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Abstract. This paper discusses identification of parameters of generalized ordered weighted averaging

(GOWA) operators from empirical data. Similarly to ordinary OWA operators, GOWA are characterized

by a vector of weights, as well as the power to which the arguments are raised. We develop optimization

techniques which allow one to fit such operators to the observed data. We also generalize these methods

for functional defined GOWA and generalized Choquet integral based aggregation operators.
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1. Introduction

In a recent article in this journal R. Yager introduced a generalization of Ordered
Weighted Averaging (OWA) operators, called GOWA (Yager (2004)). He studied
many properties of these operators and several special cases, including generalized
means, Hurwicz operator, min and max, ordered weighted geometric operator, and
so on. Further, Yager proposed a generalization of the discrete Choquet integral,
which is also commonly used as an aggregation operator (Denneberg (1994), Yager
and Kacprzyk (1997)). At the end of the paper he poses the problem of learning the
weights of GOWA from empirical data, as in (Filev and Yager (1998)), which now
also includes learning the parameter k characterizing GOWA.
This paper addresses the issue of learning the parameters of GOWA, as well as a

more general instance of learning the fuzzy measure characterizing generalized
Choquet aggregation operator. We provide two formulations of the problem of
learning, one which is reduced to linear programming, and the second one which is
reduced to a quadratic programming problem. We use similar techniques as those of
(Beliakov (2002, 2003b), Beliakov et al (2004b)), designed for ordinary OWA
operators and Choquet integrals.
The next section reviews GOWA operators and generalized Choquet aggregation

as proposed in (Yager (2004)). In Section 3 we pose the problem of learning weights
from the data, and in Section 4 we discuss various techniques to identify the
parameters of GOWA operators. We consider functional defined GOWA operators
in Section 5, and generalized Choquet integral based operators in Section 6. Finally
we further generalize GOWA in Section 7, and show how the earlier algorithms for
generalized means can be adapted for this case. The presented methods were
incorporated into the AOTool software package, www.deakin.edu.au/~gleb/ao-
tool.html, which provides many methods of identifying aggregation operators from
empirical data, subject to user defined restrictions.
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2. Review of GOWA Operators

In (Yager (2004)) Yager proposed a generalization of Ordered Weighted Averaging
operators, called GOWA,

Fðx1; . . . ; xnÞ ¼
Xn

i¼1
wix

k
ðiÞ

 !1=k

; ð1Þ

where xðiÞ denotes the ith largest element of x ¼ ðx1; . . . ; xnÞt, k 2 R, and w is the
vector of non-negative weights, which add to one. The case of k ¼ 1 corresponds to
ordinary OWA operators. We consider a special case when the arguments are drawn
from the unit interval I ¼ ½0; 1�, and F : In ! I.
As it was shown on multiple occasions (Yager (1988), Yager (1993), special cases of

OWA operator include max, min and simple average, which correspond to the
following vectors of weights: w ¼ ð1; 0; 0; . . . ; 0Þ, w ¼ ð0; . . . ; 0; 1Þ and w ¼ ð1n ; . . . ; 1nÞ.
For GOWA these vectors of weights result in max, min and generalized mean
operators.
Another special case occurs when w ¼ ða; 0; . . . ; 0; 1� aÞ. It corresponds to

Hurwicz type aggregation. For instance, when k ¼ �1 we obtain a sort of harmonic
mean operator

Fðx1; . . . ; xnÞ ¼
xð1ÞxðnÞ

axðnÞ þ ð1� aÞxð1Þ
:

The attitudinal character of the GOWA operator (or the measure of orness) is
defined in (Yager (2004)) as

ACðW; kÞ ¼
Xn

i¼1
wi

n� i

n� 1

� �k
 !1=k

¼ 1

n� 1

Xn

i¼1
wi n� ið Þk

 !1=k

: ð2Þ

The values close to 0 correspond to min-like aggregation and values close to 1
correspond to max-like aggregation.
Notice that GOWA exhibit some similarity to the generalized quasi-linear means

(Dyckhoff and Pedrycz (1984)), but are symmetrized by using a permutation of the
arguments.
Yager (Yager (2004)) poses the problem of identification of the weights w and the

parameter k from empirically collected data. Since GOWA is a special class of
functions, they require special regression techniques to fit them to the data. The
remainder of this paper addresses this issue in detail.

