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Abstract
In this survey, we discuss and analyze foundational issues of the problem of time and its 
asymmetry from a unified standpoint. Our aim is to discuss concisely the current theories 
and underlying notions, including interdisciplinary aspects, such as the role of time and 
temporality in quantum and statistical physics, biology, and cosmology. We compare some 
sophisticated ideas and approaches for the treatment of the problem of time and its asym-
metry by thoroughly considering various aspects of the second law of thermodynamics, 
nonequilibrium entropy, entropy production, and irreversibility. The concept of irrevers-
ibility is discussed carefully and reanalyzed in this connection to clarify the concept of 
entropy production, which is a marked characteristic of irreversibility. The role of bound-
ary conditions in the distinction between past and future is discussed with attention in this 
context. The paper also includes a synthesis of past and present research and a survey of 
methodology. It also analyzes some open questions in the field from a critical perspective.

Keywords Asymmetry of time · Irreversibility · Arrow of time · Second law of 
thermodynamics · Quantum mechanics · Quantum entropy · Entropy production

1 Introduction

“The physical world is constituted by changing things” (Bunge and Maynez 1976). Para-
doxically, this conclusion follows from an analysis of physical space: “...construction of 
space involves the notions of event and event composition, and the latter allows one to 
define a time order of events” (Bunge and Maynez 1976).

The problem of time (Denbigh 1981; Landsberg 1984; ’t Hooft and Vandoren 2015; 
Anderson 2012, 2017, 2010) is a complicated conceptual problem in various branches of 
science, and in physics and cosmology in particular. Like the universe, which has many 
faces (or facets) (Hoyle 1977), time is a many-faceted notion (Denbigh 1981; Horwitz et al. 
1988). Entropy, like time, is also a many-faceted concept (Grad 1961). There is an apparent 
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close relationship between entropy and time, which is discussed below. It has sometimes 
been said that time appears in thermodynamics not as a quantity but only as an indicator 
of the sense of a quantity, the change of entropy. This is why the concepts of time, entropy, 
and irreversibility, which is also a many-faceted notion (Denbigh 1989a, b), are tightly 
related (Popper 1965).

In this context, the interest in the problem of time and its directionality that has become 
apparent in recent decades is understandable. Many difficult questions regarding the prob-
lems of time and the directionality (arrow) of time in classical and quantum physics are 
now under intensive study by various researchers (Horwich 1987; Liu 1993; Halliwell et al. 
1996; Savitt 1995; Denbigh 1996; Price 1996; Penrose 2005; Zeh 2007; Boyarsky and Gora 
2009; Lineweaver et al. 2013; ’t Hooft and Vandoren 2015; Anderson 2012, 2017; Kuzem-
sky 2018). However, no complete resolution of these problems has yet been accomplished.

Indeed, the problem of time includes a rather wide spectrum of philosophical issues (de 
Bianchi 2012; Heylighen 2010). There is no sharp dividing line between the foundational 
issues of physics and the philosophy of time. The literature on this subject is vast (Kuzem-
sky 2018; Callender 2011; Wuppuluri and Ghirardi 2017; Hsu 1992; Birx 2009).

The basic unsolved problem is the relationship between physical time and time as we 
experience it; For example, Halvorson (2010) remarked that: “...there are good arguments 
that we should expect time to emerge as a parameter (a classical, superselected quantity) 
because of decoherence processes... But these arguments indicate that time belongs more 
to the realm of appearances than to the realm of being.”

In his book Physics and Philosophy, Heisenberg (1958) devoted a special chapter enti-
tled “Language and Reality in Modern Physics” to a discussion of the ability of language 
to express the complicated concepts of modern physics: Physics has recently opened up 
vast new fields of knowledge, making it necessary for us to modify some of our most basic 
philosophical notions ...The improved experimental technique of our time brings into the 
scope of science new aspects of nature which cannot be described in terms of the com-
mon concepts ...However, “one has not yet found the correct language with which to speak 
about the new situation” (see also Ref. Rosenfeld 1960). The notions of time and space are 
the marked examples of the interdependence of physics and philosophy (Wuppuluri and 
Ghirardi 2017; Sklar 1977; Smolin 2013; Unger and Smolin 2014).

Such debates on the reality and significance of time have raged in both the scientific 
and philosophical communities from the high antiquity and continue to the present day 
(Whitrow 1988; Callender 2011; Wuppuluri and Ghirardi 2017).

One of the most important questions concerning the foundations of physics, especially 
from the point of view of astrophysics, cosmology, nonequilibrium statistical thermody-
namics, chemical physics, and biology, is the role of time in natural processes (Kuzemsky 
2018; Callender 2011; Wuppuluri and Ghirardi 2017; Hsu 1992; Birx 2009). Intuition tells 
us that time is a continuous dimension along which events occur and that it is complemen-
tary to position in space. Hence, time is the dimension of the physical universe which, at a 
given place, orders the sequence of events (Bunge and Maynez 1976; Sklar 1977).

The question of why time has an arrow is an especially controversial subject matter 
and is still under intense debate (Halliwell et al. 1996; Savitt 1995; Denbigh 1996; Price 
1996; Penrose 2005; Zeh 2007; Boyarsky and Gora 2009; Lineweaver et al. 2013; ’t Hooft 
and Vandoren 2015; Anderson 2012, 2017; Kuzemsky 2018). As formulated by Anderson 
(2012), “the problem of time occurs because the time of general relativity and of quantum 
theory are mutually incompatible notions,” a point that was formulated earlier by Macias 
and Gamacho (2008)
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The origin of time asymmetry (the arrow of time) and the interrelation between past and 
future are the most fundamental questions regarding temporal evolution (Kuzemsky 2018; 
Horwich 1987; Lineweaver et al. 2013). Time-asymmetric behavior is the most characteris-
tic feature of irreversible processes, being related to changes of state in various thermody-
namic processes, substances, and materials. The very definition of time essentially includes 
the notion of irreversibility. Indeed, “time is the measurement by which it is possible to 
judge how quickly or slowly a change occurs.” An inseparable feature of time is thus to 
pass from past to future irreversibly. Irreversible change means that it cannot be changed 
back to what it was before.

In nature, there exist systems whose interaction with their surroundings consists only in 
the exchange of work and heat. These are termed “thermodynamic systems.” As a rule, it 
was assumed that a system is initially at rest with its surrounding if there are no external 
applied forces. There are isolated, closed, and open systems. The first type can exchange 
neither energy nor matter with its surroundings. The second is a less isolated system and 
can exchange energy but not matter with its surroundings. An open system can exchange 
both energy and matter with its surroundings. Note that the strictly isolated system is an 
idealization.

Irreversible thermodynamics, which describes these phenomena, is a well-developed 
subject (Kuzemsky 2018; Denbigh 1958; Kreuzer 1981; Muller 2007; Muller and Muller 
2009; Muller and Weiss 2012; Demirel 2014); in particular, linear irreversible thermody-
namics (Garcia-Colin 1995) is widely used.

Common wisdom states that entropy production (Kuzemsky 2018; Denbigh 1958; 
Kreuzer 1981; Denbigh and Denbigh 1985; Velasco et al. 2011; Dewar et al. 2014) is the 
main component of irreversibility, even though many natural processes which are irrevers-
ible do not appear to result in significant entropy production (Denbigh 1989a, b).

However, such a formulation of the laws of nature from the point of view of a change 
of entropy of real systems is only a particular case and as such has certain limitations. 
In addition, the thermodynamic criterion for the production of entropy (Kuzemsky 2018) 
characterizes only spontaneous heat processes in simple systems but does not apply to the 
nonentropic processes which may take place in real complex systems. The second law of 
thermodynamics is applicable to closed systems. This law summarizes the results of obser-
vations and states that, in natural processes which are thermally isolated from their sur-
roundings, systems evolve from a more ordered to a less ordered state. This fact is equiva-
lent to the assertion that, in irreversible processes subject to adiabatic constraints, there 
is a tendency for thermal energy to be distributed uniformly among the basic elements of 
matter.

Similar directionality principles can be used in evolutionary biology (Blum 2016; 
Demetrius 1997). Indeed, the directionality in populations of replicating organisms can 
be parameterized in terms of a statistical concept known as “evolutionary entropy.” This 
parameter, which is a measure of the variability in the age of reproducing individuals in a 
population, is isometric with the macroscopic variable body size. Evolutionary trends in 
entropy due to mutation and natural selection fall into patterns that are modulated by eco-
logical and demographic constraints (Demetrius 1997).

In this regard, some authors (Denbigh 1996, 1989a, b; Denbigh and Denbigh 1985) 
have claimed that it is possible to make a distinction between entropy production and irre-
versibility in the nonequilibrium thermodynamics of natural processes. A more appropri-
ate name for this kind of process is quasistatic. Statistical mechanics formulates a suitable 
approach that successfully describes the stationary macroscopic behavior of many-parti-
cle systems such as fluids, gases, and solids. The aim of statistical mechanics (Kuzemsky 
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2018; Zubarev 1974; McLennan 1989; Wu 1969; Keizer 1987; Dougherty 1993, 1994; 
Lebowitz 1993, 1999; Kuzemsky 2007, 2016, 2017, 2018) is to provide a consistent work-
able formalism for a microscopic description of the macroscopic behavior of thermody-
namic systems. It also clarifies basic thermodynamic concepts such as heat, temperature, 
and entropy based on the underlying microscopic laws. It is important to emphasize that 
equilibrium statistical mechanics is based on the postulate of the equiprobability of all the 
microstates of a macroscopic N-particle system under study. The probability of the realiza-
tion of a given microstate is thus proportional to the number of available microstates, and 
the state of equilibrium is the most probable state for a system.

Nonequilibrium statistical physics describes irreversible processes starting from the 
underlying, time-symmetric dynamics of many-particle systems (Kuzemsky 2018; Zubarev 
1974; McLennan 1989; Wu 1969; Keizer 1987; Dougherty 1993, 1994; Lebowitz 1993, 
1999; Kuzemsky 2007, 2016, 2017, 2018). Beyond its practical purposes, the statistical 
physics of out-of-equilibrium open systems aims to reveal the real physical origins of irre-
versibility in complex many-particle systems.

The aim of the present paper is to discuss concisely and attempt to provide an account 
of the physical concept of time and its asymmetry in quantum theory and statistical phys-
ics, mainly from the point of view of nonequilibrium statistical thermodynamics. We out-
line some relevant notions and facts that may help to understand better what time means 
from different points of view. We do not aim for complete generality. Rather, we try to dis-
cuss qualitatively several aspects of the subject and refer to the literature for more detailed 
considerations.

2  Quantum Evolution and the Time Parameter in Quantum Theory

The spectral theory of linear operators in Hilbert spaces is the most important tool in the 
mathematical formulation of quantum mechanics; in fact, linear operators and quantum 
mechanics have a deep relationship (Jauch 1968; Piron 1976). The quantization of physical 
systems includes a correct definition of physical observables (such as the Hamiltonian and 
the momentum) as self-adjoint operators (Jauch 1968; Piron 1976) in an appropriate Hil-
bert space H and their proper spectral analysis. A solution of this problem is not a straight-
forward and unambiguous procedure for nontrivial quantum systems (systems on nontrivial 
manifolds, in particular on manifolds with boundaries or singular interactions).

The problems with time, in general, and quantum evolution in particular, have been 
discussed extensively in literature (Bayfield 1999; Tannor 2007). Time t does not corre-
spond to a dynamical variable (operator); rather, it drives the evolution of a system. It is 
of essence that measurements are made at an instant of time; histories are not measur-
able (Jauch 1964, 1968). The Pauli (1980) theorem says that the existence of a self-adjoint 
time operator that is canonically conjugate to a Hamiltonian is impossible, since this would 
imply that both operators possess completely continuous spectra spanning the entire real 
line.

To emphasize the importance of the Pauli statement, we briefly discuss the role of the 
time parameter in quantum theory following the analysis in his book (Pauli 1980) literally.

Pauli made his statement on the impossibility of considering time as a dynamical 
variable when studying the general form of the laws of motion. Pauli pointed out that, in 
matrix quantum mechanics, in addition to the commutation relations, an important role 
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is played by the prescription that the energy matrix, namely the Hermitian matrix Hnm , 
should be in diagonal form:

Heisenberg added a further condition concerning the dependence of the matrix elements 
on time. He stipulated that the time dependence of the matrix elements of quantities that do 
not explicitly contain the time variable should be given by

On introducing the unitary diagonal matrix,

we should have

If the Hamiltonian does not contain time explicitly, Eq. (4) with F = H indicates that Eq. 
(1) remains true for all t. The relation (2) can also be replaced by the differential equation

or

if H is taken to be the diagonal matrix (1). On account of (1), the form (2) again follows 
from (6). Relation (2) is nothing but the relation for the calculation of the matrix elements 
with the functions un replaced by the functions

These satisfy the wave equation

because then

We can now generalize this idea by introducing an arbitrary orthogonal system �n , as the 
basis for the matrices, without their necessarily having to possess the special form (7), 
although we impose the essential requirement that all the functions �n(t) should satisfy the 
wave equation

(1)Hnm = En�nm.

(2)Fnm(t) = Fnm(0) exp
[
i

ℏ
(En − Em)t

]
.

(3)Unm(t) = �nm exp
[
i

ℏ
En

]
,

(4)F(t) = U(t)F(0)U−1(t) = U(t)F(0)Ũ(t).

(5)
�

i
Ḟnm = Fnm[En − Em]

(6)
�

i
Ḟ = HF − FH,

(7)�n(t) = un exp
[
i

ℏ
En

]
.

(8)
�

i
�̇�n = H𝜓n

(9)

Fkn = ∫ �∗
k
(F�n)dq = exp

[
i

ℏ
(Ek − En)t

]
∫ u∗

k
(Fun)dq = exp

[
i

ℏ
(Ek − En)t

]
Fkn(0).
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It immediately follows from the fact that, for all solutions of (10) the integral ∫ �∗�dq 
is constant in time, for any solution of the form (cn�n + cm�m) with arbitrary coefficients 
cn, cm , we have

i.e., the orthogonality and normalization of the set of functions remain unaltered in time. 
Hence, from the definition

we obtain, on differentiating, the following relation which is valid for any Hermitian opera-
tor F not containing time explicitly:

Thus, we recover Eq. (6)

but now without any special assumption about the matrices. On account of this rule, every 
set of commutation relations (which are mutually compatible and do not contain time 
explicitly) remains unchanged in time if it is satisfied for t = 0.

At this stage, Pauli (1980) made a remarkable note:
In the older literature on quantum mechanics, we often find the operator equation

which arises from Eq. (6) formally by substituting t for F. It is generally not possible, how-
ever, to construct a Hermitian operator (e.g., as a function of p and q) which satisfies this 
equation. This is so because, from the commutation relations written above, it follows that 
H possesses continuously all eigenvalues from −∞ to +∞ , whereas discrete eigenvalues of 
H can be present. We, therefore, conclude that the introduction of an operator t is basically 
forbidden and the time t must necessarily be considered as an ordinary number (“c-num-
ber”) in quantum mechanics. As opposed to this, operators are usually called “q-numbers.” 
There are numerous works that try to “bypass” the Pauli theorem (Isidro 2005) or general-
ize the Hilbert space to avoid Pauli’s restrictions. Due to lack of space, we have no possi-
bility to discuss this here.

(10)
�

i
�̇�n = H𝜑n.

(11)
d

dt ∫ �∗
n
�mdq = 0;

(12)Fnm = ∫ �∗
n
(F�m)dq,

(13)

�

i
Ḟnm =∫

[
(H𝜑n)

∗(F𝜑m) − 𝜑∗
n
(FH𝜑m)

]
dq

=∫
[
𝜑∗
n
(HF𝜑m) − 𝜑∗

n
(FH𝜑m)

]
dq = (HF − FH)nm.

