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Abstract
Pierre de Fermat (1601/7–1665) is known as the inventor of modern number theory. He 
invented–improved many methods useful in this discipline. Fermat often claimed to have proved 
his most difficult theorems thanks to a method of his own invention: the infinite descent (Fermat 
1891–1922, II, pp. 431–436). He wrote of numerous applications of this procedure. Unfortu-
nately, he left only one almost complete demonstration and an outline of another demonstration. 
The outline concerns the theorem that every prime number of the form 4n + 1 is the sum of two 
squares. In this paper, we analyse a recent proof of this theorem. It is interesting because: (1) it 
follows all the elements of which Fermat wrote in his outline; (2) it represents a good introduc-
tion to all logical nuances and mathematical variants concerning this method of which Fermat 
spoke. The assertions by Fermat will also be framed inside their historical context. Therefore, 
the aims of this paper are related to the history of mathematics and to the logic of proof-methods.

Keywords Fermat · Infinite descent · Number theory · Foundations of mathematics · 
Relationship logic-mathematics

1 Introduction

The Infinite Descent is a mathematical method used in the theory of numbers. It is based on 
the third excluded principle and relies on the fact that the natural numbers are a well-ordered 
set. For example, given a certain known equation, typically a Diophantine one, while looking 
for its solutions, finally one can arrive to claim that it has no solution supposing that it has 
solutions and showing that under this hypothesis, an infinite descent in integers might be con-
structed. This is absurd. Hence, the equation has no solution. Nowadays, this mathematical 
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argument is used in the Number Theory and in other branches of mathematics as abstract 
algebra. Pierre de Fermat1 (1601/7–1665) produced important results on this subject.

Along his childhood, Fermat followed the tradition of his family as dealer and then he was 
lawyer in Toulouse (Kline 1999, I, pp. 320–321). He wrote remarkable argumentations and results 
including several aspects of mathematics, as probability calculus, geometry and their applications 
to physics (cfr. Pisano and Capecchi 2013, 2015; Pisano and Bussotti 2013, 2016, 2017). Though 
he gave such important contributions to mathematics and science, he published few of his results. 
For, they are known thanks to several letters addressed to numerous scientific correspondents/
friends. Such letters concern a vast panorama: number theory, infinitesimal calculus, geometry 
of coordinates, probability, optic (see e.g., the principle of least time or simply called Fermat’s 
principle). Among his many original contributions, probably the most outstanding ones regard 
number theory. Particularly his method of Infinite Descent is the specific object of this paper.

The method was invented by Fermat and written as descente infinie ou indéfinie (Fermat 
1891–1922, II Correspondence, August 1659, p. 431; see also p. 213) in a letter entitled Relation 
des nouvelles découvertes en la science des nombre (Ivi, pp. 431–436) and addressed to Huygens 
(1629–1695) by the intermediation of Pierre de Carcavi (1600?1603?–1684) (Fig. 1a). It is also well 
known that the Diophantine equations were crucial references for Fermat. He read Arithmetica—
written by Diophantus of Alexandria (fl. AD 201–215; fl. AD 285–299) in the third century AD—
as translated into Latin (1621) by Claude-Gaspard Bachet de Méziriac (1581–1638) (Fig. 1b).

Fig. 1  a The Infinite Descent (Fermat 1891–1922, II Correspondence to Carcavi, August 1659, pp. 431 
[431–436]). Source: With kind permission of Gallica–National French Library (BnF). b Diophantus’ Arith-
metica. (Bachet de Méziriac 1621). Source: Commons licensed | Public domain

1 de Fermat’s date (hereafter Fermat) of birth seems to be commonly accepted as established in 1601. But, 
Barner (2001) indicates that such a date is more probably 1607 or 1608. We assume no position on that.
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Fermat, in his Observations sur Diophante, did not offer explicit roots to any Diophan-
tine equation. Nevertheless, in the margin of this edition, Fermat wrote several annotations 
(posthumously published, 1670); among them, one also referred to what nowadays is called 
Fermat’s Last Theorem.

For our aim, we are interested in the theorem on the primes of the form 4n + 1 (Fig. 2)2,3. 
The proposition we are facing is the following:

Fig. 2  Fermat’s Theorem on Sums of Two Squares (Fermat 1891–1922, II Correspondence to Carcavi, 
August 1659, pp. 432). Source: With kind permission of Gallica–National French Library (BnF)

2 […] tout nombre premier, qui surpasse l’unité d’un multiple de 4, est composé de deux quarrés […]” 
(Fermat 1891–1922, II, p. 432). This 4n+1 theorem is also called Girard’s theorem. See below.
3 [1891] Œuvres de Fermat, t. I, Œuvres mathématiques diverses – Observations sur Diophante, éd. P. Tan-
nery et C. Henry, Paris, Gauthier-Villars;  [1894], Œuvres de Fermat, t. II, Correspondance, éd. P. Tannery 
et C. Henry, Paris, Gauthier-Villars; [1896], Œuvres de Fermat, t. III, Traductions des écrits latins de Fer-
mat; de l’Inventum novum de J. de Billy; du Commercium epistolicum de Wallis par P. Tannery, éd. P. Tan-
nery et C. Henry, Paris, Gauthier-Villars;  [1912], Œuvres de Fermat, t. IV, Compléments par P. Tannery, 
éd. P. Tannery et C. Henry, Paris, Gauthier-Villars; [1922], Œuvres de Fermat, supp. T. I-IV par M. C. de 
Waard, éd. P. Tannery et C. Henry, Paris, Gauthier-Villars.
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Fermat often mentioned this theorem:

Observations sur Diophante, (Fermat 1891–1922, I, 7, pp. 293–297).
Letter to Mersenne on 25 December 1640 (Ivi, II, p. 213).
Letter to Frenicle on 15 June 1641 (Ivi, II, p. 221).

Where for an odd prime a of the for 4n + 1 this statement can be written as:

a = b2 + c2 (where b and c are integers ↔ a ≡ − 1 (mod. 4) (for example see Pythagorean 
case study).

For example, we have:

Nevertheless, other prime numbers like 3, 7, 11, 19, 23 and 31 cannot be calculated 
(decomposed) as sum of two squares.4 As Albert Girard (1595–1632) remarked: no num-
ber of the form 4n + 3 is the sum of two squares, which is, anyway, a trivial truth. He also 
realized that, to use modern terms, necessary condition for an odd number to be the sum 
of two squares is that it is congruous − 1 modulus 4. Dickson suggested that Girard dealt 
with both positive integral and prime numbers proving their determination by a sum of 
two squares of positive integers (Dickson [1919] 1920 [1923], II, p. 227–228). On our 
side we wonder: how is it possible to determinate a number (4n + 1) in order to prove that 
any prime of the form 4n + 1 is the sum of two squares? In other words, it is necessary to 
determinate the kind of number (a propriety) and its related equation (a form). Fermat 
faced this theorem by the Infinite Descent method. He left only an outline of his proof. 
Thus, a final question arises: how might the infinite descent method be applied to Fermat’s 
problem?

For example, let us consider the following decompositions of 17 and 29:

Fermat conceived an idea like this: By means of Infinite Descent method let us suppose 
that a prime p of the form 4n + 1 which does not have this propriety exists, that is, it is not 
the sum of two squares. If, given this hypothesis, it would be possible to show that, starting 
from p, a decreasing series of numbers (a descent, in fact) should exist until reaching num-
bers as 29 or 17, which, according to the descent should not be the sum of two squares, but, 
indeed, are, this would imply a contradiction. Such contradiction depends on the fact that p 
had been supposed not to be the sum of two squares.5 Hence, p is the sum of two squares. 
Fermat applied the outlined reasoning not to 17 or 29, but to 5. For, when n = 1, we obtain 
the number 5, which can be written as:

However, the prime number 5 should not have this propriety. But, effetely, the prime num-
ber 5 is uniquely determinable as the sum of two squares:  22 + 12. Thus, the assertion is 
valid for any prime of form 4n + 1 (see Fermat’s correspondence to Huygens/Carcavi). 

13 = 22 + 32.

17 = 42 + 12 and 29 = 52 + 22

5 = 22 + 12

4 Generally speaking, it depends on the congruence to 0 or to − 1 (mod. 4).
5 One might also claim that another smaller number exists, which does not have that property. But n is an 
arbitrary number, so descending infinitely to all n–positive integers, one arrives at n = 1. In other words, the 
descending sequence starting from p has, so to say, a natural less number, that is the smallest number of the 
prime 4n + 1, namely 5, assuming n = 1.
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Even if it could be considered similar, it is necessary to precise that Fermat’s Infinite 
Descent is different from mathematical induction method for the following mathematical 
reasons.6 In the Infinite Descent:

• Just after having claimed the ad absurdum hypothesis for a certain value of n, then it 
is possible to find another smaller number, having the same propriety; and this number 
must not be necessarily the immediately next number along the series of the natural 
number (descending).

• The method is able to falsify some assumptions. This is the main use of it.

Leonhard Euler (1707–1783), basing on Fermat’s Infinite Descent, proposed—maybe—
the first published and complete proof of the 4n + 1 primes theorem. It is in letters (1747, 
April 6th and 1749, April 12th) to Christian Goldbach (1690–1764) and then it was pub-
lished in two articles (Euler 1752–1753, pp. 3–40, 1754–1755, pp. 3–13).

Fermat’s studies on number theory were the theoretical base for many scholars (Euler, 
Lagrange, Gauss, Dedekind, Minkowski, etc.).

2  The Aim of this Paper

Since this paper aims at explaining the logic of the infinite or indefinite descent, an applica-
tion of this method concerning the 4n + 1-primes theorem and dating back to the beginning 
of the twenty first century will be proposed because it is particularly significant in order to:

(1) Show the general features of the method;
(2) Specify the mathematical and logical differences among the possible uses of the descent.

