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Abstract In this study, we formulate a multi-item displayed inventory model under
shelf-space constraint in fuzzy environment. Here demand rate of an item is consid-
ered as a function of the displayed inventory level. The problem is formulated to
maximize average profit. In real life situation, the goals and inventory parameters
are may not precise. Such type of uncertainty may be characterized by fuzzy num-
bers. Here, the constraint goal and the inventory cost parameters are assumed to be
triangular shaped fuzzy numbers with different types of left and right membership
functions. The fuzzy numbers are then approximated to a nearest interval number.
Using arithmetic of interval numbers, the problem is described as a multi-objective
inventory problem. The problem is then solved by fuzzy geometric programming
approach. Finally a numerical example is given to illustrate the problem.

Keywords Inventory · Interval number · Membership function · Geometric
programming

1. Introduction

Multi-item classical inventory models under various types of constraints such as cap-
ital investment, available storage area, number of orders and available set-up time
are presented in well-known books (Churchman, Ackoff, & Arnoff 1957; Hadley &
Whitin 1958; Lewis 1970; Silver & Peterson 1985; Naddor 1996, etc).

While modelling an inventory problem, generally three types of demands are
considered. These are (1) Constant demand, (2) time-dependent demand and
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(3) stock-dependent demand. Among these stock dependent, specially displayed
inventory level demand has an effect on sales for many retail products.

According to Whitin (1957), “For retail stores the inventory control problem for
style goods is further complicated with the fact that inventory and sales are not inde-
pendent of one another. An increase in inventory may bring about increased sales of
some items”.

In 1968, Wolfe noted that the sales of style merchandize, such as women’s dresses
or sports’ clothes are proportional to the amount of inventory displayed. Levin,
McLaughln, Lamone, and Kottas (1972) stated that the presence of inventory has
a motivational effect on the customer. The most of the retailers displayed some prod-
ucts on shelf following the product variety, customer’s choice of brand quality, and
physical size of the product to influence the customer’s attention. According to Silver
and Peterson (1985) the sale at the retail level is proportional to the amount of dis-
played inventory. Larson and De Marais (1990) named this phenomenon as “psychic
stock” and quoted that “psychic stock is retail display inventory carried to stimulate
demand”. In formulating the inventory model, the demand rate is considered as a
function of the shelf-space allocated to the product. Urban (1969) developed a model
to identify those products, which should be included in a firm’s product line; the
model formulated the demand rate as a polynomial function of price, advertising and
distribution (represented by the number of shelf facing in the empirical application)
considering both main and cross-elasticity of the marketing variables. Corstjens and
Doyle (1981) developed a shelf-space allocation model in which demand rate is a
function of shelf-space allocated to the product.

But all these inventory problems are solved with the assumptions that the coeffi-
cients or cost parameters are specified in a precise way, i.e. in crisp environment. In
real life, there are many diverse situations due to uncertainty in judgments, lack of
evidence, etc. Sometimes it is not possible to get relevant precise data. This type of
imprecise data is not always well represented by random variables selected from a
probability distribution. So decision-making methods under uncertainty are needed.
In fuzzy programming problem (1965, 1970, 1976, 1978) the constraints and the goals
are taken as fuzzy sets. It is also assumed that their membership functions are known.
But it is not always easy for the decision maker to specify them. The fuzzy numbers
describe the imprecise coefficients. These imprecise coefficients are then approxi-
mated to crisp set of interval numbers. Grzegorzewski (2002) suggests a method to
substitute a fuzzy set by a crisp one. Chanas and Kutchta (1996) defined a trans-
portation problem with fuzzy cost coefficients and developed an algorithm to solve
the problem. Ishibuchi and Tanaka (1990) developed a concept for optimization of
multi-objective programming problem with interval objective function.

The GP method is an effective method to solve a non-linear programming problem.
It has certain advantages over the other optimization methods. Here the advantage is
usually much simpler to work with the dual than the primal. To solve a non-linear pro-
gramming problem by GP method, degree of difficulty (DD) plays a significant role (it
is defined as DD = total number of terms in objective function and constraints − total
number of decision variables −1). It will be difficult to solve the problem for higher
values of DD. If DD = 0, the dual variables can be uniquely determined from the nor-
mality and orthogonality conditions. If DD > 0, there are infinite number of solutions
of the system of constraint equations in the dual problem. This method is now widely
used to solve the optimization problem in inventories. After the first introduction by
Zener (1961), Duffin, Peterson, and Zener (1967) developed the GP method. Worral
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and Hall (1982) analysed the inventory models with some constraints and solved by
GP technique. Abou-el-Ata, Fergany, and El-Wakeel (2003) and Chen (2000) devel-
oped some inventory problems and solved these by GP method. In 1989, Cheng solved
an EOQ model for single product with demand dependent unit price. Following the
same idea Roy and Maiti (1997) developed a fuzzy EOQ model. Recently, Jung and
Klein (2005), Mandal, Roy, and Maiti (2005, 2006) formulated the inventory models
and solved by GP technique.