(14)
�

i
Ḟ = HF − FH,

(15)Ht − tH =
ℏ

i
I,
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3  In Search of Time Lost

As discussed above, the notion of time is very difficult to define precisely. Numerous 
attempts have been made to give such a unified definition, for example: time may be 
considered as the indefinite continued progress of existence and events in the past, pre-
sent, and future regarded as a whole. Such a definition is a wording only and should be 
considered as a null hypothesis. In spite of the fact that time is hard to define, it is also 
not an easily discussable subject. However, it should be discussed in many regards and 
with competing hypotheses to treat the subject. To introduce this subject, a number of 
complementary (or contradictory) approaches are first described briefly to emphasize 
the very different character of various theories.

Ellis (2013; 2014) summarized the existing data, including the results of the Planck 
team, for the present age of the universe. Precision cosmology (Jones 2017) supports the 
point that space–time is an evolving block universe, with the present being the future 
boundary of a space–time that steadily extends into the future as time progresses. In this 
picture, the present separates the past (which already exists) from the future (which does 
not yet exist, and is indeterminate because of foundational quantum uncertainty). There 
are some technical aspects to this, namely: (1) simultaneity has no physical import, and 
it is a purely psychological construct; (2) one can define unique surfaces of constant 
time in a nonlocal geometric way; (3) this proposal solves the chronology protection 
problem (it prevents the existence of closed time-like lines); and in this context, (4) the 
arrow of time is distinguished from the direction of time, which is nonlocally defined in 
the evolving block universe context. Ellis concludes that “time flows on and the universe 
is now older than it was then. But this view contradicts what many scientists claim.”

Indeed, in recent decades, numerous works that categorically deny the physical sig-
nificance of the notion of time have been published (Ellis 1974; Barbour 1999, 2004; 
Butterfield 2002; Rovelli 2004, 2011, 2018). An extremely radical point was presented 
by Ellis (1974), who claimed that a rigorous analysis of time will provide understanding 
of the unity of gravity and electromagnetism. The reconcilability of gravitational with 
electromagnetic clocks may suggest that time can be considered to be a fundamental 
property of elementary particles, and only derivatively a property of clocks. A declara-
tion was made that the flow of an elementary particle’s time is the change of its radius, 
and that time is therefore illusory. The author speculated that “the de Sitter expanding 
universe was derived from this principle by treating elementary particles as spheres in 
Euclidean space. The hyperspheres of de  Sitter space call up a five-dimensional met-
ric manifold whose geometry models gravity, electromagnetism, and other phenomena 
tied to the structure of matter; neutrinos are provided for. Distance in this manifold was 
related to a secondary time, not correlated to primary time, but just as illusory. A parti-
cle’s inertial rest mass was treated as the relative rate of its two proper times; mass and 
charge are jointly, not individually, conserved.” In this connection, it is worth noting 
that de Sitter space is a maximally symmetric space–time with constant curvature that 
does not have the degrees of freedom required to model any phenomena except the grav-
ity field of a cosmological constant.

At a later date, Boyarsky and Gora (2009) investigated similar questions in the mod-
ern context. A definition of time based on the fundamental Planck scale was formulated. 
In other words, they presented a definition of time based on a particle’s interaction with 
the Higgs field. Just as a particle acquires mass by interacting with the Higgs field, their 
model proposes that time is acquired via the energy of virtual particles participating in 
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the quantum exchange interactions with Higgs particles. It was shown that, for macro-
scopic time, this definition accords with the Lorentz transformation of special relativity.

In his book The End of Time, Barbour (1999) formulated his vision in the following 
way: “I now believe that time does not exist at all, and that motion itself is pure illusion. 
What is more, I believe there is quite strong support in physics for this view.” Indeed, the 
book The End of Time is highly provocative and formulates its basic ideas in a radical 
form. Barbour analyzes what time really is. According to him, the answer is “nothing.” In 
other words, the basic facts of classical dynamics show that time, or precisely duration, is 
redundant as a fundamental concept. Duration and the behavior of clocks emerge from a 
timeless law that governs change.

In fact, the roots for Barbour’s conclusions are based on a new approach to the dynam-
ics of the universe (Barbour 2004). In this approach, the only kinematics presupposed is 
the spatial geometry needed to define configuration spaces in purely relational terms. For 
this aim, a new formulation of the principle of relativity based on Poincaré’s analysis of the 
problem of absolute and relative motion (Mach’s principle) was given. The entire dynamics 
was based on shape and nothing else. This may lead to much stronger predictions than the 
standard Newtonian theory. For the dynamics of Riemannian 3-geometries on which mat-
ter fields also evolve, implementation of the new principle of relativity establishes unex-
pected links between special relativity, general relativity, and the gauge principle. They 
all emerge together as a self-consistent complex from a unified and completely relational 
approach to dynamics. A connection between time and scale invariance was also estab-
lished. In particular, the representation of general relativity as the evolution of the shape of 
space leads to a unique dynamical definition of simultaneity. This opens up the prospect of 
a solution to the problem of time in quantum gravity on the basis of a fundamental dynami-
cal principle.

Butterfield (2002) thoroughly discussed Barbour’s Machian theories of dynamics and 
his proposal that a Machian perspective enables one to solve the problem of time in quan-
tum geometrodynamics (by saying that there is no time). This study shed light on the some-
what semiprophetic ideas of Barbour.

The problem of time in physics and in quantum gravity in particular was analyzed by 
Rovelli (2004, 2011, 2018). According to his point of view, “...we conventionally think 
of time as something simple and fundamental that flows uniformly, independently from 
everything else, from the past to the future, measured by clocks and watches. In the course 
of time, the events of the universe succeed each other in an orderly way: pasts, presents, 
futures. The past is fixed, the future open. . . . And yet all of this has turned out to be false. 
One after another, the characteristic features of time have proved to be approximations, 
mistakes determined by our perspective, just like the flatness of the Earth or the revolving 
of the sun. The growth of our knowledge has led to a slow disintegration of our notion of 
time. What we call time is a complex collection of structures, of layers. Under increasing 
scrutiny, in ever greater depth, time has lost layers one after another, piece by piece... The 
physics on which I work—quantum gravity—is an attempt to understand and lend coherent 
meaning to this extreme and beautiful landscape. To the world without time.”

Thebault (2012) summarized the three denials of time in the interpretation of canonical 
gravity. He carried out an analysis of the temporal structure of canonical general relativity, 
and the connected interpretational questions with regard to the role of time within the the-
ory both rest upon the need to respect the fundamentally dual role of the Hamiltonian con-
straints found within the formalism. In his opinion, any consistent philosophical approach 
towards the theory must pay dues to the role of these constraints in both generating dynam-
ics, in the context of phase space, and generating unphysical symmetry transformations, in 
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the context of a hypersurface embedded within a solution. A first denial of time in terms 
of the position of reductive temporal relationalism can be shown to be troubled by failure 
on the first count, and a second denial in terms of Machian temporal relationalism can be 
found to be hampered by failure on the second. A third denial of time, consistent with both 
of the roles of Hamiltonian constraints, is constituted by the implementation of a scheme 
for constructing observables in terms of correlations and leads to a radical Parmenidean 
timelessness. The motivation for and implications of each of these three denials were 
investigated carefully.

In their study, Gryb and Thebault (2016) expressed a point of view opposed to that of 
Rovelli. In their opinion, on one popular view, the general covariance of gravity implies 
that change is relational in a strong sense, such that all that it is for a physical degree of 
freedom to change is for it to vary with regard to a second physical degree of freedom. At 
a quantum level, this view of change as relative variation leads to a fundamentally timeless 
formalism for quantum gravity. Gryb and Thebault (2016) found a way by which one may 
avoid this acute “problem of time.” Under their view, duration is still regarded as relative 
but temporal succession is taken to be absolute. In their opinion, following that approach 
(Gryb and Thebault 2014), it is possible to conceive of a genuinely dynamical theory of 
quantum gravity within which time, in a substantive sense, remains.

Gryb and Thebault (2016) clarified their statements by pointing out that “a key fea-
ture of Einstein’s theory of gravity is its invariance under arbitrary transformations of the 
space–time manifold. This diffeomorphism symmetry implies that only the coordinate-
free information contained in the geometry has a physical basis within the theory. Folia-
tion symmetry further implies that any observable quantity within the theory must not be 
dependent upon the local temporal labelling of space–time. This leads us directly to the 
question of how we should understand the change in physical quantities? In addition to 
not having a representation of time, we seem also to have lost a clear methodology for 
representing change! Our conceptual machinery appears in need of retooling. According to 
the correlation, or partial observables, view of time in general relativity, the radical moral 
one should draw from diffeomorphism invariance is that change is relational in a strong 
sense, such that all that it is for a physical degree of freedom to change is for it to vary with 
respect to a second physical degree of freedom; and there is no sense in which this varia-
tion can be described in absolute, non-relative terms. This radical relationalist view of time 
implies that there is no unique parameterization of the time slices within a space–time, and 
also that there is no unique temporal ordering of states. Furthermore, it implies a funda-
mentally different view of what a degree of freedom actually is: such parameters no longer 
have distinct physical significance since they can no longer be understood as being free to 
change and be measured independently of any other degree of freedom”. For an additional 
discussion see also Gryb and Thebault (2014) and Thebault (2012).

Anderson (2012, 2017) additionally clarified that the problem of time in quantum grav-
ity occurs because “time” is taken to have a different meaning in each of general relativity 
and ordinary quantum theory (Jauch 1968; Piron 1976). This incompatibility creates seri-
ous problems when trying to replace these two branches of physics with a single frame-
work in regimes in which neither quantum theory nor general relativity can be neglected, 
such as in black holes or in the very early universe. Anderson (2012, 2017) states that 
strategies for resolving the Problem of Time have appeared somewhat since the early 1990s 
only. Anderson (2010) proposes the following divisions: “I) time before quantization, such 
as hidden time or matter time. II) Time after quantization, such as emergent semiclassi-
cal time. III) Timeless strategies of Type 1: naive Schrödinger interpretation, conditional 
probabilities interpretation and various forms of records theories and Type 2: ‘Rovelli’—in 
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terms of evolving constants of the motion, complete observables and partial observables. 
IV) Anderson argued that for histories theories should be a separate class of strategy. Addi-
tionally, various combinations of these strategies have begun to appear in the literature, 
e.g. the loop quantum gravity, supergravity and string/M-theory from the problem of time 
perspective.”

In their paper “Time: a constructal viewpoint and its consequences,” Lucia and Gri-
solia (2019) considered the complicated problem of the irreversibility of the electro-
magnetic interaction with atoms and molecules. In the environment, there exists a con-
tinuous interaction between electromagnetic radiation and matter. So, atoms continuously 
interact with photons of the environmental electromagnetic fields. In their opinion, this 
electromagnetic interaction is the consequence of the continuous and universal thermal 
nonequilibrium, which introduces an element of randomness into atomic and molecular 
motion. Consequently, the decrease of path probability required for microscopic revers-
ibility of evolution occurs. Recently, an energy footprint has been theoretically proven in 
the atomic electron–photon interaction, related to the well-known spectroscopic phase shift 
effect, and results on the irreversibility of the electromagnetic interaction with atoms and 
molecules obtained experimentally in the late 1960s. The authors tried to show how this 
quantum footprint is connected with the “origin of time.” The result obtained also repre-
sents a response to the question introduced by Einstein on the analysis of the interaction 
between radiation and molecules when thermal radiation is considered; he highlighted that, 
in general, one restricts oneself to a discussion of the energy exchange, without taking the 
momentum exchange into account. The result of Lucia and Grisolia was obtained by just 
introducing the momentum into the quantum analysis. In addition, the authors underpinned 
their speculations with the hypothesis that time is the consequence of constructal consid-
erations (Bejan and Lorente 2011) of the H which is the Hamiltonian of the photon–atomic 
electron interaction, i.e., from a macroscopic point of view.

It is evident that a well-developed theory of time (whatever it may be) is still in thick 
fog. This opinion was expressed by Le Bihan (2015): Is time flowing? A-theorists say yes, 
B-theorists say no. But both take time to be real. It means that B-theorists accept that time 
might be real, even if lacking a property usually ascribed to it ...I want to ask what are the 
different properties usually ascribed to time in order to draw the list of different possible 
kinds of realism and anti-realism about time. Le Bihan (2015) attempted to argue that there 
are three main kinds of antirealism. He claimed that, if time is defined as the universe’s 
fourth dimension, there is no way time could be unreal.

Clear analyses of the present status of the problem of time have been carried out by 
Smolin (2013), Unger and Smolin (2014), and Smolin (2009, 2015), who considered the 
subject in a broad perspective.

4  The Arrows of Time and Asymmetry of Time

The basic laws of physics are time symmetric (Kuzemsky 2017; Belinfante 1975; Sachs 
1987). In technical terms, this can be formulated as the statement that a physical theory, 
which describes a specific law, is time-reversal invariant. This means that the full set of 
solutions of the corresponding differential equations satisfies the differential equations 
under time reversal of the solution, i.e., on replacement of (t) by (−t).

Indeed, symmetry plays a very big role in the natural sciences (Sachs 1987; Kuzemsky 
2010; Lewis 1930; Schwichtenberg 2018; Geru 2018). At the same time, there are many 



607In Search of Time Lost: Asymmetry of Time and Irreversibility…

1 3

asymmetrical things and phenomena around us. In the course of the derivation of the sec-
ond law of thermodynamics, Penrose (2016) poses the following question: “What we seem 
to have deduced is a time-asymmetrical law when the underlying physics may be taken to 
be symmetrical in time. How has this come about?”

Indeed, asymmetry arises in the real world and in physics in a number of different situa-
tions. Asymmetry is the absence of, or a violation of, symmetry (the property of an object 
being invariant to a transformation, such as reflection). Symmetry is an important prop-
erty of both physical and abstract systems in mathematics. The absence of or violation 
of symmetry can lead to various consequences for concrete systems. Remarkably, a most 
striking asymmetry is encountered in the realm of biology (Wagniere 2008; Meierhenrich 
2008; Kuzemsky 2010). Living organisms contain proteins built almost exclusively from L
-amino acids, and nucleic acids derived from D-sugars only. Yet a mirror-image biochem-
istry, based on D-amino acids and L-sugars is, from a purely chemical standpoint, entirely 
conceivable. It is still not fully clear where this extraordinary natural selectivity comes 
from. The most intriguing question is whether it is directly, or indirectly, connected to the 
universal violation of parity. The answer may imply that the universe displays handed-
ness, or chirality, and that it is fundamentally asymmetric. We present here the problem of 
handedness to emphasize that there is no evident mechanism of selection of the preferred 
chirality.

Penrose (1968, 1979, 1989, 1994, 2016) gives the following formulation: “All the suc-
cessful equations of physics are symmetrical in time. They can be used equally well in one 
direction in time as in the other...”. Davies addresses the questions on the nature of time in 
numerous publications (Davies 1977, 2005). “It is a basic property of nature that our world 
possesses a structural distinction between past and future; in physics this is known as time 
asymmetry, and it is a controversial and obscure area of study. Can the asymmetry in time 
of the everyday world be accounted for on the basis of conventional physics? If so, what is 
the nature of asymmetry? What is its origin? Are there other, less conspicuous asymmetric 
processes?” The thermodynamic arrow of time and the role of cosmic inflation were con-
sidered by Albrecht (2004), who discussed the connection between these two topics from 
a variety of angles. A useful account of cosmology and inflation theory was presented by 
Mukhanov (2005).

Hence, asymmetry of time is a very broad notion which deserves thorough research and 
clarification. Indeed, Penrose in numerous publications (Penrose 1968, 1979, 1989, 1994, 
2016) has advocated the statement that one of the long-standing mysteries of physics is the 
origin of the arrow of time. Penrose (1968, 1979, 1989, 1994, 2016) pointed out that one 
should distinguish a number of different “arrows of time” that express the time asymmetry 
of the universe.

The arrow of time is intimately related to the second law of thermodynamics (Penrose 
1994). The second law of thermodynamics says, in effect, that the extent to which any 
natural process can occur is limited by the dispersion of thermal energy (the increase in 
entropy). This process of weakening of energy accompanies it, and once the change has 
occurred, it can never be reversed without spreading even more energy around. In other 
words, the entropy of the world only increases and never decreases.