3. Problem of Weights Identification

GOWA operators certainly bring much flexibility into modelling aggregation process
in the decision making. We are now interested in specifying particular operators
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(i.e., particular vector of weights and parameter k) for concrete situations. It is often
not enough to specify just some general properties the aggregation operator must
satisfy to adequately model a given aggregation process, as these properties define an
infinite family of operators. We need to use the requirement of empirical fit
(Zimmermann (1996)), that is to fit an operator with certain properties to some sort
of empirical data. The data can be collected in an experiment, by questioning experts
in the field (Zimmermann (1996), Beliakov and Warren (2001), Sicilia et al (2003)),
or by conducting a mental experiment: what would be the aggregated value if the
argument x has these specific values?
The problem of identification of aggregation operators has been studied in

(Beliakov (2002, 2003b)). Consider the data set consisting of K ðnþ 1Þ-tuples
fðxk; ykÞgKk¼1, where xk 2 In are observed arguments of F and yk 2 I are observed
aggregated values. The goal is to identify the vector of weights and the parameter k,
such that GOWA operator FðxÞ in (1) fits all the data best,

FðxkÞ ¼ yk; k ¼ 1; . . . ;K:

Not all the data can be fit exactly due to observation inaccuracies, or perhaps
inadequacy of GOWA model in this specific situation, hence we require the above
system of equations to be solved in the approximate sense as described below.
Consider first the case of a fixed k. We are interested in using fast and proven linear

regression techniques. Let us linearize the data. Take the linearized data set
fðzk; ðykÞkÞgKk¼1, where the components zki ¼ xkðiÞ. Then we find the weights by min-
imizing the least squares criterion

min
w

XK

k¼1

Xn

i¼1
wiðzki Þ

k � ðykÞk
" #20

@

1

A
1=2

; ð3Þ

subject to the restrictions 0 � wi � 1; i ¼ 1; . . . ; n,
P

wi ¼ 1.
Alternatively, we can minimise the absolute difference between the predicted and

observed values, the method frequently used in robust regression:

min
w

XK

k¼1

Xn

i¼1
wiðzki Þ

k � ðykÞk
�����

�����; ð4Þ

subject to the same restrictions. In this case approximation process is less sensitive to
outliers. In addition, one may specify one further constraint on the orness measure

Xn

i¼1
wi n� ið Þk¼ ðn� 1ÞACð Þk;

where AC 2 I is the desired value of the orness measure. Solution to problems (3)
and (4) is discussed in the next section.
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Let us now consider the case of unknown parameter k which also needs to be fitted
to the data. We need to minimize expression (3) (or (4)) with respect to both w and k.
We can represent this as a bi-level optimization problem

min
w;k

Uðw; kÞ ¼ min
k

min
w

XK

k¼1

Xn

i¼1
wiðzki Þ

k � ðykÞk
" #20

@

1

A
1=2

; ð5Þ

or

min
w;k

Uðw; kÞ ¼ min
k

min
w

XK

k¼1
j
Xn

i¼1
wiðzki Þ

k � ðykÞkj; ð6Þ

subject to the same set of linear constraints on w, and k unrestricted. At the outer
step we perform optimization with respect to one nonlinear variable k, and at the
inner step, we solve (3) or (4) with a fixed k using efficient methods described in the
next section. The need to solve (3) or (4) a large number of times as a sub-problem of
the minimization with respect to k is a significant factor when choosing the method
of solution, which has to be robust and extremely fast.
Let us examine the outer problem of minimization with respect to k. Firstly, we

need to consider special cases
k!1, which translates into FðxÞ ¼ maxj:wj>0 xðjÞ,
k! �1, which translates into FðxÞ ¼ minj:wj>0 xðjÞ,
k! 0, which translates into FðxÞ ¼

