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Abstract
I show how Sir William Rowan Hamilton’s philosophical commitments led him to a causal 
interpretation of classical mechanics. I argue that Hamilton’s metaphysics of causation 
was injected into his dynamics by way of a causal interpretation of force. I then detail 
how forces are indispensable to both Hamilton’s formulation of classical mechanics and 
what we now call Hamiltonian mechanics (i.e., the modern formulation). On this point, 
my efforts primarily consist of showing that the contemporary orthodox interpretation of 
potential energy is the interpretation found in Hamilton’s work. Hamilton called the poten-
tial energy function the “force-function” because he believed that it represents forces at 
work in the world. Various non-historical arguments for this orthodox interpretation 
of potential energy are provided, and matters are concluded by showing that in classical 
Hamiltonian mechanics, facts about the potential energies of systems are grounded in facts 
about forces. Thus, if one can tolerate the view that forces are causes of motion, then Ham-
ilton provides one with a road map for transporting causation into one of the most math-
ematically sophisticated formulations of classical mechanics, viz., Hamiltonian mechanics.
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“Now how in general anything can be altered, how it is possible that upon a state in 
one point of time an opposite one could follow in the next—of these we have a priori 
not the least concept. For this acquaintance with actual forces is required, which can 
only be given empirically, e.g., acquaintance with moving forces, or, what comes to 
the same thing, with certain successive appearances (as motions) which indicate such 
forces…Now every alteration has a cause, which manifests its causality in the entire 
time during which the alteration proceeds…All alteration is therefore possible only 
through a continuous action of causality…”1

Immanuel Kant (1724–1804)
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 “…Very glad you have the Kant from Coleridge for me: try and send it soon. I have 
read a large part of the Critique of Pure Reason, and find it wonderfully clear, and 
generally quite convincing. Notwithstanding some previous preparation from Berke-
ley, and from my own thoughts, I seem to have learned much from Kant’s own state-
ment of his views of Space and Time. Yet, on the whole, a large part of my pleasure 
consists in recognizing, through Kant’s works, opinions, or rather views, which have 
been long familiar to myself, although far more clearly and systematically expressed 
and combined by him.”2

Sir William Rowan Hamilton (1805–1865)
 “All mechanicians agree that reaction is equal and opposite to action, both when one 
body presses another, and when one body communicates motion to another. All rea-
soners join in the assertion, not only that every observed change of motion has had a 
cause, but that every change of motion must have a cause. Here we have certain por-
tions of substantial and undoubted knowledge…We have, in the Mechanical Sciences, 
certain universal and necessary truths on the subject of causes…Axioms concerning 
Cause, or concerning Force, which as we shall see, is a modification of Cause, will 
flow from an Idea of Cause, just as axioms concerning space and number flow from 
the ideas of space and number or time. And thus the propositions which constitute 
the science of Mechanics prove that we possess an idea of cause, in the same sense in 
which the propositions of geometry and arithmetic prove our possession of the ideas 
of space and of time or number…the relation of cause and effect is a condition of our 
apprehending successive events, a part of the mind’s constant and universal activity, 
a source of necessary truths; or, to sum all this in one phrase, a Fundamental Idea.”3

William Whewell (1794–1866)
 “…in Whewell at Cambridge, I thought with delight that I perceived a philosophical 
spirit more deep and true than I had dared to hope for.”4 “…Whewell has come round 
almost entirely to my views about the laws of Motion.”5

Sir William Rowan Hamilton

1  Introduction

Sir William Rowan Hamilton affirmed that every dynamical evolution is a causal evolution. 
His causal dynamics may seem out of place to the contemporary inquirer into the founda-
tions of physics because most everyone in that subdiscipline now agrees with David Pap-
ineau’s remark that “there is strong reason to doubt that causation is constituted by basic 
dynamical processes”.6 These same thinkers also typically agree with Michael Redhead’s 
comment that “physicists long ago gave up the notion of cause as being of any particular 

2  From W.R. Hamilton to Viscount Adare, July 19th, 1834. (Graves 1885, 96).
3  (Whewell 1858, 182–183).
4  From W.R. Hamilton to Aubrey De Vere, Observatory, May 7th, 1832. (Graves 1882, 554).
5  From W.R. Hamilton to Lord Adare dated April, 1834. (Graves 1885, 83).
6  (Papineau 2013, 127). See (Earman 1976, 6); (Earman 2011, 494); (Field 2003, 435); (Ismael 2016, 134; 
cf. 113, 117, and 136); (Kutach 2013, 266, 272-273, 282 for “culpable causation”, the causation of interest 
to metaphysicians); (Loewer 2007); (Russell 1912-1913); (Schaffer 2008, 92); (Sider 2011, 15-17); (Spohn 
2006, for whom all causal laws ultimately reduce to mere regularities ibid., 116); (van Fraassen 1989, 282). 
See also (Norton 2007a; 2007b, 2021). Farr and Reutlinger (2013, 216) state that “[m]any philosophers of 
physics today support…[the] claim that causal relations do not belong to the ontology suggested by funda-
mental physics.”.
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interest! In physics, the explanatory laws are laws of functional dependence…”7 Along-
side this majority opinion is a somewhat prevalent and friendly (to the majority opinion) 
story (call it the prevalent story) about causation and the historical development of phys-
ics and its supporting mathematics, a story alluded to by Redhead. It says that as physics 
grew more and more mathematically sophisticated, less and less room remained for causal 
relations in the ontologies of our best physical theories. As Willard Van Orman Quine 
(1908–2000) argued,

Now it is an ironical but familiar fact that though the business of science is describ-
able in unscientific language as the discovery of causes, the notion of cause itself has 
no firm place in science. The disappearance of causal terminology from the jargon of 
one branch of science and another has seemed to mark the progress in understanding 
of the branches concerned.8

The highly respected philosopher of physics Jennan Ismael under a subsection entitled 
“Causation Lost” remarked,

At first, the notion of cause retained its close connection with mechanical ideas. A 
cause was something that brought about its effect by a transfer of force. But when 
Newton published his Principia, causation didn’t appear in the presentation of his 
theory at all. What he put in the place of causal relations were mathematical equa-
tions, usually expressed in the form of differential equations that give the rate of 
change of a quantity over time…9

In Ismael’s summary of her position, we read:

7  (Redhead 1990, 146).
8  (Quine 2004, 205); (Quine 1976, 229); Cf. (Chatti 2011, 6).
9  (Ismael 2016, 114).

  Some resist the majority opinion. See the powers, capacities, and dispositions group: (Bird 2007, 168; 
Ellis 2002, 23-24, 159; Mumford 2004, 150, 188). Cf. (Ney 2009, 759-761); (Kistler 2013); and (Bartels 
1996) inter alios.
  Some members of the group that promotes the role of mechanism in natural philosophy hesitate to allow 
causation into fundamental physics: (Glennan 1996, 61, 64; 2010, 367); (Glennan 2017). On the other hand, 
some seem to encourage its insertion into physics: (Machamer et. al. 2000); (Andersen 2011).
  Frisch (2005, 2007, 2009, 2014) gives one some reason to put causation in fundamental physics, but he 
admits his position is consistent with an instrumentalist attitude about causation there. Frisch’s position also 
seems compatible with a strictly functionalist theory of causation as in (Woodward 2014).
  I believe Hamilton provides us with key insights that recommend how to get causation into the ontology 
of modern Hamiltonian mechanics in a manner that extends beyond mere instrumentalist and/or functional 
viewpoints about microphysical causation, if (as Hamilton believed) forces can be properly understood as 
causes of motions. While I do not spend time arguing for the emphasized antecedent, it is a significant 
enough task to show how forces are essential to the ontology of Hamiltonian mechanics, for Hamiltonian 
mechanics is usually regarded as an energy-based theory in which forces play no essential role (q.v., the 
quotation of North at note 21).

Footnote 6 (continued)
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A view of causation as an intrinsically directed relation among events, by which one 
event brings about the other, is not part of the physicist’s worldview. We know too 
much to say such a thing; in the same way that we know too much about how vision 
works to think that invisibility is an intrinsic property of things that explains why we 
can’t see them…If we are going to take physics seriously and literally, we can’t impose 
our own ideas of cause and law onto it. We have to take physics on its own terms.10

Ismael perceives a shift away from a causal interpretation of physics as early as the work of 
Isaac Newton. The onset of presenting the laws “in the form of differential equations” led 
to the abandonment of the causal interpretation of those laws.

John D. Norton (2007a, 2007b) argues that inserting causation (not just the concept but 
the phenomenon) into the ontology of fundamental physics ought to support some type 
of constraint on its content. If it does not restrict physical possibilities, then causation “is 
revealed as an empty honorific” and “[c]ausal talk…amounts to little more than an earnest 
hymn of praise to some imaginary idol; it gives great comfort to the believers, but it calls 
up no forces or powers.”11 By means of a very brief historical discussion, Norton tries to 
show that Aristotle’s suggested causal constraint (with its inclusion of final causation) on 
the ontology of physics failed and that none other than Newton began to turn away from a 
causal physics by denouncing (or so it is claimed) the efficient causal interpretation of the 
gravitational force (Norton 2007a 15–16).

Marius Stan argues that during the interval that is 1750–1790 natural philosophical thought 
advanced to such an extent that our modern conception of dynamical laws was born. Accord-
ing to that modern understanding, dynamical laws are differential equations whose content are 
functional dependency relations and whose primary role is to strictly imply laws of motion and 
thereby explain and predict natural regularities.12 These laws are not causal. Stan says,

…around 1750 the laws of motion…turned into mere assertions of equality between 
magnitudes, and served just [emphasis in the original] to entail (differential) equations 
of motion for specific mechanical situations. Consequently, in the Enlightenment [my 
emphasis], the laws no longer made claims about natures, and they became epistemi-
cally opaque, in that it was no longer clear what counted as strong evidence for the 
basic laws of mechanics.13

…the laws…[viz., “the basic laws of Enlightenment mechanics”] merely assert 
equalities between magnitudes, or that some quantity equals an algebraic combina-
tion of other quantities…However, assertions of equality are neither material implica-
tions, nor if-then statements, nor any of the logical-syntactic vehicles used to predi-
cate cause-and-effect links or dependencies. And so the basic laws no longer count as 
causal principles after 1790; nor do their local corollaries, the equations of motion. 

13  (Stan 2022, 388).

10  (Ismael 2016, 134–135).
11  (Norton 2007a, 15, 19–20).
12  Stan remarked:
  “Thus an inflection point occurred circa 1750 as the science of motion exited its adolescence. Specifically, 
we see a deep shift in the form and status of the laws of motion. The shift is where early modern mechanics 
turns into classical mechanics as we know it.” (2022, 405).
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In effect, the laws no longer state facts about the basic causal powers of bodies, mate-
rial substances, or their ontological analogues. If late-Enlightenment mechanics is still 
home to causal knowledge, it is not contained in the laws of that discipline.14

Stan would go on to remark that the “deep shift in the nature of laws had long-term episte-
mological consequences”, in that “it is not clear what counted [my emphasis] as evidence 
for basic laws any more.” According to Stan, “[t]his grave problem—that laws lacked even 
prima facie warrant—had two causes.”15 Stan then reveals that the first cause was the fact 
that “the laws no longer mention bodies or their causal actions” [my emphasis] and so 
“potential rationalist evidence…is irrelevant”.16 It is clear from context that Stan is here 
discussing the viewpoint of the late-Enlightenment thinkers themselves for in the immedi-
ate context Stan notes how at that time certain ways of justifying the laws no longer work 
because of scale differences (see ibid., n. 35) and a lack of accessible data at the time (i.e., 
before 1800, an era referenced at ibid., n. 36). According to Stan then, late-Enlightenment 
thinkers transformed our conception of dynamical law (Stan calls it a “reconceptualiza-
tion” (ibid., 388)) moving us away from the causal interpretation of dynamical laws at least 
after 1790.

The structure of Stan’s argumentation is well-illustrated by his comparison of Joseph-
Louis Lagrange’s (1736–1813) Analytical Mechanics with Kant’s Metaphysical Founda-
tions of Natural Science. According to Stan, Kant did not pay heed to “the most general, 
cutting-edge science of moving bodies—Lagrange’s mechanics” (Stan 2022, 402), and so 
developed a mistaken mechanics of body (one that incidentally maintained a causal inter-
pretation). Lagrange’s mechanics was sufficiently general and sophisticated, such that 
(according to Stan) Lagrange’s Analytical Mechanics featured an “absence of any explicit 
notion of body” (ibid., 402). The point is clearly that Lagrange’s approach to mechanics 
embodied the more modern (re)conceptualization of dynamical law while Kant’s did not. 
Concerning Kant, Stan’s language is particularly negative. After quoting a passage from 
Kant’s Metaphysical Foundations wherein Kant presents his causal interpretation, Stan 
remarks.

…Kant’s confident talk above [talk of forces causing motions etc.] runs into the same 
problem as his two predecessors, Wolff and Émile Du Châtelet. Specifically, all three 
use the vocabulary of legislation—leges motus, lois du mouvement, and mechanische 
Gesetze—but they leave unclear what these laws are for; i.e., what they do within 
mechanical theory. More regrettably, Kant, the only philosopher to live through the 
great transformation in the laws’ form and function described above, missed the 
chance to notice and reflect on it—an unfortunate victim of his deficient schooling.17

14  (Stan 2022, 402–403).
15  See (Stan 2022, 403) for both quotations.
16  (Stan 2022, 403). Stan is best interpreted as discussing how the laws were regarded during the late 
Enlightenment era and onward. How else could the past (“counted”) epistemic opacity in question be 
caused by the failure of the laws to “mention bodies or their causal actions”? Stan is clearly committed to 
the hypothesis that the dynamical laws were no longer causally interpreted under the reconceptualization of 
them during the late-Enlightenment era.
17  (Stan 2022, 402).
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I will argue that the prevalent story is multiply flawed.18 As I’ve already said, and 
as I will argue in Sect. 2, Hamilton’s (to say nothing of William Whewell’s) nineteenth 
century mechanics was deeply informed by Kant’s causal interpretation of mechanics 
(as was Whewell’s approach by the way) inter alios. That Hamilton, the great mathe-
matician, shared Kant’s causal outlook on the laws despite his intimate familiarity with 
differential calculus, the calculus of variations, the principle of least action, mechanical 
variational principles in general, and the more modern Eulerian conception of a function 
and functional equations cuts directly and especially against Stan’s project in obvious 
ways.

