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Abstract
Bell’s theorem cannot be proved if complementary measurements have to be represented 
by random variables which cannot be added or multiplied. One such case occurs if their 
domains are not identical. The case more directly related to the Einstein–Rosen–Podolsky 
argument occurs if there exists an ‘element of reality’ but nevertheless addition of com-
plementary results is impossible because they are represented by elements from different 
arithmetics. A naive mixing of arithmetics leads to contradictions at a much more elemen-
tary level than the Clauser–Horne–Shimony–Holt inequality.

Keywords Bell inequality · Logical loopholes · Non-Kolmogorovian probability · Non-
Diophantine arithmetics

1  Can We understand a Theory That Does not Exist?

When one speaks of a physical system that violates the Bell inequality (Bell 1964), what 
one really has in mind is a system that does not satisfy at least one assumption needed 
for its proof. Some assumptions (locality of measurements, free will of observers, perfect 
detectors) are physically quite obvious. When it comes to postulating a joint probability 
measure for all random variables (Vorob’ev 1962; Fine 1982), the situation is much less 
clear. Is it just synonymous to realism, another explicit postulate of Bell? Does it mean 
that counterfactual probabilities are identical to the measurable ones, even in cases where 
the alternative measurements cannot be simultaneously performed in principle, because of 
purely classical logical inconsistencies?

The latter is especially visible in the proof of the CHSH inequality (Clauser et al. 1969), 
which involves the following elementary step:

The value b0(y) of the random variable b0 , measured by Bob, does not depend on the choice 
of a0 or a1 , measured by Alice. This is precisely the assumption of locality in the sense of 
Bell. In a nonlocal case we would have something like

(1)a0(x)b0(y) + a1(x)b0(y) =
(
a0(x) + a1(x)

)
b0(y).
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so we could not further simplify the expression and proceed with the proof. The problem is 
easy to understand and is not a source of controversies.

However, the occurrence of a0(x) + a1(x) in (1) means that the sum of the two func-
tions is well defined, which is not always the case in mathematics (think of ln x + ln(−x) ). 
The subtlety is, of course, of a purely local nature. If a measurement of a0 can influence 
in some way the one of a1 , the result of a0(x) + a1(x) might in principle depend on the 
order in which the two measurements are performed, but addition is order independent. On 
the other hand, it can be shown on explicit examples [see Czachor (1992) which extends 
the original argument of Aerts (1986)] that in cases where the measurements of a0 and a1 
influence each other, the actual probabilities may differ from the counterfactual ones. One 
can prove a counterfactual inequality, but it may not apply to actually performed meas-
urements. The attempts of finding a local counterexample to Bell’s theorem (Kupczynski 
2017) are, in my opinion, based on this loophole.

The first version of the present paper was not meant for publication beyond arXiv.org. 
I just wanted to bring to a wider audience an old result of mine (Czachor 1988), whose 
importance seemed to grow, but which was virtually unknown. Traces of my old idea could 
be found in several recent papers (Khrennikov 2015; Christian 2015; Masa et al. 2019), but 
their authors were clearly unaware of my 1988 little contribution. However, once I started 
to think again of my old work, the subject started to live its own life.

I believe the most important new element of the paper is a reformulation of the CHSH 
inequality in the context of non-Diophantine arithmetic. It naturally leads to random vari-
ables whose addition or multiplication has to be done with great care. Since the goal of the 
Bell theorem is to eliminate all local hidden variable theories, the ones based on non-stand-
ard arithmetics should not be excluded. Non-Diophantine arithmetics and non-Newtonian 
calculus seem counterintuitive only at a first encounter. The are as natural as non-Euclid-
ean geometry, non-Boolean logic, or non-Kolmogorovian probability. In a separate paper I 
will show how to employ these structures to construct a model which exactly reproduces 
probabilities typical of singlet state quantum correlations.

We shall begin with a simple but rather formal example illustrating the main idea. 
Observers have free will, measurements are local, there are no undetected signals, and yet a 
Bell-type inequality cannot be proved for the same reason it cannot be proved in the nonlo-
cal case. I will then proceed with a more subtle example based on non-Diophantine arith-
metics. Here elements of reality in the sense of the EPR paradox are present, but the result-
ing complementary random variables cannot be added of multiplied, so that CHSH-type 
random variables cannot be automatically constructed.