In this paper, we consider a multi-item inventory model with full-shelf merchandis-
ing policy. In this policy, there are backroom storage and one showroom with shelves
for display. Shelves are kept always fully stocked, i.e. demands are met from the stock
of backroom warehouse and items are replenished as soon as the backroom inventory
reaches zero. Demand rate is a function of the displayed inventory level and there
is a limitation on total display space. Here inventory cost parameters and available
display area are imprecise, i.e. fuzzy in nature. The said parameters are expressed in
fuzzy numbers. The fuzzy numbers are approximated to interval numbers with the
help of linear and non-linear membership functions. The problem is then reduced to
multi-objective decision-making problem. Fuzzy geometric programming method is
applied to solve the problem. Finally a numerical example is given to illustrate the
problem.

2. Mathematical model

A multi-item displayed inventory model is formulated under the following notations
and assumptions

Notations

W = Total display-shelf space,
n = number of items,

Parameters for i(= 1, 2, . . . , n)th item are,
Si = number of display quantity (decision variable), (S ≡ (S1, S2, ..., Sn)T),
Qi = number of order quantity (decision variable), (Q ≡ (Q1, Q2, ..., Qn)T),
θi = instantaneous inventory level of the entire system including both the

backroom storage and the displayed inventory,
Pi = selling price of each product,
ci = purchasing price of each product,
c1i = holding cost per unit product,
c2i = display shelf-space cost per unit product,
c3i = set-up cost,
Di = demand rate,
Pri = production rate.

Assumptions

1. Lead time is zero,
2. shortages are not permitted,
3. demand rate Di is display inventory level dependent of ith item

Di = diS
d

′
i

i (di > 0, 0 < d
′
i < 1).
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Here, di and d
′
i (i = 1, 2, . . . , n) are the scale and shape parameters of the demand

function.

The inventory model is formulated to maximize the average net profit, which
includes the gross revenues, unit purchasing cost, set-up cost, holding cost and the
display cost under the limited display-space constraint.

Average net profit = Gross revenues per unit time − purchasing price per unit
time − set-up cost per unit time − holding cost per unit time − display shelf-space
cost per unit time.

Hence the profit function is

PF(S, Q) =
n∑

i=1

[
Di

{
(Pi − ci) − c3i

Qi

}
−

(
1 − Di

Pri

)
c1iθi

2
− c2iSi

]
. (1)

Now consider the situation in which the retailer follows a “full-shelf merchandising”
policy, i.e. the display area is always kept fully stocked, so the inventory is replenished
as soon as the backroom inventory reaches zero. The displayed inventory will always
be at its maximum value. The inventory level decreases at a constant rate.

The average inventory is θi = Si + Qi
2 and the cycle time is Ti = Qi

diS
d
′
i

i

. Therefore,

the average net profit function is reduced to

PF(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{
(Pi − ci) − c3i

Qi

}
−

(
1 − diS

d
′
i

i

Pri

)
c1iQi

2

−
((

1 − diS
d

′
i

i

Pri

)
c1i + c2i

)
Si

]
. (2)

The problem is then stated as

Max PF(S, Q)

subject to
n∑

i=1

WiSi ≤ W,

S, Q > 0.

(3)

3. Fuzzy model

When the cost parameters and total display shelf-space parameters are fuzzy numbers
then the problem (3) is transformed to

M̃ax PF(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{
(P̃i − c̃i) − c̃3i

Qi

}

−
(

1 − diS
d

′
i

i

P̃ri

)
c̃1iQi

2
−

((
1 − diS

d
′
i

i

P̃ri

)
c̃1i + c̃2i

)
Si

]
(4)
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subject to

n∑

i=1

WiSi ≤ W̃,

S, Q > 0.

where ∼ represents the fuzzification of the parameters.