The proof on which we will focus has been explained by Sergio Paolini (1938–2009).7 By 
his reasoning, it is possible to analyse and re–interpret the steps that characterize an appli-
cation based on Fermat’s method. The core of this paper has the following structure:

(1) Initial section in which the general logic of the descent is expounded;
(2) A historical outline of the theorems enunciated by Fermat and proved by infinite 

descent after Fermat;
(3) A detailed summary of the way in which Paolini proved the 4n + 1 primes theorem;
(4) A deeper explanation of the logic connoting the infinite descent as a consequence of 

the analysis carried out in the previous sections.

6 The problem of the logical relations between infinite descent and the various forms of mathematical 
induction (ordinary mathematical induction, Noetherian induction, and so on) will be faced if the sixth sec-
tion of this paper. The three items we add in the running text need only as a description of the differences 
between the mathematical application of infinite descent and ordinary induction. For the moment we do not 
enter the logical questions connected to the relations between the two methods. In addition and generally 
speaking, it is not necessary to claim a specific case for which the theorem is satisfied; it is only necessary 
to prove that the basic case (n = 1) contradicts.
7 One of us (PB) translated Paolini’s work into English (Bussotti 2006, pp. 481–554; for the proofs on the 
binary quadratic forms, see pp. 481–507, pp. 496–499; on Fermat see pp. 17–184). On Paolini see: Bussotti 
and Paolini 1997; Bussotti 2000; Bussotti 2008, pp. 63–112.
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The foundational reasons behind this article are historical–mathematical and logical (Pis-
ano and Gaudiello 2009).

From a historical point of view, Paolini’s proof of the 4n + 1 primes theorem follows 
step by step the scarce indications left by Fermat. This is a novelty.

From a mathematical point of view this proof exploits methods, which were available to 
Fermat.

From a logical standpoint, it allows to spread a light on a rather obscure subject: the dif-
ferent applications of the method invented by Fermat.

3  The Logical Structure of the Infinite Descent

The infinite descent is a method of reductio ad absurdum. For example, let us suppose that 
a theorem T has to be proved. Let us assume (ad absurdum) that ¬T  is true. If it is possible 
to demonstrate that ¬T  implies the existence of an infinity of integers between n and 1 (or 
0), this is absurd. Therefore ¬T  is false and T is true. The smallest limit of the descent is 
not necessarily 0 or 1. It can be an integer m < n . In this case ¬T  would imply the existence 
of an infinite quantity of numbers between8 m and n.

A quite easy example of a theorem that can be proved by descent was proposed by 
Euclid in his Elements (VII, 31) where he proved that every composite number p is divided 
by a prime number. The proof runs as follows:

Let be p = p1p2 . Both p1 and p2 are composite numbers, otherwise the theorem is true. 
Both p1 and p2 divide p and are greater than 1 because p is composite. Hence they are 
smaller than p. Euclid considered then p1 = p3p4 , once again p3 and p4 are composite num-
bers and they are smaller than p1 and greater than 1. But if we want to deny the truth of 
the theorem, we would admit an infinite descent p < p1 < p3 < ⋯ < 1 in integers. This is 
absurd, hence the theorem is true.

This proof by Euclid is interesting because it represents the first case of a complete 
proof by descent in mathematical literature. On the other hand, the application is so ele-
mentary that it is sufficient to create an easy descent based on a reduction from p to p1 and 
from p1 to p3 in order to obtain the proof, whereas the application of the descent to more 
difficult theorems is often complicated and the reduction from a value to a smaller value for 
which the theorem is supposed false can be problematic. However, Euclid’s proof is a use-
ful introduction to the subject.

4  On the Theorems Proved by Infinite Descent

In the letter9 above mentioned sent to Christian Huygens through Pierre de Carcavi and 
entitled Relation des nouvelles découvertes en la science des nombres (Fermat 1891–1922, 
II, pp. 431–436) Fermat pointed out that the classical methods used in arithmetic were 
not sufficient to deal with the most difficult theorems. He had been able to invent a new 

9 With regard to the discovery of this letter by Fermat to Huygens, see: Henry 1879 in Fermat 1879, pp. 
737–740; Bussotti 2006, p. 5, ft. 4.

8 From a theoretical point of view, it would be sufficient to show that, if the theorem was false, then more 
than m − n − 1 numbers would exist between m and n, which is absurd.
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method, which allowed him to solve a series of complicate problems. This method is 
exactly the infinite descent. We read:

1. And since the ordinary methods explained in the Books, are not sufficient to prove 
so difficult propositions, finally I have found a particular way to reach the demonstra-
tion. I will call this method of proof infinite descent or indefinite [descente infinie ou 
indéfinie]; at the beginning, I used it in order to prove negative propositions as for 
example […] there is no right triangle in numbers [that is a Pythagorean triangle] of 
which the area is equal to the square of an integer number […].
The proof is based on the �������� ��� ������o� [reductio ad absurdum] […]10

By these words, Fermat declared himself to be the inventor of the infinite descent (Ibidem). 
Certainly, he knew Euclid’s work, but the Euclidean proof by descent is not quite indica-
tive insofar as it is applied to a very elementary proposition. Furthermore, it is not part of a 
context in which the descent has a primary role: it is an application. On the contrary, Fer-
mat claimed that a great part of his most significant theorems could be proved by descent. 
But which are the “difficult propositions” (Ibidem) of which Fermat was speaking? In the 
aforementioned letter to Huygens we find the answer. Fermat explained four different kinds 
of applications of his method:

(a) To ordinary11 negative propositions. He quoted two theorems in this category:

(1) The mentioned theorem concerning the fact that the area of a Pythagorean triangle 
is never the square of an integer12;

(2) No number of the form 3n − 1 is of the form x2 + 3y2.

The case of this last theorem is interesting from a historical point of view because its dem-
onstration is really easy. It is enough to write the numbers mod.3 and to see that the square 
of a number which is not a multiple of 3 is of the form 3n + 1. In this sense, no descent is 
necessary. Fermat was one of the first mathematicians who fully understood the importance 
to write the numbers in function of a modulus k and a remainder h, that is, in the form13 
kn + h. However, the science of numbers was at the beginning of its development, so we 

10 “1. Et pour ce que les méthodes ordinaires, qui sont dans les Livres, étoient insuffisantes à démontrer 
des propositions si difficiles, je trouvai enfin une route tout à fait singulière pour y parvenir. J’appelai cette 
manière de démontrer la descente infinie ou indéfinie, etc.” je ne m’en servis au commencement que pour 
démontrer les propositions négatives, comme, par exemple: […] Qu’il y a aucun triangle rectangle en nom-
bres dont l’aire soit un nombre quarré […] (Fermat 1891–1922, II, p. 431; see also pp. 212–217). Our 
translation.
11 Fermat did not write the word ordinary. We use it because it expresses epistemologically–synthetically 
the thought of Fermat that there are four different ways in which his method can be applied.
12 This proposition is the only one of which Fermat left an almost complete demonstration in his Observa-
tions sur Diophante (observation 45; Fermat 1891–1922, I, p. 340. See also Bussotti and Paolini 1997, pp. 
36–39 and 55–71; Edwards 1977, chapter 1.6.; Goldstein 1995; Mahoney 1973, 1994, pp. 352–354; Weil 
1984, chapter 2, paragraph X.
13 To write a class of numbers in the form kn + h means, in modern terms, to write such a class in function 
of the modulus k and the remainder or residue h. Fermat, Euler, Lagrange and Legendre were well aware of 
this way of writing and of the concepts of modulus and of residue. However, the mathematician who fully 
developed the whole potential of the notion of congruence based and a modulus and on a residue was Gauss 
in his Disquisitiones Arithmeticae (Gauss 1801). Gauss gave the formal definition of two congruent num-
bers in respect to a modulus (first section of the Disquisitiones) and based the entire, magnificent theory 
expounded in his masterpiece on the concept of congruence between two numbers.
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cannot exclude that the inventor of the modern way to conceive a number had not completely 
explored the potentiality of this way of writing. Therefore, we should not be surprised that 
Fermat claimed to have used the descent for theorems, which are difficult nowadays, too, 
and for theorems, which are very easy in a modern perspective. Exactly the perspectives 
were different.

(b) To affirmative propositions. Here the use of the descent is quite more difficult and—fol-
lowing Fermat’s words—new principles are necessary. Fermat included in this category 
his theorems concerning the binary quadratic forms. That is:

(1) Every prime numbers of the form 4n + 1 is the sum of two squares, namely it is 
of the form x2 + y2.

In this letter, Fermat claimed: “3. There are infinite questions of this kind […]”.14 It is almost 
sure he was referring to the problems concerning the binary quadratic forms of the prime 
numbers. In particular, in a letter to Blaise Pascal (1623–1662) on 25 September 1654, 
Fermat argued that15 (Fermat 1891–1922, II, p. 313):

(2) Every prime of the form 8n + 1 and every prime of the form 8n + 3 are the sum of 
a square and of the double of another square. This means that these two classes 
of primes are of the form x2 + 2y2;

(3) Every prime number of the form 6n + 1 is the sum of a square and of the triple of 
another square. It can hence be written as x2 + 3y2.

He wrote cryptal words with regard to the 4n + 1 primes theorem. We will mention them 
at the beginning of the next section and show that they can be understood in the light of 
Paolini’s proof which we will explain in Sect. 5.