2  A Formal Example

Alice and Bob are fans of two football teams, FC Aces and FC Bees, playing on Saturday 
nights in Acetown and Beetown. Whenever the Aces play in Acetown, Alice travels there and 
stays in a hotel. The hotels in Acetown are named A� , where 0 ≤ � ≤ 1 . Alice is free to choose 
any of them, but typically stays at A0 or A1 . Rooms in A� are numbered by x, 𝛼 < x < 𝛼 + 1 . 
An analogous system works in Beetown. Unfortunately, the couple cannot travel together so 
if Alice supports her Aces in Acetown, then Bob is with the Bees in Beetown. Bob typically 
stays in B0 or B1 , but is also completely free to make his choice. A peculiarity of the hotel 

a0(x, b0)b0(y, a0) + a1(x, b0)b0(y, a1)
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system is that the same room can belong to several hotels (in the same town), a fact related to 
the structure of the local tax system, the antitrust law, and the unusual architecture typical of 
the region.

While leaving a hotel a visitor is asked to fill out a short questionnaire, reducing to a single 
question: Was it a nice visit? The answer is ‘ + ’ or ‘−’. Experience shows that it is acceptable to 
stay in a room whose number is somewhere in the middle of the list: 𝛼 + 1∕4 < x < 𝛼 + 3∕4 . 
Otherwise the noise made by fans who accompany the guest team becomes unbearable. Since 
decibels correspond to a logarithmic scale, the statistics of positive and negative answers in 
Acetown hotels is well described by the following random variable (Figs. 1 and 2):

The same model works in Beetown.

(2)a0(x) = sign
(
ln(16x(1 − x)∕3)

)
,

(3)a�(x) = a0(x − �).

Fig. 1  Random vari-
ables a0(x) = ±1 (full) and 
ln(16x(1 − x)∕3) (dashed). x is 
a room number in hotels A0 or 
B0 . x > 1 do not occur there and 
thus cannot be chosen by Alice 
or Bob

Fig. 2  Random variable a�(x) as a function of x and � . For a given � the domain of the function is (�, � + 1)
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Each time Alice and Bob leave their hotels they fill out the forms and produce a pair of 
‘results’ ± (each run of the experiment produces a pair of results, hence no ‘detection loop-
hole’). During their travels Alice and Bob do not communicate with each other (‘locality’). 
Once one knows the room number, the result ‘ + ’ or ‘−’ is uniquely defined (‘deterministic 
hidden variables’). Alice and Bob are free to choose the hotels (free will assumption). If Alice 
and Bob stayed in rooms with numbers x in A� , and y in B� , then random variables a�(x) , 
b�(y) , and a�(x)b�(y) are simultaneously defined.

So, can we prove Bell or CHSH inequalities? Let us try. Locality is satisfied, so apparently

However, a look at Figs. 2 and 3 shows that a0(x) + a1(x) is undefined. The domain of the 
function is empty. It is not a zero function, but a function that does not exist at all. The 
putative proof got stuck already in its first line, in exactly the same way it gets stuck in the 
nonlocal case. The same will happen if instead of CHSH or Bell inequality one will try to 
prove the GHZ theorem (Greenberger et al. 1989). Then, instead of the sum, one arrives at 
a product of the form a0(x)a1(x) , which does not exist either.

There is completely no problem with measuring experimentally an expectation value of 
a0(x)b0(y) , so there exists a probability distribution �00 such that

The two functions, a0(x)b0(y) and �00(x, y) , are defined on the same domain (0, 1) × (0, 1) . 
Similarly,

with a1(x)b0(y) and �10(x, y) defined on (1, 2) × (0, 1).

(4)a0(x)b0(y) + a1(x)b0(y) =
(
a0(x) + a1(x)

)
b0(y).

(5)⟨a0b0⟩ = ∫
1

0

dx∫
1

0

dy a0(x)b0(y)�00(x, y).

(6)⟨a1b0⟩ = ∫
2

1

dx∫
1

0

dy a1(x)b0(y)�10(x, y),

Fig. 3  Random variable 
a0(x) + a�(x) as a function of x 
and � . Its domain shrinks with 
growing � and becomes empty 
for � = 1
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Note that the domains are disjoint, but there are no undetected signals. In 1988, pressed 
by a referee while resubmitting (Czachor 1988), I wrote that disjoint domains imply unde-
tected signals (if x ∉ (�, � + 1) then a� ‘produces no result’), although already at that time 
I was not quite convinced that the referee was right. Of course, one way of modeling non-
ideal detectors is to use the trick with non-identical domains (this is what Pearle (1970) 
does) but the inverse implication is not true. Another argument of the referee was that my 
random variables were three-valued: ±1 and 0, where zero occured when there ‘was no 
result’ [again, this is what Pearle (1970) assumes; the latter interpretation has been recently 
challenged by Christian (2019)]. This type of argumenation does not apply here: Loga-
rithm is not ‘zero’ if its argument is negative. The same applies to a�(x) for x ∉ (�, � + 1).