4. Fuzzy number and its nearest interval approximation

Fuzzy number: A real fuzzy number Ã described as a fuzzy subset on the real line �
whose membership function µÃ(x) has the following characteristics with −∞ < a1 ≤
a2 ≤ a3 < ∞

µÃ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

µL
Ã
(x), if a1 ≤ x ≤ a2,

µR
Ã
(x), if a2 ≤ x ≤ a3,

0, otherwise,

where µL
Ã
(x) : [a1, a2] → [0, 1] is continuous and strictly increasing; µR

Ã
(x) : [a2, a3] →

[0, 1] is continuous and strictly decreasing.
α-level set: The α-level of a fuzzy number Ã is defined as a crisp set A(α) = [x :
µÃ(x) ≥ α, x ∈ X] where α ∈ [0, 1]. A(α) is a non-empty bounded closed interval
contained in X and it can be denoted by Aα = [AL(α), AR(α)]. AL(α) and AR(α) are
the lower and upper bounds of the closed interval, respectively.
Note: α1 level set of Ã is A(α1) = [AL(α1), AR(α1)] and that of α2 level set is A(α2) =
[AL(α2), AR(α2)]. If α2 ≥ α1 then AL(α2) ≥ AR(α1) and AR(α1) ≥ AR(α2).
Interval number: An interval number A is defined by an ordered pair of real numbers
as follows A = [aL, aR] = {x : aL ≤ x ≤ aR, x ∈ �} where aL and aR are the left and
right bounds of interval A, respectively. The interval A, is also defined by centre (ac)

and half-width (aw) as follows
A = 〈ac, aw〉 = {x : ac − aw ≤ x ≤ ac + aw, x ∈ �} where ac = aR+aL

2 is the centre
and aw = aR−aL

2 is the half-width of A.
Nearest interval approximation: Here we want to approximate a fuzzy number by a
crisp model. Suppose Ã and B̃ are two fuzzy numbers with α-cuts are [AL(α), AR(α)]
and [BL(α), BR(α)], respectively. Then the distance between Ã and B̃ is

d(Ã, B̃) =
√∫ 1

0

(
AL(α) − BL(α)

)2

dα +
∫ 1

0

(
AR(α) − BR(α)

)2

dα.

Given Ã is a fuzzy number. We have to find a closed interval Cd(Ã), which is the
nearest to Ã with respect to metric d. We can do it since each interval is also a fuzzy
number with constant α-cut for all α ∈ [0, 1]. Hence (Cd(Ã))α = [CL, C,R]. Now we
have to minimize

d(Ã, Cd(Ã)) =
√∫ 1

0

(
AL(α) − CL

)2

dα +
∫ 1

0

(
AR(α) − CR

)2

dα

with respect to CL and CR.
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In order to minimize d(Ã, Cd(Ã)) it is sufficient to minimize the function D(CL, CR)

(= d2(Ã, Cd(Ã))). The first partial derivatives are

∂D(CL, CR)

∂CL
= −2

∫ 1

0
AL(α) dα + 2CL

and
∂D(CL, CR)

∂CR
= −2

∫ 1

0
AR(α) dα + 2CR.

Solving
∂D(CL, CR)

∂CL
= 0 and

∂D(CL, CR)

∂CR
= 0 we get

C∗
L =

∫ 1

0
AL(α) dα and C∗

R =
∫ 1

0
AR(α) dα.

Again since
∂D2(C∗

L, C∗
R)

∂C2
L

= 2 > 0,
∂D2(C∗

L, C∗
R)

∂C2
R

= 2 > 0 and

H(C∗
L, C∗

R) = ∂D2(C∗
L, C∗

R)

∂C2
L

.
∂D2(C∗

L, C∗
R)

∂C2
R

−
(

∂D2(C∗
L, C∗

R)

∂CL, ∂CR

)2

= 4 > 0.

So D(CL, CR), i.e. d(Ã, Cd(Ã)) is global minimum. Therefore, the interval

Cd(Ã) =
[ ∫ 1

0 AL(α) dα,
∫ 1

0 AR(α) dα

]
is the nearest interval approximation of fuzzy

number Ã with respect to the metric d.
Let Ã = (a1, a2, a3) be a fuzzy number. The α-level interval of Ã is defined as

Aα = [AL(α), AR(α)].
When Ã is a linear fuzzy number (LFN) then AL(α) = a1 +α(a2 −a1) and AR(α) =

a3 − α(a3 − a2). By the nearest interval approximation method the lower limit of the
interval is

CL =
∫ 1

0
AL(α) dα

=
∫ 1

0
[a1 + α(a2 − a1)] dα = 1

2
(a1 + a2)

and the upper limit of the interval is

CR =
∫ 1

0
AR(α) dα

=
∫ 1

0
[a3 − α(a3 − a2)] dα = 1

2
(a2 + a3).

Therefore, the interval number considering Ã as a LFN, is
[

1
2 (a1 + a2), 1

2 (a2 + a3)
]
.