(c) To particularly difficult affirmative propositions. Here Fermat mentioned two problems:

(1) Every integer is the sum of four integer squares;
(2) the equation Ny2 = x2 − 1 (N is not a square) has always an infinite number of 

integer solutions.16

14 “3. Il y a infinies questions de cette espèce […]” (Fermat 1891–1922, II, p. 432). Our translation.
15 He repeated these theorems concerning the decomposition of the primes of the forms 4n + 1, 6n + 1, 
8n + 1, 8n + 3 in a letter to Digby on June 1658 (Fermat 1891–1922, II, p. 403; see also Bussotti 2006, pp. 
177–180).
16 Fermat dealt with the polygonal numbers theorem on many occasions. The general proposition (every 
integer is the sum of three triangulars, of four squares, of five pentagonals, of six hexagonals, on so on) 
was, for example, mentioned in Observations sur Diophante (Fermat 1891–1922, I, p. 305), in a letter to 
Mersenne in September/October 1636 (Fermat 1891–1922, II, pp. 65–66). In the letter to Pascal on 25 Sep-
tember 1654 (Ivi, pp. 312–313). In the letter to Digby on 19 June 1658 (Ivi, pp. 403–404). For the proofs 
given by Paolini of the three triangulars and four squares theorem with methods available to Fermat, see 
Paolini (Bussotti 2006, Appendix, pp. 507–534 and 534–547 respectively). For the explanation of the used 
methods, see: Bussotti 2006, pp. 109–171. The reference to Pell equation dates to a late phase of Fermat’s 
“mathematical career”. Beyond the letter to Huygens, Fermat spoke of this equation starting from Febru-
ary 1657, for example in a letter to Frenicle in that month (Fermat, 1891–1922, II, p. 333). A letter to 
Brouncker dates to the same month (Ivi, p. 335). For the relations between Fermat and the English math-
ematicians as to the solution of this equation see Bussotti 2006, pp. 77–109. On so called Pell–Fermat equa-
tion see: Barbeau 2003; Hofmann 1944; Konen 1901; Selenius 1963; Weil 1977.
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This is the famous so wrongly called Pell (1611–1685) equation.17 The correct name would 
be Fermat equation.

(d) To particularly difficult negative propositions. Fermat mentioned the following ones:

(1) The cubic case of Fermat’s last theorem, that is x3 + y3 ≠ z3 , with x, y, z positive 
integers18;

(2) The equation x2 + 2 = y3 has only the integral solution (5,3);
(3) The equation x2 + 4 = y3 has only the integral solutions (2, 2); (11, 5);
(4) Every number of the form 22n + 1 is prime.

The last proposition (4) is false as Euler proved (Euler 1732–1738).
Therefore, Fermat—in the above mentioned letter (Fermat 1891–1922, II, pp. 

431–436)—claimed that there are four different ways to apply the infinite descent. Unfortu-
nately, he left only one complete demonstration: that concerning the Pythagorean triangle 
and the indications relative to the theorem on the primes of the form 4n + 1 that we will 
refer to.

After Fermat, as above cited, Euler tried to reconstruct Fermat’s results (Euler 
1732–1738)19 and methods and supplied many demonstrations by descent, also considering 
some Diophantine problems not mentioned by Fermat. However, Euler’s most important 
applications of the method regard the propositions by Fermat. Particularly Euler proved:

(1) Three theorems concerning the divisors of the binary quadratic forms and precisely: 
the form x2 + Ay2 , with x and y mutually prime and A = 1, 2 or 3, can be divided only 
by numbers of its same form20;

(2) Fermat’s last theorem for the exponent21 3 (Euler 1770, Ch. 15, § 243).

19 See also Goldbach 1747, April 6th and 1749, April 12th; Euler 1752–1753, pp. 3–40, 1754–1755, pp. 
3–13.

17 John Pell (1611–1685) has nothing to do with the equation. The name was inaccurately attributed by 
Euler (Euler 1765).
18 It is well known that Fermat mentioned more than once the impossibility to solve in integers the two 
equations x3 + y3 = z3 and x4 + y4 = z4 , but he mentioned the impossibility to solve in integers the general 
equation xn + yn = zn—apart from the trivial solutions – only in Observations sur Diophante, question 2 
(Fermat 1891–1922 I, p. 291). The proof of the impossibility to solve in integers the equation x4 + y4 = z4 
(to be precise x4 + y4 = z2 ) is included in the theorem that no Pythagorean triangle has the area equal to the 
square of an integer, while we have no demonstration left by Fermat of the impossibility to solve in integers 
the equation x3 + y3 = z3.

20 Euler used two methods to prove these theorems on the binary quadratic form x2 + Ay2 (A = 1, 2, 3). We 
call a first demonstration (see above Sect. 5.2) reduction-descent. It was given for the form x2 + y2 (Euler 
1752–1753); form x2 + 2y2 (Euler 1756-1757); form x2 + 3y2 (Euler 1760–1761). We call a second version 
of the proof as ordinary reduction (see below; Euler 1773).
21 It is well known that Euler’s proof is based on some assumptions not demonstrated by Euler. Anyway, 
for the assumed assumptions it is possible to make Euler’s proof more rigorous. Euler used Q

�
√

−3

�

 . 
Johann Carl Friedrich Gauß (1777–1855) proved this theorem by means of a reversed induction using 
Z
�

3
√

1

�

 . Cfr. Gauss posthumous works (Gauss posthumous, Werke II, pp. 387–391). Weil reworked Euler’s 
proof without using 

√

−3 (Weil 1984, chapter  1, paragraph XVI; see also Bussotti 2006, pp. 279–287; 
Macys 2007). For commentary on Gauss’ proof see Dickson [1919] 1920 [1923], p. 548; Ribenboim 1979, 
p. 39; Bussotti 2006, pp. 434–437. For reconstructions based on the descent but on principles different from 
Euler’s see: Paolini (Bussotti 2006, Appendix, pp. 547–554; pp. 171–176) and Piyadasa (Piyadasa 2010; in 
this proof 3

√

1 is used).



680 P. Bussotti, R. Pisano 

1 3

(3) Every integer that divides the sum of four mutually prime squares is the sum of four 
squares22 (Euler 1773). By means of this theorem, he was also able to prove that every 
integer is the sum of four squares. Nevertheless, in this case, Lagrange (1736–1813) 
had preceded Euler (Lagrange 1770).

The theorems in (1) were used by Euler as lemmas in order to prove Fermat’s theorems 
on binary quadratic forms.

The theorem in (3) is a lemma to prove that every integer is the sum of four integer squares.
Euler proposed two different versions of the theorems in (1) and in (3) (see note 20 and 

Sect. 5 of this paper). The first version is not expounded in a complete manner, but it can be 
made complete (Bussotti 2006, pp. 222–226). From a historical standpoint, it is maybe more 
interesting than the second one, because the procedure used by Euler is—in the first version—
closer to Fermat’s assertions. However, Fermat claimed to have used the descent in the proof of 
4n + 1 primes itself and not in a lemma, although—in Euler’s procedure—the theorem on the 
divisors of the binary quadratic forms is a fundamental step to prove the decompositions of such 
forms in sum of squares. This is one of the reasons why it is difficult to ascribe Euler’s proof to 
Fermat. After Euler, Lagrange played a fundamental role in the history of number theory. His 
contributions are less numerous than Euler’s, but they are very important. As Euler, Lagrange 
was interested in reconstructing and using Fermat’s method. We find different applications in:

(1) Sur la solution des problèmes indéterminés du second degré (Lagrange 1769), where 
he solved all undetermined equations of second degree with two unknowns;

(2) Some argumentations in the context of the proof that every integer is the sum of four 
squares (1770).

(3) Sur quelques problèmes de l’analyse de Diophante (Lagrange 1777), where the solution 
of some Diophantine equations is expounded.

(4) Given a binary quadratic form, a reduced binary quadratic form with the same deter-
minant exists (both cases of positive and negative determinants). These two are 
the only proofs23 (Bussotti 2006, pp. 293–417) by descent given in the Recherches 
d’Arithmétique (1773 and 1775).

Therefore, Euler and Lagrange had an interest in rediscovering and applying Fermat’s 
method and in the reconstruction of Fermat’s number theory. After Lagrange there were 

22 As to the works dedicated to the the sums of four squares (Cfr. Euler 1754–1755; see also Pieper 1993; 
Bussotti 2006, pp. 261–273).
23 As to Lagrange’s demonstration of the four squares theorem see also Boucard 2014. For a story of the 
polygonal number theorem from the Greek period to Cauchy, also including Gauss’ proof that every inte-
ger is the sum of three triangulars see Bussotti and Scimone 2009. With regard to Lagrange’s Recherches 
d’arithmétique and the use of the descent, see: Lagrange 1773–1775, pp. 723–737; Bussotti 2006, pp. 362–
396; Pisano and Capecchi 2013.
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many applications of this procedure in number theory and in algebra,24 but a complete 
methodological research on this subject was still missing.25

Given this reference frame, the demonstrations by Paolini are interesting for the follow-
ing reasons:

(1) For the first time Fermat’s theorems concerning the binary quadratic forms are proved 
by descent. We mean the method is not used to prove lemmas, but it is exploited in the 
theorems themselves;

(2) This method can be extended to a wide class of numbers of the form x2 + Ay2 , while 
Euler’s method is valid only when A = 1, 2, 3;

(3) The single steps of the descent are well clarified;
(4) It is possible to give a sense to some of Fermat’s assertions, which, without an explana-

tion and interpretation, seem strange or even absurd;
(5) The descent, or in any case infinitary methods similar to the descent, are the centre of 

an arithmetical world because as Paolini proved (Cfr. Bussotti 2006, Appendix, pp. 
507–547; for the commentaries, pp. 109–171) by these methods it is possible to prove 
that every integer is the sum of three triangular numbers and of four squares in the 
context of enquiries concerning the polygonal numbers.

Furthermore he also supplied a proof of Fermat’s last theorem for the exponent 3 without 
using 

√

−3 . For all these reasons, it seems to us that such demonstrations have a mathemat-
ical, a methodological and a historical interest. Let us now explain and comment the main 
reasoning carried out in Paolini’s proof that every prime number of the form 4n + 1 is the 
sum of two squares. This proof is a prototype for the other theorems concerning the binary 
quadratic forms and proved by Paolini (Ibidem).