What appears to be all the rage these days notwithstanding, I will also argue that Ham-
ilton’s two most important and revolutionary papers on classical mechanics (Hamilton 
1834, 1835) provide persuasive ammunition for a causal interpretation of the laws of mod-
ern classical (non-relativistic) physics, if it is plausible to believe that forces are causes 
of motion. Admittedly, that’s a big ‘if’. But there are arguments for that antecedent and 
plausible responses to objections to it.19 That forces are causes was certainly the majority 
opinion among the fashioners of what we now call classical mechanics.20 But my target in 
this work is the prevalent story, and I take on as an additional (primary) task the goal of 
establishing that forces are indispensable to the ontology of modern Hamiltonian mechan-
ics. These tasks are cumbersome enough because it is usually maintained that Hamilto-
nian mechanics is an energy-based theory that explains motions and interactions in terms 
of the energies of systems. If forces enter, they do so in a secondary way that is dispensa-
ble or derivative.21

19  See, e.g., (Weaver 2019) for the positive case. I’m not alone. James Woodward said,
  “…to guard against misunderstanding, let me say unequivocally that it is not part of my argument that 
causal notions play no role in or are entirely absent from fundamental physics. I see no reason to deny, for 
example, that forces cause accelerations.” (Woodward 2007, 68 emphasis in the original).
  See also (Loew 2017) who responds to the objections from locality and time-reversal.
20  It was the view of Galileo, Huygens, Hooke, Newton, Leibniz, Boscovich, Coulomb, Cavendish, Daniel 
Bernoulli, Varignon, Hermann, Fourier, d’Alembert, Euler, Lagrange, Laplace, Maxwell, Helmholtz, and 
Boltzmann. See (Pourciau 2020, 185); (Weaver 2019, 67–71); (Weaver 2021); (Westfall 1971).
21  As North wrote,

“Newtonian mechanics ‘describes the world in terms of forces and accelerations (as related by the 
second law)’ (Taylor 2005, 521), where ‘force is something primitive and irreducible’ (Lanczos, 
1970, 27). Lagrangian and Hamiltonian mechanics describe systems in terms of energy, with force 
being ‘a secondary quantity’ derivable from the energy (Lanczos, 1970, 27). According to Newtonian 
mechanics, the world is fundamentally made up of particles that move around in response to various 
forces between them. According to Lagrangian and Hamiltonian mechanics, particles move around 
and interact as a result of their energies. Although energy and force functions are inter-derivable in 
ways that physics books will show (albeit under certain contestable assumptions…), these are none-
theless prima facie different pictures of the world, built up out of different fundamental quantities, 
with correspondingly different explanations of the phenomena.” (North 2022, 29). 

Although North’s characterization is a common one, what Lanczos (1970, 27) actually says is that accord-
ing to Lagrangian and Hamiltonian mechanics, “it is not the force but the work done by the force which is 
of primary importance, while the force is a secondary quantity derived from the work.” (emphasis in the 
original) Work is not equal to energy. It is minus work that is related by mathematical identity to change in 
potential energy, given certain background assumptions about the system being described.

18  One can show why some prominent eighteenth century thinkers were not at all “oblivious”, but were 
instead rationally justified in their continued promulgation of causal interpretations of physical laws even if 
those laws are restricted to Stan’s [1] (Euler’s statement of the second law of motion) and [3] (Lagrange’s 
version of the principle of least action) in (Stan 2022). Indeed, in this essay, I provide reasons for causally 
interpreting the principle of least action (q.v., n. 122).
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 While, I will provide motivation for a force-laden Hamiltonian mechanics, I should 
note an admitted limitation. Most of the discussion that ensues will pertain to conservative, 
holonomic particle systems (defined in Sect.  3) of classical (non-relativistic) mechanics. 
I’ll say nothing about other system-types and almost nothing about other theories endowed 
with various types of fields and the like (although q.v., Sect. 5 on electrostatics). Again, 
I believe it is substantial enough to show how forces are indispensable to the ontologies 
of Hamiltonian models of such systems, for if forces are causes of motion, causation will 
follow suit. My hope is that by looking to Hamilton in the manner that the current project 
does, those who disagree with the consensus eliminativist attitude about causation in phys-
ics will here find an aid in the form of a blueprint and steppingstone for ushering causation 
back into one of the most sophisticated versions of classical mechanics viz., Hamiltonian 
mechanics.

Before proceeding as planned, I should address one concern the reader might possess. 
Despite the fact that I am not here arguing that forces are causes, one might wonder none-
theless which type of causation is important to the larger project. Which type of causa-
tion can be injected into the best interpretation of Hamiltonian mechanics? My answer: 
Any type of causation, whether it is reductionist, anti-reductionist, or primitivist. The type 
of causation need only be consistent with the idea that forces are causes of motion. As 
noted earlier, my project seeks to object to an eliminativist attitude about causation. Causal 
reductionism is the view that causation is completely determined by, grounded in, or noth-
ing over and above non-causal law-governed, non-causal physical history (Schaffer, 2008). 
Reductions are asymmetric relations. The (reductive) causal relation cannot therefore be 
identified with constant conjunction, (non-causal) nomological dependence, energy trans-
ference, or some other reductive base. It likewise cannot be eliminated because reduction 
relations are not eliminations. Reduction relations have relata. So, what precise sense or 
theory of causation suits the larger project? Any theory that is consistent with the thesis 
that forces are causes of motion and that commits to the existence of causes no matter their 
place in the hierarchy of being.

2 � Hamilton’s Metaphysical Dynamics

I will now proceed to show that Hamilton possessed a genuine interest in the metaphysical 
foundations of dynamics and that lessons he drew from four key individuals (viz., Kant, 
Lagrange, Whewell, and perhaps Leibniz) led him to a causal interpretation of classical 
dynamics in general, but forces in particular. What follows in this section is not intended to 
provide novel contributions to Kant, Lagrange, or Whewell scholarship, nor is it intended 
to argue for the truth of the various metaphysical theories of natural science proffered by 
these individuals. Rather, with primary and secondary literature in hand, I aim to accu-
rately report that (a) each influencer affirmed their own versions of a causal dynamics, 
while (b) all agreed that forces were causes of motion. Again, (c) Hamilton’s dynamics was 
informed by facts (a) and (b). It is the way I establish fact (c) that is my novel contribution 
in this section.22

22  Some Kant scholars may find some of my claims about Kant contentious. I have therefore devoted more 
time and space to Sect. 2.1.1 than any other historical section.
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2.1 � Influences and Methodology: A Sample

2.1.1 � Kant

Kant influenced Hamilton’s approach to both mathematics23 and dynamical science.24 To 
see this, I note first that Hamilton is best viewed as having affirmed something like a dis-
tinction between pure and applied algebra (MPH3, 5; see the 1832 memorandum quoted 
at Hankins, 1980, 272–273). The latter is used to model and describe dynamical evolu-
tions of systems in physical as opposed to pure time. For Hamilton, pure time is naked 
time. Agreeing with Kant,25 it is time stripped of objective mind-independent chronology 
and (objective) causation in the external world.26 In dynamics, parts of accurate models of 
applied algebra represent objective succession in physical time (Hankins, 1980, 273; Win-
terbourne, 1982, 199; Hamilton spoke in terms of objective order). But recall that accord-
ing to Kant (and therefore Hamilton who endorsed Kant’s conception of succession), the 
succession involved here is causal. Every substance undergoing change is causally con-
nected to something else. There are two motifs in Kant’s work that motivate this picture 
of his viewpoint. The first is Kant’s very idea of succession. The second is Kant’s Second 
Analogy of Experience which drew upon Kant’s earlier idea of succession.

Kant presented the “Second Analogy of Experience” in his monumental work, Critique 
of Pure Reason. According to that analogy, any and all transmutation or change must be 
accompanied by obtaining causal relations.27 As Kant’s “principle of temporal sequence 

26  This idea appears in Hamilton’s 1853 exposition of his earlier views (Hamilton MPH3, 117).
27  (Kant 1998, 304–316; B232-B258). See also (Smith 1918, 363–381); (Watkins 2005, 185–217, 237; 
2019, 61–65).

24  Here’s some evidence for the claim in the main text. First, Hamilton quotes Kant, sometimes in the 
original German (Hamilton MPH3, 118). Hamilton appeals to Kant again at (Hamilton MPH3, 125, the 
lengthy footnote that extends to p. 126). Second, we learn from Hamilton’s personal correspondence and 
memoranda that Hamilton both read and studied Kant and secondary literature about Kant (see Hankins 
1980, 268–275). Third, Hamilton explicitly acknowledged his indebtedness to Kant in the development of 
the algebra discussed at (Hamilton 1837) in the 1853 preface to the Lectures on Quaternions (1853), a 
work that is one of the most important contributions to the history of mathematical physics being in part 
a seed for the creation of modern vector calculus (Hendry 1984, 63). Fourth, Hamilton’s contemporaries 
understood him to be developing Kantian motifs in some of his scholarly work (Graves 1885, 141–143). 
Fifth, ideological dependence can be demonstrated in other ways besides pointing to direct quotations. If 
we group together reasons (1)-(4) and then see relevant ideological similarities and motifs throughout por-
tions of the work of two individuals, the best explanation is that the temporally later thinker drew upon the 
former (especially if the temporally later thinker admits to doing so).

23  As Hamilton’s biographer and contemporary, Robert Perceval Graves’s (1810–1893) summarized:
  “…we regard him [Hamilton] as having made a decidedly Kantian movement, when he conceived and 
published that view of algebraic science, including the various calculi…” (Graves 1842, 107); see also 
(Graves 1885, 141–143).
  Hankins (1980, 460) agrees: Hamilton
  “built his metaphysics of mathematics on a direct reading of Kant’s works. An appreciation of Hamilton’s 
arguments about the foundations of algebra therefore requires a plunge into Kant’s critical philosophy.”
  When Hamilton spoke of “Algebra” (he liked to capitalize the term) he was referring to both algebra (as 
we know it) and calculus or analysis (Halberstam and Ingram 1967, xv). For more on Hamilton’s algebra 
including work on quaternions, see (Crowe 1985, 17–46, 117–124); (Fisch 1999); (Hamilton 1837; 1853 
or MPH3, 117–155); (Hankins 1980, 268–275); (Mathews 1978); (Merzbach and Boyer 2011, 510–512); 
(Øhstrøm 1985); and (Winterbourne 1982).

25  (Kant 1998, 180–181, B49 B51). Kant said, “[t]ime is therefore merely a subjective condition of our 
(human) intuition (which is always sensible, i.e., insofar as we are affected by objects), and in itself, outside 
the subject, is nothing.” (Kant 1998, 181, B51).
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according to the law of causality” (a synthetic a priori judgment) stated, “[a]ll alterations 
occur in accordance with the law of the connection of cause and effect.”28

In 1755, some 26 years before the first Critique, Kant published the New Elucidation. The 
last section of that work explicated Kant’s Principle of Succession:

No change can happen to substances except in so far as they are connected with other 
substances; their reciprocal dependency on each other determines their reciprocal 
change of state.29

The connection with which Kant is concerned is the connection between cause and effect. 
That relation is not reducible to Humean regularity or constant conjunction (see Friedman, 
Causal Laws 1992, 162; Kant, 1933, 4–6). For Kant, the connection in succession bespeaks a 
modal tie because causation is a modal tie indicative of the natural necessitation of an effect 
by its cause. As Kant remarked in the Prolegomena to Any Future Metaphysics (1783):

For this concept [of causation] positively requires that something A be such that 
something else B follow from it necessarily and in accordance with an absolutely 
universal rule…the effect is not merely joined to the cause, but rather is posited 
through it and results from it.30

Universal and naturally necessary rules or laws back causal relations and are for Kant, 
therefore, causal laws.31 To ensure a causal interpretation of the laws, Kant believed that 
causation enters physics through (inter alia) causally efficacious quantities like forces 
(Kant, 1903, 171, 222).32

Hamilton (in Hamilton, 1837) appropriated Kant’s view that dynamical science is about 
non-Humean causal connection. That is why he equated “Dynamical Science”, with a sci-
ence that is conducted using “reasonings and results from the notion of cause and effect”.33 

28  (Kant 1998, 304; B232). I have removed the emphasis of the first quotation in this sentence.
29  (Kant 1992, 37). For Kant, this is a principle of “metaphysical cognition” (ibid.). Its flavor reminds one 
of Isaac Newton’s (1643–1727) third law of motion (i.e., the action-reaction principle). In the Prolegomena 
to Any Future Metaphysics, Kant presented three a priori principles about the cognition of appearances in 
experience. The last of these invokes an action-reaction principle (reminiscent of Newton’s third law of 
motion and the reciprocity mentioned in the quotation in the main text) understood as a type of epistemic 
guide or tool (Kant 1933, 66). Of course, all of this resembles ideas found within Kant’s third analogy of 
experience in the Critique of Pure Reason.

31  There is a question about whether Kant’s laws of mechanics are identical to Newton’s laws of motion. 
For the view that they are identical, see (Friedman 2013). For the view that they are distinct, but perhaps 
similar, see (Stan 2009, 43–44); (Watkins 2005). I should add that Watkins’s views have undergone an evo-
lution. Compare (ibid.) to (Watkins 2019).
32  My reading is within the confines of well-regarded Kant scholarship. See (Guyer 1987); (Friedman 
Causal Laws 1992); (Friedman 2013, 118, 265); (Watkins 2019, 90). According to Friedman (2014), Kant 
also maintained that Newton’s universal law of gravitation was a kind of causal law endowed with a kind of 
necessity.
33  (Hamilton, 1837, 7).