Qn
j¼1 x

wj

ðjÞ, called Ordered Weighted Geo-
metric (OWG) operator (Chiclana et al (2000), Xu and Da (2002)).
Note that the first two cases do not correspond to the ordinary max and min

operators, as the weights are also taken into account. For instance, by letting
w ¼ ð0; 0; . . . ; 1Þ, we obtain min and not max in the first case. These special cases
have to be implemented explicitly in any software that uses GOWA, rather than
using the general formula (1), because of numerical instabilities when k approaches
any of these critical values.
Another important issue is that the function to be minimized in (5) or (6) is not

necessarily convex with respect to k, and as such may possess multiple local
minima. This is despite the fact that for any fixed vector of weights w, Uðw; kÞ
will have a unique minimum with respect to k, see the discussion of the ‘main
property’ in (Dyckhoff and Pedrycz (1984)). This does not imply the uniqueness
of the local minimum with respect to both variables k and w. This phenomenon is
well known, and can be illustrated on the example of fuzzy c-means functional
used in clustering (Bezdek (1981)), which is convex with respect to two subsets of
variables, but not convex with respect to all variables. A consequence of this is
the existence of potentially large number of local minima of Uðw; kÞ. It is
therefore incorrect to use a simple local optimization tool when solving the outer
problem with respect to k, like Newton’s or conjugate gradient method, as it may
converge to a locally, but not globally optimal solution. A global optimization
method is required.

BELIAKOV122



For univariate case there are many global optimization methods (Horst et al
(2000)). For instance Piyavsky–Shubert method (Pijavski (1972)), Cutting angle
(Rubinov (2000), Beliakov (2003a)) or even a simple grid search can all be used.

4. Optimization Techniques to Identify the Parameters

We start with the case of a fixed k, as it is important for solving the inner sub-problem
in (5) or (6). Problem (3) is a quadratic programming problem, which can be solved
using standard general algorithms. However, several specialized algorithms for this
instance of the problem are available (Lawson andHanson (1995)). (3) is known as the
linear least squares with equality and inequality constraints problem LSEI (Haskell
andHanson (1981), Hanson andHaskell (1982)). Themethod in (Hanson andHaskell
(1982)) uses the active set and penalty function approach to deal with both kinds of
constraints. It is formulated as the system of equations and inequalities,

Solve Aw � b;Cw � d;Ew ¼ e; ð7Þ

where the first system is solved in the least squares sense (by orthogonal factoriza-
tion). It is therefore appropriate to represent (3) in the form (7) for algorithmic
purposes, and then apply the LSEI algorithm from (Hanson and Haskell 1982). Note
that the elements of the matrix A are given by Aki ¼ ðzki Þ

k, and the elements of b are
bk ¼ ðykÞk.
The problem (4) is easily converted to a linear programming problem. By splitting

a real number u into positive and negative parts u ¼ uþ � u�, we can write
juj ¼ uþ þ u�. Then the objective function in (4) becomes

min
u;w

XK

k¼1
ðukþ þ uk�Þ;

and together with the set of linear constraints

ukþ � uk� ¼
Xn

i¼1
wiðzki Þ

k � ðykÞk; k ¼ 1; . . . ;K;

and 0 � wi � 1,
P

wi ¼ 1, ukþ; u
k
� � 0, we obtain an LP problem, see (Watson (2000))

for details.
There are special versions of the simplex algorithm designed for this instance of LP

(Barrodale and Roberts (1980)). The problem is written in the form of (7), but now
the system of approximate equations is solved in the smallest absolute deviation
sense, and the algorithm from (Barrodale and Roberts (1980)) is applied.
To solve the general problem of minimizing Uðw; kÞ in (5) or (6) with respect to

both variables, we apply a global optimization algorithm, such as Piyavsky–Shubert
method, at the outer level, and for each value of k we compute the value of Uðw; kÞ
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by solving (3) or (4) as described above. The minimizer of Uðw; kÞ yields the optimal
weights and optimal parameter k.