In the centre and half-width form the interval number of Ã is defined as
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〈
1
4
(a1 + 2a2 + a3),

1
4
(a1 − a3)

〉
.

Similarly, when Ã is a parabolic fuzzy number (PFN) then

AL(α) = a2 − (a2 − a1)
√

(1 − α) and AR(α) = a2 + (a3 − a2)
√

(1 − α).

Following the same way stated above the interval number is
[

1
3 (a2 + 2a1), 1

3 (a2 +
2a3)

]
. In the centre and half-width form the interval number of Ã is defined as

〈
1
3 (a1 + a2 + a3), 1

3 (a1 − a3)
〉

.

When Ã is a exponential fuzzy number (EFN) then

AL(α) = a1 − (a2 − a1)

β1
log

(
1 − α

ν1

)
and AR(α) = a3 + (a3 − a2)

β2
log

(
1 − α

ν2

)
.

Following the same way stated above the interval number is

[
a1 + a2 − a1

β1

1
ν1(ν1 − 1)

, a3 − a3 − a2

β2

1
ν2(ν2 − 1)

]
.

In the centre and half-width form the interval number of Ã is defined as

〈
1
2

(
a1+a3+ a2 − a1

ν1β1(ν1 − 1)
− a3 − a2

ν2β2(ν2 − 1)

)
,

1
2

(
a1−a3+ a2 − a1

ν1β1(ν1 − 1)
+ a3 − a2

ν2β2(ν2 − 1)

)〉
.

Ã are triangular shaped fuzzy numbers (TiFNs) with different types of left and right
branch of the membership functions. They may be of linear, parabolic, exponential,
etc., type membership functions (Table 1).

5. Interval approximation of the inventory model with fuzzy number

In our multi-item displayed inventory model, we have considered that the cost param-
eters Pi, ci, c1i, c2i, c3i, Pri and total display-shelf space (W) as a fuzzy number. The
fuzzy numbers are

P̃i = (P1i, P2i, P3i), c̃i = (c1i, c2i, c3i),

c̃1i = (c11i, c12i, c13i), c̃2i = (c21i, c22i, c23i),

c̃3i = (c31i, c32i, c33i), P̃ri = (Pr1i, Pr2i, Pr3i),

W̃ = (W1, W2, W3).

We now form interval numbers for each fuzzy parameters with the help of the proce-
dure of the nearest interval approximation of a fuzzy number stated in Section 4.
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Table 1 Nearest interval approximations of coefficient parameters

Br µL
Ã

(x) Br µR
Ã

(x) Aα = [CL, CR]

L: 1 − a2−x
a2−a1

L: 1 − x−a2
a3−a2

[
1
2 (a1 + a2), 1

2 (a2 + a3)
]

L: 1 − a2−x
a2−a1

P: 1 −
(

x−a2
a3−a2

)2 [
1
2 (a1 + a2), 1

3 (a2 + 2a3)
]

L: 1 − a2−x
a2−a1

E: ν2

(
1 − e

−β2(
a3−x

a3−a2
)
) [

1
2 (a1 + a2), a3 − a3−a2

ν2β2(ν2−1)

]

P: 1 −
(

a2−x
a2−a1

)2
L: 1 − x−a2

a3−a2

[
1
3 (a2 + 2a1), 1

2 (a2 + a3)
]

P: 1 −
(

a2−x
a2−a1

)2
P: 1 −

(
x−a2

a3−a2

)2 [
1
3 (a2 + 2a1), 1

3 (a2 + 2a3)
]

P: 1 −
(

a2−x
a2−a1

)2
E: ν2

(
1 − e

−β2(
a3−x

a3−a2
)
) [

1
3 (a2 + 2a1), a3 − a3−a2

ν2β2(ν2−1)

]

E: ν1

(
1 − e

−β1(
x−a1

a2−a1
)
)

L: 1 − x−a2
a3−a2

[
a1 − a2−a1

ν1β1(ν1−1)
, 1

2 (a2 + a3)
]

E: ν1

(
1 − e

−β1(
x−a1

a2−a1
)
)

P: 1 −
(

x−a2
a3−a2

)2 [
a1 − a2−a1

ν1β1(ν1−1)
, 1

3 (a2 + 2a3)
]

E: ν1

(
1 − e

−β1(
x−a1

a2−a1
)
)

E: ν2

(
1 − e

−β2(
a3−x

a3−a2
)
) [

a1 − a2−a1
ν1β1(ν1−1)

, a3 − a3−a2
ν2β2(ν2−1)

]

where L, P and E stand for linear, parabolic and exponential membership functions, respectively,
ν1, ν2 > 1; β1, β2 > 0.