In this connection, Penrose (1994) pointed out that “the second law of thermodynamics 
has two distinct aspects to its foundations. The first concerns the question of why entropy 
goes up in the future, and the second, of why it goes down in the past. Statistical physicists 
tend to be more concerned with the first question and with careful considerations of defi-
nition and mathematical detail. The second question is of quite a different nature; it leads 
into areas of cosmology and quantum gravity, where the mathematical and physical issues 
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are ill understood”. Penrose’s (2016) book The Road to Reality provides a comprehensive 
account of our knowledge about the physical universe and the possibility of describing it 
by appropriate mathematical theory. In that book he also summarizes his thoughts about 
the concept of entropy and the foundations of the second law of thermodynamics, which 
deserve the most meticulous attention and discussion.

It was long-standing opinion that there is no asymmetry between the two directions of 
time in the general laws of nature. However, many phenomena in the real world display an 
evident asymmetry of time (Arntzenius 1995). The theoretical description of such phenom-
ena will entail that time has a direction, the arrow of time, and that such asymmetry may be 
an internal feature of the real world. Asymmetry of time is a wider notion than is the arrow 
of time.

It is difficult to give a single-valued and fully clearly definable sense to the term “arrow 
of time” (Gold 1962; Gal-Or 1972; Coveney and Highfield 1991; Mackey 1992; Price 
1996, 2010; Mersini-Houghton and Vaas 2012; Albeverio and Blanchard 2014; Savitt 
1996; Maudlin 2002; Ridderbos 2003; Wallace 2013). The arrow of time could be denoted 
as a phenomenological fact of nature, since real-world events always proceed in the direc-
tion of increasing entropy, even though the laws of physics do not require this.

The very term “time’s arrow” was coined by Eddington in 1935 (Price 2010; Eddington 
1935) to answer the question of why time flows as it does, despite the lack of a temporal 
direction in our scientific laws. He wrote: “The great thing about time is that it goes on 
...The events are there in their proper spatial and temporal relation ...”

Eddington seems to have believed that only the second law of thermodynamics clearly 
indicates a direction of time (Eddington 1935; Callender 2001) : “The law that entropy 
always increases,—the second law of thermodynamics—holds, I think, the supreme posi-
tion among the laws of Nature”. This kind of arrow of time is called (Callender 2011) the 
thermodynamic arrow of time. Investigations on the problem of what is the source of time 
asymmetry in thermodynamics and in various sciences are continued in numerous papers 
(Kuzemsky 2018; Callender 2011; Gold 1962; Gal-Or 1972; Coveney and Highfield 1991; 
Mackey 1992; Price 1996, 2010; Mersini-Houghton and Vaas 2012; Albeverio and Blan-
chard 2014; Savitt 1996; Maudlin 2002; Ridderbos 2003; Wallace 2013; Brown and Uffink 
2001).

There are diverse arrows of time: the thermodynamic arrow, cosmological arrow, elec-
tromagnetic arrow, gravitational arrow, information arrow, biological arrow, psychological 
arrow, etc.

It is widely believed that entropy is the only physical quantity in the natural sciences 
that seems to imply a particular direction of progress, called an arrow of time. As time 
progresses, the second law of thermodynamics states that the entropy of an isolated system 
never decreases. This forces us to connect the notion of entropy with time flow. Thus, the 
notion of the thermodynamic arrow of time (Coveney and Highfield 1991; Mackey 1992; 
Price 1996; Wallace 2013; Callender 2001; North 2002) is based on classical thermody-
namics; it states that there is an extensive state function S, called entropy, which leads to 
the second law in all natural processes:

Here Q is the heat and T is the temperature.

�S ≥ �
�Q

T
.
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The electromagnetic arrow of time appears in classical electrodynamics (Gal-Or 1972). 
It is known that an accelerated electric charge loses energy to its surroundings, whereas 
incoming radiation is never seen. The classical equations of electrodynamics are symmet-
ric under time reversal. There are two types of solution, for time (t) and for (−t) . These 
solutions are the retarded solution and advanced solution (Kuzemsky 2017), both of which 
are valid in principle. The retarded solution only is chosen, to fit experimental observa-
tions. This is motivated by the desire to be in accord with the principle of causality.

Another intriguing problem is the cosmological arrow of time (Penrose 1968, 1979, 
1989, 1994, 2016; Gold 1962; Gal-Or 1972; Davies 1977, 2005; Hawking 1985; Mukh-
anov 2005). The cosmological asymmetry in time should be discussed with special care 
(Gal-Or 1972; Ridderbos 2003; Wallace 2013).

In some way, the time arrow of cosmology (Gold 1962; Gal-Or 1972; Ridderbos 2003; 
Jejjala et al. 2012) imposes the thermodynamic arrow. It has been suggested that thermo-
dynamic irreversibility may be due to cosmological expansion. The cosmological arrow of 
time is understood in connection with the expanding universe (Gold 1962; Gal-Or 1972; 
Coveney and Highfield 1991; Mackey 1992; Price 1996, 2010; Mersini-Houghton and 
Vaas 2012; Albeverio and Blanchard 2014; Savitt 1996; Maudlin 2002; Ridderbos 2003; 
Jejjala et al. 2012; Wallace 2013).

The gravitational arrow of time is a complicated notion and has various aspects (Liu 
1993; Gal-Or 1972; Ridderbos 2003; Jejjala et al. 2012). It is generally believed that there 
are still two very basic fundamental concepts that have challenged the real explanation, 
namely time and gravity. Barbour et al. (2014) proposed a new direction for understanding 
the concept of time in their paper entitled “Identification of a gravitational arrow of time.” 
They pointed out that: “Many different phenomena in the Universe are time asymmet-
ric and define an arrow of time that points in the same direction everywhere at all times. 
Attempts to explain how this arrow could arise from time-symmetric laws often invoke a 
‘past hypothesis’: the initial condition with which the Universe came into existence must 
have been very special.” In other words, time flows definitively in one direction and the 
arrow of time certainly points into the future. Barbour et  al. (2014) conjectured a com-
pletely different sort of explanation than was used before. They supposed that “the ori-
gin of time’s arrow is not necessarily to be sought in initial conditions but rather in the 
structure of the law which governs the Universe.” Their suggestion is that initial condi-
tions do not necessarily need to be imposed on a time-symmetric law when attempting 
to describe solutions to behaviors that define an arrow of time. It is widely believed that 
special initial conditions must be imposed on any time-symmetric law if its solutions are 
to exhibit behavior of any kind that defines an arrow of time. Barbour, Koslowski, and 
Mercati showed that this is not so. The simplest nontrivial time-symmetric law that can 
be used to model a dynamically closed universe is the Newtonian N-body problem with 
vanishing total energy and angular momentum. Because of the special properties of this 
system (likely to be shared by any law of the universe), its typical solutions all divide at a 
uniquely defined point into two halves. In each, a well-defined measure of shape complex-
ity fluctuates but grows irreversibly between rising bounds from that point. Structures that 
store dynamical information are created as the complexity grows and act as records. Bar-
bour, Koslowski, and Mercati argued that each solution can be viewed as having a single 
past and two distinct futures emerging from it. Any internal observer must be in one half of 
the solution and will only be aware of the records of one branch and deduce a unique past 
and future direction from inspection of the available records. In essence, the gravitational 
arrow of time is the direction of time in which gravitational radiation propagates to the 
future rather than the past.
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There is also the biological arrow of time, mainly related to the phenomenon of evolu-
tion (Blum 2016). The informational arrow is connected with the probability of the intrin-
sic time arrow from information losses, as it was explained by Diosi (2004).

The psychological arrow of time has many facets also. One must always distinguish 
between physical time and psychological time. What we call time is partially connected 
with the phenomenon of consciousness. Time is sought as a universal steady flux, the feel-
ing that there is a lapse of time. The psychological arrow of time is connected with the 
fact that we remember events in the past but not in the future. There is an opinion that the 
universal steady flux of time is an idea and not a physical fact; our conscience uses this 
idea and projects it into the external world around us. Gold (1966) posed the following 
question: “...the central problem is: why it is that we live with this firm impression of the 
passage of time, and how the physical world around us has given us the possibility of form-
ing such an impression.” However, a detailed consideration of these questions (Bunge and 
Ardila 1987) lies beyond the scope of the present review.

There are other asymmetries in nature, and their studies are in progress. The principal 
possibilities of the occurrence of time reversal are discussed from various points of views 
in literature. Uncovering the origin of the “arrow of time” remains a fundamental scien-
tific challenge. Recently, Lesovik et al. (2019) confirmed that the fundamental question of 
the origin of the irreversibility of time, which emerged from classical statistical physics, 
remains a subject deserving meticulous attention. Within the framework of statistical phys-
ics, this problem is inextricably associated with the second law of thermodynamics, which 
declares that entropy growth proceeds from the system’s entanglement with the environ-
ment. This poses a question of whether it is possible to develop protocols for circumventing 
the irreversibility of time and if so to practically implement these protocols. The authors 
showed that, while in nature the complex conjugation needed for time reversal may appear 
exponentially improbable, one can design a quantum algorithm that includes complex con-
jugation and thus reverses a given quantum state. Using this algorithm on an IBM quantum 
computer, the authors were able to experimentally demonstrate a backward-time dynam-
ics for an electron scattered on a two-level impurity. The authors’ findings suggest several 
directions for investigating time reversal and backward time flow in real quantum systems.

It is useful to summarize the various arrows of time in the form of Table 1. Numer-
ous attempts have been made to elaborate a new sophisticated view on time. A remark-
able attempt was made by t’Hooft (2018). He stated that: “It is brought forward that viable 
theories of the physical world which have no variable at all that can play the role of time, 

Table 1  Different arrows of time

The time asymmetry Description

The thermodynamic arrow The direction of time in which entropy increases
The electrodynamic arrow The preference of retarded solutions of the field equations
The psychological arrow We remember events in the past but not in the future
The biological arrow Irreversibility and direction in evolution (Blum 2016)
The informational arrow Probability of an intrinsic time arrow from information loss 

(Diosi 2004)
The time asymmetry of particle physics Decay of K0 meson (Sachs 1987)
The cosmological arrow The direction in time in which the universe is expanding
Gravitational arrow of time Barbour et al. (2014)
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do not exist; some notion of time is one of the very first ingredients a candidate theory 
should possess. Almost by definition, time has an arrow. In contrast, time reversibility, or 
even the possibility to run the equations of motion backwards in time, is not at all a pri-
mary requirement. This means that the direction of the arrow of time may well be uniquely 
defined in the theory, even locally. It is explained that a rigorous definition of time, as well 
as a formulation of the causality and locality concepts, can only be given when one has a 
model for the physical phenomena described. The only viable causality condition is one 
that is symmetric under time reversal. We explain these statements in terms of the author’s 
favored deterministic cellular automaton interpretation of quantum mechanics, also to be 
referred to as “vector space analysis,” and expand on these ideas. It is also summarized how 
our more rigorous causality condition affects Bell’s theorems. What distinguishes quantum 
systems from classical ones is our fundamental inability to control the microscopic details 
of the initial state when phenomena are studied in the light of some theoretical model.”

In his paper, Lopez (2018) shed some doubts on a widely held claim: standard quantum 
mechanics is time-reversal invariant and, thereby, blind to the direction of time. Building 
bridges between physics and philosophy, Lopez argued that such a claim features some 
puzzling assumptions that are frequently overlooked in literature. In particular, Lopez first 
argued that the claim involves some methodological and metaphysical commitments that 
should be evaluated more prudently from the points of view of philosophy and physics. 
Second, he pointed out that the common inference that goes from symmetry to metaphysi-
cal conclusions needs some correction and refinement to be acceptable in discussions about 
time symmetry and the debate around the arrow of time.

In a complementary paper, Garcia-Pintos et al. (2017) addressed the problem of under-
standing, from first principles, the conditions under which a quantum system equilibrates 
rapidly with respect to a concrete observable. On the one hand, previously known general 
upper bounds on the time scales of equilibration were unrealistically long, with times scal-
ing linearly with the dimension of the Hilbert space. These bounds proved to be tight since 
particular constructions of observables scaling in this way were found. On the other hand, 
the computed equilibration time scales for certain classes of typical measurements, or 
under the evolution of typical Hamiltonians, are unrealistically short. However, most physi-
cally relevant situations fall outside these two classes. In their paper, the authors provided 
a new upper bound on the equilibration time scales which, under some physically reason-
able conditions, give much more realistic results than previously known. In particular, the 
authors applied this result to the paradigmatic case of a system interacting with a thermal 
bath, where they obtained an upper bound for the equilibration time scale independent of 
the size of the bath. In this way, they found general conditions that singled out observables 
with realistic equilibration times within a physically relevant setup.

5  Entropy and the Second Law

It was generally recognized that energy and entropy are the most important concepts in 
physics and the natural sciences (Carnap 1977; Jaynes 1965; Grandy 2008; Muller 2007; 
Starzak 2010; Thess 2011; Tame 2019). Thermodynamics is usually understood as the 
branch of science which deals with the study of thermal processes and energy transfor-
mations (Planck 2010; Guggenheim 1933, 1985; Fermi 1956; Schrödinger 1946; Pauli 
1973; Muller 2007; Muller and Muller 2009; Beattie and Oppenheim 1979; Honig 1991; 
Kondepudi 2008). The thermodynamic properties of macroscopic systems can be derived 
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through appropriate thermodynamic functions of state (or thermodynamic variables). The 
concept of entropy was introduced into thermodynamics by Clausius in 1876 (Muller 2007; 
Tame 2019). During the decades since, great progress has been made in our understand-
ing of the concept of entropy in various branches of science, including chemistry, biology, 
information theory, cosmology, climate theory, economics, etc. In the quantum domain, 
entropy can be considered as a measure of the intrinsic dispersion, i.e., degree of mixing, 
impurity, uncertainty, lack of information, or amount of chaos of a quantum state.

Entropy is a basic physical quantity which has led to various and conflicting interpreta-
tions; entropy is a multifaceted notion (Wehrl 1978; Leff 2007). The number of publica-
tions on the subject is huge (Grad 1961; Carnap 1977; Starzak 2010; Thess 2011; Tame 
2019; Beattie and Oppenheim 1979; Honig 1991; Muller and Muller 2009; Jaynes 1965). 
Grad (1961) formulated an explanation of the workability of the entropy concept: “...there 
is a large choice of macroscopic quantities (functions of state variables) called entropy, 
on the other hand, a variety of microscopic quantities, similarly named, associated with 
the logarithm of a probability or the mean value of the logarithm of a density. Each one 
of these concepts is suited for a specific purpose ...The fertility of this concept is in large 
part due to its flexibility and multiple meanings. On the other hand, much of the confusion 
in the subject is traceable to the ostensibly unifying belief (possibly theological in origin!) 
that there is only one entropy.”

The first law, the principle of the conservation of energy, asserts that energy can only be 
transformed but not created. The second law of thermodynamics is mainly concerned with 
the transformation of work into heat.

Clausius formulated the second law (Muller 2007; Muller and Muller 2009) in the fol-
lowing words: “Heat cannot, of itself, pass from a colder to a hotter body.” Hence, the 
second law of thermodynamics states in fact that the extent to which any natural process 
can occur is limited by the dispersal of thermal energy. Due to this energy dispersion, an 
accompanying increase in entropy occurs. These changes are impossible to reverse without 
spreading even more energy around. This is why the second law of thermodynamics is 
sometimes not called a law of conservation but a law of waste.

As discussed in literature (Kuzemsky 2018; Muller 2007; Muller and Muller 2009; 
Planck 2010; Guggenheim 1933, 1985; Fermi 1956; Schrödinger 1946; Pauli 1973; Honig 
1991; Kondepudi 2008), the time directionality of physical processes is deeply related to 
the second law of thermodynamics. The physical meaning of the second law of thermody-
namics states that the entropy of an isolated system increases with time (or remains con-
stant, for a reversible transformation).

In thermodynamics, there are two basic types of thermodynamic variables: intensive 
and extensive. The entropy of a system of bodies is equal to the sum of the entropies of the 
individual bodies and hence is an extensive property of the thermodynamic system. Note, 
that the notion of extensivity should be used with care (Riek and Sobol 2016) for small 
systems, even in the thermodynamic limit (Kuzemsky 2014).