5. Functional Defined GOWA Operators

Yager discusses various methods for generating OWA and GOWA weights via a
monotone function f : I! I, for which fð0Þ ¼ 0; fð1Þ ¼ 1, called basic unit mono-
tonic (BUM) function (Yager (1996, 2004)). Using these functions we can generate
the OWA weights as wi ¼ fð inÞ � fði�1n Þ. This method allows one to define not just one,
but a whole family of 2; 3; . . . ;-variate OWA operators, as the vector of weights of
any dimension can be generated from f. This is explored in (Beliakov et al (2004b)),
where such families (called generalized aggregation operators (Calvo et al (2002)) are
identified.
An interesting problem arises: can we identify a BUM function f rather than the

individual weights from the data? If so, this brings an opportunity to identify from a
particular data set not only one GOWA operator which fits best this data set, but the
whole family of GOWA operators (of any dimension n � 2). For OWA operators,
this problem was resolved positively in (Beliakov et al (2004b)).
Let us approximate fðtÞ with a monotone linear regression spline (i.e., a piecewise

linear continuous monotone function) (Beliakov (2000))

SðtÞ ¼
XJ

j¼1
cjBjðtÞ; ð8Þ

where BjðtÞ are some basis functions (like B-splines, or their linear combinations, as
in (Beliakov (2000)), and c 2 RJ is a vector of spline coefficients that need to be
identified from the data. Monotonicity of the spline S translates into a simple
condition of non-negativity of spline coefficients c with suitably chosen basis func-
tions (Beliakov (2000)).
Then we have

FðxÞ ¼
Xn

i¼1
f

i

n

� �
� f

i� 1

n

� �� �
xk
ðiÞ

 !1=k

¼
Xn

i¼1

XJ

j¼1
cjBj

i

n

� �
�
XJ

j¼1
cjBj

i� 1

n

� �" #
xk
ðiÞ

 !1=k

¼
Xn

i¼1

XJ

j¼1
cj Bj

i

n

� �
� Bjð

i� 1

n
Þ

� �" #
xk
ðiÞ

 !1=k

¼
Xn

i¼1

XJ

j¼1
cjGjðiÞ

" #
xk
ðiÞ

 !1=k

¼
XJ

j¼1
cj
Xn

i¼1
xk
ðiÞGjðiÞ

" # !1=k

; ð9Þ
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where GjðiÞ ¼ Bjð inÞ � Bjði�1n Þ. After linearization of the data set, we obtain a system
of K equations with respect to unknown c

XJ

j¼1
cj
Xn

i¼1
ðzki Þ

kGjðiÞ
" #

¼ ðykÞk; k ¼ 1; . . . ;K;

which we resolve in the least squares (or least absolute deviation) sense, by mini-
mizing

min
c;k

XK

k¼1

XJ

j¼1
cj
Xn

i¼1
ðzki Þ

kGjðiÞ
" #

� ðykÞk
" #20

@
1
A

1=2

; ð10Þ

or

min
c;k

XK

k¼1

XJ

j¼1
cj
Xn

i¼1
ðzki Þ

kGjðiÞ
" #

� ðykÞk
�����

�����; ð11Þ

subject to non-negativity of cj. For BUM functions continuous on ½0; 1� we add
boundary conditions

Sð0Þ ¼
XJ

j¼1
cjBjð0Þ ¼ 0; Sð1Þ ¼

XJ

j¼1
cjBjð1Þ ¼ 1;

whereas for BUM functions continuous on �0; 1½, we add

Sð0Þ ¼
XJ

j¼1
cjBjð0Þ � 0; Sð1Þ ¼

XJ

j¼1
cjBjð1Þ � 1:

After examining both problems, we notice that for a fixed k (10) is a quadratic
programming problem LSEI, and (11) can be converted to a linear programming
problem as discussed above. In both cases we write each problem in the form (7),
where the elements of the matrix A are given by Akj ¼

Pn
i¼1ðzki Þ

kGjðiÞ, and the other
two matrices correspond to linear constraints on c given above (non-negativity and
boundary conditions).
For variable k we write (10), (11) as bi-level optimization problems, where at the

outer level we perform optimization with respect to k (using global optimization),
and at the inner level we solve LSEI or LP problem.