The only CHSH-type inequality one can find in our example is the trivial one,

Formally, having four different ��� , it is not difficult to give examples that saturate the 
right-hand side of (7), while maintaining

An example of a theory that reproduces quantum probabilities, and which is implicitly 
based on the trick with disjoint domains of complementary observables can be found in 
Pitowsky’s monograph (Pitowsky 1989). When stripped of abstract details (decomposition 
of a unit interval into infinitely many disjoint non-measurable sets), it turns out that what 
is essential for the Pitowsky construction is the disjointness and not the non-measurabil-
ity. So, instead of decomposing [0, 1] into non-measurable sets, one can replace [0, 1] by 
[0, 1] × [0, 1] and the effect is the same.

In the next section I will give further examples of random variables that cannot be care-
lessly added or multiplied.

3  A Subtler Example: Non‑Diophantine Random Variables

One sometimes encounters physical quantities whose arithmetic is not the standard one. 
Velocities in special relativity are added by means of

with f (x) = tanh−1(x) . Note that an analogous multiplication,

does not seem to occur in the literature. A parallel configuration of resistors is a resistor 
whose resistance is computed by means of the harmonic addition

with f (x) = 1∕x . Here multiplication is unchanged,

(7)�⟨a0b0⟩ + ⟨a1b0⟩ + ⟨a0b1⟩ − ⟨a1b1⟩� ≤ 4.

(8)⟨a0⟩ = ⟨a1⟩ = ⟨b0⟩ = ⟨b1⟩ = 0.

(9)𝛽1 ⊕ 𝛽2 = tanh
(
tanh−1(𝛽1) + tanh−1(𝛽2)

)
= f −1

(
f (𝛽1) + f (𝛽2)

)
,

(10)𝛽1 ⊙ 𝛽2 = f −1
(
f (𝛽1) ⋅ f (𝛽2)

)
= tanh

(
tanh−1(𝛽1) tanh

−1(𝛽2)
)
,

(11)R1 ⊕ R2 = 1∕(1∕R1 + 1∕R2) = f −1
(
f (R1) + f (R2)

)
,

(12)R1 ⊙ R2 = f −1
(
f (R1) ⋅ f (R2)

)
= 1∕(1∕R1 ⋅ 1∕R2) = R1R2.



976 M. Czachor 

1 3

The rules (9)–(12) can be regarded as particular examples of the so-called projective non-
Diophantine arithmetic, with ‘projection’ f and ‘coprojection’ f −1 (Burgin 1977, 1997, 
2010; Burgin and Meissner 2017), constructed as follows.

Let x, x� ∈ � and assume there exists a bijection f
𝕏
∶ 𝕏 → ℝ which defines all the 

four arithmetic operations in �,

Elements of � are ordered: x ≤
�
x′ if and only if f

�
(x) ≤ f

�
(x�) . The operations are com-

mutative and associative, and ⊙
�

 is distributive with respect to ⊕
�

 . This is so because 
the one-to-one map f

�
 makes the arithmetic of � isomorphic to the standard Diophantine 

arithmetic of ℝ.
Let us stress that the only assumption we make about � is that its cardinality equals 

that of the continuum ℝ (otherwise the bijection would not exist). � can be a highly 
nontrivial set, for example a fractal (Czachor 2016; Aerts et al. 2016a, b, 2018; Czachor 
2019), or a subset of ℝn.

The first two natural numbers, ‘zero’ and ‘one’ are the neutral elements of addition 
and multiplication. Denoting them by 0

�
 and 1

�
 we find

Indeed, x⊕
�
0
�
= x , x⊙

�
1
�
= x , x⊖

�
x = 0

�
 , and x⊘

�
x = 1

�
 (for x ≠ 0

�
 ). A nega-

tive of x is ⊖
�
x = 0

�
⊖

�
x = f −1

�

(
− f

�
(x)

)
 . An arbitrary natural number n

�
 is obtained by 

adding 1
�

 an appropriate number of times,

Then, in particular, n
�
⊕ m

�
= (n + m)

�
 . An n-th power of x,

satisfies xn� ⊙
�
xm� = xn�⊕�

m
� . Finally, fractions are defined by n

�
⊘

�
m

�
 . For example

where r
�
= f −1

�
(r) , now for any r ∈ ℝ.