Let us consider a system in contact with a thermal bath (heat reservoir) during a revers-
ible process. If heat Q is absorbed by the reservoir at temperature T, the change in entropy 
of the reservoir is �S = Q∕T  . In general, reversible processes are accompanied by heat 
exchanges that occur at different temperatures. It is convenient to represent a reversible 
process in terms of infinitesimal portions of the cycle. The total entropy change of the sys-
tem plus surroundings will be

dStot = dSsys + dSres = 0.
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Hence, for a reversible process, no change occurs in the total entropy, i.e., the entropy of 
the system plus the entropy of the surroundings.

Planck (2010) formulated the following inequality connecting differentials of energy U, 
temperature T, and entropy S with the work W:

Speaking generally, the entropy of a system is a measure of its disorder and/or of the una-
vailability of energy to do work. In this context, Planck referred to time rates in actual 
processes in a system. In this approach, these should include the rate of increase of energy 
through nonmechanical effects such as heat conduction and radiation.

There are tens of formulations of the second law of thermodynamics (Muller 
2007; Muller and Muller 2009; Planck 2010; Guggenheim 1933, 1985; Fermi 1956; 
Schrödinger 1946; Pauli 1973; Beattie and Oppenheim 1979; Honig 1991; Kondepudi 
2008); For example, Guggenheim (1933, 1985) insisted that the best formulation was 
given by Planck (2010). Fermi (1956) discussed the second law in an operational form. 
A body, no matter what its temperature may be, can always be heated by friction, receiv-
ing an amount of energy in the form of heat exactly equal to the work done. Contrary to 
the first law, which places no limitations on the possibility of transforming energy from 
one form into another, there are very definite limitations on the possibility of transform-
ing heat into work. It is impossible for any device that operates in a cycle fashion to 
receive heat from a single thermal reservoir and produce some amount of work. In other 
words, no heat engine can have a thermal efficiency of 100%, except if the temperature 
of the lower reservoir is 0 K.

Fermi (1956) used the formulations of Kelvin and Clausius (which are equivalent): A 
transformation whose only final result is to transfer heat from a body at a given tempera-
ture to a body at a higher temperature is impossible.

In this connection, it is useful to remember that, in order to realize an entropy 
increase in a system, heat (or a flux of heat) should be provided in some way for the 
system itself. However, there are examples of isothermal processes in which there are 
heat fluxes but the temperature does not change (Denbigh 1996, 1989a, b; Denbigh and 
Denbigh 1985).

The general expression for the entropy difference between two states is

This expression states that the difference in entropy between two equilibrium states A and 
B of a physical system can be determined by measuring the heat flow �Q over an arbi-
trary reversible path connecting the states. To establish a connection between the empirical 
(macroscopic) and statistical (microscopic) description of complex many-particle systems, 
it was necessary to make an important step and write down the connection between ther-
modynamic entropy S and statistical entropy. According to Boltzmann,

where kB is the Boltzmann constant and � is the number of distinct microscopic states 
available to the system given the macroscopic constraints (e.g., fixed total energy U). The 
Boltzmann constant may be considered as a scaling factor which connects the macroscopic 
(thermodynamic temperature) and microscopic physics of the thermal motion of atoms and 
molecules.

(16)dU − TdS ≤ W.

(17)�S = ∫
B

A

dQ

T
.

(18)S = kB ln�,
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Let us briefly consider the dimension of entropy. Certainly, it depends on the units 
selected for the purpose (Guggenheim 1933, 1985; Buckingham 1914; Bridgman 1963; 
Leff 1999; Borde 2005; Gibbings 2011; Sparavigna 2015; Bich 2019). The Boltzmann 
constant is equal to the ratio of the gas constant R to the Avogadro number NA

Hence, the Boltzmann constant is a derived physical constant, since its value is determined 
by other physical constants.

It is clear that thermodynamic entropy in the dynamical units of measurement has 
dimensionality (Guggenheim 1933, 1985; Buckingham 1914; Bridgman 1963; Leff 
1999; Gibbings 2011; Sparavigna 2015) which coincides with the dimensionality of 
energy divided by temperature: [S] = [E∕�] = L2T−2M�−1 . The dimension of entropy 
started to be discussed long ago (Guggenheim 1933, 1985; Buckingham 1914; Bridg-
man 1963; Leff 1999; Gibbings 2011; Sparavigna 2015; Bich 2019). Thermodynamic 
entropy has the dimensions of energy per temperature; in SI units, it is joules per kelvin 
(J/K), i.e. coinciding with the dimension of the Boltzmann constant.

When using natural units (Guggenheim 1933, 1985; Buckingham 1914; Bridgman 
1963; Leff 1999; Borde 2005; Gibbings 2011; Sparavigna 2015; Bich 2019), one sets 
each of the constants ℏ , kB , and c equal to unity. It is still possible to check the dimen-
sions of a given equation, but one then has to understand that quantities such as those 
associated with velocity are dimensionless and that things such as length and time 
have the same dimensions. One can write every quantity in terms of powers of a single 
unit, e.g., GeV (= 109 eV). The conversion factors to SI units are: Energy: 1 GeV = 1.6 
× 10−10 J; Temperature : 1 GeV = 1.16 × 1013 K.

It is unclear why entropy does not have a derived unit name. One reason for this 
may be the fact that entropy’s dimensions are linked to the definition of the Kelvin tem-
perature scale (Leff 1999). Obviously, entropy can be defined to be dimensionless when 
temperature � is defined as an energy.

Landau and Lifshitz (1980) selected a definition of entropy which leads to the dimen-
sionless expression. They considered the derivation of the “quantum microcanonical 
distribution” and supposed (Landau and Lifshitz 1980) that the energy spectra of mac-
roscopic bodies are “almost continuous.” They also used the concept of the number of 
quantum states of a closed system which “belong” to a particular infinitesimal range of 
values of its energy. Landau and Lifshitz (1980) denoted this number by d�  ; it plays a 
part analogous to that of the phase volume element �p�q in the classical case. When 
deriving the expression for entropy, they denoted as � (E) the number of quantum states 
with energy less than or equal to E. Then, the required number of states with energy 
between E and E + dE will be

The energy probability distribution is

(19)kB =
R

NA

= 1.380 × 10−23
J

K
= 8.617 × 10−5

eV

K
.

(20)
d� (E)

dE
�E.

(21)W(E) =
d� (E)

dE
w(E),
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where w(E) denotes the distribution function for subsystems (Landau and Lifshitz 1980). 
The function W(E) has a very sharp maximum at E = Ē , being appreciably different from 
zero only in the immediate neighborhood of this point.

They considered the quantity ��  , which is the statistical weight of the macroscopic 
states of the subsystem

Here, �E is the “width” of the curve W = W(E) . The interval �E is equal in order of mag-
nitude to the mean fluctuation of energy of the subsystem. The quantity ��  thus defined 
may be said to represent the degree of broadening of the macroscopic state of the subsys-
tem with respect to its microscopic states. The logarithm of the statistical weight

can be called the entropy of the subsystem (Landau and Lifshitz 1980). Hence, entropy 
is a logarithmic measure of the number of states with a significant probability of being 
occupied (Kuzemsky 2016; Landau and Lifshitz 1980). Like the statistical weight itself, 
the entropy is dimensionless. Statistical entropy is the logarithm of the probability pk that a 
microstate k will be occupied

Hence, this expression for entropy may be interpreted as a measure of the spread of the 
probability distribution. Indeed, when a distribution is narrow, we have near certainty 
(entropy is low). For a widely spread distribution, the uncertainty is greater (entropy is 
high). In this context, it is of interest to recall the original approach to the foundation of 
equilibrium thermodynamics proposed by Jauch (1972). This was stimulated by certain 
ideas of Ehrenfest. Jauch’s method was based on the conservation of energy for reversible 
adiabatic processes. The main result is the proof of the existence of entropy as a conse-
quence of the conservation of energy for conservative thermal systems. Jauch noted that 
so-called classical thermodynamics deals exclusively with equilibrium states and “quasi-
static” processes. Indeed, for any given system, there is a state, which is called the equi-
librium state, for which the entropy has the largest possible value (Kuzemsky 2016, 2018; 
Jaynes 2003).

It is worth noting that it is possible to associate an entropic value with any probability 
distribution. In a general sense, entropy can also be understood as a measure of the disor-
der or randomness of a closed system; the lower the entropy of the system, the higher its 
state of order. This is why the concept of entropy plays a central role in information theory 
(Kuzemsky 2018, 2016, 2017; Wright 1970; Jaynes 2003; Kozlov and Smolyanov 2006; 
Diosi 2004; Short and Wehner 2010; Zurek 2018). Information plays an important role in 
our understanding of the physical world (Kuzemsky 2017, 2016). Indeed, the most funda-
mental concept of information theory is entropy. The entropy of a random variable Q is 
defined by

(22)𝛥𝛤 =
d𝛤 (Ē)

dE
𝛥E.

(23)S = log��

(24)S = −kB
∑

k

pk log pk.

(25)H(Q) =
∑

q

pq log
1

pq
.
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The entropy is nonnegative, and is zero when the random variable can be predicted with 
certainty.

Short and Wehner (2010) proposed an entropic measure of information for any physical 
theory that admits systems, states, and measurements. In the quantum and classical worlds, 
this kind of measure reduces to the von Neumann and Shannon entropy, respectively. It 
can even be used in a quantum or classical setting, where we are only allowed to perform 
a limited set of operations. In a world that admits superstrong correlations in the form of 
nonlocal boxes, their measure may be useful for analyzing protocols such as superstrong 
random-access encodings and the violation of “information causality.” It was shown that, 
in such a world, no entropic measure can exhibit all the properties we commonly accept 
in a quantum setting; For example, there exists no “reasonable” measure of conditional 
entropy that is subadditive. Short and Wehner (2010) also proved a coding theorem for 
some theories that is analogous to the quantum and classical settings, providing us with an 
appealing operational interpretation.

It is worth mentioning that entropy is a concept in thermodynamics and statistical phys-
ics and in information theory (Kuzemsky 2017, 2016; Jaynes 2003; Kozlov and Smolyanov 
2006). The concept of information was formulated in the context of the mathematical the-
ory of communication. However, its connection to statistical mechanics became apparent 
very soon because of the fact that statistical mechanics is a theory in which predictions are 
made on the basis of incomplete information about the system under consideration (Jaynes 
2003). The close connection between both theories is evident, as emphasized by Jaynes and 
others (Jaynes 2003; Zubarev 1974; Kuzemsky 2017; Kozlov and Smolyanov 2006). These 
two concepts, viz. information entropy and thermodynamic entropy, do actually have much 
in common (Jaynes 2003; Kozlov and Smolyanov 2006). Shannon’s definition of entropy 
is closely related to thermodynamic entropy as defined by physicists and many chemists. 
In information theory, entropy is conceptually the actual amount of (information-theoretic) 
information in a piece of data. The central physical concept in statistical thermodynam-
ics is energy. However, entropy is not to be considered as merely an auxiliary function 
but more appropriately as a chief factor in all of the major natural processes. Extremum 
principles play an important role in various branches of physics, especially mechanics. The 
maximum-entropy principle plays a similar role in thermal physics (Kuzemsky 2017). The 
maximum-entropy principle can be formulated in a concise form as follows: When one 
has only partial information about the possible outcomes of a random process, one should 
choose the probabilities so as to maximize the uncertainty about the missing information 
(Jaynes 2003; Zubarev 1974; Kuzemsky 2017). In other words, it is necessary to use all the 
available information on the relevant parameter. Moreover, any information that is irrel-
evant should be avoided. Therefore, one should be as uncommitted as possible about miss-
ing information.

Studies on the extremum of thermodynamic functions (e.g., the maximum-entropy 
algorithm) can be traced back way to Boltzmann, Gibbs, and Shannon. In general form, 
the maximum-entropy approach to thermodynamics was initiated by Jaynes (1965, 2003, 
1957a, b), based on probability theory and Bayesian inductive inference. Jaynes termed it 
“the principle of maximum entropy.” The extremization of an appropriate entropic func-
tional may yield probability distribution functions that maximize the respective entropic 
structure. This procedure is known in statistical mechanics and information theory as 
Jaynes’ formalism (Jaynes 2003) and has been up to now a standard methodology for deriv-
ing the aforementioned distributions. The Gibbs theorem states that the canonical equilib-
rium distribution, of all the normalized distributions having the same mean energy, is the 
one with maximum entropy. The notion of entropy is expressed in terms of the probability 
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of various states. Entropy treats the distribution of energy. For any given system, the equi-
librium state is the state with the largest possible entropy, due to the fact that all the avail-
able states may be equally probable, as for an isolated system in equilibrium. Thus, a prin-
ciple may be guessed that the most probable condition is that in which the energy in a 
system is as uniformly distributed as permitted by physical constraints (Kuzemsky 2017; 
Jaynes 2003, 1957a, b).

It was noticed in recent decades that statistical distributions observed in nature show 
great diversity. However, the principle of maximum entropy works well for a wide diver-
sity of systems, including biological systems. An interesting problem was considered by 
Buskermolen et al. (2019). They studied contact guidance, i.e., the widely known phenom-
enon of cell alignment induced by anisotropic environmental features, which is an essential 
step in the organization of adherent cells. However, the mechanisms by which cells achieve 
such orientational ordering remain unclear. Buskermolen et  al. (2019) seeded myofibro-
blasts on substrates micropatterned with stripes of fibronectin and observed that contact 
guidance emerged at stripe widths much greater than the cell size. To understand the ori-
gins of this surprising observation, they combined morphometric analysis of cells and 
their subcellular components with a novel statistical framework for modeling nonthermal 
fluctuations of living cells. This modeling framework was shown to predict not only the 
trends but also the statistical variability of a wide range of biological observables, includ-
ing cell (and nucleus) shapes, sizes, and orientations, as well as stress-fiber arrangements 
within the cells with remarkable fidelity using a single set of cell parameters. By compar-
ing observations and theory, the authors identified two regimes of contact guidance: (1) 
guidance on stripe widths smaller than the cell size ( w ≤ 160�m ), which is accompanied 
by biochemical changes within the cells, including increasing stress-fiber polarization and 
cell elongation; and (2) entropic guidance on larger stripe widths, which is governed by 
fluctuations in the cell morphology. Overall, their findings suggest an entropy-mediated 
mechanism for contact guidance associated with the tendency of cells to maximize their 
morphological entropy through shape fluctuations. This is a really nice example of the 
workability of the principle of maximum entropy even in such complex systems.

In nature, the tendency of thermal energy to disperse as widely as possible is what 
drives all spontaneous processes, which are accompanied by changes of entropy. Contrary 
to the first law, which places no restriction on the direction of a process, the second law of 
thermodynamics may be interpreted in the sense that processes occur in a certain direc-
tion. This is the so-called principle of increasing entropy (Sheehan 2006; Toretti 2007; 
Drory 2008; Wallace 2015). However, this statement should be taken with a reservation. 
Indeed, a process can occur when and only when it satisfies both the first and second laws 
of thermodynamics.

Phenomenological thermodynamics was formulated as asymmetrical in time. It was 
conjectured that entropy in an isolated system can only increase with time. This was 
derived from the second law. Equilibrium statistical mechanics, which is based on Ham-
iltonian dynamics, is symmetric in time. Nonequilibrium statistical mechanics (Zubarev 
1974; Dorfman 1999; Zwanzig 2001; Gallavotti 2014) states that a normal system which is 
below its maximum entropy tends to evolve towards higher entropy.

From the mechanical point of view, taking into consideration dissipative forces, e.g., 
those which depend on velocity, may lead to an explicit time direction on the Hamiltonian. 
To resolve the problem of entropy increase and the approach to equilibrium, a few different 
schemes have been used (Zubarev 1974; Dorfman 1999; Zwanzig 2001; Gallavotti 2014; 
Kuzemsky 2017). One of the possible treatments employs a coarse-graining method. The 
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other methods are based on the derivation of generalized master equations, etc. (Zubarev 
1974; Kuzemsky 2017; Landau and Lifshitz 1980; Breuer and Petruccione 2002).

A sharp debate concerning the nature of the concept of entropy and its physical mean-
ing still persists in literature to the present day.