5  The Proof: Every Prime Numbers of the Form 4n + 1 is the Sum of Two 
Squares

This is the first proposition on the binary quadratic forms enunciated by Fermat. In a sense, 
this theorem opens the modern theory of numbers.

5.1  What Fermat Wrote

In the letter to Huygens, Fermat wrote as to the 4n + 1 primes theorem (Table 1):

24 For the theorems proved by descent, see i.e.,: Bussey 1918; Bussotti and Paolini 1997; Bussotti 2000; 
Bussotti 2006; Cassinet 1980; Conrad (s.d.); Dickson [1919] 1920 [1923] (many references); Genocchi 
1855; Genocchi 1883; Hofmann 1960–1962; Lemmermeyer 2003; Piyadasa 2010; Shirali 2003; Tat–Wing 
2005; Vacca 1927-1928; Vandiver 1932. For interesting methodological considerations see Brotherston and 
Simpson 2007; Smith 1992, Wirth 2004, Wirth 2010.
25 For a research concerning the applications in Fermat, Euler, Lagrange and Gauss see Bussotti (Bussotti 
2006). On Lagrange methods see Pisano and Capecchi (2013).
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A reconstruction of the proof, which could be ascribed to Fermat, should explain:

(1) Which are the new principles connoting the application of the descent to affirmative 
propositions.

(2) The way in which it is possible to pass from a prime number which is—ad absurdum—
supposed not to be the sum of two squares, to a smaller number, which should not be 
the sum of two squares.

Furthermore, this proof should be based only upon mathematical means available to 
Fermat.

In this section, we will answer the latter question, while dealing with the former in the next 
section. A clarification with regard to Fermat’s words: when he claimed that the descent should 
be continued infinitely till reaching 5, these words make in themselves no sense because if a 
descent in integers reaches any number (in this case 5) it cannot be infinite. However, what 
Fermat claimed is clear, as the mechanism of the descent can be continued until reaching 5.

5.2  Paolini’s Proof that Every Prime of the Form 4n + 1 is the Sum of Two Squares

In order to understand how Paolini applies the descent, it is useful to present a brief picture of the 
preliminary definitions and assertions that are necessary to demonstrate the theorem. Almost all 
the elementary proofs of this proposition start from the fact that − 1 is a quadratic residue of the 
primes of the form 4n + 1. The proof we are analysing starts from this property, as well.

Table 1  What Fermat wrote on the demonstration of the 4n + 1 primes theorem

2. Je fus longtemps sans pouvoir appliquer ma 
méthode aux questions affirmatives, parce que 
le tour et le biais pour y venir est beaucoup plus 
malaisé que celui dont je me sers aux négatives. 
De sorte que, lorsqu’il me fallut démontrer que tout 
nombre premier qui surpasse de l’unité un multiple 
de 4, est composé de deux quarrés, je me trouvai en 
belle peine. Mais enfin une méditation diverses fois 
réitérée me donna les lumières qui me manquoient, 
et les questions affirmatives passèrent par ma méth-
ode, à l’aide de quelques nouveaux principes qu’il 
y fallut joindre par nécessité. Ce progrès de mon 
raisonnement en ces questions affirmatives est tel: 
si un nombre premier pris à discrétion, qui surpasse 
de l’unité un multiple de 4, n’est point composé 
de deux quarrés, il y aura un nombre premier de 
la même nature, moindre que le donné, et ensuite 
un troisième encore moindre, etc. en descendant 
à l’infini jusque à ce que vous arriviez au nombre 
5, qui est le moindre de tous ceux de cette nature, 
lequel il s’ensuivroit n’être pas composé de deux 
quarrés, ce qu’il est pourtant.
D’où on doit inférer, par la déduction à l’impossible, 
que tous ceux de cette nature sont par conséquent 
composés de deux quarrés

2. For a long time I was not able to apply my method 
to affirmative questions, because the way and the 
means to obtain this application are more difficult 
than those I use for the negative ones. Therefore, 
when I had to prove that every prime number, which 
is bigger by one than a multiple of 4, is composed of 
two squares, I found myself in great difficulty. But 
finally a meditation, which I repeated several times, 
brought me the light that I lacked, and affirmative 
questions entered my method with the addition of 
some new principles, which I had necessarily to add. 
This progress of my reasoning in these affirmative 
questions is such: if any prime number, which is big-
ger by one than a multiple of 4 were not composed 
of two squares, there would exist another prime num-
ber of the same nature, which is less than the given 
one, and a third number less than the second and so 
on, descending infinitely till arriving at the number 
5, which is the smallest of all the numbers of that 
nature. This number should not be composed of two 
squares, but, in fact, it is. From this reasoning, it is 
possible to infer, by the deduction to the impossible, 
that all the numbers of this nature are consequently 
composed of two squares

Fermat 1891–1922, II, p. 432 Author’s translation
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Since the value −1 is a quadratic residue of the prime numbers of the form p = 4n + 1 
(that is, the congruence x2 ≡ −1(mod.p) has solutions), the equation

has solutions for k < x<p, which is the form in which Paolini presents this property (Bus-
sotti 2006, Appendix, Theorem 1, Sect. 3, pp. 484–485). The second passage consists in 
defining the notion of resolving fraction associated to an integer number m. We read (see 
also Table 2):

I associate the fraction m
x
 to an integer number m [m is not necessarily a prime number] 

such that km = x2 + 1 , with m > x. I develop this fraction in a continued fraction and I 
invert the convergents. Let gn be the biggest of the gi such that g2

i
< m . It is possible that 

there is a convergent fn
gn

 such that m = g2
n
+ (xgn − mfn)

2 . If such a convergent exists, then 
I define m

x
 as a resolving fraction of m, in the sense that m is the sum of two squares.26

kp = x2 + 1

Table 2  Explanation of the role of the resolving fractions to decompose a number in sum of two squares

Let us consider the identity 5 ⋅ 34 = 132 + 1 . Then the fraction associated to 34 is 34
13

 . Its convergents are

2, 3,
5

2
,
8

3
,
13

5
,
34

13
 . If we invert these convergents, we obtain: 1

2
,
1

3
,
2

5
,
3

8
,

5

13
,
13

34
 . The biggest gi such that 

g2
i
< 34 is 5, so that fn = 2 , with x = 13 and m = 34. It is 34 = 52 + (13 ⋅ 5 − 34 ⋅ 2)2 = 52 + 32 . So that 34

13
 

is resolving of 34. The latter 34 is not a prime number. It is possible to consider the convergent directly by 
inverting the role of fn and gn . The result is clearly the same one.

26 We have slightly modified the definition. Paolini offered two proofs of the 4n + 1 primes theorem: the 
former (Ivi, pp. 492–495) based on the concept of even continued fraction is inspired by Lucas (Lucas 
1891, pp. 250–251). The latter is the one we are expounding. This is easier than the former and can be gen-
eralized to other binary quadratic forms, whereas the former is valid only for the primes of the form 4n + 1.
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That is, a number is a sum of two squares if and only if its associated fraction is resolving.
Paolini’s idea consists in proving that, if m is a prime number of the form 4n + 1, then 

a resolving fraction associated to m exists. The resolving fractions have three properties, 
proved in the following Paolini’s Theorems 2, 3 and 4. To prove these properties, it is suf-
ficient to know how to pass from a convergent of order n − 1 to a convergent of order n. 
In order to demonstrate the Theorem 3, an argument that is based on complete induction 
is used. Here we refer to these propositions without the proof. It is possible to check the 
proofs in Paolini’s mentioned work.27

(1) (Theorem 2): If km = x2 + 1 (m > x) and if and only if m/x is a resolving fraction of m, 
then the fraction m−x

m
 [or better m

m−x
 ] is resolving of m too. This fraction is defined as 

complementary fraction of m/x.
(2) (Theorem 3): Given an integer number m such that km = x2 + 1, k < x<m, let x

2+1

kx
 be 

developed in continued fraction and let q0, q1,… , qn−1, qn be its incomplete quotients, 
then the incomplete quotients of the continued fraction (x+k)

2+1

k(x+k)
 are the same as x

2+1

kx
, if 

we exclude the first one, which is q0 + 1 and the last one.
(3) (Theorem 4): Let m be an integer and k and x integers such that k < x<m. Let us suppose 

that the equation km = x2 + 1 has solutions and that m
x
 = x

2+1

kx
 is a resolving fraction of 

m. Then the number m’ = m+2x + k is such that km� = (x + k)2 + 1 and the fraction 
(x+k)2+1

k(x+k)
 is resolving of m’.

In the following additional applications of previous theorems (Table 3):

Table 3  Example of an application of the Theorem 2 and of the Theorem 4

Theorem 2: Let us consider the identity 5 ⋅ 29 = 122 + 1 , with m = 29, k = 5, x = 12. Let us develop the 

fraction 29
12

 in continued fraction. It is 29
12

= 2 +
1

2+
1

2+
1

2

 , so that the convergents are 2, 5
2
 , 12

5
 , 29
12

 . Let us 

invert them, obtaining 1
2
,
2

5
,

5

12
,

12

29
 . The biggest gi such that g2

i
< 29 is 5. In this case the formula 

m = g2
n
+ (xgn − mfn)

2 is applicable because the identity 52 + (12 ⋅ 5 − 29 ⋅ 2)2 = 52 + 22 = 29 holds. 