Probabilities are any numbers pj satisfying 0
�
≤
�
pj ≤�

1
�

 and

which is equivalent to

(13)x⊕
�
x� = f −1

�

(
f
�
(x) + f

�
(x�)

)
,

(14)x⊖
�
x� = f −1

�

(
f
�
(x) − f

�
(x�)

)
,

(15)x⊙
�
x� = f −1

�

(
f
�
(x) ⋅ f

�
(x�)

)
,

(16)x⊘
�
x� = f −1

�

(
f
�
(x)∕f

�
(x�)

)
.

(17)0
�
= f −1

�
(0), 1

�
= f −1

�
(1).

(18)
n
�
= 1

�
⊕

�
⋯⊕

�
1
�

�������������������
n times

= f −1
�

(n).

(19)
xn� = x⊙

�
⋯⊙

�
x

�������������
n times

= f −1
�

(
f
�
(x)n

)
,

(20)(1
�
⊘

�
2
�
)⊕

�
(1

�
⊘

�
2
�
) = 1

�
= (1∕2)

�
⊕

�
(1∕2)

�
,

(21)⊕
�

n
j=1

pj = p1 ⊕�
⋯⊕

�
pn = 1

�
,
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For example, p1 = 1
�
⊘

�
7
�

 , p2 = 2
�
⊘

�
7
�

 , p3 = 4
�
⊘

�
7
�

 are probabilities. Averages 
are defined analogously,

The form (24) is just the well known Kolmogorov-Nagumo average with respect to prob-
abilities Pj = f

�
(pj) (Kolmogorov 1930; Nagumo 1930; Czachor and Naudts 2002; Naudts 

2011)
As a particular example of f

�
 consider 𝕏 = ℝ , f

�
(x) = x2 sgn(x) , 

f −1
�

(x) =
√
�x� sgn(x) , 0

�
= 0 , (±1)

�
= ±1 . Multiplication and division are unchanged. 

For x ≥ x′ ≥ 0 we get

The average reads

where ± is the sign of 
∑

j f�(aj)p
2
j
 . It is clear that for this concrete form of arithmetic the 

non-Diophantine probabilities play essentially the role of real probability amplitudes.
Once one knows how to add, subtract, multiply, and divide, one can construct an 

entire calculus. Historically, the first example of such a ‘non-Newtonian calculus’ was 
given by M. Grossman and R. Katz (Grossman and Katz 1972; Grossman 1979, 1983). 
The idea was rediscovered by E. Pap in his g-calculus (Pap 1993, 2008) and still later, 
but in its currently most general form, by myself (Czachor 2016; Aerts et al. 2018; Cza-
chor 2019). Certain old problems of fractal analysis (a Fourier transform on an arbitrary 
Cantor set, wave propagation along a Koch curve) have found simple solutions in the 
non-Newtonian framework (Aerts et al. 2016b; Czachor 2019).

Let us now consider a collection of different sets �k equipped with different arithmet-
ics, defined by different bijections f

𝕏k
∶ 𝕏k → ℝ . To be concrete, let 𝕏1 = ℝ+ (positive 

reals), 𝕏2 = −ℝ+ (negative reals), f
�1
(x) = ln x , f −1

�1
(r) = er , f

�2
(x) = ln(−x) , 

f −1
�2

(r) = −er . There are reasons to believe that arithmetics of this type are employed by 
human and animal nervous systems (Czachor 2020). This is why decibels and star mag-
nitudes correspond to logarithmic scales.

(22)
n∑

j=1

f
�
(pj) = 1.

(23)⟨a⟩ = ⊕
�

n
j=1

aj ⊙�
pj

(24)= f −1
�

(∑

j

f
�
(aj)f�(pj)

)
.

(25)x⊕
�
x� =

√
x2 + x�2,

(26)x⊖
�
x� =

√
x2 − x�2,

(27)x⊙
�
x� = x ⋅ x�,

(28)x⊘
�
x� = x∕x�.