In particular, Penrose (1968, 1979, 1989, 1994, 2016) insists that the very notion of 
entropy should be carefully reanalyzed. “Entropy is, very roughly speaking, a meas-
ure of the ‘randomness’ in the system” (Penrose 2016). He asks: “But what precisely is 
the entropy of a physical system?...In order to make the notion of entropy precise, we 
require a concept of what is called coarse graining...But for the ...formula for S to repre-
sent something physically precise, it would be necessary to have a clear-cut prescription 
for the coarse graining.” Penrose’s states “My own position concerning the physical sta-
tus of entropy is that I do not see it as an ‘absolute’ notion in present-day physical the-
ory, although it is certainly a very useful one...There is a common view that the entropy 
increase in the second law is somehow just a necessary consequence of the expansion of 
the universe...There are many ways to see that this viewpoint cannot be correct.” Penrose 
insists on the necessity of taking into account “gravitational degrees of freedom ...With 
gravitation, the clumping of material can represent a much higher entropy than ordinary 
thermal motions. “In his opinion (Penrose 1989), ”...the entropy concept could not really 
be a very clear-cut scientific quantity ...entropy is a concept that may be bandied about in a 
totally cavalier fashion!”.

It should be mentioned here that there is undivided attention to the problems of the 
validity and universality of the second law (Lieb and Yngvason 1999; Callender 2001; 
Brown and Uffink 2001; Sheehan 2007; Duncan and Semura 2007; D’Abramo 2012; Hen-
derson 2014; Dewar et al. 2014). The bounds of applicability of the second law have been 
carefully reexamined from various sides (Dewar et al. 2014; Czapek and Sheehan 2005). 
It is remarkable that even a “quest for its violations” was announced (D’Abramo 2012). 
In addition, as demonstrated by Czapek and Sheehan (2005) and Sheehan (2006), there 
are over two dozen theoretical challenges to the second law, many of them laboratory test-
able. These facts may have cast some doubt on the continued universality of that law. Shee-
han (2006) reviewed some representative challenges and considered the possibility that the 
thermodynamic arrow of time might be reversed on local or global scales. Experiments 
have been proposed to test the connections between retrocausation and a reversed thermo-
dynamic arrow. Nevertheless, the second law of thermodynamics is still holding firm in its 
domain of validity.

6  Irreversibility

The observed phenomena of nature force us to conclude that the macroscopic processes 
of nature exhibit irreversible behavior. By “process” we usually understand a continu-
ous change made up of a connected and related series of events. What is important is that 
a process has a beginning in time and a completion, when the process stops. There are 
reversible and irreversible changes of the state of a system (Denbigh 1989a, b; Zubarev 
1974; McLennan 1989; Lebowitz 1993, 1999; Kuzemsky 2007; Planck 2010; Fermi 1956; 
Dorfman 1999; Zwanzig 2001; Gallavotti 2014; Breuer and Petruccione 2002; Prigogine 
1999; Petrosky and Prigogine 2000; Karakostas 1996; Bishop 2004; Perez-Madrid 2004, 
2005; Baldovin et al. 2019). A change is said to occur reversibly when it can be carried out 
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in a series of infinitesimal steps, each of which can be undone by making a reverse change 
to the conditions that bring the change about. The majority of natural processes involve 
an increase of entropy in the system. The second law applies to irreversible processes that 
cannot be made reversible, such as a frictional process transforming mechanical energy 
into work, the process of the evaporation of a liquid, etc.

It was argued above that a general measure of the preference of nature for a given 
state is characterized by a physical quantity called the entropy. An increase in entropy 
is associated with dissipation of heat. This type of process is classified as irreversible; it 
also imposes a limit on the amount of heat that can be transformed into energy or work, 
as discussed above.

The earlier attempts to resolve the problem of explaining macroscopic irreversibil-
ity from reversible microscopic equations can be traced back to Boltzmann’s ideas of 
molecular chaos and his H-theorem (Muller 2007; Brown et al. 2009). The problem of 
Boltzmann’s entropy and the arrow of time was considered lucidly by Lebowitz (1993, 
1999). Boltzmann attempted to develop a statistical approach to explain the observed 
irreversible behavior of macroscopic systems in a manner consistent with their reversi-
ble microscopic dynamics (Sklar 1993). Lebowitz (1993, 1999) pointed out very clearly 
that “Boltzmann statistical theory of time-asymmetric, irreversible nonequilibrium 
behavior assign to each microscopic state of a macroscopic system ...a number SB , the 
Boltzmann entropy of that state.” Contrary to the Gibbs entropy SG , which is defined not 
for an individual state but for a statistical ensemble and which does not change in time, 
describing a system in equilibrium, SB may show increasing behavior and thus explain 
(at least partially) the evolution toward equilibrium of such systems. What is important 
(Lebowitz 1993, 1999) is the fact that, in a physical sense, SB coincides with SG and 
agrees (in the thermodynamic limit; Kuzemsky 2014) with the thermodynamic entropy 
of Clausius when the system is in equilibrium.

Boltzmann’s H-theorem, in essence, states (Cercignani 1982; Brown et  al. 2009) 
that a gas starting in a nonequilibrium state will evolve towards equilibrium. This is 
an evident contradiction to the classical (Newtonian) dynamical laws, which are invari-
ant under time reversal (Sklar 1993; Brown et al. 2009; Wu 1969; Hoffman and Green 
1965; Lee and Wu 1973; Wu 1975; Cercignani 1982, 1988, 2006), and raised intense 
debate. It is instructive to mention here very briefly the formulation of Boltzmann’s 
H-theorem (Sklar 1993; Brown et  al. 2009; Wu 1969; Hoffman and Green 1965; Lee 
and Wu 1973; Wu 1975; Cercignani 1982, 1988, 2006). The H-theorem (Sklar 1993; 
Brown et al. 2009) associated with the Boltzmann equation (Sklar 1993; Brown et al. 
2009; Wu 1969; Hoffman and Green 1965; Lee and Wu 1973; Wu 1975; Cercignani 
1982, 1988, 2006)

extends the definition of thermodynamic entropy to nonequilibrium states. Here, f(r, v, t) 
is the distribution function. The theorem was formulated under the assumptions that only 
binary collisions occur and that the distribution function for pairs of particles factorizes in 
the form

(26)
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This assumption is called the hypothesis of molecular chaos, which states that the pair of 
molecules are uncorrelated (Bogoliubov 1962). The function H was introduced by Boltz-
mann (Brown et al. 2009) in the form

In Boltzmann’s approach, the arrow of time was expressed by the H-theorem (Brown et al. 
2009):

Note that

where f0(r, v) is the thermal equilibrium distribution. It is known that Boltzmann’s original 
definition of the entropy

was written in terms of the probabilities of available microscopic states of composite sys-
tems. Here, W is the number of microstates which correspond to a macrostate of the system 
(the thermodynamical probability of the macrostate). In spite of its popularity, the Boltz-
mann approach led to hot discussion (Jaynes 1965; Kuzemsky 2018).

The Boltzmann formula has been analyzed from various sides in general form by 
Jaynes (1965), Zubarev (1974), and Wehrl (1978) to characterize it uniquely using 
physically plausible properties. In spite of this, it should be considered as a kind of 
postulate. In particular, the Boltzmann formula has been criticized in literature on the 
grounds that it gives a nonsufficient dynamical foundation in view of the thermal motion 
of the particles of which a physical system consists. It follows from the Boltzmann defi-
nition that the entropy is larger if � is smeared out, where � is the probability density in 
phase space. The microscopic definition of entropy given by Boltzmann does not, by 
itself, explain the second law of thermodynamics, even in classical physics.

It is worth noting that, in the general case, the Boltzmann entropy may also be for-
mally defined by formula (18). It can be shown that, if the function f1(p1, q1, t) satisfies 
the Boltzmann kinetic equation, then the Boltzmann entropy increases. In the case of 
statistical equilibrium, it is constant. What is most important in this context is the fact 
that the Boltzmann definition of entropy is adequate for a strongly rarefied gas only 
(Desvillettes and Villani 2005). It is less adequate in the general case.

Special care should be taken when discussing the possibilities of the application of 
the concept of entropy to the universe as a whole (Tolman 1931; Patel and Lineweaver 
2017). This is important in the light of the prediction made by James Jeans long ago: 
“The second law of thermodynamics compels materials in the universe to move ever 
in the same direction along the same road which ends only in death and annihilation” 
(Jeans 1929).

However, Boltzmann’s derivation works equally well in both directions of time. 
Thus, the H-theorem cannot be established in full measure on the basis of the dynamical 

(27)f (2)(r1, v1, r2, v2, t) = f (r1, v1, t)f (r2, v2, t).

(28)H = ∫ ∫ f (r, v, t) ln f (r, v, t)drdv.

(29)
dH

dt
≤ 0.

(30)
dH

dt
= 0, if f (r, v, t) = f0(r, v),

(31)S = kB lnW,
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laws. This subject is well explored, and we refer to the literature (Sklar 1993; Mackey 
1992; Brown et  al. 2009; Wu 1969; Hoffman and Green 1965; Bogoliubov 1962; Lee 
and Wu 1973; Wu 1975; Cercignani 1982, 1988, 2006) for further reading.

In 1950, Schrödinger published a remarkable article entitled “Irreversibility” 
(Schrödinger 1950). It may be considered as an addendum to his notable short book 
(Schrödinger 1946). The article (Schrödinger 1950) contains an interesting discussion 
of the concept (or notion) of irreversibility. Schrödinger writes: It may seem an audac-
ity if one undertakes to proffer new arguments in respect of a question about which 
there has been for more than eighty years so much passionate controversy, some of the 
most eminent physicists and mathematicians siding differently or favouring opposite 
solution...It is sometimes believed that only quantum mechanics, or some processes of 
thought borrowed from it, give the final clue to the problem. I wish to show here that 
this is wrong and that the solution given previously can be defended against the last 
objection...I do not wish to derive irreversibility at all. I wish to reformulate the laws of 
phenomenological irreversibility, thus certain statements of thermodynamics, in such 
a way, that the logical contradiction any derivation of these laws from reversible mod-
els seems to involve ...will be removed and ...in what manner you have to reformulate 
the law of entropy—or for that matter all other irreversible statements—so that they be 
capable of being derived from reversible models.

Schrödinger pointed out the essence of the discussion: “This objection, in short, is 
this: a proof that a reversible model shows an irreversible behavior, i.e. that it nearly 
always exhibits a temporal succession of observable states which it almost never passes 
through in the reverse order of time—such a proof needs must be at fault some where. 
The problem before us here is not actually to derive irreversibility say, the increase of 
entropy with time—from any kind of general or special reversible model. Not from a 
general one: for it is hardly possible to devise a model general enough not only to com-
prise all kinds of physical events but also to anticipate all changes the reversible theo-
ries of physics may undergo in future, and to be inviolable to any such change...No such 
derivation can avoid introducing right at the outset a time variable t...if the model is 
reversible, any general behavior you rightfully infer for increasing t, must also hold for 
decreasing t. In other words it must be an invariant of the transformation t� = −t . Hence 
our task is to formulate all statements about irreversibility in such a fashion that they are 
invariant to the said transformation. At first sight it would seem that phenomenologi-
cal time can have nothing to do with the variable t. It could not be defined by t. And it 
could not be defined by −t . This is true. And if you unite these statements and say it can 
be defined neither as t, nor as −t , that is also true. We shall see however that it can be 
defined as “either t or -t.”

What is important is that Schrödinger discusses the problem of irreversibility as a char-
acteristic common to quantum mechanics, thermodynamics, and statistical mechanics. 
Schrödinger formulated it as: “...the very spirit of quantum mechanics, combined with 
that of thermodynamics, forbids us even to think of such observations taking place, if—as 
has often to be assumed—the system is isolated from the rest of the world in the interval 
between the two observations.” It is of interest to compare this statement with the conclu-
sions of well-known notable works (Einstein et al. 1931; Aharonov et al. 1964).

Denbigh devoted close attention to the work of Schrödinger (1950) in his essay review 
(Denbigh 1996) of the book Time’s Arrows Today (Savitt 1995). Denbigh pointed out that 
the second law can be formulated in a way which makes no separate reference to “earlier 
than” or “later than.” This was done by Schrödinger when he worked in Dublin ...He con-
siders the limit dS∕dt ≥ 0 , which is usually understood as the statement of the second law. 
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And it also expresses time’s arrow in terms of entropy increase. Denbigh concludes with 
the statement that it is the parallelism of the entropy changes that provides an objective 
statement of the second law, just as much as that higher-entropy states occur later in con-
sciousness. In his opinion, the concept of entropy is less significant than that of irrevers-
ibility, for there are several processes that are irreversible without being entropic with any 
certainty (Denbigh 1989a, b). Also it is the notion of irreversibility that directs our atten-
tion to where the “arrow” of time is really to be seen. It lies in the fact that no processes 
exist that can be completely reversed when all effects on the environment, however small, 
are allowed for, and when exceedingly improbable fluctuations are disregarded. In short, 
there is a prevailing irreversibility in the world.

In Denbigh’s (1996, 1989a, b) opinion, irreversibility is a much broader concept than is 
entropy increase, as is shown by the occurrence of certain processes which are irreversible 
without seeming to involve any intrinsic entropy change. These processes are of differ-
ent kinds; they include, for example, the spreading outwards into space of particles, or of 
radiation, and they also include certain biological and natural phenomena (Roduner and 
Radhakrishnan 2016; Zurek 2018); For example, Davis (1994) studied RNA replication in 
the bacteriophage Q� system. It can, in principle, transmit sequence complexity at a higher 
rate than it increases entropy. He found that expanding the variety of nucleotides, through 
novel base-pair interactions, would move the threshold at which synthesis produces 
more complexity than entropy away from near equilibrium while accelerating the system 
approach to equilibrium. A decrease in sequence complexity during polymerization, lead-
ing to a many-to-one correspondence between monomer and template, cannot be reversed, 
owing to symmetry restrictions. In terms of the kinetic mechanism, uncertainty was associ-
ated with the path of depolymerization, which yields a path entropy which selectively pro-
longs the reverse reaction. He concluded that, together with an elevation in thermodynamic 
entropy, therefore, there are two possible sources of irreversibility in a physical process. 
Some implications of kinetic irreversibility were considered in relation to the second law of 
thermodynamics and to the processing and translation of mRNA.

It is worth recalling (England 2013) that every species of living thing can make a copy 
of itself by exchanging energy and matter with its surroundings. One feature common to all 
such examples of spontaneous “self-replication” is their statistical irreversibility. Self-rep-
lication is a capacity common to every species of living thing, and simple physical intui-
tion dictates that such a process must invariably be fueled by the production of entropy. 
In the paper by England (2013), this process was investigated quantitatively by deriving a 
lower bound for the amount of heat that is produced during a process of self-replication in 
a system coupled to a thermal bath. It was found that the minimum value for the physically 
allowed rate of heat production is determined by the growth rate, internal entropy, and 
durability of the replicator, and the implications of this finding for bacterial cell division 
were discussed, as well as for the prebiotic emergence of self-replicating nucleic acids.

Zivieri et al. (2017) pointed out that, in living systems, it is crucial to study the exchange 
of entropy that plays a fundamental role in the understanding of irreversible chemical reac-
tions. However, no works that can describe the rate of entropy production associated with 
irreversible processes in a systematic way are available. The authors developed a theoreti-
cal model to compute the rate of entropy production in the minimum living system. In 
particular, they applied the model to the most interesting and relevant case of a metabolic 
network, namely glucose catabolism in normal and cancer cells. The authors showed that: 
(i) the rate of internal entropy is mainly due to irreversible chemical reactions, and (ii) the 
rate of external entropy is mostly correlated with the heat flow towards the intercellular 
environment. The future applications of their model could be of fundamental importance 
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for a more complete understanding of self-renewal and physiopathologic processes and 
could potentially provide support for cancer detection.

However, irreversibility has some common features; namely, it develops in the temporal 
direction towards the future. In other words, irreversibility is the spreading out of all forms 
of trajectories, new entities, or new states in one direction.