30  I quote here the translation of Kant’s Prolegomena to Any Future Metaphysics (A91-92/B123-124) pro-
vided by Michael Friedman in (Friedman, Causal Laws 1992, 161–162) emphasis in the original. For stand-
ard English translations of Kant’s Prolegomena, see (Kant 1933) and (Kant 2004).
  Compare: “the concept of cause implies a rule, according to which one state follows another necessarily” 
(Kant 1933, 76).
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Furthermore, Hamilton also affirmed that forces are causally efficacious quantities just 
as Kant did before him (see Sect.  2.1.3). For Hamilton, the very objectivity of physical 
time was motivated by appeal to Kant’s Second Analogy of Experience (Hankins, 1980, 
273–275, although Hankins speaks in terms of subjective and objective order and not pure 
and physical time) and its underlying idea of causal succession. Thus, both Hamilton and 
Kant would have affirmed that (quoting one Kant scholar) “the exact role of the causal 
relation is to constitute the earlier time as necessarily advancing to or determining the later 
time…”34 The succession of sensible events and appearances in our experience possesses 
an objective temporal order, a flow that must include obtaining causal relations.

2.1.2 � Lagrange

To discern even more clearly how Hamilton ensured that his mechanics remained commit-
ted to a causal ontology, look beyond the influence of Kant to see that of Lagrange.

Hamilton asserted that mechanics is the “the science of force, or of power acting by law 
in space and time” and that it has.

…undergone already another revolution and has become already more dynamic, by 
having almost dismissed the conceptions of solidity and cohesion, and those other 
material ties, or geometrically imaginable conditions, which Lagrange so happily 
reasoned on, and by tending more and more to resolve all connexions and actions of 
bodies into attractions and repulsions of points…35

Hamilton here characterizes mechanics as the “science of force” and of acting “power”. 
And while in one respect, Hamilton appeared to be distancing himself from Lagrange, in 
another respect and within the same work (Hamilton, 1834), he also drew closer to him. 
The first revolution to which Hamilton alluded is the analytical revolution of Lagrange’s 
1788 magnum opus, the Analytical Mechanics.36 Hamilton builds upon that revolution by 
making direct use of Lagrange’s axiom of mechanics, viz., the Principle of Virtual Veloci-
ties (which was later called the Principle of Virtual Work (PVW)). For a conservative 
system and in modern vector notation, given that �� is virtual displacement (i.e., the dis-
placement need not be realized or actual), m is inertial mass, U is potential energy, and dots 
are time derivatives, the PVW states:

or:

Hamilton so builds by deriving his own fundamental axiom of mechanics, viz., the law of 
varying action (LVA), introduced and discussed in Sect. 4.1, from the PVW inter alia. 

∑
� ∙ δ� =

∑
m�̈ ∙ 𝛿�

∑
m�̈ ∙ δ� + δU = 0

34  (Melnick 2006, 227).
35  (Hamilton 1834, 247). See (Kargon 1965) on this passage and the possible allusion to Roger Joseph Bos-
covich (1711–1787) within it.
36  In one place, Hamilton refers to (Lagrange 1788) as “a kind of scientific poem” (as quoted by Truesdell 
1968, 86).
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That Hamilton builds upon Lagrange’s revolution is important because Lagrange affirmed 
a causal interpretation of (non-fictitious) forces, forces that were fundamental in his 
mechanics.

At the beginning of Lagrange’s Analytical Mechanics, Lagrange stated that “[i]n general, 
force or power is the cause, whatever it may be, which induces or tends to impart motion 
to the body to which it is applied.”37 My reading of Lagrange may come as a shock, for it 
is usually emphasized that Lagrangian mechanics is and has always been an energy-based 
approach to mechanics, and that Lagrange’s analytical revolution is best viewed as a turn 
away from Newton and Leonhard Euler’s (1707–1783) force-laden (and thereby causation-
laden) mechanics.38 The opinion is mistaken. In (Lagrange 1788), Lagrange derives his equa-
tions of motion (those well-known equations used in Lagrangian mechanics as equations of 
motion even today) both with and without constraints from his axiom of mechanics, viz., 
the PVW, wherein forces are featured (Caparrini & Fraser, 2013, 375–376; Fraser, 1985, 
173). Lagrange did not interpret U as a representative of potential energy (the idea hadn’t yet 
entered physics!) but instead regarded it as a function to be used in “a convenient method for 
calculating the components of force in various coordinate systems.”39 And as is the case with 
Euler’s laws of mechanics (e.g., what are often called the Newtonian equations), the PVW is 
demonstrably more general than Lagrange’s equations of motion.40 The PVW is fundamen-
tal. The equations of motion that are down-stream from it are not. It’s no surprise then that 
Lagrange scholars have judged that in both his Theory of Analytical Functions and his Ana-
lytical Mechanics, Lagrange turned back to Newton with new analytical equipment in hand. 
As Marco Panza attests,

…the foundation of mechanics sketched in the Théorie des fonctions analytiques 
makes apparent his effort to reduce the role of non-Newtonian principles in mechan-
ics and to identify the subject with a quasi-algebraic deductive system based on a 
general Newtonian analysis of forces. This shows the difference between Lagrange’s 
interpretation of his own results and any modern evaluation of them.41

I should add that despite Hamilton’s aversion to the notions of “solidity and cohesion” in 
the work of Lagrange, it is not a coincidence that Lagrange’s characterization of dynamics 
in his Analytical Mechanics (1788) is remarkably close to Hamilton’s (previously quoted):

Dynamics is the science of accelerating or retarding forces and the diverse motions 
which they produce…the discovery of the infinitesimal calculus enabled geometers 
to reduce the laws of motion for solid bodies to analytical equations and the research 

38  Save some philosophers, virtually everyone believes that for Newton forces are causes of motion (q.v., n. 
46 if you require source citations). Both (Ismael 2016) and (Norton 2007a) were wrong to see in Newton an 
abandonment of causation-laden laws of physics. Ronald S. Calinger, a foremost Euler scholar, has recently 
said “[t]he concept of force was crucial to Euler’s mechanics, and he treated it as an external entity to a 
body causing change in motion.” (Calinger 2016, 126).

40  (Truesdell 1968, 133). Truesdell also listed other problems with Lagrange’s equations of motion, prob-
lems that result from “obscuring the forces” (ibid.).

37  (Lagrange 1997, 11) emphasis in the original.

39  (Archibald 2003, 198).

41  (Panza 2003, 151–152). For a sample of Lagrange’s high view of Newtonian forces within the Analytical 
Mechanics, q.v., n. 37 and n. 40.
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on forces and the motion which they produce has become the principal object of 
their work.42

For both Lagrange and Hamilton, dynamics is the science of causally productive forces and the 
motions that are their effects.

2.1.3 � Whewell

Hamilton wasn’t just influenced by Kant and Lagrange. He also had numerous and impor-
tant interactions with the great polymath William Whewell (1794–1866).43 Whewell was 
an immensely important intellectual in the nineteenth century. His influence on the devel-
opment of physics can not only be seen in the central role he played in the process of the 
invention of terms like ‘physicist’, ‘anode’, ‘cathode’, and ‘electrolysis’, but it can also be 
seen in the impact he left on the thought of Michael Faraday (1791–1867), James Clerk 
Maxwell (1831–1879), and, of course, Hamilton.44

Whewell wrote extensively on classical mechanics. He even articulated a unique formu-
lation and interpretation of the three classical laws of motion and sought to justify those 
laws with their accompanying interpretations by appeal to an elaborate metaphysics of cau-
sation.45 Like Newton46 and Lagrange,47 Whewell believed that forces cause motions. He 
wrote that “the term Force” denotes “that property which is the cause of motion produced, 
changed, or prevented,”48 and that:

By Cause we mean some quality, power, or efficacy, by which a state of things pro-
duces a succeeding state. Thus the motion of bodies from rest is produced by a cause 
which we call Force: and in the particular case in which bodies fall to the earth, this 
force is termed Gravity. In these cases, the Conceptions of Force and Gravity receive 
their meaning from the Idea of Cause which they involve: for Force is conceived as 
the Cause of motion.49

Hamilton and Whewell maintained an important and mutually beneficial professional rela-
tionship. And while I cannot now explore all of the details of their interactions (see Graves, 
1882, 1885, 1889; Hankins, 1980, 174–180), I note here that the two seemed to agree on 

45  See (Whewell 1836, 138–161); (Whewell 1967, 573–594).

44  For a discussion of Whewell’s influence on Maxwell, see (Smith 1998, 305). For a discussion of 
Whewell’s influence on Faraday, see (Darrigol 2000, 83–86, 97). For a discussion of Whewell’s influence 
on Hamilton, see (Hankins 1980, 172–180) on which my discussion here leans in part.

46  Newton said, “…the forces…are the causes and effects of true motions.” (Newton 1999, 414, cf. 407, 
575, 794). See also (Dobbs 1992, 207–209); (M. Jammer 1957); (McGuire 1968); (McGuire 1977); (B. 
Pourciau 2006, 188–189); (R. Westfall 1971).

49  (Whewell 1858, 173). See also the comments at (Smith and Wise 1989, 362).

43  On Whewell, see (Butts 1968); (Fisch and Schaffer 1991); (Whewell 1836, 1858, 1967) and for valuable 
correspondence, see (Todhunter, vol. 1 and vol. 2 1876a, 1876b).

42  (Lagrange 1997, 169) emphasis mine.

47  Q.v., n. 37.
48  (Whewell 1858, 205) emphasis in the original.
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how best to interpret the laws of motion. After authoring (Hamilton, 1834),50 Hamilton sent 
a letter to Whewell in which he stated:

The Paper of your own On the Nature of the Truth of the Laws of Motion has been as 
yet so hastily read by me, that I can only say it seems to be an approach, much closer 
than of old, between your views and mine. Whether this approach is a change on my 
part or on yours, and if both, in what proportion, and how much or how little it wants 
of a perfect agreement, I dare not suddenly decide.51

The following month, Hamilton wrote to Lord Adare as follows: “Whewell has come round 
almost entirely to my views about the laws of Motion.”52 Hamilton believed that the interpreta-
tion of the laws of motion in Whewell’s “On the Nature of the Truth of the Laws of Motion”53 
(published in 1834) matched his own interpretation of those laws. In that essay, Whewell wrote:

The science of Mechanics is concerned about motions as determined by their causes, 
namely, forces; the nature and extent of the truth of the first principles of their sci-
ence must therefore depend upon the way in which we can and do reason concerning 
causes.54

Whewell went on to state what he calls “Axiom 1”: “Every change is produced by a 
cause.”55 Axiom 2 says that: “Causes are measured by their effects.”56 Axiom 3 was about 
action and reaction. These axioms are used to motivate and interpret the laws of motion. 
The ensuing discussion also very clearly and explicitly and continually interprets forces 
causally, characterizing them, again and again, as causes of motion.57 Because Hamilton 
agreed with the views of Whewell here articulated, we can safely conclude that Hamilton 
adopted a causal metaphysics of physics amidst the two years he published his two most 
important papers on classical mechanics.58

2.2 � Hamilton’s Idealism: A Sample

Hamilton was an idealist about the natural world. As I have already pointed out, Hamil-
ton’s views about the role of causation in dynamics were heavily influenced by Kant’s first 
Critique. It is therefore unsurprising to see the influence of the first Critique on Hamilton’s 
idealism as well. There are also important similarities between Hamilton’s idealism and 
philosophical worldview, and the idealism and worldview of Gottfried Wilhelm Leibniz’s 
(1646–1716) Monadology (Leibniz, 1898 originally published in 1714). Leibniz maintained 

50  The paper was received by Philosophical Transactions of the Royal Society on April 1st, 1834 and read 
April 10th, 1834. However, at the end of Hamilton’s introductory remarks, Hamilton includes a date of 
March, 1834, and because his letter to Whewell references (Hamilton 1834 although it was not yet pub-
lished) we can infer that Hamilton’s letter (dated March 31st, 1834) was authored after Hamilton had com-
pleted but not yet published (Hamilton 1834).

55  (Whewell 1967, 574) emphasis in the original.

58  Cf. the conclusions in (Hankins 1980, 178).

52  As quoted in (Graves 1885, 83).

56  (Whewell 1967, 575) emphasis in the original.

51  From W.R. Hamilton to Dr. Whewell, Observatory, Dublin, March 31, 1834 in (Graves 1885, 82).

53  (Whewell 1967, 573–594).
54  (Whewell 1967, 574) emphasis in the original.

57  The idea is all over the essay, but see (ibid., 581) for just one (more) example among many.
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that there are scientific efficient causal explanations of motion and change in the kingdom of 
power (science/physics) and divine final causal explanations of everything in the kingdom 
of wisdom (philosophy/theology).59 There is something approaching this bifurcation in the 
work of Hamilton, for in that work one finds efficient causal scientific explanations divorced 
from his idealism on the one side, and deeper more metaphysical explanations dependent 
upon his idealism but ultimately bottoming out in God on the other.60 There were for Ham-
ilton (quoting Hankins) “two separate sciences joined only by the benevolent act of God.”61

In the kingdom of wisdom, Leibniz had fundamental simple monads metaphysically explain 
a great deal. Hamilton had his fundamental and simple energies or powers play a similar role in 
the Hamiltonian worldview.62

As with Hamilton’s indebtedness to Kant, a thorough study explicating all of the impor-
tant similarities and differences should be pursued, but I will not take up that task here. 
I wish only to disclose that Hamilton’s fundamental and simple energies possess causal 
powers. Indeed, sometimes Hamilton speaks as if the fundamental energies are identical to 
causal powers (Hankins, 1977, p. 179). As Hamilton affirmed, “[p]ower, acting by law in 
Space and Time, is the ideal base of an ideal world, into which it is the problem of physical 
science to refine the phenomenal world…”.63

3 � A (Very) Brief Sketch of Modern Hamiltonian Mechanics

Hamilton’s methodology, intellectual influences, and philosophical worldview all led him 
to a causal interpretation of classical mechanics. Forces in that mechanics causally pro-
duce changes of motion. The modern philosopher of physics will object. Nowhere in the 
fundamental equations of contemporary Hamiltonian mechanics (at least) do we see an 
indispensable role for forces. Hamilton’s views are his own. How could and why should 
his ideas influence our modern understanding? Contemporary Hamiltonian mechanics is 
an energy-based theory which seeks to describe and explain mechanical systems by means 
of the Hamiltonian H . H is equal to the sum of the kinetic T  and potential energy U of the 
modeled system when potential energy is velocity independent and what are called gener-
alized coordinates (introduced below) are natural in the sense that their relationship to the 
relevant coordinates is time-independent (Marion & Thornton, 1988, pp. 218–219). And 

62  Leibniz’s Monadology maintained that corporeal substances are phenomenal depending for their exist-
ence upon quasi-mental simple entities called monads. Leibniz said, “simple things alone are true things, 
the rest are only beings through aggregation, and therefore phenomena, and, as Democritus used to say, 
exist by convention not in reality.” (Leibniz’s letter to Burchard de Volder (1643–1709) (June 20th of 1703,  
sent a second time). As quoted by (Garber 2009, 368)). And elsewhere Leibniz wrote,

  “…if there are only monads with their perceptions, primary matter will be nothing other than 
the passive power of the monads, and an entelechy will be their active power…” (Leibniz and Des 
Bosses 2007, 274–275 emphasis mine).