Hence 29
12

 is resolving of 29. Since m = 29 and x = 12, the Theorem 2 asserts that also the fraction 29
17

 

is resolving of m. For, if 12 is a solution of the congruence x2 ≡ −1(mod.29) , the other solution is 

y = 29 − 12 = 17 . So that we have the identity 10 ⋅ 29 = 172 + 1 , with y = 17 and k� = 10 . Let us 

consider the fraction 29
17

= 1 +
1

1+
1

2+
1

2+
1

2

 . The convergents are 1, 2, 5
3
,
12

7
,

29

17
 . If we invert them, we have 

1

1
,

1

2
,

3

5
,

7

12
,

17

29
 . The biggest gi such that g2

i
< 29 is 5, and 52 + (17 ⋅ 5 − 29 ⋅ 3)2 = 52 + 22 = 29. There-

fore 29
17

 is resolving of 29, as Theorem 2 claims.
Theorem 4: let us consider again the identity 5 ⋅ 29 = 122 + 1 . Then m� = m + 2x + k = 29 + 2 ⋅ 12 + 5 = 58 

and 5 ⋅ 58 = 172 + 1 . The Theorem 4 claims that the fraction 58
17

 is resolving of 58. If we develop this frac-

tion in a continued fraction, we obtain: 

58

17
= 3 +

1

2+
1

2+
1

3  . The convergents are 3, 7

2
,
11

3
,

58

17
 and, inverted, 

they are 1
3
,

2

7
,

3

11
,

17

58
 . The biggest gi such that g2

i
< 58 is 7, and, being k = 5 and x� = 17 , it follows that 

72 + (17 ⋅ 7 − 58 ⋅ 2)2 = 72 + 32 = 58 so that 58
17

 is resolving of 58.

27 Theorem 2 (Bussotti 2006, pp. 488–490 for the first version; p. 497 for the second one). Theorem 3 (Ivi, 
pp. 491–492 for the first version; pp. 497–498 for the second one). Theorem 4 (Ivi, pp. 498–499).
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The Theorem 3 is used only to prove the Theorem 4.
The conceptual basis of Paolini’s argument consists in excluding the cases, in which the 

theorem is trivially proved. The general structure of the reasoning is like this.
Paolini considers a prime p of the form 4n + 1 and the two complementary fractions 

associated to p. He supposes ad absurdum that p is not the sum of two squares. This means 
that the two fractions associated to p, let us indicate them by A and A1 , are not resolving. 
From A or A1 , it is possible to deduce a fraction B which is associated to a number m less 
than p. The fraction B is not resolving of m otherwise, by means of the Theorem 4, the 
fraction associated to p from which B derives, should be resolving of p. Hence, p would 
be the sum of two squares. Because of Theorem 2, neither the fraction associated to m nor 
the complementary of B—let us indicate by B1—are resolving of m. This process can be 
iterated finding a decreasing sequence of numbers mn < mn−1 < ⋯m < p the associated 
fractions to which are note resolving, otherwise those associated to p should be resolving. 
But the fraction associated to the “small”—the meaning of this word will be clarified in the 
proof—number mn is in fact resolving. Then—by means of the Theorem 4—one concludes 
that the fractions associated to p are resolving, as well. Against the hypothesis that p is not 
the sum of two squares. This absurdum proves that p is the sum of two squares.

Let us see the proof in detail.
If p is a prime number of the form 4n + 1, the equation kp = x2 + 1 has always solutions. 

If k = 1, the number p is the sum of the two squares x2 and 1.
If k = 2, in an argument by reductio ad absurdum, it is necessary to suppose that no one 

of the two complementary fractions associated to p are resolving of p, otherwise p would 
be the sum of two squares.

If k = 2, it is possible to subtract progressively the multiples of k (that is of 2) from x, at the 
condition that k < xn

2
.28 In this way, we obtain a series of numbers, which can be indicated by 

m, for which the identity29

None of the fractions m

x−2l
 is resolving, otherwise the fractions associated to p would be 

resolving and p would be the sum of two squares (Theorem 4). Neither their complementary 
fractions m

m−(x−2l)
 are resolving (Theorem 2). By subtracting progressively 2 from x, one arrives 

at

The fraction 3
2+1

2⋅3
=

5

3
 is associated to 5 (2·5 = 3 2 +1) and it is resolving of 5 because if we 

develop 5
3
 in a continued fraction, its convergents are: 1, 2, 5

3
 . Inverting them one has 1

1
,
1

2
,
3

5
 . 

Applying the already explained method, one obtains 5 = (3 ⋅ 2 − 1 ⋅ 5)2 + 22 , where 2 is 
the biggest gi such that g2

i
< 5 . Then the Theorems 2 and 4 ensure that every step of the 

descent is in fact composed of numbers to which resolving fractions are associated. There-
fore, the fractions associated to p are resolving, hence p is the sum of two squares. But our 
hypothesis was that p was not. This contradiction proves the theorem. One could claim: 

2m = (x − 2l)2 + 1 is valid.

k = 2, xn+1 = 3, with k >
xn+1

2
.

28 The succession of the xn is given by x-k = x
1
, x − 2 k = x

2
,…, x-nk = xn.

29 So, for example, starting from 2 ⋅ 41 = 92 + 1 , we obtain
2 ⋅ 25 = (9 − 2)2 + 1 = 72 + 1

2 ⋅ 13 = (7 − 2)2 + 1 = (9 − 2 ⋅ 2)2 + 1 = 52 + 1  .
2 ⋅ 5 = (5 − 2)2 + 1 = (7 − 2 ⋅ 2)2 + 1 = (9 − 2 ⋅ 3)2 + 1 = 32 + 1
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since the fractions associated to the small numbers are resolving and since it is possible to 
ascend backwards from the fractions associated to the small numbers to those associated to 
p, these fractions are resolving, but they should not be.

Contradiction, hence the theorem is true. This logical scheme in which, given a proposition 
A, it is (Cfr. Bellissima and Pagli 1996):

Paolini’s demonstration continues analysing the cases in which k > 2. We will see that it is 
possible to construct a descent that can be continued without limits from a theoretical point 
of view. But this descent has an end at 5 or before 5. The descent—or more appropriately 
the reduction—has its end with a number, to which a resolving fraction is associated, so 
that also p is the sum of two squares.

Let k be an even number bigger than 2. The reasoning starts, as always, from the 
equation

The first important consideration concerns the value of k. If k = x

2
 , replacing this value in 

the equation, it follows that the possible solutions for p and x are respectively (4.1) and 
(5.2). But p is bigger than 5. Thus k ≠ x

2
 . In addition, Paolini proves that if k > x

2
 , then in 

the identity

(identity that is the complementary of kp = x2 + 1 ), one has k′ < y

2
 (this part of the dem-

onstration is not difficult). Using the same technique as in the case k = 2, one subtracts pro-
gressively k from x till k < x − nk and k > x−nk

2
 . Posing x − nk = xn , it is k ≠ xn

2
 because k is 

even and xn is odd. Thus, we have the following equation

It is trivial to prove that xn < m1 < 2xn.
Now, let us pose yn = m1 − xn . It is m1 > 2yn and from Eq. 3), one obtains the equation

Since k > xn

2
 , it is 1 ≤ k1 ≤

yn

2
.

Furthermore xn > yn and therefore k1 < k . All these conditions ensure that the descent 
can be continued, that is, the two equations

and

have the same formal properties, but the components of the first equation are bigger than 
the corresponding components of the second one. It is necessary to precise that:

(1) if in k1m1 = y2
n
+ 1 , k1 = 1 , then the fraction y

2
1
+1

y1
 is resolving of m1 and hence m1 is the 

sum of two squares. By applying the Theorem 2, also the fraction m1

xn
=

x2
n
+1

kxn
 (the com-

(¬A → A) → A

is called Consequentia mirabilis.

(1)kp = x2 + 1

(2)k�p = (p − x)2 + 1 = y2 + 1

(3)km1 = x2
n
+ 1

(4)k1m1 = y2
n
+ 1

kp = x2 + 1

(5)k1m1 = y2
n
+ 1
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plementary fraction of y
2
1
+1

y1
 ) is resolving of m1 , and applying the Theorem 4, one reaches 

the conclusion that the fraction p
x
=

x2+1

kx
 is resolving of p, so that p is the sum of two 

squares.
(2) If k1 =

yn

2
 , it is m1 = 5 . In this case yn = 2 is the only solution that is compatible with 

the fact that m1, yn and k are integer numbers. But in this case one has the equation 
1 ⋅ 5 = 22 + 1 . The fraction 5

2
 is resolving of 5, and according to Theorem 2, the fraction 

5

3
 is resolving of 5, as well. Thus, by applying the Theorem 4, one returns to p which, 

for this reason, is the sum of two squares. So, really (2) is a particular case of (1).

When k1 <
yn

2
 the descent continues. But this descent cannot be infinite, so we reach either 

the case 1), or the case 2) or an y* = 3, for which one has 2 ⋅ 5 = 32 + 1 . This fraction is 
resolving of 5, and the reasoning is the same as the one analysed if k = 2.

The cases for which in the equation kp = x2 + 1 the number k is odd, can be dealt with a 
completely similar technique.

Finally, every prime number of the form 4n + 1 is the sum of two squares.
In the following we propose an example of descent in order to see how this procedure is 

applied in a specific case (Table 4).

