0.27,0.5,0.7)
z5 (0.09,0.25,0.49) (0.21,0.45,0.7) (0.21,0.45,0.7)

Table 12 Decision results obtained by the fuzzy closeness method and the fuzzy TOPSIS

Candidates x1 x2 x3 Ranking order

The fuzzy d(x j , x−) 2.905 1.926 2.278 x1 � x3 � x2
extension
of the

d(x j , x+) 2.436 3.314 3.089 x1 � x3 � x2

TOPSIS
(Chen 2000)

C(x j ) 0.544 0.368 0.424 x1 � x3 � x2

The fuzzy S(x j ) 1.965 2.665 2.365 x1 � x3 � x2
closeness
method

R(x j ) 0.742 0.968 0.879 x1 � x3 � x2

Q(x j ) 0 1 0.606 − 0.035λ x1 � x3 � x2

order of all candidates is x1 ∼ x3 � x2 if λ = 45/101. Therefore, the decision results
obtained by the fuzzy closeness method depend on the weight λ.

The decision results in Table 9 are obtained by using the normalization in Eq. 9.
To compare the effect on the final decision results using different normalization meth-
ods, decision data in Table 6 are normalized using Eq. 19 and the decision results are
computed by both the fuzzy closeness method and the fuzzy extension of the TOPSIS
method.

Using Eq. 19, the fuzzy decision values in Table 6 can be transformed into the
normalized fuzzy decision matrix as Table 10.

Using Eq. 10, the normalized fuzzy decision values in Table 10 can be transformed
into the weighted normalized fuzzy decision values as Table 11.

The attribute vector of the ideal solution xc+ is ṽc+ = (0.5, 1, 1, 1, 0.7)T. Using
Eqs. 11–14 (i.e., the fuzzy closeness method) and Table 11, the final decision results
are obtained as shown in the bottom portion of Table 12.
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According to the fuzzy extension of the TOPSIS method (Chen 2000) and Table
11, the final decision results are obtained as shown in the top portion of Table 12.

As can bee seen, using the normalization in Eq. 19, the decision results by the fuzzy
closeness method and the fuzzy extension of the TOPSIS method are the same, i. e.,
the best candidate is x1 and the ranking order of all alternatives is x1 � x3 � x2.
However, as shown above, using the normalization in Eq. 9, the final decision results
in Table 9 obtained by the fuzzy closeness method and the fuzzy extension of the
TOPSIS method are different. Therefore, the final decision results are affected by
different normalization methods.

6 Concluding remarks

Most MADM problems include both quantitative and qualitative attributes which are
often assessed using imprecise data and human judgment. Fuzzy set theory is well
suited to deal with such decision problems. In this paper, we find that while the high-
est ranked alternative obtained by the TOPSIS method (Hwang and Yoon 1981) is the
best in terms of the ranking index, this does not mean that it is always the closest to the
ideal solution. The fuzzy closeness method is developed to solve FMADM problems.
Linguistic variables as well as crisp numerical values are used to assess qualitative and
quantitative attributes. The fuzzy closeness method proposed in this paper can be used
to generate a consistent and reliable ranked ordering of alternatives as is illustrated
with a real example of a personnel selection problem. A comparative analysis of the
fuzzy closeness method and the TOPSIS method as well as the fuzzy extension of the
TOPSIS method (Chen 2000) are made. Furthermore, different normalization meth-
ods may result in different final decision results for a given instance of the personnel
selection problem. Our work should be applicable to decision problems in many areas,
especially in situations where multiple decision makers are involved and the weights
of attributes are not crisp.
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