Max PF(S, Q) =
n∑

i=1

[
diS

d
′
i

i ([PiL, PiR]) − [c1iL, c1iR] − 1
Qi

[c3iL, c3iR]

−
(

1 − diS
d

′
i

i

[PriL, PriR]
)

Qi

2
[c1iL, c1iR]

−
((

1 − diS
d

′
i

i

[PriL, PriR]
)

[c1iL, c1iR] + [c2iL, c2iR]
)

Si

]

=
[
PFL(S, Q), PFR(S, Q)

]

subject to
n∑

i=1

WiSi ≤ [WL, WR]
S, Q > 0,

(5)

where PFL(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{(
PiL − ciR

)
− c3iR

Qi

}
− c1iR

2
Qi + dic1iL

2PriR
S

d
′
i

i Qi

−
(

c1iR + c2iR

)
Si + dic1iL

PriR
S d

′
i+1

i

]
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and PFR(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{(
PiR − ciL

)
− c3iL

Qi

}
− c1iL

2
Qi + dic1iR

2PriL
S

d
′
i

i Qi

−
(

c1iL + c2iL

)
Si + dic1iR

PriL
S d

′
i +1

i

]
.

6. Cases of proposed inventory problem with fuzzy number

Three major cases that may arise in proposed inventory model.

Case 1 The cost parameters (Pi, ci, c1i, c2i, c3i, Pri) are in the form of fuzzy number
whereas total displayed shelf-space parameter (W) is deterministic.

Case 2 The total displayed shelf-space parameter (W) is a fuzzy number but the cost
parameters are deterministic.

Case 3 The cost parameters and total displayed shelf-space parameter are all fuzzy
numbers.

Case 1 When the cost parameters Pi, ci, c1i, c2i, c3i, Pri are all fuzzy numbers then
these can be transformed to the nearest approximation interval numbers. With the
interval numbers the problem can be stated as

Max PF(S, Q) =
[
PFL(S, Q), PFR(S, Q)

]

subject to
n∑

i=1

WiSi ≤ W

S, Q > 0.

(6)

The centre of the objective function PF(S, Q) is defined by PFc(S, Q) = 1
2

(
PFL(S, Q)+

PFR(S, Q)
)
. The problem is now reduced to a multi-objective non-linear programming

problem

Max PFL(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{(
PiL − ciR

)
− c3iR

Qi

}
− c1iR

2
Qi + dic1iL

2PriR
Sd

′
i

i Qi

−
(

c1iR + c2iR

)
Si + dic1iL

PriR
S

d
′
i+1

i

]
,

Max PFc(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{(
Pic − cic

)
− c3ic

Qi

}
− c1ic

2
Qi + dic1ic

2Pric
S

d
′
i

i Qi (7)

−
(

c1ic + c2ic

)
Si + dic1ic

Pric
S

d
′
i+1

i

]

subject to
n∑

i=1

WiSi ≤ W

S, Q > 0.

We now solve the multi-objective inventory problem (7) by geometric program-
ming technique and form a pay-off matrix of order 2 × 2. To find the pay-off matrix,
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solve the multi-objective inventory problem as a single objective inventory problem
(7) using each time only one objective function with the constraint and ignoring other
objective function. From the optimal results, determine the corresponding value of
other objective function at each solution derived.

To find the optimal value of PFL(S, Q) subject to the given constraint by geometric
programming technique the corresponding primal problem is

Min PF
′
L(S, Q) =

n∑

i=1

[
diS

d
′
i

i

{
c3iR

Qi
−

(
PiL − ciR

)}
+ c1iR

2
Qi − dic1iL

2PriR
Sd

′
i

i Qi

+
(

c1iR + c2iR

)
Si − dic1iL

PriR
Sd

′
i+1

i

]

subject to
n∑

i=1

WiSi ≤ W

S, Q > 0,

(8)

where PF
′
L(S, Q) = −PFL(S, Q).

The primal problem (8) is a constrained signomial problem with 3n − 1 degree of
difficulty. The corresponding dual problem is

Max dL = −
[ n∏

i=1

(
dic3iR

w1i

)w1i(di(PiL − ciR)

w2i

)−w2i( c1iR

2w3i

)w3i( dic1iL

2PriRw4i

)−w4i

×
(

c1iR + c2iR

w5i

)w5i( dic1iL

PriRw6i

)w6i( wi

Ww7i

)w7i( n∑

i=1

w7i

)∑n
i=1 w7i]−1

(9)

subject to the normality and orthogonality conditions are

w1i − w2i + w3i − w4i + w5i − w6i = −1,

d
′
iw1i − d

′
iw2i − d

′
iw4i + w5i − (d

′
i + 1)w6i + w7i = 0,

−w1i + w3i − w4i = 0,

where w1i, w2i, w3i, w4i, w5i, w6i and w7i > 0, i = 1, 2, . . . , n.