It is instructive to discuss this matter in the context of previous observations regard-
ing irreversibility with an emphasis on the mixing partial order for macrostates. This 
was performed by Denbigh (1989a, b) in his paper “The many faces of irreversibility.” 
He observed that “What appears to be the common feature of irreversibility is the fan-
ning out of trajectories, new entities or new states, in the temporal direction towards the 
future.” Grad discussed some aspects of these general ideas in his paper “The many faces 
of entropy” from a mathematical point of view. Denbigh also suggested that there are three 
distinct forms for the divergent quality of the trajectories: (a) a branching towards a greater 
number of distinct kinds of entities, (b) a divergence from each other of particle trajectories 
or of sections of wavefronts, and (c) a spreading over an increased number of states of the 
same entities.

Denbigh (1996, 1989a, b) conjectured that any effect in nature is always the result of 
the dynamic balances of the interactions between the open systems and their environment, 
and the exchange of energy drives some behavior of natural systems; i.e., their evolution is 
driven by the decrease of their free energy in the least time. Exergy is defined as the maxi-
mum amount of work obtainable by a system as it comes to equilibrium with its reference 
environment. It thus represents a measure of the ability of a system to cause changes, due 
to its noncomplete stable equilibrium, in relation to the reference environment. From the 
other side, entropy production may be thought of as the standard gauge of irreversibility. 
However, as keenly noted by Denbigh, many processes are irreversible but apparently do 
not result in significant entropy production. In this regard, it should be kept in mind that it 
is possible to make a distinction between entropy production and irreversibility in nonequi-
librium thermodynamics.

There are a diversity of approaches to the description of irreversibility (Zubarev 1974; 
Kuzemsky 2017; Dorfman 1999; Zwanzig 2001; McLennan 1989; Gallavotti 2014). It is 
important to mention the fundamental works of Prigogine and his group (Prigogine 1999; 
Petrosky and Prigogine 2000; Karakostas 1996; Bishop 2004) on the microscopic origin 
of irreversibility. Using extensions of the traditional Hilbert space and Poincaré’s noninte-
grability, new formulations of the laws of dynamics which can be expressed only in terms 
of probabilities (and not in terms of trajectories or wavefunctions) and which include time 
symmetry breaking were obtained. The fundamental problem on which Prigogine and his 
group have focused can be stated briefly as follows: Our observations indicate that there is 
an arrow of time in our experience of the world (e.g., decay of unstable radioactive atoms 
like uranium, etc.) Most of the fundamental equations of physics are time reversible, how-
ever, presenting an apparent conflict between our theoretical descriptions and experimental 
observations. Many have thought that the observed arrow of time was either an artifact of 
our observations or due to very special initial conditions. An alternative approach, followed 
by the Prigogine and his group, is to consider the observed direction of time to be a basic 
physical phenomenon due to the dynamics of physical systems. The fundamental concerns 
are the same as in their earlier approaches (subdynamics, similarity transformations), but 
the contemporary approach utilizes rigged Hilbert space (whereas the older approaches 
used Hilbert space). While the emphasis on nonequilibrium statistical mechanics remains 
the same, their more recent approach addresses the physical features of large Poincaré sys-
tems, nonlinear dynamics, and the mathematical tools necessary to analyze them.
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Hao Ge (2014) investigated the nonequilibrium thermodynamics of a general second-
order stochastic system. He showed that, at a steady state, under inversion of velocities, 
the condition of time reversibility over the phase space is equivalent to the antisymmetry 
of spatial flux and the symmetry of velocity flux. He then showed that the condition of 
time reversibility alone cannot always guarantee the Maxwell–Boltzmann distribution. The 
author compared the two conditions together and found that the frictional force naturally 
emerges as the unique odd term of the total force at a thermodynamic equilibrium, and is 
followed by the Einstein relation. The two conditions respectively correspond to two previ-
ously reported different entropy production rates. In the case where the external force is 
only position dependent, the two entropy production rates become one. Hao Ge concluded 
that such an entropy production rate can be decomposed into two nonnegative terms, 
expressed respectively by the conditional mean and variance of the thermodynamic force 
associated with the irreversible velocity flux at any given spatial coordinate. In the small 
inertia limit, the former term becomes the entropy production rate of the corresponding 
overdamped dynamics, while the anomalous entropy production rate originates from the 
latter term. Furthermore, regarding the connection between the first law and second law, 
Hao Ge found that, in the steady state of such a limit, the anomalous entropy production 
rate is also the leading order of the Boltzmann-factor weighted difference between the spa-
tial heat dissipation densities of the underdamped and overdamped dynamics, while their 
unweighted difference always tends to vanish.

An interesting aspect of the problem of irreversibility was considered by Baldovin 
et al. (2019). With the aid of simple analytical computations for the Ehrenfest model, they 
clarified some basic features of macroscopic irreversibility. The stochastic character of the 
model allowed them to give a nonambiguous interpretation of the general idea that irre-
versibility is a typical property: for the vast majority of the realizations of the stochastic 
process, a single trajectory of a macroscopic observable behaves irreversibly, remaining 
“very close” to the deterministic evolution of its ensemble average, which can be computed 
using probability theory. The validity of the above scenario was checked through simple 
numerical simulations, and a rigorous proof of the typicality was provided in the thermo-
dynamic limit (Kuzemsky 2014).

Biological systems open new perspectives for studying entropy and irreversibility 
(Strong et  al. 1998; Buskermolen et  al. 2019). The interaction between the open system 
and its environment, and the exchange of energy drives some specific behavior of natural 
systems (Zurek 2018). As a result of such interaction, the temporal direction towards the 
future, i.e., irreversibly, may be developed. Biological systems and processes are open sys-
tems with mass, energy, entropy, and information fluxes across their boundaries, for exam-
ple, the evolution of a population (Demetrius 1997) and other similar complex systems 
in which irreversible phenomena are not accompanied by changes of entropy. The use of 
traditional approaches is not so obvious in living systems. Time irreversibility, a funda-
mental property of nonequilibrium systems, should be important in assessing the status of 
physiological processes that operate over a wide range of scales. However, measurements 
of these properties in living systems are rather limited. Costa et al. (2005) considered the 
problems of the broken asymmetry of the human heartbeat and the loss of time irrevers-
ibility in aging and disease. They provided a computational method derived from basic 
physics assumptions to quantify time asymmetry over multiple scales and applied it to the 
human heartbeat time series in health and disease. They found that the multiscale time 
asymmetry index is highest for a time series from young subjects but decreases with aging 
or heart disease. Loss of time irreversibility may provide a new way of assessing the func-
tionality of living systems that operate far from equilibrium.
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Lineweaver and Egan (2008) investigated the global (and controversial) problem of the 
cosmic evolution of entropy and the gravitational origin of the free energy required by life. 
All dissipative structures in the universe, including all forms of life, owe their existence 
to the fact that the universe started in a low-entropy state and has not yet reached equilib-
rium. The low initial entropy was due to the low gravitational entropy of the nearly homo-
geneously distributed matter and has, through gravitational collapse, evolved gradients in 
density, temperature, pressure, and chemistry. These gradients, when steep enough, give 
rise to far from equilibrium dissipative structures (e.g., galaxies, stars, black holes, hur-
ricanes, and life) which emerge spontaneously to hasten the destruction of the gradients 
which spawned them. This represents a paradigm shift from “we eat food” to “food has 
produced us to eat it.”

7  Quantum Systems and Quantum Entropy

Symmetries play a fundamental role in our understanding of physics and, in particular, 
in quantum mechanics. The problem of time invariance and time asymmetry (Kuzemsky 
2017; Lewis 1930; Sachs 1987; Schwichtenberg 2018; Geru 2018; Einstein et  al. 1931; 
Aharonov et al. 1964) in quantum mechanics has stood for a long time. Common wisdom 
says that quantum systems are developed in time by unitary evolution, so no arrow of 
time appears. However, measurement is time asymmetric, and information is lost. Penrose 
(1979) remarked that “...in my attitude to quantum mechanics ...it contains no manifest 
arrow, and the solution to the problem of macroscopic time asymmetry must be sought 
elsewhere.” The debates on this problem still persist (Peres 1994; Aharonov et al. 2010; 
Nauenberg 2011; Kastner 2011).

In quantum mechanics (Jauch 1968; Piron 1976; Kuzemsky 2017), the state of a system 
is characterized by a state vector in Hilbert space H that contains all the relevant informa-
tion. The states that can be represented as state vectors are called pure states. However, 
not all states can be represented in this way. In practice, there are situations in which the 
information is incomplete and one has resort to the notion of a mixed ensemble in which 
we do not know the state vector of each member; in this case, the density matrix (or den-
sity operator � ) formalism (ter Haar 1961) is appropriate. A mixed ensemble can be set up 
in terms of the eigenfunctions of any observable, but usually it was assumed that they are 
the energy eigenfunctions. This mixed ensemble is the quantum-mechanical analog of the 
classical distribution in energy. Thus, the expectation value of an observable, A, given the 
density operator � , is

The density operator is particularly important for the treatment of open systems. Indeed, 
when a system interacts with others systems, a description with a state vector is impossible. 
It is convenient to separate a selected subsystem H1 which is of primary interest from the 
entire system H. In such a case, we are interested in only a part of the total system. This can 
be done, for example, with the aid of the projection technique (Kuzemsky 2017).

Aharonov, Bergmann, and Lebowitz in their paper “Time symmetry in the quantum pro-
cess of measurement” (Aharonov et al. 1964) declared that “One of the perennially chal-
lenging problems of theoretical physics is that of the ‘arrow of time’...all the “microscopic” 
laws of physics ever seriously propounded and widely accepted are entirely symmetric with 
respect to the direction of time; they are form-invariant with respect to time reversal.”

(32)⟨A⟩ = Tr(A�).
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Aharonov et al. (1964) examined the assertion that the “reduction of the wave packet,” 
implicit in the quantum theory of measurement, introduces into the foundations of quantum 
physics a time-asymmetric element, which in turn leads to irreversibility. They argued (Aha-
ronov et al. 1964) that this time asymmetry is actually related to the manner in which statis-
tical ensembles are constructed. If one constructs an ensemble time symmetrically by using 
both initial and final states of the system to delimit the sample, then the resulting probability 
distribution turns out to be time symmetric as well. According to the authors (Aharonov 
et al. 1964), the conventional expressions for prediction as well as those for “retrodiction” 
may be recovered from the time-symmetric expressions formally by separating the final (or 
the initial) selection procedure from the measurements under consideration by sequences of 
“coherence destroying” manipulations. We can proceed from this situation, which resembles 
prediction, to true prediction (which does not involve any postselection) by adding to the 
time-symmetric theory a postulate which asserts that ensembles with unambiguous prob-
ability distributions may be constructed on the basis of preselection only.

The authors (Aharonov et al. 1964) argued that, if the validity of this postulate and the 
falsity of its time reversal result from the macroscopic irreversibility of our universe as 
a whole, then the basic laws of quantum physics, including those referring to measure-
ments, are as completely time symmetric as the laws of classical physics. As a by-product 
of their analysis, it was also shown that, during the time interval between two noncom-
muting observations, one may assign to a system the quantum state corresponding to the 
observation that follows with as much justification as it was assigned, ordinarily, the state 
corresponding to the preceding measurement. Additional discussion of time reversal, sym-
metry violation, and the H-theorem was carried out by Aharony (1971).

Jacobs and Maes (2005) pointed out that the discussion on time reversal in quantum 
mechanics has continued at least since Wigner’s “Über die Operation der Zeitumkehr in der 
Quantenmechanik” paper in 1932. If and how the dynamics of the quantum world is time-
reversible has been the subject of many controversies. Some have seen quantum mechanics 
as fundamentally time-irreversible (see, for example, von Neumann), while some have seen 
in that the ultimate cause of time’s arrow and second law behavior. Penrose (1989) argued 
similarly and concluded that “our sought-for quantum gravity must be a time-asymmetric 
theory.”

There is a project (Jacobs and Maes 2005) to extend quantum mechanics into new fun-
damentally irreversible equations, thus proposing a new theory giving “... une description 
fondamentale irréversible de tout système physique.” Jacobs and Maes (2005) carried out 
a review of a number of general points on this difficult problem that were less emphasized 
in existing literature. They also described the emergence of thermodynamic irreversibility.

When a state in quantum systems is described by a density operator � , on a Hilbert 
space H , then for a state � ∈ �(H) , the quantum entropy (Breuer and Petruccione 2002) 
will be given by the expression

The main properties of entropy S(�) can be summarized in the following form: For any 
density operator � ∈ �(H) , the following hold:

– Positivity: S(�) ≥ 0

– Symmetry: Let �� = U−1�U for an invertible operator U, ↣ S(��) = S(�)

– Additivity: S(𝜌1 ⊗ 𝜌2) = S(𝜌1) + S(𝜌2) for any �i ∈ �(H)

– Concavity: S(��1 + (1 − �)�2) ≥ �S(�1) + (1 − �)S(�2) for any �1, �2 ∈ �(H)

(33)S(�) = −tr� log �.
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– Subadditivity: For the reduced states �1, �2 of 𝜌 ∈ �(H⊗H2) , S(�) ≤ S(�1) + S(�2).

The introduction of entropy into quantum mechanics gives in a compact form all the classi-
cal definitions of entropy. The temporal evolution of the von Neumann entropy is governed 
by the Liouville–von Neumann equation (Zubarev 1974; Kuzemsky 2017) for isolated 
quantum systems. A detailed discussion of the von Neumann entropy and its properties 
was summarized by Kuzemsky (2015) in the context of variational principles for the free 
energy of complex many-particle interacting systems. This paper (Kuzemsky 2015) also 
discusses the variational inequalities, including Klein’s inequality. The corresponding theo-
rem (Kuzemsky 2015) states that, for A,B > 0,

with equality if and only if (A = B).
In a more general form, the Klein inequality may be formulated in the following way:
For all A,B ∈ �n and all differentiable convex functions f ∶ ℝ → ℝ , or for all 

A,B ∈ �
†
n
 and all differentiable convex functions f ∶ (0,∞) → ℝ,

In either case, if f is strictly convex, there is equality if and only if A = B.
Actually, S(�) is not only a strictly concave function of the eigenvalues of � ; it is also a 

strictly concave function of � itself. The concavity property is useful in various problems of 
statistical thermodynamics (Prestipino and Giaquinta 2003).

It is well known that many difficulties with the probabilistic interpretation of quantum 
theory are related to the off-diagonal elements of the density operator. The irreversible 
state reduction to the diagonal form is a fundamental problem in statistical mechanics and 
in measurement theory. In 1929, von Neumann claimed to have proved the H-theorem in 
quantum mechanics without the assumptions necessary in classical physics.

Whether or not irreversibility may be an element common to quantum dynamics and 
the quantum-mechanical measurement process (Belinfante 1975; Wheeler and Zurek 1983; 
Schulman 1997; Omnes 2002; Schlosshauer 2004, 2007) is still disputable. Farinelli and 
Gamba (1956) considered further the problem of explaining macroscopic irreversibility 
from reversible microscopic laws. They carried out a critical discussion from a physical 
standpoint of the proof of the second principle of thermodynamics in quantum mechanics 
given by von Neumann. It was shown how information theory allows a much more satis-
factory physical interpretation. They considered the problem from the beginning, starting 
from the point of view that entropy is nothing but a measure of our ignorance of the state 
of a system.

Bonifacio (1983) demonstrated that a proper coarse-grained description of time evolu-
tion leads to a finite-difference equation with step � for the density operator. This implies 
state reduction to the diagonal form in the energy representation and a quasiergodic 
behavior of quantum-mechanical ensemble averages. An intrinsic time–energy relation 
��E ≥ ℏ∕2 was proposed, and its equivalence to a time quantization discussed.