Table 4  An application to a specific case of the explained procedure 

Let us start from the identity
(1) 10 ⋅ 73 = 272 + 1

It is p = 73, x = 27, k = 10. So k < x

2
 . Therefore the first step of the descent is obtained with k = 10 and 

x
1
= (27 − 10) = 17 . The value of m

1
 can be calculated or obtained automatically from the equation at the 

end of the Theorem 4. In this case the equation is p = m
1
+ 2x

1
+ k , that is 73 = m

1
+ 2 ⋅ 17 + 10 , so that 

m
1
= 29 . Hence we have the identity

(2) 10 ⋅ 29 = 172 + 1

Here k > x
1

2
 . But in the complementary identity, obtained posing y

1
= m

1
− k = 29 − 17 = 12 , we have

(3) 5 ⋅ 29 = 122 + 1

Hence k
1
= 5 , and k

1
<

y
1

2
 . So the descent continues. Now with k

1
= 5 , y

1
= 12 and m

1
= 29 , we obtain 

y
2
= 12 − 5 = 7 . So that, in order to obtain m

2
 , the equation m

1
= m

2
+ 2y

2
+ k

1
 can be applied, that is 

29 = m
2
+ 14 + 5 , so that m

2
= 10 and one gets the identity

(4) 5 ⋅ 10 = 72 + 1.
Now k

1
>

y
2

2
 , but the complementary identity, that is obtained as in the previous case, is

(5) 1 ⋅ 10 = 32 + 1.
Here k�

1
= 1 and the descent is ended. But the fraction m2

x2
=

10

3
 is resolving of 10. For, develop-

ing it in continued fraction, it is 10
3
= 3 +

1

3
 , the convergents are 3, 10

3
 and inverted they are 

1

3
,

3

10
 . The biggest gi such that g2

i
< 10 , is 3, and, since it is m

2
= 10, x

2
= 3, fn = 1 , it holds 

g2
n
+ (x

2
⋅ gn − m ⋅ fn)

2 = 32 + (3 ⋅ 3 − 10 ⋅ 1)2 = 32 + 12 = 10 . Thence 10
3

 is resolving of 10. But, for the 
Theorem 2, also the complementary fraction of 10

3
 , that is 10

7
 (Identity 4) is resolving of 10, and for the 

Theorem 4, the fraction from which 10
7

 derives, that is 29
12

 (Identity 3) is resolving of 29, and again for the 
Theorem 2, also 29

17
 (Identity 2) is resolving of 29, and, finally, for the theorem 4, 73

27
 (Identity 1) is resolv-

ing of 73, that is 73 is the sum of two squares. Now we summarize the procedure in a diagram:
10 ⋅ 73 = 27

2
+ 1

↓

10 ⋅ 29 = 17
2
+ 1 ↔ 5 ⋅ 29 = 12

2
+ 1

↕

5 ⋅ 10 = 7
2
+ 1 ↔ 1 ⋅ 10 = 3

2
+ 1
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5.3  Relations between Fermat’s Assertions and Paolini’s Proof

After Fermat, the elementary demonstrations concerning the form x2 + Ay2 (A = 1, 2, 3), in 
which the descent or a reduction is used and which are not inscribed inside a general theory 
of the binary quadratic forms as Lagrange’s or Gauss’ (1777–1855) are of two types (both 
derive from Euler’s ideas):

1. Given a number p which divides the sum of two coprime squares, then p is the sum of 
two squares. In the case of x2 + y2 , starting from the identity n ⋅ p = x2 + y2 , the number n 
is progressively reduced until reaching 1 in identities of the form ni ⋅ p = x2

i
+ y2

i
 . Since it is 

possible to reach ni = 1 , then p is the sum of two squares. If p is a prime of the form 4n + 1, 
due to the congruence x2 ≡ −1(mod.p) , p divides the sum of two squares and hence it is 
the sum of two squares. Mutatis mutandis, the reasoning when A = 2,3 is the same (Euler 
1773; Conrad s.d., p. 13).

This argumentation cannot be attributed to Fermat because there is no reduction ad absur-
dum, n is reduced until reaching 1, but no apagoge eis adynaton, to use Fermat’s words, 
exists. Furthermore, n is reduced, but not p, while, according to Fermat’s words, p has to 
be reduced.

2. In a phase of his career as a number theoretician which dates back about to the period 
1750–1755, Euler had not yet fully developed his ideas and methods on the quadratic resi-
dues. In this phase a theorem was discovered, proved and used by him as a lemma to prove 
the 4n + 1 primes theorem: “a number which is the sum of two coprime squares can be 
divided only by numbers which are the sum of two coprime squares”. Here the reasoning 
is similar to what Fermat could have been thought: the “little” numbers which are the sum 
of two mutually prime squares are either primes or can be divided only by numbers which 
are the sum of two mutually prime squares. This is an inductive basis. Let us now suppose, 
ad absurdum, that a2 + b2 , (a, b) = 1, is divided by a number p which is not the sum of two 
coprime squares. Euler was able to prove that a number c2 + d2 , which is less than a2 + b2 , 
exists (c, d) = 1, and is divided by a number which is not the sum of two squares. The pro-
cess can be iterated until reaching the “small” numbers which are the sum of two coprime 
squares. But these numbers are divided only by numbers which are the sum of two squares, 
while, they should not be. This contradiction proves the theorem.30

Here the resort to the reductio ad absurdum exists, but the reasoning is applied to an 
important lemma to prove the 4n + 1 primes theorem, not to the theorem itself. Therefore, 
even if Euler’s proof is likely close to Fermat’s way of thinking, it is difficult to ascribe it to 
Fermat. The proof given by Paolini gets all the elements Fermat spoke about:

30 We have here summarized a reasoning which is rather refined and which – in the form given by Euler 
– is not completely satisfying, but the basis of Euler’s argument is correct at all. On the forms a2 + b2 , 
a2 + 2b2 and a2 + 3b2 (Bussotti 2006, pp. 222–226; 238–242; p. 246 respectively).
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(a) It is conceived as a reductio ad absurdum
(b) It is applied directly in the proof of the theorem, not in a lemma.
(c) Given the identity k ⋅ p = x2 + 1 , the reduction we have seen acts either reducing k, 

or reducing p, according to the specific conditions characterizing every step of the 
process. Therefore either a value ki = 1 is reached before mi = 5 or mj = 5 is reached, 
as Fermat claimed.

(d) The continued fractions were well known and used in Fermat’s time and the proper-
ties of the continued fractions exploited in the shown proof are elementary and need 
no mathematical element extraneous to Fermat’s way of thinking (Bussotti 2006, pp. 
68–77).

(e) Fermat wrote of new principles of the infinite descent applied to affirmative proposi-
tions and, as we will see in the next section, new principles exist in Paolini’s proof: (1) 
there is an inductive basis for which the theorem is true, the small numbers; (2) after 
the descent there is an ascent which permits to prove that the fractions associated to p, 
are resolving. The reasoning is an example of consequantia mirabilis.

Given this picture, we think that this proof can be reasonably ascribed to Fermat. This 
is clearly an epistemological consequence based on the historical-logical reconstruction. 
However it is important—from a mathematical and methodological standpoint—that, in 
the historical-epistemological reconstruction of Fermat’s methods; a procedure which fits 
with almost all his assertions has been found. Therefore, two further remarks are necessary:

(a) Fermat wrote that all numbers of the descent are prime of the form 4n + 1. This 
seems difficult to admit because in this manner Fermat would have found a series consisting 
only of primes, a result which was, maybe, more important than the theorem in itself. It is 
enough to admit that every step of the descent contains numbers which should not be—ad 
absurdum—the sum of two squares, without the further request they are prime. A posteriori, 
since the proof shows that every number of the descent is in fact the sum of two squares, 
and has − 1 as a quadratic residue, such numbers have no factor of the form 4n + 3, but this 
truth is known only a posteriori.

(b) By means of the method of the resolving fractions it is possible to decompose in 
the form x2 + Ay2 a wider class of prime numbers than those belonging to the forms 4n + 1, 
6n + 1, 8n + 1 and 8n + 3, the classes of which Fermat spoke and whose properties can be 
proved by Euler’s methods. For example, it is possible to prove that every prime of the form 
20n + 1 is of the form x2 + 5y2(Fermat did not deal with this form). A theoretical research 
concerning all the classes of primes to which this technique can be applied is still missing.

6  Intermezzo: A logical Variant of the Infinite Descent and the New 
Principles

In this section, after having provided a symbolization of the proposed proof, the variants of 
the descent will be analysed.
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6.1  The logical structure of the proposed proof

First, let us specify the logical scheme of this demonstration. Let us denote:
By p the proposition “the two fractions associated to the prime number 4n + 1 are not 

resolving”.
By p1 the proposition “the two fractions associated to the first number of the descent are 

not resolving”.
By pn the proposition “the two fractions associated to the n-th number of the descent are 

not resolving”.
By pn+1 the proposition “the two fractions associated to 5 are not resolving”. The argu-

ment by descent proves that

But

is a tautology. Therefore, we deduce (p → pn+1) by modus ponens. On the other hand, ¬pn+1 
is true, so that we have, applying modus tollens:

That is, every prime number of the form 4n + 1 has a resolving fraction and therefore it is 
the sum of two squares.

6.2  The Variants of the Infinite Descent

In every argument by descent, the presence of a form, that has the same formal properties 
with different order of size, is an essential element. Also in Paolini’s reasoning there is 
such a form and it is represented by the two identities kp = x2 + 1 and k�p = y2 + 1 . The 
identities that we obtain in the descent have the same formal properties of these two, but 
they represent numbers which become progressively smaller. The same reasoning is valid 
for the fraction that are associated to the numbers p, m, m1,… , 5. All of them are con-
structed in the same way. The existence of numerical forms having the same formal proper-
ties, but representing, in the descent, progressively decreasing numbers, are typical of all 
the arguments in which this method is applied. However, the ways in which the reason-
ing is developed are so different case by case that Fermat was justified to speak of new 
principles.

Let us start from the application to what, following the distinction by Fermat, one could 
call the application to ordinary negative propositions. An appropriate and paradigmatic 
example is given by the only proposition of which Fermat left an almost complete proof: 
the area of a Pythagorean triangle is not the square of an integer. Given a Pythagorean 

((p → p1) ∧ (p1 → p2) ∧ … ∧ (pn → pn+1))

((p → p1) ∧ (p1 → p2) ∧ … ∧ (pn → pn+1)) → (p → pn+1)

p → pn+1

¬pn+1

____________

¬p
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triple (x,y,z), the area of the triangle whose sides are x, y, z is xy
2
 . In the two triples (0,0,0) 

and (1,0,1), it is xy
2
 = 0 and 0 is the square of an integer. Clearly no triangle can have a 

side equal to 0, nevertheless it is important to take into account this property of the triples 
(0,0,0) and (1,0,1). At the beginning of the demonstration, it is necessary to suppose—ad 
absurdum—that a Pythagorean triple (x, y, z) , which is different from (0,0,0) and (1,0,1), 
exists, such that xy

2
 is equal to the square of an integer. But one proves that, given some 

properties of the Pythagorean triples and the particular conditions of the theorem, it is pos-
sible to construct a triple (x1, y1, z1) such that z1 < z but z1 > 1 with the condition that x1y1

2
 

is the square of an integer. This procedure can be iterated, obtaining a value z2 < z1 and 
z2 > 1 , being x2y2

2
 the square of an integer.