Solving the dual problem (9) we find the optimal values S∗, Q∗, PF∗
L(S∗, Q∗) and

hence PF∗
c(S

∗, Q∗).
In a similar way, we find optimal value of PFc(S, Q) subject to the given constraint.

The problem is then written to standard geometric programming problem as

Min PFc(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{(
Pic − cic

)
− c3ic

Qi

}
− c1ic

2
Qi + dic1ic

2Pric
S

d
′
i

i Qi

−
(

c1ic + c2ic

)
Si + dic1ic

Pric
S

d
′
i +1

i

]

subject to
n∑

i=1

WiSi ≤ W,

S, Q > 0,

(10)

where PF
′
c(S, Q) = −PFc(S, Q).
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The primal problem (10) is also a constrained signomial problem with 3n−1 degree
of difficulty. The corresponding dual problem is

Min dc = −
[ n∏

i=1

(
dic3ic

w1i

)w1i(di(Pic − cic)

w2i

)−w2i( c1ic

2w3i

)w3i( di c1ic

2Pric w4i

)−w4i

×
(

c1ic + c2ic

w5i

)w5i( di c1ic

Pric w6i

)w6i( wi

W w7i

)w7i( n∑

i=1

w7i

)∑n
i=1 w7i]−1

(11)

subject to the normality and orthogonality conditions are

w1i − w2i + w3i − w4i + w5i − w6i = −1,

d
′
iw1i − d

′
iw2i − d

′
iw4i + w5i − (d

′
i + 1)w6i + w7i = 0,

−w1i + w3i − w4i = 0,

where w1i, w2i, w3i, w4i, w5i, w6i and w7i > 0, i = 1, 2, . . . , n.
Solving the dual problem (11) we find the optimal values S∗, Q∗, PF∗

c(S
∗, Q∗) and

hence PF∗
L(S∗, Q∗).

Using the optimal solutions construct a pay-off matrix of size 2 × 2 as follows:

PFL PFc

1
2

(
PF1∗

L PF1
c

PF2
L PF2∗

c

)
.

From the pay-off matrix, lower bounds are

LL = Min(PF1∗
L , PF2

L),

Lc = Min(PF1
c , PF2∗

c )

and upper bounds are

UL = Max(PF1∗
L , PF2

L),

Uc = Max(PF1
c , PF2∗

c ).

Hence LL < PFL < UL and Lc < PFc < Uc.
Now solve the problem by fuzzy programming technique. According to Zimmer-

mann (1976) the linear membership functions are taken as follows:

µPFL(S, Q) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if PFL(S, Q) ≥ UL,

1 − UL − PFL(S, Q)

UL − LL
, if LL ≤ PFL(S, Q) ≤ UL,

0, otherwise,

µPFc(S, Q) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if PFc(S, Q) ≥ Uc,

1 − Uc − PFc(S, Q)

Uc − Lc
, if Lc ≤ PFc(S, Q) ≤ Uc,

0, otherwise.

Following Bellman and Zadeh’s (1970) max–min operator or convex combina-
tion operator the fuzzy goal programming problem may be reduced to a crisp primal
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geometric programming (PGP) problem. To reduce the DD, here convex combination
operator is used. So, the problem can be formulated as

Max V(S, Q) =
[
µPFL(S, Q) + µPFc(S, Q)

]

subject to
n∑

i=1

WiSi ≤ W,

S, Q > 0.

(12)

Omitting the constant terms
[

1 − UL

UL − LL
+ 1 − Uc

Uc − Lc

]

from the objective function of the problem (12) for the time being may be restated as

Max V
′
(S, Q) =

[
PFL(S, Q)

UL − LL
+ PFc(S, Q)

Uc − Lc

]
(13)

subject to the same constraint of the problem (12) where

V(S, Q) = V
′
(S, Q) +

[
1 − UL

UL − LL
+ 1 − Uc

Uc − Lc

]
.