  The equivalent of monads in Hamilton’s system are fundamental simple things called energies or powers 
(see the main text). Like Leibniz’s monads, Hamilton’s simple powers/energies give rise to the external 
world. Hankins calls Hamilton’s view an “idealized version of atomism” (Hankins 1977, 182).

60  Hamilton stated, “[i]n seeking for absolute objective reality I can find no rest but in God…” From Ham-
ilton to H.F.C. Logan, June 27, 1834 in (Graves 1885, 87).

59  See (Leibniz 1989, 223).

61  (Hankins 1980, 179), although Hankins does not relate Hamilton’s work to that of Leibniz.

63  From Hamilton to H.F.C. Logan, June 27, 1834 in (Graves 1885, 87).
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so, when assuming such naturalness of coordinates and when assuming that the target sys-
tem (call it SYS) is an energetically isolated holonomic n-particle system, it follows that:

and that the number of generalized coordinates and the number of degrees of freedom of 
SYS equal one another.

According to the Hamiltonian formulation, the configuration of SYS (in three-dimen-
sions) is given by n-generalized coordinates: (q1,… , qn) . Following (Goldstine, Poole and 
Safko 2002), (Marion & Thornton, 1988, 222–229), (Taylor, 2005, 529–531), and (Thorne 
& Blandford, 2017, 158–160) one can represent n-generalized coordinates with � , and 
n-generalized momenta64 with � such that,

We can represent n-generalized velocities, or the time derivatives of n-generalized coor-
dinates with �̇ and the time-derivatives of n-generalized momenta �̇ , such that,

Quantities � and � and their time derivatives (which can also be represented with a single 
general subscript ( i set equal to 1,… , n )) are n-dimensional vectors that can be represented in 
abstract mathematical spaces described by higher-dimensional geometry.65 I will say almost 
nothing about these spaces and what “transpires” in them. The common procedure one uses 

H = T + U

� =
(
q1,… , qn

)
, � = (p1,… , pn)

�̇ = (q̇1,… , q̇n), �̇ = (ṗ1,… , ṗn)

65  In technical discussions of Hamiltonian mechanics in the work of physicists, mathematicians, and some 
philosophers, one will see: (a) higher-dimensional phase spaces the points of which represent possible 
states of the system modeled (because they encode information about the positions and momenta of con-
stituents of the system), (b) phase space orbits or flows tracing out (c) curves in phase space understood as 
representations of possible evolutions of the modeled system given by solutions to Hamilton’s equations, 
(d) Liouville’s theorem, (e) measures, (f) Poisson brackets, etc. For all of that, see (Dürr and Teufel 2009, 
12–26); (Mann 2018, 167–201); (Torres del Castillo 2018, 103–228) and pair it with (Healey 2007, 248–
251). I skip that stuff here in the interest of brevity. My central argument will remain unaffected by details 
about cotangent bundles or phase spaces that are symplectic manifolds, measure preserving flows, and sym-
plectic geometry. What gives you the curves that represent evolutions in the phase space are solutions to 
Hamilton’s equations. In addition, the “dynamical evolution of a system can…be geometrically encapsu-
lated in a single scalar function (namely the Hamiltonian)” (Penrose 2005, 484). So, the important ques-
tions are: How should one interpret Hamilton’s equations and their solutions? How should one interpret the 
Hamiltonian?
  Later, I will make much of Galilean invariance in classical mechanics. Some might therefore object to 
precluding a discussion of the geometry of Hamiltonian mechanics because both canonical transformations 
and canonical invariants (or canonical form-invariants) are important to Hamiltonian and Hamilton–Jac-
obi mechanics. In order to appreciate canonical invariants and transformations (especially those that have 
to do with time), one must study symplectomorphisms and that study will require that one give attention 
to cotangent bundles and symplectic geometry. Canonical invariants and transformations have to do with 
tracking systems in a higher-dimensional phase space. But we need not worry about any of that. Hamilton’s 
equations of motion are canonical form-invariant, and (again) their solutions provide one with the motions 
of systems modeled by the Hamiltonian apparatus (points orbiting in the higher-dimensional phase space). 
Once again, the question is, how should we interpret Hamilton’s equations and their solutions?

64  All discussion of modern physics will use the SI unit system.
  Generalized momenta can also be stated in terms of the Lagrangian L  (the difference between kinetic and 
potential energy) and generalized velocity (Penrose 2005, 476, I’m citing in this case because some suggest 
otherwise):

� =
𝜕L

𝜕q̇
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to model basic physical systems in Hamiltonian mechanics makes no direct or explicit appeal 
to higher-dimensional geometry. For example, you don’t have to explicitly do symplectic 
geometry on a 6n-dimensional phase space to use Hamilton’s equations (and their solutions) 
to model a particle’s motion under the influence of a central force field (see Taylor, 2005, 
532–533 whose discussion does not mention symplectic manifolds). Hamilton’s own dynam-
ical theory was not geometric. One “finds all through the work of Hamilton that the directly 
geometrical point of view is made subservient to the analytical” (Conway & Synge, 1931, 
xix). As Sect. 4 will make clear, Hamilton “employed variational ideas and techniques” and 
“his analysis was developed within the established theory of analytical dynamics” (Fraser, 
2003, 377). Higher-dimensional geometry did not come to the fore until after 1869.66 This 
explains why not even Carl Gustav Jacob Jacobi’s (1804–1851) improvements on Hamilton’s 
framework were geometric. His work also rested upon an analytical point of view (Lützen, 
1995, 21–22; Thiele, 1997, 286). It is my opinion that the higher-dimensional geometry illus-
trates the dynamics. What governs the dynamics are the fundamental equations and their 
solutions. Interpreting those equations and solutions is what concerns me here.

Assuming that (i = 1,… , n) and, when applicable, that (j = 1,… ,m) here and through-
out, one can write Hamilton’s equations (of motion) as:

(Hamilton’s Equations of Motion):

Add to the above, a specification of the (full) time derivative of the Hamiltonian as 
follows:

And keep in mind that the full or total derivative of the Hamiltonian with respect to time 
features 2n + 1 terms (as can be read off of the equation just stated) and that:

which can be inferred from the equations of motion and our specification of the full time 
derivative of the Hamiltonian.67 And while the above expressions equal one another, they 
are conceptually distinct. The equality will hold for systems like SYS because the Hamilto-
nian describing them is a constant of motion.

Solutions to Hamilton’s equations give one the evolution of the system or subsystems 
modeled. The contemporary philosopher of physics will point out that forces do not seem 
to enter any of the above relations or equations. Likewise, forces do not appear to enter 
solutions to Hamilton’s equations of motion. How then can the contemporary natural 

ṗi = −
𝜕H

𝜕qi
, q̇i =

𝜕H

𝜕pi

dH

dt
=

n∑
i=1

(
𝜕H

𝜕qi
q̇i +

𝜕H

𝜕pi
ṗi

)
+

𝜕H

𝜕t

dH

dt
=

�H

�t

66  According to (Lützen 1995, 15–16), higher dimensional spaces were referenced by Carl Friedrich Gauss 
(1777–1855) in 1816, by his student August Ritter (1826–1908) in 1853 (with some reservation), and by 
Jean-Gaston Darboux (1842–1917) in 1869. However, systematic treatments of mechanics with the equip-
ment of higher dimensional geometry cannot be found until after 1870 (Lützen 1995, 18).
67  Hence, the logical ordering of the equations in the main text. We can also affirm:

−
�L

�t
=

�H

�t
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philosopher insist on a causal interpretation of Hamiltonian mechanics? Indeed, if Hamil-
ton’s understanding was anything like our own, how could Hamilton have done so?

As we shall see, there are powerful reasons for insisting that forces belong to the ontology of 
modern Hamiltonian mechanics. Those reasons shall issue forth from reflecting upon precisely 
why those same forces never left the ontology of Hamilton’s mechanics despite the privileged 
place of (what we call) the Hamiltonian in his formulation. The crucial piece to my argumenta-
tion will actually turn out to be the Hamiltonian. A proper interpretation of that quantity along 
with a correct statement of its metaphysical grounds (according to physics) provides much of 
what is needed for the articulation and defense of a robust case for injecting forces into both past 
and present versions of Hamiltonian mechanics.

4 � Hamiltonian Causal Mechanics

In this section, I will lay out Hamilton’s dynamics. I will show that his law of varying action 
(to Hamilton, 1834) was an early primary principle of that dynamics and that it essentially uses 
the Hamiltonian which is specified in terms of the potential function. I will then show how 
Hamilton’s mature dynamics (1835) led to the transformed law of varying action which would 
become Hamilton’s final principal axiom of mechanics. It too is specified in terms of the Ham-
iltonian (and so also the force function) and the form of the auxiliary function used to state it 
takes a form expressed in terms of the initial and (temporally) later potential functions govern-
ing the system. The main purpose of this section is to highlight the indispensable role that the 
potential function plays in Hamilton’s dynamics and to show how the potential function was 
understood as one that simply encodes information about force interactions. Thus, forces are 
the true fundamental quantities in Hamilton’s dynamics.

4.1 � Hamilton’s Dynamics: A Brief Exposition

In (Hamilton, 1834), the law of varying action for SYS (i.e., a system of n-point masses 
with an ith member68) is stated as follows:

(Law of Varying Action (LVA)69):

given that the characteristic function V  can be specified as follows:

and that m is inertial mass, t is time, xi , yi , and zi are Cartesian coordinate variables, ai , 
bi , and ci give the initial positions of the n-point masses, and ȧi , ḃi , and ċi give the initial 

𝛿V =

n∑
i=1

mi

(
ẋi𝛿xi + ẏi𝛿yi + żi𝛿zi

)
−

n∑
i=1

mi

(
ȧi𝛿ai + ḃi𝛿bi + ċi𝛿ci

)
+ t𝛿H

V =

t

∫
0

2Tdt

68  My gloss on the formalism here follows (Hamilton 1834; 1835) only in part. It is more in line with the 
notational style of contemporary historians of mathematics, Hamilton scholars, and historians of physics 
(e.g., Goldstine 1980, 176–189; Lützen 1995; Nakane and Fraser 2002 etc. on which my exposition leans). 
My discussion will rely upon my own reading of Hamilton, but it owes much to the sources just cited along 
with (Fraser 2003); (Graves 1842); (Cayley 1890); and (Hankins 1980, 181–198).
69  Hamilton also calls this the “equation of the characteristic function” (Hamilton 1834, 252).
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velocities of the same point-masses with regard to select coordinate directions. The ‘ � ’ 
symbol was originally invented by Lagrange to track some of the maneuvers of Euler. Later 
on, in both the work of Lagrange and Hamilton, it was used to represent a variation or spe-
cific type of differential change of a function or functional, although it can act on operators 
like the integral as well.70 By using Lagrange’s formalism and notation, Hamilton adopted 
what is sometimes called the �-formalism for the calculus of variations.

To see what LVA means one need only understand the content and significance of the 
characteristic function and a little calculus of variations. Function V  (quoting Hankins) 
“completely determines the mechanical system [SYS] and gives us its state at any future 
time once the initial conditions are specified”.71 The LVA is the means whereby Hamilton 
shows that “the solution of the equations of motion” are “reduced to finding and differen-
tiating a single function V” (Nakane & Fraser, 2002, 165). It is therefore the law which 
governs the evolutions of mechanical systems of the same type as SYS.

The LVA was a central tool that Hamilton used to build his dynamics. It is also central 
to my case for the historical judgment that the dynamical models of (Hamilton 1834; 
1835) were correctly causally interpreted by Hamilton. Thus, reflection upon the LVA 
and how it is derived will reveal precisely how causation entered Hamilton’s dynam-
ics and by consequence it will also reveal how causation enters modern Hamiltonian 
mechanics.

Hamilton derives the LVA from his specification of the characteristic function integral 
and manipulations of the formula governing energy for conservative systems, or:

assuming with Hamilton that U is “the negative of the potential energy”.72 (More on this 
function below.) Hamilton picked out the above sum with the letter ‘ H ’ in honor of Chris-
tiaan Huygens (1629–1695).73

It follows that for SYS, T  ’s value is given by what Hamilton called “the celebrated law 
of living forces” (q.v., n. 74):

(Law of Living Forces (LLF)74):
T = H + U

which Jacobi was able to derive, and which Hamilton was only able to assume. In addition:
T =

1

2

∑n

i=1
mi

�
ẋ2
i
+ ẏ2

i
+ ż2

i

�
The variation on T  is expressed in this context as:
𝛿T = 𝛿U + 𝛿H =

∑n

i=1
mi

�
ẋi𝛿ẋi + ẏi𝛿ẏi + żi𝛿żi

�
Again, V in LVA is what Hamilton called the “characteristic function”, but he also 

referred to it as the “action of the system”, and the “accumulated living force”.75 It had all of 

H = T + −U

75  (Hamilton 1834, 251–252). Hamilton had already written about the characteristic function in (Hamilton 
1828) a work on optics published when Hamilton was only 21 years of age. He said there, “[i]n every opti-
cal system, the action may be considered as a characteristic function, from the form of which function may 
be deduced all the other properties of the system” (Hamilton 1828, 79 emphasis in the original). According 
to Sir Edmund Whittaker (1873–1956), Hamilton discovered the function at the age of 16 (Whittaker 1954, 
82).