Indeed, in the von Neumann approach, the process of measurement can be described 
as a determination of statistical correlations between the state of the object and that of 
the measuring apparatus. The measurement process (Belinfante 1975; Wheeler and Zurek 
1983; Schulman 1997) in quantum mechanics involves a system and the apparatus, which 
interact at some time and should then be separated. Hence, the system under consideration 

(34)TrA(logA − logB) ≥ Tr(A − B),

(35)Tr
(
f (A) − f (B) − (A − B)f �(B)

) ≥ 0.
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is not isolated, i.e., is open, whereas the von Neumann entropy is invariant under the uni-
tary dynamics. In other words, the changes in the entropy of the system during the meas-
urement process should be estimated very carefully (Wheeler and Zurek 1983; Omnes 
2002; Schlosshauer 2004, 2007). Even if the quantum measurement process is irreversible, 
such irreversibility is not quantified by an increase of the von Neumann entropy; For exam-
ple, any nondegenerate rank-one projective quantum measurement over an initial mixed 
state (hence, with strictly positive von Neumann entropy) reduces the final state (condi-
tional on the known measurement result) to a pure state, which has zero von Neumann 
entropy. Even if one compares the initial von Neumann entropy with the weighted final 
entropy (corresponding to performing a measurement and ignoring the result), the latter 
can be lower then the former, as follows from the concavity property. The simplest rela-
tion that can be put forward between the von Neumann entropy and a quantum measure-
ment process can be obtained by means of Klein’s inequality, which allows one to prove 
that the Shannon entropy corresponding to the probabilities pertaining to the measurement 
outcomes of a nondegenerate observable is always larger or equal to the von Neumann 
entropy. The equality is achieved by the measurement on the basis which diagonalizes the 
input state. Hence, the von Neumann entropy just measures the uncertainty of the initial 
state, which coincides with the indeterminacy of the best possible measurement.

Does von Neumann’s entropy correspond to thermodynamic entropy? This question has 
arisen in some papers in connection with von Neumann’s expression −kTr(� ln �).

von Neumann’s definition of entropy was analyzed thoroughly by Lebowitz and collabo-
rators (Goldstein et al. 2010) in the context of quantum statistical mechanics. They pointed 
out that, in his article of 1929, von Neumann studied the long-time behavior of macro-
scopic quantum systems and proved a theorem, which he called the “quantum ergodic 
theorem.” According to Lebowitz et al. (Goldstein et al. 2010), it expresses a fact which 
they called “normal typicality” and which can be summarized as follows: for a “typical” 
finite family of commuting macroscopic observables, every initial wavefunction �0 from 
a microcanonical energy shell evolves such that, for most times t in the long run, the joint 
probability distribution of these observables obtained from �t is close to their microcanoni-
cal distribution.

The approach to thermal equilibrium of macroscopic quantum systems has been studied 
recently by many authors (Goldstein et al. 2010; Reimann 2010). Lebowitz et al. (Gold-
stein et al. 2010) considered an isolated macroscopic quantum system. They proved a theo-
rem asserting that, for a sufficiently large quantum system with a typical Hamiltonian and 
an arbitrary initial state �0 , the system’s state �t spends most of the time, in the long run, 
in thermal equilibrium. In other words, for “typical” Hamiltonians with given eigenvalues, 
all the initial state vectors �0 evolve in such a way that �t is in thermal equilibrium for most 
times t. This result is closely related to von Neumann’s quantum ergodic theorem of 1929.

Reimann (2010) studied a related problem: how to derive the equilibrium statistical 
mechanics, namely the canonical ensemble, from quantum mechanics in combination with 
certain, very weak assumptions regarding the preparation, observables, and Hamiltonian 
of the system, i.e., in the context of canonical thermalization. The quantum-mechanical 
time evolution generated by the Hamiltonian was not to be touched in any way, neither by 
heuristically modifying it to account for small remnant external perturbations, nor by intro-
ducing any kind of approximation. In other words, the well-known time-inversion invari-
ance of quantum mechanics was fully and rigorously maintained. For quantum systems 
that are weakly coupled to a much “bigger” environment, thermalization of possibly far 
from equilibrium initial ensembles was demonstrated. This means that, for sufficiently long 
times, the ensemble is for all practical purposes indistinguishable from a canonical density 
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operator under conditions that are satisfied under many, if not all, experimentally realistic 
conditions.

Deville and Deville (2013) thoroughly discussed the above-mentioned debate about 
the link of the von Neumann or statistical entropy with the entropy of phenomenologi-
cal thermodynamics. Referring to Gibbs’s and von Neumann’s founding texts, they placed 
von Neumann’s 1932 contribution in its historical context, after Gibbs’s 1902 treatise and 
before the creation of the information entropy concept, which places boundaries on the 
debate. Reexamining von Neumann’s reasoning, they stressed that the part of his reasoning 
implied in the debate mainly uses thermodynamics, not quantum mechanics, and identi-
fied two implicit postulates. Deville and Deville (2013) thoroughly examined the critical 
papers, insisting upon the presence of open thermodynamical subsystems, imposing the 
use of the chemical potential concept. The authors briefly mentioned Landau’s approach 
(Landau and Lifshitz 1980) to the quantum entropy. On the whole, it was shown that von 
Neumann’s viewpoint is right, and the claim that von Neumann entropy “is not the quan-
tum-mechanical correlate of thermodynamic entropy” cannot be retained.

Lesovik et al. (2016) analyzed the H-theorem in quantum physics from the point of view 
of the theory of information. Indeed, remarkable progress on quantum information theory 
allowed the formulation of mathematical theorems for conditions where data transmission 
or processing occurs with a nonnegative entropy gain. However, the relation of these results 
formulated in terms of entropy gain in quantum channels to the temporal evolution of real 
physical systems was not fully understood. The authors used the mathematical formalism 
provided by quantum information theory to formulate the quantum H-theorem in terms of 
physical observables. They discussed the manifestation of the second law of thermody-
namics in quantum physics and uncovered special situations where the second law may be 
violated. They further demonstrated that the typical evolution of energy-isolated quantum 
systems occurs with nondiminishing entropy. For further discussion, see Gudder (2006).

These studies clearly show that the concepts of thermodynamic entropy, quantum 
entropy, and information entropy are tightly interrelated and should be used with great care 
(Zubarev 1974; Kuzemsky 2016, 2018; Kozlov and Smolyanov 2006; Jaynes 1957a, b; 
Landauer 1975; Maes and Netocny 2003). This is of special importance in the connection 
with the problem of time asymmetry from the quantum viewpoint.

In his detailed survey, Zeh (2007) investigated diverse irreversible phenomena and their 
foundation in classical, quantum, and cosmological settings. The latter aspect includes a 
discussion of the meaning of probabilities (Kuzemsky 2016) in a cosmological context. 
The irreversible aspects of quantum computers, and various consequences of the expansion 
of the universe, were considered as well. In particular, the book contains an analysis of the 
physical concept of time, a detailed treatment of radiation damping, as well as extended 
sections on quantum entanglement and decoherence (see also Omnes 2002; Elze 2004; 
Schlosshauer 2004, 2007), arrows of time hidden in various interpretations of quantum 
theory, and the emergence of time in quantum gravity. Zeh conjectures that time asymmetry 
lies in the initial (or final) conditions rather than in the dynamical laws. He also considered 
the controversial issue of “the quantization of time” in the context of quantum cosmology.

Zurek (2018) recently carried out a deep analysis of related questions. According to 
Zurek, a system in equilibrium does not evolve—time independence is its telltale charac-
teristic. However, in Newtonian physics, the microstate of an individual system (a point in 
its phase space) evolves incessantly in accordance with its equations of motion. Ensembles 
were introduced in the 19th century to bridge this chasm between the continuous motion 
of phase space points in Newtonian dynamics and the stasis of thermodynamics: While 
states of individual classical systems inevitably evolve, a phase space distribution of such 
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states—an ensemble—can be time-independent. Zurek conjectured that entanglement (e.g., 
with the environment) can yield a time-independent equilibrium in an individual quan-
tum system. This allows one to eliminate ensembles—an awkward stratagem introduced 
to reconcile thermodynamics with Newtonian mechanics—and use an individual system 
interacting and therefore entangled with its heat bath to represent equilibrium and to elu-
cidate the role of information and measurements in physics. Thus, according to Zurek, in 
our quantum universe, one can practice statistical physics without ensembles—hence, in a 
sense, without statistics. The elimination of ensembles uses ideas that led to the recent der-
ivation of Born’s rule from the symmetries of entanglement. Zurek (2018) also discussed 
difficulties related to the reliance on ensembles and illustrated the need for ensembles with 
the classical Szilard engine. A similar quantum engine—a single system interacting with 
the thermal heat bath environment (see Kuzemsky 2017, 2018)—is enough to establish 
thermodynamics. The role of Maxwell’s demon (which in this quantum context resembles 
Wigner’s friend) was also discussed.

Zurek’s conclusions suggested a few questions. First of all, it should be noted that simi-
lar problems were discussed by Blokhintsev (1977) from a complementary point of view 
(Kuzemsky 2008). Blokhintsev studied the same questions: What is the origin of those 
phenomenological, deterministic laws that approximately control the quasiclassical region 
of our everyday experience in a universe controlled at the fundamental level by quantum-
mechanical laws characterized by uncertainty and probability distribution? What character-
istic features and limits of applicability of these classical laws can be traced to underlying 
quantum-mechanical concepts.

A detailed analysis of the ensemble approach to the probabilistic postulates of quantum 
mechanics was performed by Blokhintsev (1977) in the context of the description of quan-
tum measurements.

Note that it was believed that the Gibbs distribution can be deduced asymptotically from 
the general principles of mechanics under the assumption that the system is ergodic. How-
ever, no rigorous derivation, except for the case of a vanishingly small interaction, has been 
obtained. It was shown rigorously by Kozlov (2000) that the Gibbs canonical distribution 
(Gibbs ensemble) is the only universal one whose density depends on energy and that is 
compatible with the axioms of thermodynamics.

In this context, it is worth mentioning the approach of Galgani and collaborators 
(Carati and Galgani 2001; Carati et  al. 2006). Carati, Galgani, and Giorgilli formulated 
their approach to the reconciliation of thermodynamics with mechanics in their paper 
“Dynamical systems and thermodynamics.” In connection with the foundations of statisti-
cal mechanics, the relations between thermodynamics and dynamics were considered in 
the context of the fact that, in quantum mechanics, equipartition should be replaced by 
Planck’s law (Carati and Galgani 2001; Carati et al. 2006).

It was argued above that irreversibility is one of the most complicated concepts in ther-
modynamics and statistical physics. Microscopic physical laws are symmetric in time, but 
macroscopic average behavior has in many cases a preferred direction of time. According 
to the second law of thermodynamics, this asymmetry of time is associated with a positive 
mean entropy production.

Entropy and entropy generation in the nonequilibrium steady state have been treated 
in a number of papers on nonequilibrium statistical thermodynamics (Kuzemsky 2018; 
Zubarev 1974; Kuzemsky 2007, 2017). This quasi-Gibbs approach assigns entropy the 
same role as in equilibrium statistical mechanics; however, entropy represents a lack of 
information, and is maximized subject to constraints imposed on the system (Jaynes 1957a, 
b).
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The laws of classical mechanics are independent of the direction of time, but whether 
the same is true in quantum mechanics has been a subject of long debate. While it is agreed 
that the laws that govern isolated quantum systems are time-symmetric, measurement 
changes the state of a system according to rules that only seem to work forward in time, 
and there is difference in opinion about the interpretation of such effects. Oreshkov and 
Cerf (2015) attempted to formulate a time-symmetric version of quantum theory which 
establishes a close link between this asymmetry and the fact that we can remember the past 
but not the future, i.e., a phenomenon that has sometimes been called the psychological 
arrow of time. The idea that our choices at present can influence events in the future but not 
in the past is reflected in the rules of standard quantum theory as the principle of causality. 
The study offers some new insights into the concepts of free choice and causality, and con-
jectures that causality may not be considered as a basic principle of physics. It also extends 
a theorem in quantum mechanics due to Wigner (Kuzemsky 2017), pointing to new direc-
tions for the search for physics beyond the known models.

Oreshkov and Cerf (2015) reconsidered the operational formulation of time reversal in 
quantum theory. It was widely believed that the most general symmetry transformations in 
quantum theory correspond to unitary or anti-unitary transformations on the Hilbert space 
(Kuzemsky 2017; Belinfante 1975; Sachs 1987), with symmetries involving time rever-
sal being anti-unitary. This has profound implications for many phenomena, such as the 
classification of possible elementary particles. The joint transformation of charge conju-
gation, parity inversion, and time reversal, defined according to this principle, is consid-
ered an exact symmetry of all known physical laws. However, it has been recognized that 
Born’s rule, which describes the probabilities for the outcomes of future measurements 
conditional on past preparations, does not apply for events in the reverse order. This is in 
conflict with the very definition of symmetry underlying the above assertions. Moreover, 
because the operational interpretation of a quantum state is directly linked to Born’s rule, 
this raises doubts about whether the commonly accepted notion of a time-reversed state 
makes physical sense. Oreshkov and Cerf (2015) addressed this problem from a rigorous 
operational perspective, using the circuit framework for operational probabilistic theories, 
which has been shown to successfully formalize the informational foundations of quantum 
theory. The authors argued that reconciling time reversal with the probabilistic rules of the 
theory requires a generalized notion of operation, defined without assumptions on whether 
the implementation of an operation involves pre- or postselection. In this approach, opera-
tions are not expected to be up to the “free choices” of agents, but merely describe knowl-
edge about the possible events taking place in different regions, conditional on information 
obtained locally. The authors developed the generalized formulation of quantum theory 
that stems from this approach and showed that it has a new notion of state space that is 
not convex. They formulated a precise definition of time-reversal symmetry, taking into 
account the different nature of states and effects, which had been overlooked in previous 
treatments. As a result, the authors succeeded in proving an analog of Wigner’s theorem, 
which characterizes all possible symmetry transformations in this time-symmetric formula-
tion of quantum theory.

The irreversible behavior of a quantum-mechanical system was confirmed experi-
mentally for the first time by Batalhao et  al. (2015). They found that thermodynamic 
irreversibility persists in a quantum system. Physicists have performed an experiment 
confirming that thermodynamic processes are irreversible in a quantum system—mean-
ing that, even on the quantum level, you cannot reverse the process back. In the experi-
ment, a sample of liquid chloroform ( CHCl3 ) was placed at the center of a supercon-
ducting magnet inside a nuclear magnetic resonance magnetometer. Using a nuclear 
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magnetic resonance setup, forward and reverse magnetic pulses were applied to the 
sample, which drives the carbon nuclear spins out of equilibrium and produces irre-
versible entropy. The authors measured the nonequilibrium entropy produced in an 
isolated spin-1/2 system following fast quenches of an external magnetic field. It was 
demonstrated experimentally that it is equal to the entropic distance, expressed by the 
Kullback–Leibler divergence (Kuzemsky 2018), between a microscopic process and its 
time reversal. These results may have implications for understanding thermodynamics 
in quantum systems and may be useful for quantum information technologies.

8  Boundary Conditions and Asymmetry of Time

It is known that different choices of boundary conditions imply different physical mod-
els and their solutions; For example, the Hamiltonian of a quantum particle confined to 
a box involves a choice of boundary conditions at the box ends. Similarly, in a concrete 
system, the arrow of time may be the result of the form of the Hamiltonian (an explicit 
time dependence of the Hamiltonian) and the initial (or boundary) conditions (e.g., the 
choice of an initial equilibrium state). This will lead to the breakage of time symmetry 
and specifying the direction of that arrow. As regards the cosmological arrow of time, 
there is consensus that its origin lies in the primordial singularity. This statement pro-
vides an appropriate formal framework. However, in the literature, discussion continues 
on the natural boundary conditions that may lead to the observed arrows of time. Zeh 
(2007) conjectures that time asymmetry lies in the initial (or final) conditions rather than 
in the dynamical laws.

Don Page (1985) formulated his view on the asymmetry of time in the following 
words: “The temporal asymmetry of arrow of time of our world is one of the most strik-
ing facts of everyday experience and yet it is one of the deepest mysteries of physics 
...It would be seem very to give a physical explanation for the asymmetry, because all 
of the fundamental dynamical law of physics discovered so far are time asymmetric in 
the sense of being CPT invariant ...Physics has given a description of the arrow of time 
in the form of the second law of thermodynamics: the entropy of the universe or of any 
of its subsystems which become approximately isolated increases with time ...However, 
it is generally agreed that this is not a fundamental dynamical law governing the micro-
scopic evolution of the Universe but is rather a restriction on the boundary conditions 
which select the actual state for the universe from the many presumably allowed by the 
dynamical laws.”