In the standard signomial geometric programming form it can be stated as

Min V
′′
(S, Q) =

n∑

i=1

[
− k1iS

d
′
i

i + k2i
Sd

′
i

i

Qi
+ k3iQi − k4iS

d
′
i

i Qi + k5iSi − k6iS
d

′
i+1

i

]

subject to
1

W

n∑

i=1

WiSi ≤ 1,

S, Q > 0, i = 1, 2, ..., n, (14)

where k1i = di

(
PiL − ciR

UL − LL
+ Pic − cic

Uc − Lc

)
, k2i = di

(
c3iR

UL − LL
+ c3ic

Uc − Lc
,
)

,

k3i = c1iR

2(UL − LL)
+ c1ic

2(Uc − Lc)
, k4i = di

2

(
c1iL

PriR(UL − LL)
+ c1ic

Pric(Uc − Lc)

)
,

k5i = c1iR + c2iR

UL − LL
+ c1ic + c2ic

Uc − Lc
, K6i = di

(
c1iL

PriR(UL − LL)
+ c1ic

Pric(Uc − Lc)

)

and Min V
′′
(S, Q) = −MaxV

′
(S, Q).

The primal problem (14) is a constrained signomial problem with 5n − 1 degree of
difficulty and is solved by geometric programming method.

Case 2 When the cost parameters of the objective function are deterministic but the
total display-shelf space parameter W is a fuzzy number. Then problem is

MaxPF(S, Q)=
n∑

i=1

[
diS

d
′
i

i

{(
Pi−ci

)
− c3i

Qi

}
− c1i

2
Qi+ dic1i

2Pri
S

d
′
i

i Qi −
(

c1i+c2i

)
Si

+dic1i

Pri
Sd

′
i+1

i

]



A displayed inventory model with L–R fuzzy number 239

subject to
n∑

i=1

WiSi ≤ WR,

n∑

i=1

WiSi ≥ WL,

S, Q > 0.

In standard geometric programming form

Min PF
′
(S, Q) =

n∑

i=1

[
diS

d
′
i

i

{
c3i

Qi
−

(
Pi − ci

)}
+ c1i

2
Qi − dic1i

2Pri
S

d
′
i

i Qi

+
(

c1i + c2i

)
Si − dic1i

Pri
S

d
′
i+1

i

] (15)

subject to
n∑

i=1

WiSi ≤ WR,

WL
W1

S−1
1 − S−1

1

∑n
i=2 WiSi ≥ WL,

S, Q > 0.

The primal problem (15) is a constrained signomial problem with 4n − 1 degree of
difficulty and is solved by geometric programming.

Case 3 Here we assume that the cost parameters Pi, ci, c1i, c2i, c3i, Pri and total
display-shelf space parameter W are fuzzy numbers. First we derive the nearest
approximation interval numbers from said fuzzy numbers. Then the multi-objective
inventory problem is stated as

Max PFL(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{(
PiL − ciR

)
− c3iR

Qi

}
− c1iR

2
Qi + dic1iL

2PriR
S

d
′
i

i Qi

−
(

c1iR + c2iR

)
Si + dic1iL

PriR
Sd

′
i+1

i

]

Min PFc(S, Q) =
n∑

i=1

[
diS

d
′
i

i

{(
Pic − cic

)
− c3ic

Qi

}
− c1ic

2
Qi + dic1ic

2Pric
S

d
′
i

i Qi

−
(

c1ic + c2ic

)
Si + dic1ic

Pric
S

d
′
i+1

i

]

subject to
n∑

i=1

WiSi ≤ WR,

n∑

i=1

WiSi ≥ WL,

S, Q > 0.

Following cases 1 and 2, we solve multi-objective inventory problem and forming
a pay-off matrix construct the membership function for the objective functions.
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According to Zimmermann (1976), the inventory problem in fuzzy environment is
stated as

Min
n∑

i=1

[
− k1iS

d
′
i

i + k2i
S

d
′
i

i

Qi
+ k3iQi − k4iS

d
′
i

i Qi + k5iSi − k6iS
d

′
i+1

i

]
(16)

subject to
n∑

i=1

WiSi ≤ WR,

n∑

i=1

WiSi ≥ WL,

S, Q > 0.

The problem (16) is a signomial primal geometric programming problem with DD =
6n − 1. After reducing it to the standard GP form we can solve and find the optimal
solutions.

7. Numerical example

A company produces and sells two types of items. The necessary informations for the
concerned items are given as follows

For item A
from the past records it is seen that demand (D1) = 20 S0.6

1 per unit of item,
production cost (c1) = $ 8 per unit of item,
holding cost (c11) = $ 1 per unit of item,
shortage cost (c21) = $ 2.5 per unit of item,
set up cost (c31) = $ 63 per batch,
selling price (P1) = $ 11 per unit of item,
production rate (Pr1) = 4, 010 units per unit time,
storage space (w1) = 5 m2.