70  (Goldstine 1980, 111); (Fraser 2003, 361–363).
71  (Hankins 1980, 186).
72  (Hankins 1980, 183). This was a common assumption at the time.
73  (Dürr and Teufel 2009, 16).
74  (Hamilton 1834, 250).
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these titles because it tracks or characterizes dynamical properties of systems. It does this by 
being a function of H along with x, y, z, a, b , and c . It must satisfy, according to Hamilton, 
the following two fundamental partial differential equations (derived from the LVA):

(Constraining Fundamental PDEs):

where the top constraining fundamental PDE gives the living force (kinetic energy) of the 
system at the start of the evolution, and where the bottom equation gives the living force 
of the system at the end. Hamilton (1834, 253) says that one must use these equations 
to retrieve the form of the characteristic function V  . That is to say, if one simultaneously 
solves them, one will retrieve V  and thereby solve dynamical problems.

If one looks again to �T = �U + �H , one might wonder why Hamilton varies the Ham-
iltonian. Hamilton shows an interest not in changes of position along a path (as one would 
acquire by differentiating the LLF), but in imagined changes to the path itself, along with 
(perhaps) changes to initial positions as well. By so proceeding, Hamilton was relying upon 
his earlier work in optics. Hamilton wrote,

The quantity H may, however, receive any arbitrary increment whatever, when we 
pass in thought from a system moving in one way, to the same system moving in 
another, with the same dynamical relations between the accelerations and positions 
of its points, but with different initial data…76

This imagined path-change is why variations to the kinetic and potential energy are like-
wise important to retrieve. But the adroit reader has probably already noticed that I have 
failed to explicate the meaning and significance of one choice function in �T = �U + �H , 
the LLF, and in (indirectly via the Hamiltonian) the LVA, viz., the potential energy func-
tion U . Concerning that function, Hamilton wrote, “[t]he function which has been here 
called U , may be named the force-function of a system…it is of great utility in theoretical 
mechanics, into which it was introduced by Lagrange…”77 As I’ve already noted, Hamil-
ton’s indebtedness to Lagrange becomes evident after reflecting upon the fact that Hamil-
ton specified the force-function’s variation by means of the dynamical principle of virtual 
work:

(Dynamical Principle of Virtual Work (DPVW)):

⎧
⎪⎨⎪⎩
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1
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+
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n∑
i=1

1

mi

��
�V
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+
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+
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𝛿U =

n∑
i=1

mi

(
ẍi𝛿xi + ÿi𝛿yi + z̈i𝛿zi

)

77  (Hamilton 1834, 249) emphasis in the original. It was very common during Hamilton’s time to call the 
potential function U, the “force-function” (Nakane and Fraser 2002, 163). One primary example cited by 
Nakane and Fraser is Jacobi who would in some ways improve Hamilton’s work. Interestingly, Euler identi-
fied what Lagrange thought of as the potential with force effort (Euler 1753, 173–175); (Boissonnade and 
Vagliente 1997, xxxvii).

76  (Hamilton 1834, 250).
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which is basically Lagrange’s principle of virtual work (PVW) (sometimes called 
d’Alembert’s principle).78 The variation of the potential energy function represents changes 
to work performed over time by the point masses of SYS because (at least in part) potential 
energy represents work performed by the constituents of SYS.79 Thus, Hamilton affirms:

(Force-Function (FF)):

where f
(
rij
)
 here represents a force law specifying details about a repulsive or attractive 

force.80 The potential function therefore represents operating forces in SYS because it rep-
resents work. That is why Hamilton calls it the “force-function”. This is how forces enter 
Hamilton’s approach to classical dynamics even after Hamilton introduces his auxiliary 
function S around which (Hamilton 1835), is centered. For when Hamilton transforms the 
characteristic function V  into the auxiliary function S via a Legendre transformation, he 
specifies it thus:

where S is a function of x, y, z, a, b , c (space), and t (time), whose variation is:
(Transformed LVA (T-LVA)):

And so, Hamilton transformed the LVA into the T-LVA using S (see proposition W7 in 
(Hamilton, 1834, p. 307); (qq.v., n. 81 and n. 83)). This new auxiliary function S , which 
in (Hamilton, 1835, 95) is called the “principal function”, harbors within both H and 
V  , and thereby includes the force-function U . It too must satisfy two fundamental PDEs 
that are really specifications of the force-function at the beginning (time t0 ) and end of an 
evolution81:

(New Constraining Fundamental PDEs (or the Hamilton–Jacobi Equations)):

Just as the Constraining Fundamental PDEs give the form of the characteristic func-
tion, so too do the Hamilton–Jacobi Equations give the form of the principal function. If one 
knows the form of S, then by looking to the Hamilton–Jacobi Equations one should be able to 

U =

n∑
1≤i<j≤n

mimjf
(
rij
)

S = V − tH

𝛿S = −H𝛿t +

n∑
i=1

mi

(
(ẋi𝛿xi − ȧi𝛿ai) + (ẏi𝛿yi − ḃi𝛿bi) + (żi𝛿zi − ċi𝛿ci)

)
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80  Following (Nakane and Fraser 2002, 163). Hamilton’s statement is restricted at (Hamilton 1834, 273) to 
a conservative system of but two point-masses. At (Hamilton 1835a), the formula for the variation of the 
force-function is suitably generalized. Moreover, at (ibid.) it is stated (as a well-known fact) that the equa-
tions of motion follow from considering the variation of the force-function.

79  (Hankins 1980, 184).

78  See (Hankins 1980, 184–186); (Nakane and Fraser 2002, 163); (Langhaar 1962, 13).

81  (Hamilton 1834, 307–308); (Goldstine 1980, 178, 183); (Nakane and Fraser 2002, 180–181).
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discern “by its partial differential coefficients” every “intermediate and” every final integral 
“of the known equations of motion”(MPH2, 212, British Association Report of 1834).

In (Hamilton, 1834) and (Hamilton, 1835), Hamilton defines S via:

where L  is the Lagrangian within which the force-function (inter alia) resides (Hankins, 
1980, 192; Lützen, 1995, 10).82 This statement of S is inferred from the integral statement 
of the characteristic function V  . Hamilton also used the principal function S to state what 
has become known as Hamilton’s principle or what some call the principle of least 
action83:

(Hamilton’s Principle (HP)):

HP is part of both modern Hamiltonian and Lagrangian mechanics.84 Hamilton 
derives HP from the T-LVA on the assumption that the path is fixed (so that the vari-
ation of the Hamiltonian vanishes yielding: �H = 0 ), and that the end and initial points 
are fixed (so that variations on the coordinate variables vanish resulting in �V = 0 ). And 
because, �S = �V − t�H , �S vanishes. Obviously, if one works with just the LVA, on the 
same assumptions, it also follows that �V = 0 , a result Hamilton called the law of least (or 
stationary) action (Hamilton, 1834, 252); (Hankins, 1980, 186). For Hamilton, both the 
T-LVA and LVA are respectively upstream from the HP and law of least action. That is 
to say, the laws of varying action are fundamental, and the HP and law of least action are 
derivative.

In (Hamilton, 1834), Hamilton used the force-function to present his equations of 
motion (the DPVW is an equation of motion). Hamilton’s canonical equations of motion in 
(Hamilton, 1835) likewise use the force-function.85 Moreover, for systems like SYS, mod-
ern Hamiltonian mechanics specifies the Hamiltonian in terms of the force-function (see 
Sect. 3), and for some systems unlike SYS, the Hamiltonian is ordinarily specified in part 
in terms of the Lagrangian which (again) harbors U.

4.2 � The Potential Energy Function Represents Forces

I have shown that the force-function was used by Hamilton to present central formulae of 
his dynamics, to state the Hamiltonian H , and to state the principal function that is S . I have 

S =

t

∫
0

(T + U)dt =

t

∫
0

Ldt

�S = �

t

∫
0

Ldt = 0

85  (Nakane and Fraser 2002, 163).

82  Just to be clear, Hamilton did not use the Lagrangian. He used its mathematical equivalent.

84  See (Feynman, Leighton and Sands 2010, 19–8); (Taylor 2005, 239). There are many titles and names of 
principles thrown about in the literature. For example, Richard Feynman (1918–1988) called the specifica-
tion of the action integral S =

t∫
0

Ldt “the principle of least action” at (Feynman, Leighton and Sands 2010, 

19–8). There Feynman is concerned with the relativistic limit, but L  becomes the difference between 
kinetic and potential energy in the classical and non-relativistic limit (compare Feynman, Leighton and 
Sands 2010, 19–3).

83  (Hankins 1980, 194); (Nakane and Fraser 2002, 184).
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demonstrated that both the force-function for the initial time of an evolution of a physical 
system, as well as the force-function for the end-time of that same evolution were used to 
provide constraints on the principal function S thereby helping to determine the intermedi-
ate and final integrals for the equations of motion (q.v., the Hamilton–Jacobi Equations). 
In addition, I showed how the force-function enters the action that is “minimized” in HP. 
I have described in what way the force-function is used to present modern Hamiltonian 
mechanics. Furthermore, I have argued that Hamilton interpreted the force-function in such 
a way that it represents work and so also forces. That forces were for Hamilton, causes of 
motion, is a fact established in Sect.  2. But why think that forces play an indispensable 
role in correctly interpreting potential energy in modern Hamiltonian dynamics? In what 
follows, I shall begin to address this question by first showing (via five reasons) that the 
potential energy function (the mathematical object) represents forces at work. I will call 
this understanding of the potential energy function in classical mechanics the orthodox 
interpretation of the potential energy function. As we shall see (q.v., n. 92), it is and 
always has been the predominant view in classical non-relativistic physics. I should quickly 
add that I am not here attempting to conceptually analyze potential energy. Rather, I’m 
arguing that the potential energy function (the mathematical object) represents forces at 
work. That the potential energy function represents working forces is one line of evidence 
in favor of the thesis that (Θ) facts about forces determine/ground potential energy facts. 
So, I have five considerations in favor of the orthodox interpretation of the potential energy 
function, and that orthodox interpretation itself supports Θ.

First, in the context of modern classical non-relativistic mechanics (as during Hamilton’s 
time), energy in general is technically defined as a measure of a physical system’s power or 
ability to bring about work.86 Work, however, is force multiplied by displacement. Thus, if 
this characterization is correct, forces are essential to the interpretation of the energy func-
tion in general. And so, it becomes less surprising to see among the standard technical defi-
nitions of kinetic and potential energy in (classical but non-relativistic) physics and physi-
cal chemistry the assertion that kinetic and potential energy (or changes of such quantities) 
represent work performed by physical systems (Atkins et. al. 2019, 38). Admittedly, this 
evidence is far from conclusive. I therefore turn to the second line of support.

The SI derived unit of measurement for both energy (whether potential, kinetic, or 
mechanical) and work is the joule J. One joule just is a unit of measurement about a force, 
more specifically, the work performed or executed by one newton (N) of force over one 
meter (m) in a single direction, viz., the direction of the force impressed. In the CGS (cen-
timeter-gram-second or the Gaussian) unit system, the unit of both energy and work is the 
erg. The abbreviation ‘erg’ derives its meaning from the Greek ἔργον, which means work. It 
is therefore unsurprising that the erg, like the joule, is a unit of measurement about a force, 
more specifically, the work performed or executed by one dyne (dyn; the unit of force in 
the CGS system) of force over one centimeter (cm; the unit of length in the CGS system) in 
a single direction, viz., the direction of the force impressed. These facts (when restricted to 
the unit of measurement of potential energy) are best explained by the orthodox interpreta-
tion of the potential energy function. Notice also that the units for energy and work both ref-
erence forces explicitly. This fact fits extremely well with the supposition that the numerous 
energy functions as well as the work function represent (are about) forces.

86  The Oxford Dictionary of Physics defines energy as “[a] measure of a system’s ability to do work” (Ren-
nie 2015, 180).
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Third, the following expresses a law of classical mechanics, whether Lagrangian, New-
tonian, or Hamiltonian:

(Potential Energy Identity (PEI)):

where U is now positive, the � s are position vectors, and the triple bar expresses a math-
ematical identity. PEI says that if a point mass under the influence of a conservative force 
travels along a curve from an initial position �0 to another position � , U(�) (which is really 
a change in potential energy) will be minus the work done by the force � during the evolu-
tion. PEI is more than a law of classical mechanics. It is the technical definition of poten-
tial energy for the relevant system-types.87 The mathematical training of contemporary 
physicists attests that (quoting Trapp, 2019, 388) “… potential energy is defined in terms of 
work, which is a line integral!” (Again) The work involved is virtual if the referenced dis-
placement due to force-influence is nonactual or unrealized. This should not detract from 
the view that this specific argument intends to promote, for even if the work is virtual, the 
definition that is PEI underwrites the position that the potential function qua mathematical 
object has content about work and so represents forces.

Fourth, the orthodox interpretation of the potential energy function U fits comfortably 
within the most accurate depiction of the development of the potential function V  in the 
history of the mathematics of potential theory. That history reveals how from its incep-
tion, the potential function was a convenient mathematical device used by theoreticians 
to help them specify or represent working forces. Indeed, very early on, the potential was 
even more strongly associated with forces. When Daniel Bernoulli (1700–1782) first used 

U(�) ≡ −

�

�
�0

�(�
�

) ∙ d��

87  See, e.g., (Taylor 2005, 111) who says that “[w]e define U(�) ” in terms of, −W(�0 → �) . But,

  where W is the work function. That we can define U(�) in terms of work is enough for my purposes 
because, again, work has to do with force. Hecht remarked,
  “…only changes in PE are defined, and these are defined as the work done on a system by conservative 
forces. Such work is measurable as it is being done. However, once work is done it no longer exists and is 
no longer measurable; if ΔPE is only defined by work done (e.g., mgh, or 1∕2kx2 , or 1∕2CV2 ) it cannot be 
measured in stasis while it supposedly exists.” (Hecht 2019a, 500 emphasis in the original).
  Some maintain that potential energy and work are identical. Coopersmith stated, “[p]otential energy and 
work were eventually seen to be one and the same (an integration of force over distance)” (Coopersmith 
2015, 115).
  It is common to understand the work quantity in such a way that it is deemed more fundamental than 
potential energy. In his classic graduate level text on classical mechanics, Cornelius Lanczos (1893–1974) 
stated,
  “[t]he really fundamental quantity of analytical mechanics is not the potential energy but the work func-
tion…In all cases where we mention the potential energy, it is tacitly assumed that the work function has 
the special form W = W(q1, q2,… , qn) , together with the connection U = −W ” (Lanczos 1970, 34)
  I have rephrased Lanczos’s equations by using my own notation. The first equation in the quotation is 
inserted here in place of Lanczos’s reference to Eq. (17.6). I argue that forces are more fundamental than 
potential energy in Sect.  4.3 below. Lanczos argues that work is more fundamental than force (Lanczos 
1970, 27). I disagree. Work is technically defined in terms of force.