Under these conditions, an infinite descent in integers would be given because an infi-
nite quantity of integers would exist between z and 1, this is absurd and hence the theorem 
is true. There are three fundamental steps in this demonstration:

1. To show that the hypotenuses of the hypothetical triangles have an invariant form.
2. To prove that the sequence of the hypotenuses is decreasing.
3. To prove that every hypotenuse is bigger than 1.

The latter is an important condition because if the descent reached the triple 12 + 02 = 12 , 
this descent would not have been infinite, but finite and, by repeating this finite process 
backwards, a set of Pythagorean triangles would have been obtained whose area would 
be equal to the square of an integer. That is, the opposite of Fermat’s assertion. But since 
1 < ⋯ zn ⋯ < z and the process can be iterated, an infinite descent is constructed. There-
fore the existence of a lower limit, in this case the triples (0,0,0) and (1,0,1), which cannot 
be reached is fundamental for the application of the infinite descent to negative proposi-
tions. For what Fermat called the affirmative propositions, things work in another manner:

1. There is a set of values—which can be considered small—for which the theorem T to 
prove is true.

2. Supposing that T is not true for a certain value V, it is possible to construct an algorithm 
which proves T to be false for a value W less than V. This algorithm can be iterated, but 
not indefinitely, it is a finite algorithm which reaches the small values with the condition 
that for such values the theorem T should be false, whereas it is true. This contradiction, 
deriving from the supposition that T is false for a certain number, proves that T is, in 
fact, true for every number. In some cases, as the analysed one, an ascent follows the 
descent.

The logical scheme of the consequentia mirabilis is applied.

Here the final point of the descent is reached, which is the opposite of the application to 
negative propositions and the algorithm, though it can be indefinitely prosecuted from a 
formal point of view, is in fact finite. Therefore, the reductio ad absurdum is used; the 
algorithm is potentially infinite, but really finite.

At all appearances, these are the new principles of which Fermat spoke. Now Fer-
mat’s words have a complete interpretation. We have called this application to affirmative 
propositions reduction-descent because the algorithm is a reduction rather than an infinite 
descent.
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In what follows we will clarify the differences between the reduction-descent and the 
procedure we call ordinary reduction. It is worth underlining that affirmative propositions 
exist which are proved by applications of the descent, based on the same principles as those 
characterizing the application to negative propositions. Lagrange and Gauss offer examples 
of these demonstrations (Lagrange 1773–1775, pp. 723–737; Gauss 1801, p. 146).

With regard to the ordinary reduction, let us consider the way in which John Wallis 
(1616–1703) and William Brouncker (1620–1684) solved Pell equation. For, it is based 
on a reduction. That is, given Pell equation x2 = Ny2 + 1 , the two English mathematicians 
constructed a series of equations having a solution if and only if x2 = Ny2 + 1 has solutions.

Furthermore the possible solutions of the n-th equation are smaller than the ones of 
the (n − 1)-th. But from this reduction it is not absolutely possible to conclude that there 
is an infinite descent and that therefore Pell equation has no solutions. On the contrary, 
Wallis and Brouncker reached the solution (1,1) and therefore Pell’s equations has always 
solution. In this case, a definite descent has been obtained. We call this method ordinary 
reduction. From a methodological point of view, the second version of Euler proofs that if 
a number divides the form x2 + Ay2 , with A = 1, 2 or 3, (x,y) = 1, then it has the same form 
as the dividend, and that if a number divides the sum of four squares, then it is the sum of 
four squares are based on ordinary reductions. Here there is neither a reductio ad absurdum 
nor an infinite descent. It is difficult to say if, when Fermat thought of the particularly dif-
ficult affirmative propositions, he was referring to this method. The lack of a reductio ad 
absurdum can induce to think he was not. Hence three different applications of procedures 
based on a reduction can be identified:

1. Infinite descent in a proper sense, supposing T to be false, the existence of an infinity 
of integers between two integers m and n follows.

2. Reduction descent, when the theorem is true for an initial segment of integers and 
denying that it is valid for any integer, we are able to construct a procedure which 
obliges to admit it is false for the initial segment. This contradiction proves the theo-
rem.

3. Ordinary reduction, when one is able to prove that a theorem is true for any value if and 
only if it is true for small values, but for small values it is true, hence it is true for any value.

The reduction descent, with its resort to an ad absurdum reasoning, can be used when an 
ordinary reductions fails. For example in case of Paolini’s proof, if he had proved that if the 
fractions associated to a number p are resolving, then also the fractions associated to a num-
ber less than p are, then an ordinary reduction could have been applied. But he proved that 
if the fraction associated to p is resolving than the fraction associated to a number which is 
greater, no less, than p is resolving. This proposition can be used only in a demonstration ad 
absurdum—as the one explained—not in a direct proof of the 4n + 1 primes theorem.

6.3  Internal and External Logic

In this section31 three methods have been analysed:

31 The features of this section are different from those of the other sections, where we have presented the 
final results of a research, while this section has to be interpreted as an outline and a proposal for a new 
research rather than the explanation of final results.
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(1) Infinite descent in a proper sense;
(2) Reduction descent;
(3) Ordinary reduction.

In some way, all three can be connected to Fermat and to the problems and theorems 
he posed and discovered. There is a method which is strictly correlated to 1) and 2): the 
principle of the smallest integer. It is based on the idea that if a problem has solutions in 
integers, then it has a solution which is the smallest one. Therefore—dealing with integers 
–, in a reasoning by reductio ad absurdum for the theorem T, it is possible to hypothesize 
that a certain value or set of values are the smallest ones for which ¬ T is true and, after 
that, to show that a smaller value or set of values exist. This contradiction proves T is 
true. The first mathematician who used explicitly the method of the smallest integer was 
probably Lagrange.32 This way of reasoning can be applied both while dealing with infi-
nite descent or reduction descent. These methods can hence be included inside the more 
general scheme of the principle of the smallest integer, even if some doubts might be 
expressed on the fact that this inclusion embraces all the cases in which infinite descent 
and reduction descent are applied (Cfr. Bussotti 2006, pp. 451–456).

The relation between infinite descent, reduction descent and principle of the smallest 
integer introduces an important problem: what is the role of formal logic in mathematics? 
It is well known that, from the point of view of the mathematical logic all the methods 
we have analysed are logically equivalent to mathematical induction. However, in history 
and in practice of mathematics these methods have been used for different classes of prob-
lems: for example, no demonstration by mathematical induction exists of the fact that every 
prime of the form 4n + 1 is the sum of two squares or that the equation x3 + y3 = z3 has 
no integral solutions if we exclude the trivial ones. This is true for most theorems proved 
by the methods we have expounded. The question is: does a general mechanism M which 
allows us to transcribe a proof by descent into a proof by mathematical induction, so that, 
after having obtained this proof, we can avoid to consider all the steps of M and obtain a 
proof by mathematical induction which seems independent of its deduction from the proof 
by descent? This is exactly what happens in projective geometry: for example, in space 
projective geometry the law of duality permits to obtain (for axioms and theorems) and 
demonstrate (for theorems) a graphical proposition from another one replacing the word 
“point” by “plane”, the word “to cut” by “to project” and leaving unmodified the word 
“straight line” (Table 5). 

Table 5  One of the most elementary examples in which the duality law is applied

Three points a, b, c which do not belong to a straight 
line determine a triangle, which is composed of 
three points (vertices), of the three straight lines ab, 
ac, bc and by the plane abc.

Three planes α, β, γ which do not belong to a 
straight line [that is, which do not belong to a pencil 
of planes] determine a trihedral angle. The figure 
is composed of three planes (faces), of the three 
straight lines they determine αβ, αγ, βγ (edges) and 
of the point αβγ.

32 See, for example the admirable demonstrations by Lagrange that all the solutions of Pell equation 
t2 − Du2 = 1 are of the form t =

(t1+u1

√

D)m+(t1−u1

√

D)m

2
 ; u =

(t
1
+u

1

√

D)m+(t1−u1

√

D)m

2

√

D
 (Lagrange 1774, 

Sects. 72–75; Bussotti 2006, pp. 352–362).
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It would be interesting to determine whether such automatic transformation of a proof 
given by descent in a proof given by mathematical induction can exist. In any case, though 
from the point of view of the formal logic the analysed methods are equivalent to math-
ematical induction, their internal logic is different (Cfr. Gauthier 1991, 2002):

(1) As far as mathematical logic is concerned, the distinction between affirmative and 
negative propositions makes no sense because an affirmative proposition can be trans-
formed into a negative one and viceversa. Any deductive scheme is a tautology. But 
for a mathematician this distinction can be significant because the way in which a 
proposition is presented can open the possibility to a proof which—otherwise—could 
not have been conceived.

(2) The possibility to use the reductio ad absurdum can also open perspectives of proof, 
which are excluded otherwise. Therefore, even if from a logical point of view, schemes 
of proof by reductio ad absurdum are proved to be logically equivalent to schemes in 
which the reductio is not used, in the practice of mathematics these schemes can be 
applied to different kinds of situations.

(3) Infinite descent, reduction descent and principle of the smallest integer allow us “to go 
backwards”, that is given a value, they are based on the construction of a smaller value, 
whereas the mathematical induction allows us “to go forwards”. This feature can also 
represent a great difference from a mathematical point of view, because the first three 
methods permit to exploit the property that, given two integers, only a finite number of 
integers can exist between them, while this is not the case with mathematical induction.

