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Abstract
According to a standard view, quantum mechanics (QM) is a contextual theory and quan-
tum probability does not satisfy Kolmogorov’s axioms. We show, by considering the mac-
roscopic contexts associated with measurement procedures and the microscopic contexts 
(μ-contexts) underlying them, that one can interpret quantum probability as epistemic, 
despite its non-Kolmogorovian structure. To attain this result we introduce a predicate lan-
guage L(x), a classical probability measure on it and a family of classical probability meas-
ures on sets of μ-contexts, each element of the family corresponding to a (macroscopic) 
measurement procedure. By using only Kolmogorovian probability measures we can thus 
define mean conditional probabilities on the set of properties of any quantum system that 
admit an epistemic interpretation but are not bound to satisfy Kolmogorov’s axioms. The 
generalized probability measures associated with states in QM can then be seen as spe-
cial cases of these mean probabilities, which explains how they can be non-classical and 
provides them with an epistemic interpretation. Moreover, the distinction between com-
patible and incompatible properties is explained in a natural way, and purely theoretical 
classical conditional probabilities coexist with empirically testable quantum conditional 
probabilities.

Keywords Quantum probability · Contextuality · Entanglement · Quantum measurements

1 Introduction

There are some typical features of quantum mechanics (QM) that are well established and 
accepted in the current literature but still raise interpretative problems. We are especially 
interested here in the following topics.

(1) Non-Kolmogorovian character of quantum probability, implied by the non-distributivity 
of the lattice of (physical) properties, which is the basic structure of standard quantum 
logic (QL).
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(2) The doctrine that, whenever a physical system in a given state is considered, a quantum 
observable generally has not a prefixed value but only a set of potential values, and 
that a measurement actualizes  one of these values, yielding an outcome that depends 
on the specific measurement procedure that is adopted (contextuality).

There is a huge literature on these topics, which goes back to the early days of QM. We 
limit ourselves here to recall that the QL issue was started by a famous paper by Birk-
hoff and von Neumann (1936), while the contextuality at a distance (or nonlocality) and, 
more generally, the contextuality of QM were accepted by most physicists as “math-
ematically proven” after the publication of Bell’s (1964, 1966) and Kochen–Specker’s 
(1967) theorems, later supported by numerous different proofs of the same or similar 
theorems (among which the famous proof of nonlocality provided in 1990 by Green-
berger, Horne, Shimony and Zeilinger, which does not resort to inequalities).

Non-classical probability and contextuality can be linked, and inquiring their links 
leads to important achievements. This issue has been already studied by the “Vāxjö 
school”, and in particular by Khrennikov (2009a, b). We propose in this paper a new 
perspective, according to which quantum probability and its nonclassical features can 
be interpreted as derived notions in a classical probabilistic framework by taking into 
account microscopic and macroscopic contexts.

To the best of our knowledge, our proposal is innovative. Let us therefore summarize 
the essentials of it.

First of all, we introduce some epistemological and physical remarks on QM in 
Sect.  2 by referring to a conception of QM according to which QM deals with indi-
vidual examples of physical systems (briefly, individual objects) and their properties 
(see, e.g., Busch et  al. 1996). Bearing in mind these remarks, we work out in Sect. 3 
a predicate language L(x) whose predicates either denote states or pairs made up of a 
property E and a (generally unknown) microscopic context (μ-context) C. Hence the 
elementary sentences of L(x) assert that the individual object x is in a given state or that 
x has a given property in a given μ-context, but not that x has a given property without 
reference to contexts, as in the standard language of QM. Then we introduce a classical 
notion of probability on the set of all sentences of L(x) in Sect. 4 and a family of clas-
sical probability measures on sets of μ-contexts in Sect. 5, each element of the family 
corresponding to a measurement procedure that determines a macroscopic measurement 
context. We can thus define a notion of compatibility on the set  of all properties, hence 
a notion of testability on the set of all sentences of L(x), and use the foregoing probabili-
ties conjointly to define the notion of mean conditional probability on the subset of all 
testable sentences of L(x) and the related notion of mean probability measurement. The 
former admits an interpretation that is epistemic (in a broad sense, i.e., relating to our 
degree of knowledge/lack of knowledge), even if it is not bound to satisfy Kolmogorov’s 
axioms because it is obtained by averaging over classical probability measures.

Based on the definitions and results expounded above, we focus in Sect. 6 on the set 
 of all properties, on which mean conditional probabilities induce a preorder relation 
≺ . We show that, if suitable structural conditions are satisfied, a family of mean condi-
tional probabilities can be introduced, parametrized by the set  of all states, each ele-
ment of which is a generalized probability measure on ( ,≺) . Moreover these measures 
allow the definition of a new kind of conditioning referring to a sequence of measure-
ment procedures that is conceptually different from classical conditioning.
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The formal scheme described above characterizes a broad class   of theories. Then we 
assume in Sect. 7 that QM belongs to   , so that states and properties can be interpreted as 
quantum states and quantum properties, respectively, and the quantum probability meas-
ures associated with states can be considered as the specific form that the generalized prob-
ability measures defined on  take in QM. Hence we attain the following results.