−W(�0 → �) ≡ −

�

�
�0

�(�
�

) ⋅ d��
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the equivalent of the term ‘potential’ he used it to denote the magnitude of a force.88 Euler 
called the mathematical equivalent of the potential, force effort (q.v., n. 77). One first 
sees the use of the potential function, as we understand it (although not by that name), in 
Lagrange’s “Sur l’équation séculaire de la lune” (“On the Secular Equation of the Moon”) 
published in 1773. In that work, Lagrange attempted to track the gravitational attractive 
force of a physical system with the potential function (Gray, 2015, 132). A precursory read-
ing of that work reveals how the potential function “seems to serve principally as a conven-
ient method for calculating the components of force in various coordinate systems.”89 It is 
an instrumentally useful device.

One of the earliest developers of potential theory was George Green (1793–1841). He 
emphasized (a) that the potential represents forces, (b) that it is a device of convenience, 
and (c) that forces are prior to the potential function in that the latter in some sense “arises” 
from the former. With respect to (a), Green wrote,

It is well known, that nearly all the attractive and repulsive forces existing in nature 
are such, that if we consider any material point p, the effect, in a given direction, of 
all the forces acting upon that point, arising from any system of bodies S under con-
sideration, will be expressed by a partial differential of a certain function [the poten-
tial function] of the co-ordinates which serve to define the point’s position in space.90

What Green says here is that the potential expresses the force by helping to represent its 
components in partial differentials. With respect to (b), Green wrote that the potential 
“gives in so simple a form the values of the forces” (Green, 1871, 22), asserting over and 
over again (and thereby addressing point (c)) that the values of the potential arise from 
electric charges of bodies and external forces (ibid., 70, 76, “the value of the potential 
function arising from the exterior force” (ibid., 78)); The potential function is “due to the 
exterior forces” (ibid., 107), and it arises “from the magnetic state induced in it by the 
action of the forces…” (ibid., 92)).

In 1782, Pierre-Simon Laplace (1749–1827) presupposed that the potential function V  
associated with a spheroid satisfied an elliptical partial differential equation of the second 
order, an equation that now bears his name (in Cartesian coordinates):

Laplace’s Equation (LE):

where ∇2 is what we now call the Laplacian operator. With this presupposition in hand, 
Laplace was able to represent the gravitational force resulting from the spheroid system by 
means of the potential function (Gray, 2015, 132). But the potential was used by Laplace 
because it (quoting Gray) “simplified his analysis of problems having to do with gravita-
tional attraction…”.91 In 1813, Siméon Denis Poisson (1781–1840) generalized Laplace’s 
equation:

∇2V ≡ �2V

�x2
+

�2V

�y2
+

�2V

�z2
= 0

91  (Gray 2008, 71).

88  See (Archibald 2003, 198) and (Dunnington 1955, 160).
89  (Archibald 2003, 198).
90  (Green 1871, p. 9) emphasis mine.
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where � is density. And so for gravitation we retrieve Poisson’s equation:

where � is a scalar potential often thought to represent the gravitational field. When � van-
ishes, Laplace’s equation is recovered. It was soon realized by Poisson and Charles-Augus-
tin de Coulomb (1736–1806) that the state of affairs involving a mass distribution system 
�(�) exerting a force-influence over a system of unit mass at a spatial point �′ is represented 
by (Gray, 2015, 132; 2008, 71; q.v., n. 135 below):

But as Gray (2015, 132; cf. 2008, 71–72) notes, it was realized that the potential function 
V
(
�′
)
 could greatly simplify matters (device of convenience) because:

from which one can derive:

This last equation provides a segue to my fifth reason for interpreting the potential 
energy function U as one that is about (represents) forces at work, for a very similar equa-
tion (identical in form) holds true in classical mechanics. Suppose once again that there is 
but one point mass traveling along a curve in three dimensions of space due to a conserva-
tive force (call this target system SYS). Assume that SYS is conservative and holonomic. In 
modern Hamiltonian mechanics, the force in SYS will be what is sometimes called the cor-
responding force of the potential energy function. This corresponding force in SYS, is the 
referent of � in the integral statement of the potential energy function that is PEI above. 
The relation of correspondence with respect to SYS can be stated quantitatively as:

which is obviously related to PEI. This equation says that the minus partial derivatives of 
the potential energy function express the components of the corresponding force in particu-
lar directions.92 With respect to a single coordinate direction, e.g., the z-direction, this 
equation entails that Fz = −

�U

�z
 . Thus, the sharper or deeper the dip in the gradient of the 

potential energy function, the more robust the involved force is, given that Fz faces toward 
−z and that the potential increases when there’s an increase in z.

It should now be clear. The potential energy function represents forces. It should now 
also be clear precisely how the potential energy function represents forces. The minus 
partial derivatives of the potential energy function represent the components of a force in 
appropriate coordinate directions. This understanding was handed down to us at the start 

∇2V = −4��

∇2� = −4�G�

�
(
��
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� = −∇V
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92  See (Goldstine 1980, 176); (Gray 2008, 71); (Taylor 2005, 111, 116–117).
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of potential theory.93 The appropriate representation fact is surprising if force-facts do not 
ground potential energy facts. It is unsurprising if force-facts do indeed ground potential 
energy facts.

4.2.1 � Forces Beyond the Newtonian Formulation

Have I reverted to the Newtonian formulation of classical mechanics by explicitly con-
necting the potential energy function with forces? Not at all. You will recall that Hamil-
ton (1834, 249) forged the same type of connection when he affirmed FF. In addition, I 
remind the reader that Hamilton called the potential energy function the force-function. 
Even today, we think of potential energy as the “energy of interaction”.94 It should be no 
surprise then that forces remain part of the ontology of modern Hamiltonian mechanics. 
There is nothing distinctively anti-Hamiltonian about them. When a point mass is under 
sway of a central force field, modern Hamiltonian mechanics specifies the involved radial 
force (in polar coordinates) as follows95:

What one should remember is that in many different contexts, Hamiltonian mechanics is 
correctly used to arrive at the same precise equations one can discover using force-laden 
Newtonian mechanics.96 In other words, modern Hamiltonian mechanics does in fact pro-
vide important information about forces.

Some will accept that forces are central to modern Hamiltonian mechanics. At the same 
time, they will insist that for the general case of an n-particle system, Hamiltonian math-
ematical models use generalized forces and (quoting North) “[i]t isn’t clear that they count 
as regular forces of the Newtonian kind”.97 A generalized (conservative) force with n-com-
ponents is a higher dimensional vector that lives in a higher dimensional abstract math-
ematical space.98 But in analytical mechanics of either the Lagrangian or Hamiltonian vari-
eties, a generalized (conservative) force Qi depends upon and is asymmetrically determined 
by real-world (North’s “Newtonian”) forces whether due to either external fields or interac-
tions between constituents of systems. Consider now my argument for this conclusion.

If there are real-world forces �i acting between point-particles with masses given by mi , 
we say that their total work is99:

(Total Work or DPVW*):

�
radial

= −
dU

dr

98  I will assume that generalized force Qi has the dimension of a force and not that of the moment of a 
force. On this distinction, see (Langhaar 1962, 17). For more on generalized forces in general, see (Fitzpat-
rick 2011); (Lanczos 1970, 27-31); (Langhaar 1962, 14-23); (Peacock and Hadjiconstantinou 2007); (Som-
merfeld vol. 1 1964, 187-189); (Stewart 2016, 16–21). In places, my discussion follows these sources.

93  If the reader is tempted to understand potential energy in such a way that it is basic, I ask that that reader 
digest the arguments of Sect. 4.3 as well as the analogical consideration in Sect. 5. I am here only trying to 
show that the potential function represents forces. This is a claim about the mathematical object and not a 
claim about potential energies in the world.
94  (Coopersmith 2015, 337).
95  (Taylor 2005, 531–532).
96  (ibid., 532).
97  (North 2022, 29).

99  Following (Lanczos 1970, 28).
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assuming that the particle constituents of the system have Cartesian coordinates that change 
by the arbitrary infinitesimal amounts represented by dxi, dyi, and dzi , and that Xi, Yi, and Zi 
give the components of the real-world forces �i in appropriate orthogonal directions (qq.v., 
n. 98, n. 99, and n. 101). A quick comparison reveals that this equation is equivalent to 
Hamilton’s DPVW above. Modern analytical (e.g., Hamiltonian) mechanics exploits the 
fact that the Cartesian coordinates are functions of the generalized coordinates 

(
q1,… , qn

)
 

such that the generalized coordinate variables have an invariant first-order differential form 
that is linear100 and expressed by101:

The coefficients F1,F2, F3 , etc. are not the components of the real-world forces �i , but 
are instead the components of generalized force Qi , that higher dimensional abstract vector 
previously mentioned (more on these components soon). I will now use the symbol: ℑi to 
represent the generalized force components.

Qi can be thought of as an abstract actor in the n-dimensional configuration space used to 
model the system. Points no longer just travel or orbit without reason, they orbit because the 
generalized force with its n-components “acts”, “producing” the orbit (Lanczos, 1970, 28–29). 
Of course, this is not an action indicative of causation. The ‘because’ involved here is one 
“without cause”. The explanation provided is an explanation by constraint as in (Lange, 2017). 
However, we have reason to believe that these explanations by constraint in the abstract con-
figuration or phase spaces are determined by causal explanations in the real world.

Consider that the components of Qi can be related to potential energy and generalized 
coordinates as follows:

But by PEI, we know that one can also state the generalized force components in terms of 
work and generalized coordinates:

What these equations reveal is that one can calculate generalized (conservative) forces by 
looking to the potential energy or work functions. This is because the real-world forces 
lying beneath work (work is force times displacement) and potential energy (identical to 
minus work) determine generalized force (q.v., GF below). But the minus partial deriv-
atives of potential energy give the components of real-world forces (q.v., Sect.  4.2). Of 
course, matters are not resolved. When the work function is time-dependent, there is no 
potential energy to look to for the purposes of calculating generalized force. Of course, this 
bothers my project none because work remains, and residing in work is real-world force. 
Furthermore:

dW =

n∑
i=1

(Xidxi + Yidyi + Zidzi)

dW = (F1dq1 + F2dq2 + F3dq3 +… etc⋯ + Fndqn)

ℑi = −
�U

�qi

ℑi =
�W

�qi

100  (Lanczos 1970, 28).
101  We could use �n instead of dn to highlight the fact that the involved force impression can be virtual (as in 
Langhaar 1962, 16).
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(Generalized Force (GF)):

where here, �i gives the position vector for the ith point where a real-world force is applied 
(assuming that �i is a function of the generalized coordinates) such that its variation is 
given by102:

Most importantly, �i represents real-world forces such as gravitation. A plain implication 
of all of this (especially GF) is that generalized force depends upon real-world applied 
forces. Indeed, the components of Qj represent the numerous forces standing behind �i , i.e., 
the real-world working forces in the system. Thus, generalized force Qj is a more abstract 
representation of force impressions and actions in the physical world. That is why Lanczos 
(1970, 29) says, “the dynamical action of all the forces can…be represented by a single 
vector [i.e., the generalized force vector] acting on” a point in a higher-dimensional math-
ematical space.

4.2.2 � Back to Potential Energy

Some will reject the orthodox interpretation of the potential energy function. They will 
choose instead to affirm that potential energy functions do not represent forces, rather 
forces represent an absolute and objective potential energy understood as a “capacity to 
do work”.103 Call this outlook the capacity interpretation of the potential energy func-
tion. On this view, potential energy just is an objective dispositional property of physical 
systems picked out by U.

While the capacity interpretation is not identical to the orthodox approach, it is nonethe-
less friendly to my central thesis because it causally interprets the potential energy function 
by ascribing to certain systems with potential energies causal powers, viz., capacities or 
dispositions to act according to force impressed over a distance thereby performing work. 
Ignoring for now the benefits this account would provide for my cause, I should detail how 
its fatal flaw follows from a point made by some of the very advocates of the capacity inter-
pretation (i.e., Marion & Thornton, 1988, 73). If the capacity interpretation were correct, 
whether a system has an objective potential energy or not would be a fact insensitive to 
conventions and arbitrariness introduced by physicists. But in any case, there is no means 
whereby one can measure such an objective potential energy that is an objective capac-
ity.104 (At this point, I should acknowledge my indebtedness to the work of Eugene Hecht 

Qj ≡
n∑
i=1

�i ∙
��i

�qj

��i =

m∑
j=1

��i

�qj
�qj

104  What is said in the main text holds true for both internal and external potential energy. None “of these 
potential energies is independently measurable” (Hecht 2016, 10); (Ryder 2007, 58). What I say here also 
holds true for static electric field energy (Hecht 2019b, 3) (q.v., Sect. 5).
  Albert Einstein (1879–1955) said,
  “[b]ut if every gram of material contains this tremendous energy, why did it go so long unnoticed? The 
answer is simple enough: so long as none of the energy is given off externally, it cannot be observed. It is as 

103  (Marion and Thornton 1988, 72).

102  See (Fitzpatrick 2011); (Peacock and Hadjiconstantinou 2007, 6); (Stewart 2016, 19).
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(2016, 2019a, 2019b and q.v., n. 113). His papers cite several of the sources I cite in this 
work). The quantity physicists call “potential energy” in the three main formulations of 
classical mechanics is a quantity whose differences alone ultimately matter because the dif-
ferences are what can be measured. Of course, the fact that a system’s evolution over time 
can be described by appeal to differences in potential energy presupposes that it at least 
makes sense to ascribe to said system potential energy full stop (no differences). However, 
the problem is that the full stop attributions in classical mechanics are arbitrary. Let me 
explain.