The previous discussion shows that boundary conditions play an important role in 
the microscopic description of the evolution of quantum-mechanical and statistical-
mechanical systems. The retarded solutions play the special role in mathematical phys-
ics. Here we recall this by considering the formal scattering theory in quantum mechan-
ics, which was formulated by Gell-Mann and Goldberger (1953). The formal scattering 
theory elucidates the very important question of how the limiting processes (making 
the dimensions L of the system go to infinity and making the parameter � characterizing 
the switching on of the interaction go to zero) should be performed. What is remark-
able is that the result depends on the order in which these limits are taken. The order 
of the same limits is also of a great importance in nonequilibrium statistical mechanics 
(Zubarev 1974; Kuzemsky 2007, 2017).
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According to Gell-Mann and Goldberger (1953), in the quantum-mechanical descrip-
tion of scattering, the total Hamiltonian H of the colliding particles is divided into two 
parts K and V, where K is the Hamiltonian of the noninteracting particles and V is the 
interaction between them. It is assumed that V tends sufficiently rapidly to zero as the 
particles move apart. The quantity which should be calculated is the transition probabil-
ity per unit time from one free state to another.

The complete system is described by the Schrödinger equation

An important feature of the problem is that the interaction V exists at every moment of time, 
although the scattering process occurs between states without interaction. In the absence of 
the interaction, the Schrödinger equation has the form

and its stationary solutions are

It is necessary to calculate the differential effective cross section of scattering from the 
state �j to the state �i under the influence of the interaction V. The initial state �j is used 
for the characteristics of the true state �j of the real system. Knowing �j , we can find the 
probability that the system undergoes a transition to one of the final states �i by the time t.

It is important to discuss the question of how to formulate correctly the scattering boundary 
conditions to the Schrödinger equation. Let one observe the scattering process at time t = 0 . 
Then a physical procedure for preparing the quantum-mechanical state �j up to time t = 0 
when the transition occurs, i.e. for t < 0 , must be formulated mathematically.

The most convenient boundary condition is that the wavefunction �j for t < 0 is put equal 
to

where � → +0 at the end of the calculations. In the above formula a time-smoothing proce-
dure was performed, since

but the factor e�� distinguishes the past, and so the averaging (40) has a “causal” character. 
In addition to the limit � → +0 another limiting process L → ∞ must also be performed 
(the functions �i are normalized to unity in the large volume L3 ). The time t̃ of switch-
ing-on the interaction is �−1 on order of magnitude and cannot be greater than the time of 
propagation of the wave packet over a distance L , i.e., than the quantity L∕v , where v is the 
group velocity,

(36)iℏ
�� (t)

�t
= (K + V)� (t).

(37)iℏ
��(t)

�t
= K�(t),

(38)�i(t) = �ie
−

iEi t

ℏ .

(39)�
(�)

j
(t) = �∫

0

−∞

e��e
−

iH(t−�)

ℏ �j(�)d�,

(40)�∫
0

−∞

e��d� = 1,

𝜀−1 ≪ L∕v.
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Thus, when L−3
→ 0 and �−1 → ∞ , the quantity �−1L−3 must tend to zero. This means 

that we must first take the limit L3
→ ∞ , and then � → +0 . Together with this rule for the 

limits L → ∞ and � → +0 , the condition (39) ensures the selection of the correct retarded 
causal solutions of the Schrödinger equation. In fact, if 𝜀−1 < L∕v , then waves reflected 
from the boundaries of the system, i.e., incoming waves, are excluded, since the extent of 
the wave train in time, �−1 , is shorter than the time necessary for it to propagate over the 
distance L . The great convenience of the boundary condition (39) lies in the fact that the 
causality condition is imposed more automatically, without a detailed analysis of the out-
going waves. It is clear that its meaning also consists in the selection of the retarded solu-
tions. It can be shown (Gell-Mann and Goldberger 1953) that the boundary conditions for 
the quantum-mechanical collision problem can be formulated by means of the introduction 
of infinitesimally small sources selecting the retarded solutions of the Schrödinger equa-
tion. The boundary conditions selecting the retarded solutions of the Schrödinger equa-
tion in formal scattering theory (Gell-Mann and Goldberger 1953) can be obtained if one 
introduces into it, for t ≤ 0 , an infinitesimally small source violating the symmetry of the 
Schrödinger equation with respect to time reversal

where � → +0 after the volume of the system tends to infinity, and �(t) is the wavefunction 
of the free motion of the particles, with Hamiltonian K. The infinitesimally small source 
has been introduced in such a way that it is equal to zero when � (t) = �(t) , i.e., in the 
absence of the interaction. It does indeed violate the symmetry of the Schrödinger equa-
tion with respect to time reversal, since in this transformation the left-hand side of Eq. (41) 
changes sign while the right-hand side remains unchanged. The sign of � is chosen so that 
we obtain the retarded rather than advanced solutions.

It is possible to rewrite Eq. (41) in the form

where

Integrating this expression from −∞ to t, we have

Putting t = 0 , we obtain the scattering-theory boundary condition in the Gell–Mann–Gold-
berger form

A boundary condition analogous to Eq. (45) may be applied to the Liouville equation for 
the description of nonequilibrium processes (Zubarev 1974; Kuzemsky 2007, 2017). The 

(41)
���(t)

�t
−

1

iℏ
H��(t) = −�(��(t) −�(t)),

(42)
d

dt

(
e�t��(t, t) = �e�t�(t, t)

)
,

(43)��(t, t) = e−Ht∕iℏ��(t), �(t, t) = e−Ht∕iℏ�(t).

(44)
��(t) =�∫

t

−∞

d�e�(�−t)e−H(�−t)∕iℏ��(�)

=�∫
t

−∞

d�e��e−H�∕iℏ�((t + �)).

(45)��(0) = �∫
t

−∞

d�e��e−H�∕iℏ�(�).
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quantum Liouville equation, like the classical one, is symmetric under time-reversal trans-
formation. However, the solution of the Liouville equation is unstable with respect to small 
perturbations violating this symmetry of the equation. Let us consider the Liouville equa-
tion with an infinitesimally small source on the right-hand side

or equivalently

where (� → 0) after the thermodynamic limit. Equation (46) is analogous to the corre-
sponding equation of quantum scattering theory. The introduction of infinitesimally small 
sources into the Liouville equation is equivalent to the boundary condition

where t1 → −∞ after the thermodynamic limiting process. It was shown (Zubarev 1974; 
Kuzemsky 2007, 2017) that the operator �� has the form

Here the first argument of �(t, t) is due to the indirect time dependence via the parameters 
Fm(t) , while the second one is due to the Heisenberg representation. The required nonequi-
librium statistical operator is defined as (Zubarev 1974; Kuzemsky 2007, 2017)

Here, �q is the quasiequilibrium statistical operator. Hence, the nonequilibrium statistical 
operator can then be written in the form (Zubarev 1974; Kuzemsky 2007, 2017)

The method of the nonequilibrium statistical operator is a very useful tool to analyze and 
derive generalized transport and kinetic equations (Zubarev 1974; Kuzemsky 2017, 2007, 
2018). In the work of Kuzemsky (2017, 2007, 2018), the generalized kinetic equations for 
the system weakly coupled to a thermal bath have been derived. The aim was to describe 
the relaxation processes in two weakly interacting subsystems, one of which is in the non-
equilibrium state and the other is considered as a thermal bath. We took the quasiequilib-
rium statistical operator �q in the form

(46)
���

�t
+

1

iℏ
[��,H] = −�(�� − �q)

(47)
� ln ��

�t
+

1

iℏ
[ln ��,H] = −�(ln �� − ln �q),

(48)e

(
iHt1

ℏ

)(
�(t + t1) − �q(t + t1)

)
e

(
−iHt1
ℏ

)

→ 0,

(49)��(t, t) = �∫
t

−∞

dt1e
�(t1−t)�q(t1, t1) = �∫

0

−∞

dt1e
�t1�q(t + t1, t + t1).

(50)�� = ��(t, 0) = �q(t, 0) = �∫
0

−∞

dt1e
�t1�q(t + t1, t1)

(51)

𝜌 = Q−1 exp

(
−
∑

m

𝜀∫
0

−∞

dt1e
𝜀t1
(
Fm(t + t1)Pm(t1)

)
)

= Q−1 exp

(
−
∑

m

Fm(t)Pm +
∑

m
∫

0

−∞

dt1e
𝜀t1 [Ḟm(t + t1)Pm(t1) + Fm(t + t1)Ṗm(t1)]

)
.
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Here, F��(t) are the thermodynamic parameters conjugated with P�� , and � is the recipro-
cal temperature of the thermal bath; � = ln Tr exp(−

∑
�� P��F��(t) − �H2). The nonequi-

librium statistical operator in this case has the form

The parameters F��(t) are determined from the condition ⟨P��⟩ = ⟨P��⟩q.
In the derivation of the kinetic equations, we used the perturbation theory in a weakness 

of interaction. The kinetic equations for ⟨P��⟩ were derived in the form (Kuzemsky 2017, 
2007, 2018)

The last term on the right-hand side of Eq. (54) can be called the generalized collision 
integral. Thus, we can see that the collision term for the system weakly coupled to the 
thermal bath has the convenient form of a double commutator. It should be emphasized 
that the assumption about the model form of the Hamiltonian of a system ( H1 ) interacting 
with a thermal bath ( H2 ) H = H1 + H2 + V  is not essential to the derivation (Kuzemsky 
2017, 2007, 2018). Equation (54) will be fulfilled for a general form of the Hamiltonian of 
a small system weakly coupled to a thermal bath.

The change of the entropy during the evolution of the small subsystem to equilibrium 
has the form

After differentiation with respect to time t, we obtain

Now, we substitute into this equation the expression

We then obtain

which is the standard expression for the entropy production in terms of the thermodynam-
ics of irreversible processes (Zubarev 1974; Kreuzer 1981; Keizer 1987). Here, X�� is the 
generalized “thermodynamic force.”

(52)�q(t) = exp(−S(t, 0)), S(t, 0) = �(t) +
∑

��

P��F��(t) + �H2.

(53)

�(t) = exp(−S(t, 0)); S(t, 0) = �∫
0

−∞

dt1e
�t1

(
�(t + t1) +

∑

��

P��F��(t) + �H2

)
.

(54)
d⟨P��⟩
dt
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1
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(E� − E�)⟨P��⟩ −

1

ℏ2 ∫
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−∞

dt1e
�t1⟨

�
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�
⟩q.

(55)S = −⟨ln �q⟩ = �⟨H2 − �2N2⟩ +
�

��

F��(t)⟨P��⟩ − lnQq.
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dS

dt
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.
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1
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,
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9  Concluding Remarks

We have presented a concise review of some sophisticated ideas and approaches to treat the 
problem of time and its asymmetry in thermodynamics, statistical mechanics, and quantum 
mechanics. We have brought together various points of view on the problems of time and 
its asymmetry, presented from the standpoint of their consistency and universality. Because 
of the nature of such a burning issue, various preliminary and complementary sections 
were added to ensure a self-contained presentation. The aim is to show the inseparable 
connections between the notions of time and its asymmetry, entropy and its production, 
and the second law of thermodynamics. We devoted close attention to the important con-
cept of the t−invariance of a process, since it connects with the notions of irreversibility 
and the arrow of time.

In spite of the great progress in the area of nonequilibrium statistical mechanics (Bogo-
liubov 1962; Zubarev 1974; Kuzemsky 2017; Lebowitz 1999; Goldstein et al. 2010; Dorf-
man 1999; Zwanzig 2001; Gallavotti 2014; Mackey 1989, 1992; Sklar 1993; Kuzemsky 
2018, 2019), we are still unable to trace irreversibility back to its root origin. Landau and 
Lifshitz (1980) expressed it in these words: “...it is not at present clear if ...it is possible to 
deduce the law of entropy increase from classical mechanics.” However, the second law 
of thermodynamics still holds firm in its domain of validity (Bogoliubov 1962; Mackey 
1989; Coveney and Highfield 1991; Mackey 1992; Sklar 1993; Callender 2004; Henderson 
2014).

We also tried to manifest that a solid proving ground for a sophisticated discussion on 
the problem of time and its asymmetry is highly desirable, since we do not yet have a “uni-
versal theory of time.” Denbigh, in his essay review (Denbigh 1996) in the book Time’s 
Arrows Today (Savitt 1995), attracted the reader’s attention to Wittgenstein’s statement in 
his Tractatus: “The description of the temporal sequence of events is only possible if we 
support ourselves on another process.” It is important to note that the second law of ther-
modynamics allows such “another process,” viz. the process of entropy increase. Hence 
such a thermodynamic variable, i.e., the entropy, may be used to indicate the lapse of time.

In this context, it is worth mentioning that time is the form of our sentient being; we 
know no other. Indeed, language as the human method of communication of knowledge, 
ideas, feeling, etc. sues a system of sound (or other) symbols. Language thus implies in a 
deepest sense the notion of time. Time is an inherent component of grammatical structure 
and is the immanent quality of language. A grammar is impossible without verbs and starts 
with a definition what a verb is. Verb is a word showing what a person or thing does, what 
state he or it is in, or what is becoming of him or it. According to context, verbs can be 
described as words denoting action. The term “action” embraces the meaning of activity, 
process, relation, etc. Action is the process of doing things. It is a way of using energy, 
influence, etc. The expression “the time has come for action” means a signal to begin to 
act. English verbs fall into two groups: the dynamic verbs and the static verbs.

In physics, action is a basic concept related with motion. Classical mechanics describes 
how a mechanical system evolves in time t. To achieve this aim, it is useful to define the 
state of a given system as a set of variables that completely specifies the condition of the 
considered system at a moment in time. Thus, the state of a system in symbolic form is 
{state} = {q, q̇} = {position, velocity}. For a system of N particles, the Lagrangian can be 
written as
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The generalized coordinates can have different physical meanings (length, angle, etc.), but 
the Lagrange function always has the dimension of energy. The number of generalized 
coordinates equals the number of degrees of freedom of the system. Note that, in classical 
mechanics, time t and the Hamiltonian H are not canonically conjugate variables.

Dynamics operates based on a fundamental notion of classical mechanics, viz. the 
action function A , which is defined as

Thus, the action is an integral associated with the trajectory of a system in configuration 
space, equal to the sum of the integrals of the generalized momenta of the system with 
respect to their canonically conjugate coordinates. The action functional A[q(t)] is sym-
metric with respect to time because the Lagrangian L does not depend explicitly on t. This 
symmetry in time implies energy conservation. It is worth noting that the action function 
has the dimension of energy times time.

The simplest dimensional analysis (Bridgman 1963; Gibbings 2011) yields the relation 

As a simplest illustration, we take the minimal possible action, the Planck constant h, and 
obtain

Hence, in physics, time in a way is a manifestation of a cyclic process.
We demonstrated above that there are numerous natural processes that manifest nontriv-

ial temporal behavior and irreversibility. However, the ontological nature of time remains 
unknown, although its influence and consequences are evident. What we can carry out are 
measurements of time with the aid of universal cyclic processes using various advanced 
methods.

Bunge (1972) discussed long ago “the alleged reduction of thermodynamics to statisti-
cal physics.” He concluded that: “Thermodynamics as a whole, and particularly the 2nd 
law, which is its most distinctive feature, has not been reduced to particle mechanics—nor, 
for that matter, have been fluid dynamics, the mechanics of deformable bodies, and other 
branches of continuous physics. The reduction of thermodynamics is not a fact but a pro-
gramme.” This conclusion coincides with the author’s position. For a complementary point 
of view, see the paper by Callender (1999).

Although our study may be incomplete (because of lack of space), it is hoped that the 
reader with a keen interest in the problem will consult the papers cited to find references to 
works and opinions omitted here.

In summary, our analysis shows that there are a number of important and interesting 
questions concerning the nature of time, its asymmetry, and irreversibility. The time has 
come for action.

(59)L = L(qk, q̇k, t) =
1

2

∑
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mkq̇
2
k
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