(1) The nonclassical character of quantum probability can be explained in classical terms 
by taking into account μ-contexts. It follows in particular that quantum probability can 
be given an epistemic rather than an ontic interpretation in our approach.1

(2) The quantum relation of compatibility on the set of properties can be considered as the 
specific form that the relation of compatibility introduced in the general framework 
takes in QM.

(3) The conditional probability usually introduced in QM can be considered as the specific 
form that the new kind of conditioning introduced in the general framework takes in 
QM.

We conclude our treatment by observing in Sect. 8 that the general notions of mean condi-
tional probability and mean probability measurement are conceptually close to the notions 
of universal average and universal measurement, respectively, introduced by Aerts and 
Sassoli de Bianchi (2014, 2017). Hence our approach provides a description of measure-
ments of probabilities that is similar to the proposal of these authors, which they maintain 
to supply a possible solution of the hoary quantum measurement problem. We however 
do not make such a claim in the case of our approach, because we supply our definition 
of mean probability measurement resting on the standard notion of measurement in QM, 
without entering the problematic aspects of this notion (as state reduction and nonlocality) 
which arise when QM is assumed to refer to individual objects and their properties. Nev-
ertheless the results expounded above are sufficient in our opinion to justify our proposal.

To close this section, let us point out an essential difference between our approach and 
Khrennikov’s. This author considers contexts ‘as a generalization of a widely used notion 
of preparation procedure’ (2009b). As we have seen, we introduce instead measurement 
procedures determining macroscopic measurement contexts, each of which is associated 
with a set of microscopic contexts. The latter play an essential role in our framework, 
as they allow us to obtain the results resumed above, and do not occur in Khrennikov’s 
approach.

2  Some Remarks on QM

As other advanced scientific theories, QM is expressed by means of a fragment of the natu-
ral language enriched with technical terms (the language of QM) and is characterized by 
a pair (F, I), with F a logical and mathematical formalism and I an empirical interpreta-
tion which establishes connections between F and an empirical domain. This interpretation 
generally is indirect, in the sense that there are theoretical entities that are connected with 

1 We stress that our general framework does not constitute a hidden variables theory for QM in a standard 
sense. Indeed, μ-contexts are associated (generally many-to-one) with measurement procedures, not with 
properties or states of the measured entity. Our perspective complies instead with Aerts’ (1986) hidden 
measurements approach.
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the empirical domain only via derived theoretical entities, and incomplete, in the sense that 
only limited ranges of values of the theoretical entities are actually interpreted.2

To attain the results summarized in Sect. 1, we need to formalize an elementary sub-
language of the language of QM. Let us therefore preliminarily discuss some features of 
this language and some intuitive ideas on its interpretation, referring to a conception of 
QM according to which QM deals with individual objects and their properties, as we have 
anticipated in Sect. 1. For the sake of simplicity we avoid distinguishing everywhere in the 
following the theoretical entities from the empirical entities that correspond to them via I.

First of all we recall that in most presentations of QM the notions of physical system, or 
entity, (physical) property and (physical) state are considered as basic. Moreover, accord-
ing to some known approaches to the foundations of QM (see, e.g., Beltrametti and Cass-
inelli 1981; Ludwig 1983) states are considered as classes of probabilistically equivalent 
preparation procedures, or preparing devices, and properties as classes of probabilistically 
equivalent dichotomic (yes–no) registering devices.

A preparation procedure � in the class S, when activated, produces an individual object 
x (which can be identified with the act of activation itself if one wants to avoid ontological 
commitments). Hence, after the act of activation, a sentence that states that x is in the state 
S is true and a sentence that states that x is in a state R ≠ S is false.

Given an individual object x in the state S, however, activating a registering device r in 
the class E does not test whether the property E is possessed or not by x independently of 
the simultaneous activation of other devices. Indeed it follows from some known proofs 
of the Bell and Kochen–Specker theorems mentioned in Sect.  1 (see, e.g., Greenberger 
et al. 1990; Mermin 1993) that, if the laws of QM have to be preserved in every conceiv-
able physical situation, the outcome that is obtained depends on the set of the registering 
devices that are activated together with r, i.e., on the macroscopic context CM determined 
by the whole quantum measurement M that is performed (of course, these registering 
devices must be compatible, i.e., they must belong to different but compatible properties). 
Hence, one must admit that, generally, a truth value can be assigned to a sentence which 
states that x possesses the property E only if also a macroscopic context is specified (con-
textuality of QM).3