(29)⟨a⟩ = ⊕
�

n
j=1

aj ⊙�
pj = ±

�
���
�

j

f (aj)p
2
j

���,
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Assume that we have randomly selected a number r ∈ ℝ , say r = 1 . This is equivalent to 
randomly selecting f −1

�1
(1) = 1

�1
= e ∈ �1 and f −1

�2
(1) = 1

�2
= −e ∈ �2 . Following the 

logic of the Bell theorem we could consider the sum (anyway, 1
�1

 and 1
�2

 are just real 
numbers),

which, if correct, would imply the inconsistent result

The inconsistency occurs because I have recklessly mingled three different arithmetics. The 
problem is that one is not allowed to naively add elements from �1 to those from �2 (see 
the next section), so the whole calculation is meaningless. In spite of the fact that 1

�1
+ 1

�2
 

is zero, from the perspective of �1 or �2 the expression is ambiguous. Different arithmetics 
behave analogously to different maximal sets of jointly measurable quantities in quantum 
mechanics, an analogy worthy of a separate study. There are arguments that problems with 
dark energy and dark matter may result from an analogous mismatch of arithmetics (Cza-
chor 2017, 2020).

If the readers are not yet convinced, consider the case where �1 is the double cover of 
the Sierpiński set discussed in Aerts et al. (2018), while �2 is the Cantor line from Czachor 
(2016). In the first case, 1

�1
= (1, 0)+ belongs to the positive side of an oriented ℝ2 . In the 

second case, 1
𝕏2

= 1 ∈ ℝ . What should be meant by their sum?
Very little is known about tensor products of arithmetics, an issue related to the dif-

ficult problem of tensor products of fields (in the algebraic sense of this word). Even less 
is known about probabilistic correlation experiments involving measurements mathemati-
cally described by different arithmetics. Yet less is known about hidden-variable theories 
involving different arithmetics. The standard Bell theorem tells us virtually nothing about 
the subject.

So, let us try. But first a digression.

4  Back to Quantum Mechanics (a Digression)

In quantum mechanics random variables are represented by self-adjoint operators. Values 
of the random variables are represented by eigenvalues of the operators. Commuting opera-
tors represent random variables that can be measured simultaneously. Tensor products of 
operators represent products of random variables associated with independent measure-
ments. In the context of the CHSH inequality one deals with

where a , b are unit vectors in ℝ3 . In general, the operator a ⋅ � has eigenvalues ±|a| . This 
is why it is justified to treat AB as a random variable whose values ±1 are products of the 
eigenvalues ±1 of a ⋅ � and b ⋅ �.

The problem with the Bell theorem is that in the course of its proof one assumes that

(30)1
�1

+ 1
�2

= e + (−e) = 0 = f −1
�1

(−∞) = ⊖
�1
∞

�1
,

(31)e = −1
�2

= 1
�1

⊕
�1

∞
�1

= ∞
�1

= f −1
�1

(∞) = e∞ = ∞.

(32)AB = a ⋅ � ⊗ b ⋅ �,

(33)A + A� = (a ⋅ � + a
�
⋅ �)⊗ �,
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represent random variables whose values are 0, ±2 . However, since the eigenvalues of (33) 
and (34) are ±|a + a

�| and ±|a − a
�| the observables are two-valued and not three-valued, 

so 0 is not an eigenvalue unless a� = ±a . A contradiction with quantum mechanics is 
obtained already at this stage. Nonlocality is not needed. One can also show that a quantum 
CHSH inequality holds if and only if both [A,A�] and [B,B�] are nonzero. This follows from 
the fact (Wolf et al. 2009; Khrennikov 2019) that the Bell operator

violates the inequality if and only if

and this is possible if both commutators are nonzero (effectively, if operators B, B′ with 
eigenvalues ±1 commute, then B� = ±B , and two of the four terms in C cancel out; then 
the argument on eigenvalues of A ± A� does not work since either A or A′ is missing). The 
conditions [A,A�] ≠ 0 and [B,B�] ≠ 0 are, of course, of a local nature. The argument based 
on noncommutativity does not have an exact analogue in the arithmetic framework and is a 
peculiarity of the quantum formalism.

A similar difficulty will nevertheless occur.

5  Arithmetics of Alice, Bob, and Eve

Let us begin with the simplest problem of adding two averages. Assume Alice measures 
two random variables, a and a′ , with values in arithmetics � and �′ , respectively. After 
n measurements of a and n′ measurements of a′ the results are (a1,… , an) ⊂ � ×⋯ × � , 
(a�

1
,… , a�

n�
) ⊂ �

� ×⋯ × �
� . She computes averages,

What should be meant by their sum, even if the experimental samples have equal length 
n = n� ? Can we write ⟨a⟩ + ⟨a�⟩ = ⟨a + a�⟩ ? In general, no.