Consider the following well-known and often repeated example used to help teach stu-
dents about potential energy. Let spatial point x at height h(x) be the summit of Mauna 
Kea (the tallest mountain on earth measured from base to summit). Put a simple particle 
system or body b there. One now states the (gravitational) potential energy of the system as 
follows:

(Gravitational Potential Energy (Approx.) (GPEA)):

But here g is gravitational acceleration due to an acting gravitational force,105 m is the 
gravitational mass (equivalent to the inertial mass) of a body b at that height, and mgh(x) 
is interpreted as the work required to get b to h(x) given that b started somewhere else, 
e.g., sea level (you will notice that work is now being set equal to the gravitational poten-
tial energy) without imparting kinetic energy to b while laboring against gravity. But sea 
level here was chosen arbitrarily to facilitate acquisition of the differences one needs to 
make sense of Ug.106 Sea level is arbitrarily determined to be the place where Ug vanishes 
(French, 1971, 378–379). How then can the potential energy referenced here be an objec-
tive property of the system when its quality and quantity are determined by the arbitrary 
decisions of physicists? Of course, this arbitrariness will infect the quantity that is (virtual) 
work too, but the infection is not overly contagious. The mg portion (weight) of GPEA 
expresses the force pulling the object toward the center of the earth.107 The only way to 
get b to h(x) without the impartation of kinetic energy is to exert an external force on b 
(French, 1971, 378). When any conservative force acts thereby producing an acceleration, 
what transpires is a purely objective affair. More reasons will be given for this judgment 
soon (q.v., Sect. 4.3).

That the most important points in the preceding discussion of this subsection (viz., 
those about (a) arbitrariness and potential energy in general, (b) arbitrariness and gravita-
tional potential energy in particular, and (c) the GPEA) hold true in both Lagrangian and 
Hamiltonian formulations of classical mechanics is well-known.108 There is therefore no 

Ug = mgh(x)

108  (Fecko 2006, 517–518); (Penrose 2005, 475); (Pletser 2018, 55); cf. (Taylor 2005, 542 Eq. 13.51). The 
Hamiltonian would be similarly specified in the Hamilton-Jacobi formulation as well. See (Pletser 2018, 
55); (Torres del Castillo 2018, 256, 266–267).

106  Absolute potential energy does not fail to make sense because it is not measurable. There is no verifica-
tionism afoot here.

though a man who is fabulously rich should never spend or give away a cent; no one could tell how rich he 
was.” (Einstein 1954, 340).

Footnote 104 (continued)

105  Sometimes it is interpreted as the gravitational force field.

107  It is therefore no surprise that the SI unit of measurement for both weight and force is one and the same, 
viz., the newton.
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escape from my reasoning by appeal to a shift in formalism. But we can say something 
more general. In almost every context, the specification of the potential energy function 
does not change across the three major formulations of classical mechanics.

Let us now entertain an objection to my argument from arbitrariness. The GPEA is but 
an approximation even in classical mechanics. It holds true for bodies near to the earth, but 
as one moves away from the earth, one will need to use a different expression for gravita-
tional potential energy, one that follows from Newton’s famous universal law of gravitation 
and the definition that is PEI:

(Gravitational Potential Energy (GPE)):

where M is the gravitational mass of the Earth (the body exerting the gravitational force), 
m is the gravitational mass of body b, r is the distance between b and the Earth, and big G 
is the gravitational constant.

Switching to GPE does not help matters. That law is usually posited given yet another 
arbitrary choice. This time it is to set the gravitational potential energy of b that is Ug equal 
to zero when b is situated at a position infinitely far removed from the earth. Potential 
energy decreases as b moves closer to the earth and so is negative.109 Physicists will usu-
ally add that this arbitrary decision is reasonable, natural, or intuitive, but I have been una-
ble to find an argument for such a choice that would render that choice principled and non-
arbitrary.110 I do not question that it is convenient for calculations, but that does not mean it 
informs us about what the world is like even given a robust scientific realism. There are fic-
tional devices aplenty in physics that help us with our calculations, but no one would com-
mit to the existence of these devices. Who likes Gaussian surfaces?111 Potential energy, 
yes, even gravitational potential energy, can only be specified up to an arbitrary additive 
constant. (I am not interested here in quantum physics. I leave matters pertaining to poten-
tials and arbitrariness in that theory purposefully unaddressed.)

4.3 � Force is More Fundamental than Potential Energy

There are those who wonder whether there is any reality to potential energy at all.112 I will not 
go so far as to challenge the existence of potential energy. I will instead argue that potential 

Ug = −
GMm

r

110  I should add that I believe that the arbitrariness is to blame for the negativity. The arbitrariness is also 
the reason why negative gravitational potential energies should not confound the metaphysician of physics 
(Mann 2018, 17). If energies are but measures or convenient ways of representing what’s really happening 
with forces, then the signs of the convenient devices need not bother one. It’s what’s fundamental (or, in this 
case at least, what’s more fundamental) that matters.

109  All of this remains as I am presenting it in both Newtonian and Hamiltonian mechanics. See (Meyer 
and Offin 2017, 61–62) for a discussion of gravitation and classical non-relativistic Hamiltonian mechanics.

111  The reference to Gaussian surfaces wasn’t just for the purposes of being humorous. Gaussian surfaces 
are arbitrarily specified closed surfaces introduced by the physicist to help with calculations in electrody-
namics.
112  (Sullivan 1934, 247–248).
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energy is less fundamental than force.113 This conclusion seems to be in line with a well-repre-
sented position among physicists.114 And like the discussion in Sect. 4.2, it also fits nicely with 
the thesis that (Θ) facts about forces determine/ground potential energy facts. This is because 
on modern theories of grounding, necessarily, if fact [x] grounds fact [y], it follows that fact [y] 
is more derivative than fact [x] (Schaffer, 2009). One reason why force-facts might be under-
stood as facts that ground potential energy facts is because of the further quantity-grounding 
relation, viz., that potential energies are grounded by forces or force interactions.

As I have already noted, potential energy has no absolute or objective status in classical 
mechanics. One can only specify its mathematical representative up to an arbitrary addi-
tive constant. To evaluate facts about potential energy, one must admit arbitrariness, and 
even after the necessary arbitrariness is in play, differences in potential energies are all that 
one can have access to. By contrast, when a force is impressed thereby producing an accel-
eration, the resulting situation is absolute and invariant in the sense that that causal fact 
will hold relative to every inertial frame of reference in Hamiltonian mechanics. Conserva-
tive forces are Galilean invariant quantities, and the equations of motion which relate those 
forces to resulting motions are Galilean covariant.115 However, potential energy is not Gali-
lean invariant.116 There is no guarantee that performing a Galilean transformation on the 
mathematical statement of potential energy for a system in an inertial frame will yield an 
equation of the same form preserving the same value for the potential energy of that system. 
We should deem invariant quantities more fundamental than non-invariant ones. Some have 
gone farther. For example, Saunders (2003a, b, 299; 2013a, b) has argued that we should 
regard as real only those quantities that are “invariant under the symmetries of” Newtonian 
mechanics. Again, I will not go so far as to challenge the existence of non-invariant quanti-
ties. Rather, I maintain that in classical mechanics invariant quantities are more fundamen-
tal than non-invariant ones. At a non-relativistic classical world, we should deem Galilean 
covariant laws more fundamental than non-covariant laws. Is this not a lesson taught by the 

115  (Raju 1994, 64). See also (Maudlin 2011, 174).
116  As Jennifer Coopersmith remarked in correspondence:
  “Even outside of Einstein’s Relativity theories, it is not always true that the potential energy is invariant. A 
requirement for Galilean invariance is that the potential energy depends only on ’relative’ coordinates (e.g. 
the difference between two positions) and not on ’absolute’ coordinates (the position of the old oak tree at 
the corner of the street).” (11/08/2020).
  See (Diaz et. al. 2009, 271–272) who remarked,
  “…we illustrated that after a change of reference frame, the work done by each force also changes (even 
if the transformation is Galilean). Consequently, the corresponding potential energies change when they 
exist.” (ibid., 272).
  These authors give an argument for their conclusions at (ibid., 271–272).
  Horzela et. al. (1991) stated that,
  “The explicit expressions of the potential energy as functions of the position �⃗x(t) all have noncovariant 
meaning and therefore may be valid only in one inertial reference frame.” (ibid., 12, their argument for this 
starts on page 11).
  With respect to force and acceleration, Tefft and Tefft (2007) state,
  “…quantities, such as acceleration and force, are invariant or, to use Newton’s term, ‘absolute’ between 
inertial reference frames. Such quantities have the same values in any inertial frame.” (ibid., 220).

113  I believe this is the best philosophically sophisticated characterization of the position defended in 
(Hecht 2003, 2007, 2016, 2019a, 2019b).
114  As Robert Mills (of Yang-Mills theory) said, “the idea of potential energy is not truly fundamental and 
that it breaks down in the relativistic world…” (Mills 1994, 152). Cf. (Lanczos 1970, 34) already quoted; 
and (Thomson 1888, 15). Coopersmith (2015, 339) argues that because kinetic energy has the same form 
for every system and potential energy does not, the former is more fundamental than the latter (citing (Max-
well 1871) in support).
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successes of our best physical theories? The laws of classical mechanics that have passed 
empirical muster are precisely those laws that are appropriately constrained by meta-laws 
that are symmetry or invariance principles.117 It is at least highly intuitive that the empir-
ically successful laws are the best candidate laws for putting us in touch with the world 
(assuming scientific realism). These laws recommend certain invariant quantities. And 
surely the invariant quantities are the objective quantities, the absolute quantities, the quan-
tities whose important features do not shift and change because of a shift in the observer’s 
inertial frame of reference. Let me further explicate the argument in play.

Robert Nozick (1938–2002) wrote,

Amalie Emmy Noether showed that for each symmetry/invariance that satisfies a Lie 
group, there is some quantity that is conserved. Corresponding to invariance under 
translation in space, momentum is conserved…and to invariance of the law under 
the addition of an arbitrary constant to the phase of the wave function, apparently 
electrical charge is conserved. So it is not surprising that laws that are invariant under 
various transformations are held to be more objective. Such laws correspond to a 
quantity that is conserved, and something whose amount in this universe cannot be 
altered, diminished, or augmented should count as (at least tied for being) the most 
objective thing there actually is.118

I have cut out that portion of the quotation which reads: “Corresponding…to invariance 
under translation in time, [mechanical] energy is conserved” (Nozick, 2001, 81). I have 
done this to emphasize that Nozick’s invitation to his reader is for that reader to conclude 
that mechanical energy is one of “the most objective” things “there actually is.” On the 
contrary, while it is true that for isolated systems featuring only conservative forces total 
mechanical energy is conserved, that fact does not entail the Galilean invariance of total 
mechanical energy, potential energy, or kinetic energy. None of these quantities are Gali-
lean invariant. That is why neither the Hamiltonian nor the Lagrangian are either.119 How-
ever, for the types of systems with which I have been concerned, the Hamiltonian becomes 
total mechanical energy which, again, is conserved. Thus, not all conserved quantities are 
Galilean invariant quantities. And so, as Schroeren put matters, “Noether’s theorem con-
cerns the way particles behave under temporal evolution, i.e., whether certain physical 

119  As Coopersmith stated, “energy is not an invariant quantity” (2015, 342). The Hamiltonian is not invari-
ant under boost operations (Butterfield 2007, 6). Butterfield said, “the Hamiltonian of a free particle is just 
its kinetic energy, which can be made zero by transforming to the particle’s rest frame; i.e. it is not invari-
ant under boosts.” (ibid.) This is true even in quantum mechanics (Lombardi et. al. 2010, 99). In classical 
mechanics, the Lagrangian is invariant under rotations and translations, but not under boosts (Finkelstein 
1973, 106–107). Be careful. Landau and Lifshitz’s famous text on mechanics says that “the Lagrangian is 
[Galilean] invariant”, but their argument only demonstrates that Lagrange’s equations of motion are covari-
ant under Galilean transformations (Landau and Lifshitz 1976, 7).
  Interestingly, Coopersmith (2015, 239) says that the “potential energy function” just “is the Hamiltonian…
and it is the function that determines the entire dynamics of the system.” If Coopersmith is right, it would 
not be surprising that potential energy fails to be a Galilean invariant quantity (cf., ibid., 313).
  I must add here that Green’s function is not guaranteed to be invariant either (Appel 2007, 165).

117  Cf. the discussion in (Earman 2004, 1230).
118  (Nozick 2001, 81). Earman (2004) likes the type of inference invited by Nozick in the context of classi-
cal mechanics, but believes it suffers important setbacks when dealing with general relativity.
  “The implementation of part of Nozick’s formula objectivity = invariance by means of the constrained 
Hamiltonian formalism goes swimmingly: in case after case it yields intuitively satisfying results. But the 
application to Einstein’s GTR yields some surprising and seemingly unpalatable consequences.” (ibid., 
1234).
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quantities are conserved”; it does not concern whether those quantities are Galilean invari-
ant.120 Yet, Nozick was supposed to help us commit to Paul Dirac’s (1902–1984) dictum 
that “[t]he important things in the world appear as the invariants…”121 These important 
things are the objective things. At a non-relativistic classical world (which is what my dis-
cussion is limited to), it is Galilean invariance (using Nozick’s wording) that “is [or should 
be]…connected to something’s being an objective fact”.122 But while Hamilton’s laws or 
equations of motion are covariant under Galilean transformations, as is the work-energy 
theorem, both those laws and that theorem fail to “correspond to a quantity that is con-
served” and that is one of “the most objective thing[s] there actually is”, if the quantity 
in question is taken to be the Lagrangian, the Hamiltonian, mechanical energy, potential 
energy, kinetic energy, or even work.123 Nozick’s inference runs from invariance or sym-
metry principles (perhaps together with or closely followed by empirical data), to invari-
ant (or covariant) laws, to conserved quantities, and then to objective quantities. But that 
inference is a bad one. Nozick’s inference should have had the following structure for the 
non-relativistic classical case:

What explains the Galilean covariance of the laws of classical mechanics (including 
Hamilton’s equations of motion) is the nature of operating forces. That is why Tim Maudlin 
was right to stress that “…the necessary and sufficient condition for any Newtonian [classi-
cal but non-relativistic] theory to be Galilean invariant is that the force F be the same in all 

120  (Schroeren 2020, 52) emphasis in the original. Schroeren goes on to correctly note how “every property 
linked to a symmetry in the relevant sense is invariant under that symmetry” (ibid.). So, some type of thesis 
regarding the invariance of energy may be saved. However, that type of invariance cannot be indicative 
of that which is one of “the most objective thing[s] there actually is” for, again, total mechanical energy 
is conserved but not objective at least because of the arbitrariness that sneaks into potential energy (q.v., 
Sect. 4.2). I do not know if Schroeren would agree with my conclusions.
121  (Dirac 1995, 456). Nozick himself uses this quotation at (Nozick 2001, 76).
122  (Nozick 2001, 76).
  Someone may ask: But what about the action that is minimized (or taken to equal an extremum) in 
Lagrangian and Hamiltonian mechanics? That quantity is invariant under Galilean transformations, and it is 
typically understood in terms of the Lagrangian multiplied by a small change in time (usually flanked by the 
integration symbol (the “action integral”)). It is difficult to discern the metaphysical nature of that quantity, 
but it is far from potential energy alone. My view of the relationship between force and action belonged to 
both Euler and Lagrange. The action and action integral track the evolution of the system by indirectly rep-
resenting its dynamical force interactions. That is why when you shift from one system with an operating 
force Fn to a system with different operating forces, the form of the action changes. Euler recognized that 
if the system involves accelerations, the action is a minimum (or extremum), given that the system being 
modeled is acted upon by forces (Euler 1744, 311–312). The correct act of integration yields the system’s 
trajectory only under the assumption that a force has acted and that the form of the integral is appropri-
ately specified in light of that force-action. This same point was made by Lagrange. See (Lagrange 1867, 
365–468) and the translated quotation at (Boissonnade and Vagliente 1997, xxxiii). So, the explanation of 
the invariance of the action integral arises from the invariance of the acting forces, those same forces that 
the form of the action integral is sensitive to.
123  The incorporation of work into the list should not be surprising. As I’ve already argued, energy should 
be technically defined in terms of work. Energy is not Galilean invariant, and so neither is work.
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inertial frames.”124 Forces are invariant and objective. So too are their resulting accelera-
tions. Potential energy is neither invariant nor objective. (Quite intuitively) The objective 
things are more fundamental than the non-objective things. Thus, force is therefore more 
fundamental than potential energy.