Finally, the internal logic of the infinite descent and of the mathematical induction is 
different because these methods are based on different properties of the mathematical 
objects (the integers, in this case) and on different ways of thinking of the mathematicians. 
The internal logic can highlight properties of the mathematical methods and of mathemat-
ics as an activity carried out by human beings, with their hard work, their failures and 
their successes, which, with a mere formal approach, might remain obscure. Mathemati-
cal logic provides an external approach to mathematics. It is quite useful to classify meth-
ods, theorems and problems and to avoid logical mistakes, but it cannot be confused with 
the internal logic of mathematics. These methods are hence different from a mathematical 
standpoint, even if they are logically equivalent.

7  Conclusion

The seventeenth century is well–known as the century of the scientific revolution. For, sev-
eral fields of the human knowledge—especially in relation to exact sciences—were either 
created or improved in a substantial manner. Taking into account this context, new interests 
raised in the Scientia de ponderibus, ballistic, practical geometry (Pisano and Capecchi 
2015) until new Mechanics (Bussotti and Pisano 2014). This new movement of ideas stim-
ulated the parallel developing of mathematical science: the use and theory of the equations 
in geometry, symbolism, pure calculus and obviously its relationship with physical science 
(Pisano and Capecchi 2013).

The modern theory of numbers also dates back to the seventeenth century and it has to 
be inscribed, generally speaking, within the outlined picture. Fermat was the main protago-
nist of this new mathematical current of studies. However, he provided no publication in 
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which his statements and proofs were explained. Rather, he suggested several arguments 
close to the modern Number Theory within several letter to his scientific correspondents.

7.1  An Assumption

From a historical–mathematical viewpoint, the infinite descent has often been used in the 
context of the Diophantine analysis in order to determine the possible solutions of certain 
equations or classes of equations achieved through this method. It is a particular kind of 
proof by contradiction based on the well–ordering principle.

One might assume that Fermat might have created an entire number theoretical con-
struction and that the 4n + 1 theorem represented, in a sense, the core of Fermat’s number 
theory. For, it is connected with several of his most profound researches.

With regard to the problem of the Pythagorean triples, the fact that every prime number 
of the form 4n + 1 is the sum of two squares allowed Fermat to grasp the class of numbers 
which can be the hypotenuse of a Pythagorean triangle and how many times a composite 
number can be hypotenuse (Bussotti, 2006, pp. 177–180). Fermat, for example, wrote in a 
letter to Frenicle (15 June 1641):

The fundamental proposition of the right triangles is that every prime number which 
exceeds by a unity a multiple of 4 is composed of two squares.33

Therefore, this fundamental theorem is the basis to solve the traditional Diophantine prob-
lems concerning the right triangles. Furthermore, it is the basic statement for the theory of 
binary quadratic forms of the kind Ax2 + By2. Fermat dealt with the form x2 + By2 (A = 1, 
B = 1,2,3). The form x2 + y2 is a prototype for the study of the others. Moreover, the theo-
rem is also connected with the following equation:

faced by Fermat, too. This equation is the easiest extension of Pell’s equation. But, in con-
trast to the latter, there is a precise necessary condition for the equation to have a solution. 
For, it is necessary that N has –1 as a quadratic residue, that is, if it is a prime number, it 
must be of the form 4n + 1.

Fermat also assumed that the 4n + 1 primes theorem is necessary to prove the polygo-
nal numbers theorem. This theorem is stated both in Observations sur Diophante (Fer-
mat 1891–1922, I, Observation XVIII, p. 305; in order to comment Diophantus’ quaes-
tio XXXI, Book IV), and in many letters and is considered by Fermat as one of the most 
significant and general in number theory. It is worth pointing out that it appears in Fer-
mat’s correspondence from 1637 (Fermat 1891–1922, II), while the 4n + 1-primes theorem 
appears from 1640 (Ibidem). Therefore, one could conjecture that

x2 − Ny2 = − 1

Fermat first proved the three “triangles” theorem and on its basis the four squares

theorem, and then the general theorem on the polygonal numbers.

33 “La proposition fondamentale des triangles rectangles est que tout nombre premier, qui surpasse de 
l’unité un multiple de 4, est compose de deux quarrés”. (Fermat 1891–1922, II, p. 221; Author’s transla-
tion).
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Why? Because it can also historically–epistemologically justify that:

(a) In a phase of the proof of the three triangulars theorem, the property according to which 
every prime number of the form 4n + 1 is the sum of two squares might be necessary 
(Cfr. Paolini, in Bussotti 2006, pp. 507–534 and, for an explanation see Bussotti, 2006, 
pp. 129–142).

(b) Fermat declared that he had to prove—“[…] lorsqu’il me fallut démontrer […]” (Fermat 
1891–1922, II, p. 432)—the theorem on the prime numbers of the form 4n + 1; as if 
this proposition represented a lemma for proving other propositions.

This could be a reasonable–so–possible reconstruction of Fermat’s work. Following these 
conjectural assumptions:

(c) Fermat could have also assumed this property 4n + 1 primes as hypothesis delaying its 
proof some years later.

(d) The relations between the 4n + 1 theorem and the polygonal numbers theorem are 
historically consistent with Fermat’s assertions (cfr. Letter to Pascal in 1654; Fer-
mat 1891–1922, II) and with a recent proof (also given by Paolini) in which the 
4n + 1-primes theorem is used to prove the three triangulars theorem, which, in its turn, 
is exploited to demonstrate the other assertions on the polygonal numbers Theorem.

For, Fermat’s edifice of number theory acquires an admirable inner coherence and 
interconnection.

7.2  Concluding Remarks

In the letter to Mersenne, dating to 1640, 23rd December (Fig. 3), Fermat claimed (Fermat 
1891–1922, II, pp. 212–213) that the prime numbers of the form 4n + 1 and its square are 
the sum of two squares, and that this decomposition is possible in only one way. Thus, of 
any prime of the form 4n + 1 cube and bi-square are obtained in two ways only, as sum of 
two square, and so on to the infinitum (Fig. 3).
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For example, when n = 1, we have:

and so on.
Fermat did not deal only with the sums of two squares, but also with other binary quad-

ratic forms such as:

5 = 2
2
+ 1

2

5
2
= 3

2
+ 4

2

5
3
= 2

2
+ 11

2

and

5
3
= 5

2
+ 10

2

x2 + 2y2

x2 + 3y2

x2 − 2y2

Fig. 3  Fermat’s Letter to Mersenne on the Sums of Two Squares (Fermat 1891–1922, II Correspondence 
to Mersenne, December 1640, pp. 212–213). Source: With kind permission of Gallica–National French 
Library (BnF)
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In this sense, each prime number can be represented as follows:

By the way, it was known from a long time that, since the squares are the sum of the 
successive odd numbers, every odd number—therefore both prime and composite num-
bers—can be represented as the difference of two squares (Cfr. Pisano and Capecchi 2015, 
2013).

We should remark that Fermat thought to have found a general formula in order to 
determine prime numbers for each arbitrary value of n. However, this argument lacked of 
proofs. For, Fermat’s statement is false; so, epistemologically, it also loses its general sup-
posed evidence.

As a matter of fact, since 1640, in another letter (Fig. 4), Fermat believed to have found a 
series exclusively composed of prime numbers. Such series is

In an initial phase, he admitted not to be able to prove such a proposition (Fermat 
1891–1922, II, p. 206),—which hence—he proposed as a conjecture (Fig.  4), but, after-
wards, in the above mentioned letter to Huygens (1659) via Carcavi he claimed to have 
proved his statement, which is impossible (Fermat 1891–1922, II, p. 431–432).

6n + 1can be represented by the form x2 + 3y2

8n + 1can be represented by the form x2 + 2y2

8n + 3can be represented by the form x2 + 2y2

(2)2
n

+ 1
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Until nowadays, we know that for the above formula the primes are the first following 
numbers only: 3, 5, 17, 257, 65,537 (Fermat 1891–1922, II, XLIII, p. 206). However, as 
above mentioned, he claimed (letter to Huygens; Ibidem) to have proved this proposition, 
which is impossible, as this proposition is false, as Euler proved (Euler 1752-1753, pp. 
3–40, 1754–1755, pp. 3–13).

Fermat also dealt with other questions that he solved by infinite descent. As above 
said, his most remarkable one concerns the theorem according to which the area of 

Fig. 4  Fermat’s Letter to Frenicle on the Sums of Two Squares (Fermat 1891–1922, II Correspondence to 
Frenicle, August (?) 1640, p. 206) Source: With kind permission of Gallica–National French Library (BnF)
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a Pythagorean triangle is not the square of an integer. Particularly, Fermat proposed an 
almost complete proof (Fermat 1891–1922, I, p. 340, III, p. 271) based on Infinite Descent 
concerning this theorem. A corollary of such a theorem by Fermat is that the following 
equation, by means of integers only, is impossible:

It has no integral solution.
To conclude, this paper has to be considered as a contribution to the following problems:

(1) History of mathematics: it is possible to prove Fermat’s theorems on binary quadratic 
forms following the scarce indications left by Fermat and by means of methods, which 
were available to him.

(2) Explanations on mathematical methods: under the name infinite descent are, in general, 
included three different methods: infinite descent, reduction descent, ordinary reduc-
tion. We have clarified their differences and shown that, following these differences, 
many assertions by Fermat, which seemed difficult to be understood, are subject to a 
reasonable interpretation.

(3) Difference between internal and external logic of mathematics. This is connected 
with the relations between mathematical logic and mathematics. This is an interesting 
research field on which still many specifications and clarifications have to be given by 
the scholars.

(4) Inner connections of Fermat’s number theory. Fermat was working to a whole number-
theoretical edifice in which the 4n + 1-primes theorems was one of the fundamental 
bases and the polygonal numbers theorem was the most relevant result.
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