The problem remains even if 𝔸 ⊂ ℝ and 𝔸′ ⊂ ℝ . The random variables are real, but 
rules of their addition and division are different. More strikingly, even if aj = r

�
= f −1

�
(r) , 

a�
j
= r�

�� = f −1
�� (r) , so that r ∈ ℝ behaves analogously to an ‘element of reality’ common to 

aj and a′
j
 , the sum of aj and a′

j
 is as ambiguous as (31). This seems to be the first example 

(outside of quantum mechanics) where one cannot add two random variables even though 
they may be regarded as possessing a common element of reality in the sense of the EPR 
argument. In a separate paper I will construct an explicit non-Diophantine/non-Newtonian 
local realistic model of singlet state correlations.

Let us go further. Let Alice work with arithmetics � or �′ , and Bob with � or �′ . They 
perform binary measurements with the results 1

�
 or ⊖

�
1
�

 , where � is the corresponding 
arithmetic. Although numbers can be consistently added or multiplied only within a single 
arithmetic, results from one arithmetic can be uniquely translated into another arithmetic 
by means of the isomorphism with ℝ . For example, if

(34)A − A� = (a ⋅ � − a
�
⋅ �)⊗ �,

(35)C = A⊗ B + A⊗ B� + A� ⊗ B − A� ⊗ B�

(36)C2 = 4 + [A,A�]⊗ [B,B�] > 4

(37)⟨a⟩ = ⊕
�

n
j=1

aj ⊘�
n
�
,

(38)⟨a�⟩ = ⊕
��

n�

j=1
a�
j
⊘

�� n
�
�� .
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then

In the logarithmic example, 𝔸 = ℝ+ , 𝔹 = −ℝ+ , f
�
(x) = ln x , f −1

�
(r) = er , f

�
(x) = ln(−x) , 

f −1
�

(r) = −er , we will of course conclude that ‘two plus two equals four’, but the result 
looks as follows:

Alice and Bob would agree that they have obtained identical results, namely ‘four’, but Eve 
might disagree. In her opinion their results were exactly opposite: e4 and −e4.

The other two arithmetics needed for a CHSH random variable are, in principle, com-
pletely independent. For example, 𝔹� = ℝ+ , 𝔸� = −ℝ+ , f

�� (x) = (ln x)3 , f −1
�� (r) = er

1∕3 , 
f
�� (x) =

(
ln(−x)

)3 , f −1
�� (r) = −er

1∕3.
Now, consider the following arithmetic operations

where a ∈ � , b ∈ � , but � and the bijection f𝔸𝔹
𝕏

∶ 𝕏 → ℝ are yet unspecified. Recall that 
for r ∈ ℝ we denote r

�
= f −1

�
(r) , etc. The product has the following properties:

(39)x⊕�

�
x� = f −1

�

(
f
�
(x) + f

�
(x�)

)
,

(40)x⊖�

�
x� = f −1

�

(
f
�
(x) − f

�
(x�)

)
,

(41)x⊙�

�
x� = f −1

�

(
f
�
(x) ⋅ f

�
(x�)

)
,

(42)x⊘�

�
x� = f −1

�

(
f
�
(x)∕f

�
(x�)

)
.

(43)2
�
⊕�

�
2
�
= f −1

�

(
2 + 2

)
= 4

�
,

(44)2
�
⊕�

�
2
�
= f −1

�

(
2 + 2

)
= 4

�
.

(45)2
�
⊕�

�
2
�
= e4 = 4

�
= 2

�
⊙�

�
2
�
,

(46)2
�
⊕�

�
2
�
= −e4 = 4

�
= 2

�
⊙�

�
2
�
.

(47)a⊕��

�
b = f��

�

−1
(
f
�
(a) + f

�
(b)

)
,

(48)a⊖��

�
b = f��

�

−1
(
f
�
(a) − f

�
(b)

)
,

(49)a⊙��

�
b = f��

�

−1
(
f
�
(a) ⋅ f

�
(b)

)
,

(50)a⊘��

�
b = f��

�

−1
(
f
�
(a)∕f

�
(b)

)
,

(51)
x
�
⊙��

�
y
�
= f��

�

−1(xy) = (xy)
�
⊙��

�
1
�
= 1

�
⊙��

�
(xy)

�

= (x
�
⊙

�
y
�
)⊙��

�
1
�
= 1

�
⊙��

�
(x

�
⊙

�
y
�
),
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Since

we immediately also get

These are all the properties needed for a tensor product. Still, how should we add 
a
�
⊙��

�
b
�
∈ � and a

�
⊙��

�

�
b�
�� ∈ � ? The most natural addition is the one intrinsic to �,

It cannot be further simplified, since f
�
◦f��

�

−1 and f
�
◦f��

�

�

−1 are in general different func-
tions, so we are back to our original argument. Bell’s theorem cannot be proved if incon-
sistent sets of data have to be combined in a nontrivial way.