6. Generalized Choquet Aggregation

Choquet integral is frequently used as an aggregation tool (Grabisch et al (1995),
Benvenuti and Mesiar (2000), Calvo et al (2002)). The Choquet integral based
aggregation operator is defined as
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Cvðx1; . . . ; xnÞ ¼
Xn

i¼1
xðiÞ½vðHiÞ � vðHiþ1Þ�; ð12Þ

where v : 2X ! I is a fuzzy measure on the set X ¼ fX1;X2; . . . ;Xng, which is a
monotonic (i.e. vðSÞ � vðTÞ whenever S � T) set function satisfying vð;Þ ¼
0; vðXÞ ¼ 1, Hi ¼ fXð1Þ;Xð2Þ; . . . ;XðiÞg, XðiÞ denotes the ith largest variable (rather
than its value), and Hnþ1 ¼ ; by convention. Equation (12) can also be written as
(Grabisch (1997)), (Grabisch (2000)), p. 110,

Cvðx1; . . . ; xnÞ ¼
Xn

i¼1
xðiÞ � xði�1Þ
� �

vðHiÞ: ð13Þ

In this notation, Cv is a linear function of the coefficients of the fuzzy measure vðHiÞ.
In multicriteria decision making, Choquet aggregation explicitly models the

importance of not only individual criteria, but of their subsets, as well as various
interactions between the criteria. In the context of learning aggregation operators
from data, identification of Choquet aggregation operator is equivalent to identifi-
cation of the fuzzy measure vðTÞ, described by 2n coefficients. This problem was
addressed in (Grabisch et al (1995), Sicilia et al (2003), Beliakov et al (2004b)).
Yager proposes in (Yager (2004)) a generalized Choquet aggregation operator

Cv;kðx1; . . . ; xnÞ ¼
Xn

i¼1
xk
ðiÞ½vðHiÞ � vðHiþ1Þ�

 !1=k

: ð14Þ

It is not difficult to see that this implies

Cv;kðx1; . . . ; xnÞ ¼
Xn

i¼1
½xk
ðiÞ � xk

ði�1Þ�vðHiÞ
 !1=k

: ð15Þ

The sum in the brackets is again a linear function of the fuzzy measure coefficients.
Thus we can apply the methods of fuzzy measure identification studied in (Grabisch
et al (1995), Sicilia et al (2003), Beliakov et al (2004a, b)), with one distinction that
the data are linearized (i.e., taking fzki ; ðykÞ

kg). The problem becomes a quadratic or
linear programming problem for a fixed k, and it is solved as a bi-level optimization
problem if k also has to be identified from the data.
In the same fashion as in (Grabisch et al (1995), Beliakov et al (2004a, b)), we can

add further conditions on the fuzzy measure, such as k-additivity (Grabisch (1997)),
sub- or super-additivity, substitutivity of certain variables, and so on, which all
translate into linear restrictions on the values of v. Furthermore, following (Beliakov
et al (2004b)) we can study symmetric k-additive generated fuzzy measures (whose
coefficients are defined by a generating function similar to BUM), after linearizing
the data.
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7. Further Generalization

We mentioned that the GOWA operators resemble generalized quasi-linear means
(Dyckhoff and Pedrycz (1984)), but involve permutation of the arguments. Quasi-
linear means are a special case of generalized quasi-arithmetic means (Aczel (1969))
defined as

Fðx1; . . . ; xnÞ ¼ g�1
Xn

i¼1
wigðxiÞ

 !
;

where g is a continuous strictly monotone function. In this special case we took
gðxÞ ¼ xk.
It makes sense to further generalize GOWA by replacing xk with a general con-

tinuous strictly monotone function gðxÞ. We obtain

Fðx1; . . . ; xnÞ ¼ g�1
Xn

i¼1
wigðxðiÞÞ

 !
: ð16Þ

Many of the results concerning GOWA in (Yager (2004)) can be directly extended
for the case of operators in the form (16), especially the ones concerning the behavior
of the operator for various vectors of weights. The orness measure in this general
case is written as