5 � Potential Energy and Classical Electrostatics

There exists a weighty analogical consideration in favor of the claim that potential energy 
in classical mechanics is grounded in working forces. The argument starts out by referenc-
ing the known marked similarities between, on the one side, potential energy UE in elec-
trostatics and the electrostatic potential Φ (in that same science), and on the other side, the 
potential energy function U in classical mechanics.125

Consider a conservative isolated system of classical electrostatics (SYSE). Here the 
electric potential Φ “is the potential energy of a unit charge”126 q , such that:

I have already shown how potential energy is related to work in mechanics. To show off 
that same relationship-type in electrostatics, add to SYSE an electric field �.127 In electro-
statics, this field will stand in the same relation to Φ that � stands in relation to U in classi-
cal mechanics.

Electric force becomes,
(Simple Electric Force (SEF)):

Think about what this says. Think about how physicists are trained from multivariable 
calculus courses onward. They are taught (correctly) that this equation interprets “the elec-
tric field E as the force per unit charge of the system” (Trapp, 2019, 169 emphasis in the 
original). The point charge determines the field (see also SEFi below). The very elemen-
tary equations we’ve explored thus far have well illustrated consequences given by the 
standard vector field representation of the gradient of the electric vector field (where our 
point charge resides at the origin) provided in the figure at (Trapp, 2019, 230). Is it a coin-
cidence that the field exhibits such structure relative to the point charge? Obviously not.

Now if �0 is the electric or vacuum permittivity constant, and there are two point charges 
q1 and q2 , then the force between them (which will yield an equal and opposite force) will 
be given by Coulomb’s law:

(Coulomb’s Law (CL))128:

UE = qΦ

� = −∇Φ

�E = �q = −∇(qΦ) = −∇UE

128  We can, of course, simplify many of these expressions (as in Shankar 2016, 19–41), but I like to explic-
itly state the relations as they appear in the main text thereby following the well-regarded exposition of 
electrostatics in (Jackson 1999, 24–56).

124  (Maudlin 2011, 174).
125  Please note that I am not here discussing the Lorentz force of classical relativistic electromagnetism, but 
the simple electric force of classical electrostatics (see SEF in the main text).
126  (Shankar 2016, 97).
127  I assume that SYSE is one for which it is true that the curl of the electric field equals zero.
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CL says that the electric force is determined by the locations and properties of point 
charges. And again, in classical electrostatics, the electric field is likewise determined by 
point charges. That is why one can motivate the following expression for the electric field 
by appeal to CL (q.v., also n. 129):

(Simple Electric Field (SEFi)):

which specifies the electric field � at � . This equation says that � is generated by point 
charge q1.129

When a field � is in play, the electrostatic potential is reified, and one introduces to 
SYSE an array of (n − 1) charges qj situated in spatial region rj , that array will generate a 
potential Φ

(
ri
)
 , such that130:

(Potential from Array (PFA)):

And this helps us support the judgment that the total potential energy of the system featur-
ing the point charge array, electric field, and potential is:

(Potential Energy and Work (P&W)131):

Even though I’ve here specified the potential energy of the system (i.e., the potential 
energy of every charge under the influence of every force in the system), my inclusion 
of the work variable W on the left is purposeful. In this context when you give the work 
in electrostatics you give the potential energy. Once again, this is precisely what you’d 
expect if potential energy were correctly characterized in terms of work. But why should 
one believe that forces wrought by the point charges are more fundamental than potential 
energy? Why should one believe that forces ground potential energy?

As with potential energy in classical mechanics, the potential energy of systems like 
SYSE can only be specified up to an arbitrary additive constant.132 The same is true of the 
electrostatic potential. Thus, any specification of these quantities will involve some arbi-
trariness and it is because of this arbitrariness that orthodoxy in electrostatics typically 
treats the potential as a conventional and derivative device that helps with calculations. For 
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132  See the proof in (Langhaar 1961, 19). As in the case of celestial gravitational potential energy, the arbi-
trary reference point needed is usually assumed to reside infinitely far away (Trapp 2019, 389).

130  (Jackson 1999, 40).

129  (Jackson 1999, 24–25, 29).

131  (Jackson 1999, 41); (Greiner 1998, 28).
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example, in David Griffiths’ widely used textbook, we have: “[p]otential as such carries no 
real physical significance, for at any given point we can adjust its value at will by a suita-
ble relocation of…[the reference point]”.133 Olness and Scalise remarked, “…the potential 
itself is not a physical quantity. In particular, we can shift the potential by a constant…and 
the physical quantities will be unchanged.”134

Orthodoxy in classical electrostatics has it that UE is closely connected to work and 
force. Equation P&W and my subsequent commentary make that clear. And because 
UE = qΦ , the electrostatic potential is also strongly associated with both work and force. 
As Feynman said,

(a) the “electric potential…is related to the work done in carrying a charge from one 
point to another.”135

But Feynman likewise expounded orthodoxy when he added that:

(b) “The existence of a potential, and the fact that the curl of E is zero, comes really 
only from the symmetry and direction of the electrostatic forces.”136

Orthodox tenets (a) and (b) are both plainly supported by the picture I have painted 
with the help of the preceding equations. UE and Φ are strongly related such that: UE = qΦ 
(and SEF). The electric field and the electrostatic potential are strongly associated with one 
another, hence: � = −∇Φ and SEF. But both � and Φ are determined by forces between 
point charges, hence the use of CL to motivate SEFi (q.v., n. 135), and in addition (con-
sidered separately) the fact that the PFA holds.137 P&W tells us that the work of a system 
depends on the positions and natures of point charges. The positions and natures of point 
charges determine the electric forces at work. This is not surprising because, again, physics 
teaches that work should be characterized in terms of forces. According to the P&W, that 
work just is the system’s potential energy and so, orthodoxy in electrostatics says that “the 
potential energy…depends on the [acting] forces…”138 And because there are so many 
known similarities between potential energy in electrostatics UE and potential energy U in 
classical mechanics (some of which I have tried to highlight here), we can infer that it is 
likely that potential energy in classical mechanics is likewise downstream from and deter-
mined by forces.

136  (Feynman, Leighton and Sands 2010, 4–7). The fact that the curl of the electric field equals zero, or:

  can be derived from a generalized version of Coulomb’s law:

  where d3r′ gives the 3D volume element at �′ , and where �
(
�′
)
 gives the volume charge density at � ′ (a 

well-known fact mentioned in numerous places, but see (ibid, 4–3, 4–7) and (Jackson 1999, 24–25, 29)). 
This derivation-fact supports Feynman’s claim.

∇ × � = 0

�(�) =
1

4��0 ∫ �(�
′

)
� − �

�

||� − �
� ||3

d3r�

138  (Shankar 2016, 82).

133  (Griffiths 2017, 81).
134  (Olness and Scalise 2011, 309). In Maxwell’s An Elementary Treatise on Electricity, he said that “[t]he 
electric potential…which is the analogue of temperature is a mere scientific concept. We have no reason to 
regard it as denoting a physical state” (Maxwell 1888, 53).
135  (Feynman, Leighton and Sands 2010, 4–4). Q.v., Appendix 1.

137  Charges near conductors likewise create electrostatic potentials (Appel 2007, 165).
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Any good theory of electrostatics must be relativistic. There is therefore an important 
objection to the analogical argument just given. The Coulombic or electrostatic force in 
relativistic electrostatics is not Lorentz invariant, and neither is the electrostatic potential or 
the electrostatic potential energy (Steane, 2012, 109). Forces in Hamiltonian mechanics are 
Galilean invariant. I argued that forces in Hamiltonian mechanics are more fundamental 
than potential energies in that same mechanics because the former are invariant while the 
latter are not. There is no analogous move in the context of relativistic electrostatics. But 
recall that nowhere in my discussion of classical electrostatics did I appeal to the property 
of invariance. Rather, my report on the physics of electrostatics noted how the arbitrariness 
associated with the electrostatic potential and electrostatic potential energy is analogous 
to the arbitrariness which infects potential energy in Hamiltonian mechanics. Both elec-
trostatic quantities can only be specified up to an arbitrary constant. This is not true of the 
electrostatic or Coulombic force. Normally (or defeasibly), given two quantities ξ and κ, if 
ξ’s mathematical representative can only be specified up to an arbitrary constant, and κ’s 
mathematical representative is not similarly associated with arbitrariness, then ceteris pari-
bus, ξ is more derivative than κ.

6 � Conclusion

I have shown how Hamilton’s philosophical commitments led him to a causal interpreta-
tion of classical mechanics. I argued that Hamilton’s metaphysics of causation was injected 
into his dynamics by way of a causal interpretation of the force quantity. I then detailed 
how forces remain indispensable to both Hamilton’s formulation of classical mechanics 
and what we now call Hamiltonian mechanics (i.e., the modern formulation). On this point, 
my efforts primarily consisted of showing that the orthodox interpretation of potential 
energy is none other than that interpretation found in Hamilton’s work. Hamilton called the 
potential energy function the force-function because he believed that it represented forces 
at work in the world. Multifarious non-historical arguments for the orthodox interpretation 
of potential energy were provided, and matters were concluded by showing that in classical 
Hamiltonian mechanics, facts about the potential energies of systems are grounded in facts 
about forces. If one can tolerate the view that forces are causes of motion (a thesis I have 
not argued for here), then one should understand Hamilton’s mechanics as having provided 
the road map for transporting causation into one of the most mathematically sophisticated 
formulations of classical mechanics, viz., modern Hamiltonian mechanics.

Appendix 1: The Potential Energy—Work—Forces—Causation Link: 
Nothing New

The orthodox interpretation of potential energy is provided by PEI, though it may need 
some tinkering in order to handle various other system-types. I maintain that because 
orthodoxy defines potential energy in terms of work, and work in terms of forces, cau-
sation enters mechanics through the potential energy function, if forces really are causes 
of motion. Because Hamilton believed forces are causes, he was able to causally interpret 
classical mechanics by looking to the potential energy function.
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Interestingly, my (and Hamilton’s) analysis of matters can be found in some of the very 
earliest work in which potential energy was first used in physics. For example, William 
Rankine (1820–1872) who coined the term ‘potential energy’ in 1853, remarked,

In this investigation the term energy is used to comprehend every affection of sub-
stances which constitutes or is commensurable with a power of producing change 
in opposition to resistance, and includes ordinary motion and mechanical power, 
chemical action, heat, light, electricity, magnetism, and all other powers, known 
or unknown, which are convertible or commensurable with these. All conceivable 
forms of energy may be distinguished into two kinds; actual or sensible and potential 
or latent…Potential energy…is measured by the amount of a change in the condition 
of a substance, and that of the tendency or force whereby that change is produced (or, 
what is the same thing, of the resistance overcome in producing it), taken jointly.139

Rankine is here associating energy (in general) with productive power (causation), but 
he is also associating potential energy with work, work with forces, and forces with pro-
ductive power or causation. Seven years later, William Thomson’s (or Lord Kelvin’s) dis-
cussion of the electric potential function (which is used in classical electrostatics to state 
the potential energy function (q.v., Sect. 5)) strongly associated that potential with work. 
He wrote,

Electric potential. —The amount of work required to move a unit of electricity from 
any one position to any other position, is equal to the excess of the electric potential 
of the second position above the electric potential of the first position.140

Thomson here says that differences are what matter, and that the electrostatic potential (and 
so the electrostatic potential energy) just is work (whether virtual or not) required to com-
plete a task.

Both Rankine and Thomson’s views of energy are important because they influenced 
the work of Rudolf Clausius (1822–1888), James Clerk Maxwell, and Ludwig Boltzmann 
(1844–1906). These mechanicians thought of entropy as a quantity that tracks how the 
energy (as understood by Rankine and Thomson) transforms over time.141 Modern thermo-
dynamics and statistical mechanics has thereby inherited the work-laden and so also force-
laden notion of energy. It is therefore unsurprising to see in the work of modern thermody-
namicists, such as Klein and Nellis, the following: “…the property entropy is introduced in 
order to quantify the quality of energy”142 and “[t]he Second Law states that the quality of 
energy, i.e., the capability to do work, is reduced in all real processes.”143 All of this is as 
one would expect given the truth of my interpretation of potential energy.
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