Let us now consider two extreme cases: (i) 𝕏 = ℝ , f
�
(x) = x , and (ii) a nontrivial � but 

f��
�

�
= f��

�
= f�

�
�

�
= f�

�
�
�

�
= f

�
 independent of the arithmetics of Alice and Bob. In the 

first case the CHSH random variable

cannot be further simplified in general. In the second case the random variable is f −1
�

(±2) , 
but in general differs from ±2 . The available structures are here much richer than in the 
standard approach. The slogan ‘Bell’s theorem is a mathematical theorem’ appears here in 
all its weaknesses and limitations.

Finally, thinking in quantum cryptographic terms, how to formulate a test for eavesdrop-
ping? The intermediate arithmetics that define products of the results obtained by Alice 
and Bob involve additional arithmetics associated with the process of combining the data. 
This additional arithmetic may, in principle, involve an eavesdropper (or hacker) Eve.

6  Remarks on Non‑classical Correlations Beyond Quantum Mechanics

Examples where Bell-type inequalities are violated beyond quantum mechanics can be 
found in the literature. Which loopholes of the proof are there employed?

The construction by ’t Hoft (2016) treats quantum mechanics as a kind of cellular 
automaton dynamics with super-determinism limiting free will of observers.

(52)

x
�
⊙��

�
(y

�
⊕

�
z
�
) = f��

�

−1
(
x(y + z)

)

= f��
�

−1
(
f
�
(x

�
)f
�
(y

�
) + f

�
(x

�
)f
�
(z

�
)
)

= f��
�

−1
(
f
�
◦f −1

�

(
f
�
(x

�
)f
�
(y

�
)
)
+ f

�
◦f −1

�

(
f
�
(x

�
)f
�
(z

�
)
))

= f��
�

−1
(
f
�

(
x
�
⊙�

�
y
�

)
+ f

�

(
x
�
⊙�

�
z
�

))

= (x
�
⊙�

�
y
�
)⊕��

�
(x

�
⊙�

�
z
�
)

(53)x
�
⊙��

�
y
�
= y

�
⊙��

�
x
�
,

(54)(x
�
⊕

�
y
�
)⊙��

�
z
�
= (x

�
⊙�

�
z
�
)⊕��

�
(y

�
⊙�

�
z
�
)

(55)(a
�
⊙��

�
b
�
)⊕

�
(a

�
⊙��

�

�
b�
�� ) = f −1

�

(
f
�
(a

�
⊙��

�
b
�
) + f

�
(a

�
⊙��

�

�
b�
�� )

)

(56)= f −1
�

(
f
�
◦f��

�

−1(ab) + f
�
◦f��

�

�

−1(ab�)
)
.

(57)f𝔸𝔹
ℝ

−1(ab) + f𝔸𝔹
�

ℝ

−1(ab�) + f𝔸
�
𝔹

ℝ

−1(a�b) − f𝔸
�
𝔹
�

ℝ

−1(a�b�)
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In the model invented by Diederik Aerts (Aerts 1986), after the first measurement of a 
random variable A a hidden variable � , an argument of B(�) , is found with nonzero prob-
ability in a state whose probability would be zero if A had not been measured. The meas-
urement of A nontrivially and ‘actively’ changes the state of B. This is not the standard 
conditioning by ‘getting informed’. One should not confuse this type of conditioning with 
the one that leads to the Borel paradox (Czachor 1992). The model avoids the Borel para-
dox for the price of nonlocality in the sense of Bell. The example explains why nonclas-
sical probabilities can occur in classical systems, but it does not contradict the conclusion 
of Bell. The other examples studied by the Brussels group, such as the two connected ves-
sels of water (Aerts 1982), ‘Bertlmann wearing no socks’ (Aerts and Sassoli de Bianchi 
a), or Sven Aerts’ mechanical model that simulates a non-local PR box (Aerts 2005), are 
nonlocal in this sense if measurements of Alice and Bob are performed sequentially. If 
one assumes simultaneity of the measurements then, formally, the results are created at the 
moment the random variable AB is measured.