ACðwÞ ¼ g�1
Xn

i¼1
wig

n� i

n� 1

� � !
:

Operators (16) offer even more flexibility in modelling aggregation process. Let us
consider the task of identifying the vector of weights w and the function g simul-
taneously. For this approximate function g with a monotone linear spline (8). Our
goal is to determine the coefficients of the spline, which must be positive to enforce
strict monotonicity of g, as well as the weights w, which are non-negative and add to
one. Let us write (16) as

gðFðx1; . . . ; xnÞÞ ¼
Xn

i¼1
wigðxðiÞÞ:

By using spline representation we have

XJ

j¼1
cjBjðFðx1; . . . ; xnÞÞ ¼

Xn

i¼1
wi

XJ

j¼1
cjBjðxðiÞÞ ¼

XJ

j¼1
cj
Xn

i¼1
wiBjðxðiÞÞ

" #
;

which we re-write as
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XJ

j¼1
cj
Xn

i¼1
wiBjðxðiÞÞ � BjðFðx1; . . . ; xnÞÞ

" #
¼ 0

By using our dataset, we obtain a system of K equations, needed to be solved in the
least squares (or least absolute deviation) sense

XJ

j¼1
cj
Xn

i¼1
wiBjðzki Þ � BjðykÞ

" #
¼ 0; k ¼ 1; . . . ;K:

Thus we minimize

min
c;w

XK

k¼1

XJ

j¼1
cj
Xn

i¼1
wiBjðzki Þ � BjðykÞ

" #" #20
@

1
A

1=2

; ð17Þ

or

min
c;w

XK

k¼1

XJ

j¼1
cj
Xn

i¼1
wiBjðzki Þ � BjðykÞ

" #�����

�����; ð18Þ

subject to the mentioned linear restrictions on the values of c;w.
Similarly to the case of generalized means, studied in (Beliakov (2003b)), for a fixed

c (i.e., fixed SðxÞ) we have either a quadratic or linear programming problem to find
w, and for a fixed w, we have a quadratic or linear programming problem to find c.
However if we consider both c;w as variables, we obtain a difficult global optimi-
zation problem, similar to the one that arises in fuzzy c-means clustering (Bezdek
(1981)).
Let us formulate a bi-level optimization problem

min
w

min
c

XK

k¼1

XJ

j¼1
cj
Xn

i¼1
wiBjðzki Þ � BjðykÞ

" #" #20

@

1

A
1=2

:

At the outer level we have a global optimization problem which we solve using the
cutting angle method (Beliakov (2003a), Rubinov (2000)), and at the inner level we
have a quadratic programming problem that we solve using LSEI algorithm
(Hanson and Haskell (1982)). For (18) we apply a similar approach. If the number of
variables is not large (say, n � 6), cutting angle method is an efficient tool for
deterministic global optimization, which locates the global minimum of (17) or (18).
This approach is implemented for the case of generalized means in AOTool software,
and is easily adapted for GOWA operators (16) by using permuted data values zk

instead of the original data xk.
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8. Conclusion

This paper addresses the problem of identification of parameters of GOWA oper-
ators proposed by Yager in (Yager (2004)). We developed a range of special
regression tools that allow one to fit GOWA operators to empirical data. These tools
rely on efficient solution of a bi-level optimization problem. We have shown that by
linearizing the data, the inner problem can be converted to a linear or quadratic
programming problem, and solved by standard algorithms.
Further we considered functional defined GOWA operators and generalized

Choquet integral based operators, and formulated similar bi-level optimization
problems for these cases. The optimization methods presented in this paper were
successfully implemented, and included into the software package A0Tool (available
from www.deakin.edu.au/~gleb/aotool.html). A0Tool implements a large number of
methods for identification of aggregation operators from the empirical data,
including those for triangular norms, uninorms, means, OWA, general aggregation
operators and Choquet integral based operators. The new methods presented here
will complement this range.
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