For item B
from the past records it is seen that demand (D2) = 19 S0.5

2 per unit of item,
production cost (c2) = $ 7 per unit of item,
holding cost (c12) = $ 1.3 per unit of item,
shortage cost (c22) = $ 2.2 per unit of item,
set up cost (c32) = $ 72 per batch,
selling price (P2) = $ 12 per unit of item,
production rate (Pr2) = 3, 233 units per unit time,
storage space (w2) = 4 m2

and
total available storage space (W) = 2, 500 m2.
But practically, the cost parameters and total available storage space are imprecise
in nature. The production cost of item A is nearly $ 7 but never less than $ 5 and
above $ 10 (i.e. c̃1 = $ (5, 7, 10)). Similarly, production cost of item B is c̃2 = $ (4, 6, 8).
The holding, shortage, set up, selling costs of items A and B are c̃11 = $ (1, 1.2, 1.6),
c̃12 = $ (1.1, 1.4, 1.6), c̃21 = $ (1.5, 2.1, 2.7), c̃22 = $ (1.4, 1.9, 2.5), c̃31 = $ (45, 55, 70),
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c̃32 = $ (60, 65, 80), P̃1 = $ (10, 13, 15) and P̃2 = $ (12, 14, 17). The production rate of
concerned items are (3, 500, 3, 800, 4, 200) and (2, 600, 2, 900, 3, 400) units per unit time.
The total available storage space is W̃ = [2, 000, 2, 500, 3, 000] m2 (Tables 2, 3,4, 5).

Table 2 Left and right branches of fuzzy parameters

Br c̃1 c̃2 c̃11 c̃12 c̃21 c̃22 c̃31 c̃32 P̃1 P̃2 P̃r1 P̃r2 W̃

Left L E P E P P L L L P P E L
Right E P L P P L E L E P E P P

Table 3 Values of (ν1, β1) and (ν2, β2) for the membership functions of c̃1, c̃2, c̃12, c̃31, P̃1, P̃r1, P̃r2

Br c1 c2 c12 c31 P1 Pr1 Pr2

(ν1, β1) – (1.6,1.8) (1.7,1.5) – – – (1.8,1.9)
(ν2, β2) (1.5,2.1) – – (1.8,1.6) (1.4,2.3) (1.6,2.2) –

Table 4 Nearest interval approximation to fuzzy numbers

c̃1 c̃2 c̃11 c̃12

[cL, cR] [6,8.1] [5.2,7.3] [1.1,1.4] [1.3,1.5]
〈ac, aw〉 〈7, 1〉 〈6.2, 1.1〉 〈1.2, .2〉 〈1.4, .13〉

c̃21 c̃22 c̃31 c̃32
[cL, cR] [2.4,2.5] [1.6,2.2] [50,63.5] [62.5,72.5]
〈ac, aw〉 〈2.45, .05〉 〈1.88, .32〉 〈56.75, 6.75〉 〈67.5, 5〉

P̃1 P̃2 P̃r1 P̃r2
[cL, cR] [11.5,13.5] [12.7,16] [3,600,4,010.7] [2,709.6,3,233.3]
〈ac, aw〉 〈12.47, .98〉 〈14.33, 1.67〉 〈3, 805.35, 205.35〉 〈2, 971.45, 261.85〉

W̃
[WL, WR] [2250,2833.33]
〈ac, aw〉 〈2541.7, 291.7〉

Table 5 Optimal solution

Cases i S∗
i Q∗

i D∗
i PF∗(S∗, Q∗) ($)

Case 1 1 361.4280 269.2826 685.2406 [1,142.380, 5,759.586]
2 173.2150 159.5484 250.0612

Case 2 1 364.8681 323.8085 689.1465 1,038.606
2 171.5156 172.8038 248.8315

Case 3 1 408.6430 283.9342 737.6464 [1,137.579, 8,390.173]
2 197.5288 166.4451 267.0354

The optimal results of the inventory problem (5) is
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8. Conclusion

In this paper, we have designed and solved the multi-item displayed inventory model.
The cost parameters and the total display area are taken as fuzzy numbers. The fuzzy
numbers are described by linear/non-linear type membership functions. Fuzzy num-
bers are then approximated to an interval number. Hence the problem has been
converted into multi-objective inventory problem where the objective functions are
represented by left and right interval functions which are maximized. These objective
functions can be considered as the maximization of the worst case and the average
case. The problem is solved by fuzzy geometric programming technique. We have
discussed here three different situations that arise in our problem. Each case is illus-
trated by numerical examples. The displayed inventory model can be extended to a
shortage level inventory model. One may use the presented method to a multi-prod-
uct multi-constraint inventory systems. The nearest interval approximation method
may widely be used in case of transportation problem.
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