In cognitive examples the results A and B are also created at the very moment the prod-
uct AB is computed. Here B becomes a context for A (Aerts and Gabora 2005; Aerts et al. 
2013); see also the polemic (Dzhafarov and Kujala 2013; Hampton 2013; Aerts 2014). 
Contextuality of cognitive models is extensively studied, both theoretically and experimen-
tally, also in the works of Khrennikov (2010). Exactly the same effect occurs in the rock-
paper-scissors game, which is ubiquitously present in many natural systems (Friedman and 
Sinervo 2016). ‘Rock’ in itself does not have a value +1 (win) or −1 (lose). However, the 
pairs (rock,paper) = (−1,+1) and (rock,scissors) = (+1,−1) are uniquely defined.

The controversial model by Christian Christian (2014) is explicitly based on the fact 
that there is a nontrivial relation between A, B, and AB. Tensor product is there replaced 
by geometric product, a possibility considered in similar contexts also by other authors 
(Doran 1996; Doran and Lasenby 2013; Aerts and Czachor 2007; Czachor 2007; Aerts and 
Czachor 2008). Operators such as Pauli matrices are interpreted in the standard geometric-
algebra way, namely as a matrix representation of an orthonormal basis in ℝ3 (Hestenes 
1966), so the whole calculation can be performed in purely geometric terms. On a philo-
sophical side, there is some similarity between the way Christian treats binary variables 
with the one I have described above in the context of 1

�
 and ⊖

�
1
�

 . For Christian, ‘plus’ 
and ‘minus’ denote some kind of abstract handedness, defined at a quaternionic level. 
However, in spite of all his efforts, I believe the probability interpretation of multivector 
random variables is not yet sufficiently understood, a fact obscuring the physical meaning 
of the result.

What I find most intriguing and worthy of further studies is the link with the original 
model of Pearle (1970). Pearle’s hidden variable is essentially an element of the rotation 
group SO(3), whereas Christian works with SU(2). In both cases the hidden variables are 
classical but noncommutative (rotations in three dimensions do not commute). The random 
variables of Pearle are three-valued (0 and ±1 ), where 0 is interpreted as no detection. So, 
Pearle’s model formally looks like a spin-1 system. The model of Christian is essentially 
a spin-1/2, where the 0 eigenvalue is missing. Does it mean, as suggested by Christian, 
that undetected signals can be in principle eliminated if one considers hidden-variables 
that belong to the covering space of the Pearle model? In principle, it cannot be excluded 
because many structures occurring in quantum information theory have their space-time 
analogues [e.g. the two-qubit Bell basis is formally identical to the Minkowski tetrad Cza-
chor (2008)]. This whole new research area is basically unexplored.

The ‘mechanical’ examples have the advantage of being technically rather simplistic 
and thus easy to analyze from a logical or probabilistic point of view. At the other extreme 
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are the attempts of looking into those parts of pure mathematics where one encounters very 
abstract and non-constructive structures, such as non-measurable sets (Pitowsky 1989) or 
non-computable fractals (Palmer 2009).

7  Summary

Bell’s theorem cannot be proved if complementary measurements have to be represented 
by random variables that cannot be added or multiplied. Complementarity means here that 
there exists a fundamental logical reason why one cannot perform the two measurements 
simultaneously. In quantum mechanics one represents complementarity by noncommuta-
tivity. Alternatively, two quantum random variables are complementary if eigenvalues of 
their sum are not the sums of their eigenvalues. There is no proof that analogous properties 
cannot be found in non-quantum systems, a fact of fundamental importance for proofs of 
security in quantum cryptography. For example, random variables with values in non-Dio-
phantine arithmetics are analogous to quantum observables belonging to different maximal 
sets of simultaneously measurable quantities. Similarly to eigenvalues of non-commuting 
operators, it is not allowed to naively add or multiply elements from different non-Dio-
phantine arithmetics, even if the arithmetics are defined in subsets of ℝ . Non-Diophantine 
arithmetics provide the first examples of non-quantum models where elements of reality in 
the sense of the EPR paradox are present, but the resulting complementary random vari-
ables cannot be added or multiplied, so that CHSH-type random variables cannot be auto-
matically constructed. What I have shown in the paper is just a very preliminary study that 
should evolve into a larger research project.
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