3 We have emphasized in some previous papers (see, e.g., Garola 1999; Garola and Pykacz 2004; Garola 
and Sozzo 2010; Garola and Persano 2014) that the epistemological clause “the laws of QM have to be 
preserved in every conceivable physical situation” is essential in the proofs of Bell’s and Kochen–Specker’s 
theorems. Nevertheless, this clause generally is not explicitly noticed or stated, possibly because it seems 
to be unquestionably justified by the outstanding success of QM. Yet it must be observed that all the proofs 
mentioned above proceed ab absurdo, hypothesizing physical situations in which noncompatible physical 
properties are assumed to be simultaneously possessed by an individual object. In such situations the quan-
tum laws that are applied cannot be simultaneously tested, hence the assumption that they hold anyway 
seems more consistent with a classical than with a quantum view. One can therefore try to give up the 

2 More generally, according to the standard epistemological conception, or received view (see, e.g., Braith-
waite 1953; Hempel 1965; Carnap 1966), a fully-developed physical theory T, as QM, is in principle 
expressible by means of a metalanguage in which a theoretical language L

T
 , an observational language 

L
O
 and correspondence rules R

C
 connecting L

T
 and L

O
 can be distinguished. The theoretical apparatus of 

T, expressed by means of L
T
 , includes a mathematical structure and, usually, an intended interpretation 

that is a direct and complete physical model of the mathematical structure. The observational language L
O
 

describes instead an empirical domain, hence it has a semantic interpretation, so that the correspondence 
rules R

C
 provide an empirical interpretation of the mathematical structure that is indirect and incomplete in 

the sense specified above.
 The received view has been criticized by several authors (see, e.g. Kuhn 1962; Feyerabend 1975) and is 
nowadays maintained to be outdated by some scholars. However, we retain here some of its basic ideas that 
we consider epistemologically relevant.
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We observe now that, generally, the macroscopic context CM determined by M may be 
produced by many different microscopic physical situations that cannot be distinguished at 
a macroscopic level (though they can be described, in principle, by QM itself). Hence we 
can associate CM with a set ℭM of microscopic contexts (μ-contexts; of course, ℭM could 
reduce to a singleton in special cases). It is then natural to think that the truth value of a 
sentence asserting that x possesses the property E generally depends on the μ-context that 
is realized when M is performed. But we cannot know this μ-context, hence only a prob-
ability of it can be given which is an index of our degree of ignorance (we naively argue 
here as though the set ℭM were discrete, to avoid technical complications).

Summing up, our analysis leads us to conclude that a truth value can be assumed to 
exist consistently with QM only in the case of a sentence asserting that an individual object 
x possesses a property E in a given μ-context C, not in the case of a sentence simply assert-
ing that x possesses a property E. Moreover, in general this value cannot be deduced from 
the laws of QM, which are probabilistic laws that make no explicit reference to contexts.

The conclusions above have an important consequence. Every quantum prediction con-
cerns probabilities, hence testing it requires evaluating frequencies of outcomes. In our pre-
sent perspective, a typical test of this kind consists in preparing a broad set of individual 
objects in a given state S and then performing on each of them the same quantum measure-
ment M, which requires activating one or more (compatible) registering devices simultane-
ously. The macroscopic context CM then is the same for every individual object, but the 
μ-context C ∈ ℭM generally changes in an unpredictable way. Thus we meet two distinct 
sources of randomness. The first is the state S (be it a pure state or a mixture) that may not 
determine univocally the properties of an individual object in QM, even if the μ-context 
C is given. The second is the unpredictable change of the μ-context that occurs when per-
forming M on different individual objects. We are therefore led to think that quantum prob-
ability takes implicitly into account both sources. We will see in the following sections that 
this idea can explain the non-Kolmogorovian character of quantum probability, together 
with the rather surprising fact that the values of quantum probability neither depend on 
μ-contexts nor on macroscopic contexts (see, e.g., Mermin 1993).

3  The Formal Language L(x)

As we have anticipated in Sect. 1, we intend to introduce in the present paper a general 
probabilistic framework that may characterize a class of theories including QM. Of course, 
this will be done by bearing in mind all the suggestions following from our remarks on QM 
in Sect. 2.

As a first step we construct in this section a formal language L(x) (which formalizes, 
in the case of QM, an elementary sublanguage of the language of QM, and can be con-
sidered a part of the formalism F). To this end we agree to use standard symbols in set 
theory and logic. In particular, c , ∩ , ∪ , ⊂ , ∖ , ∅ and ℙ(Ψ) will denote complementation, 

aforesaid clause, but then the proofs of Bell’s an Kochen–Specker’s theorems cannot be completed. This 
conclusion opens the way to the attempt at recovering noncontextual interpretations of QM (Garola et al. 
2016). The arguments in this paper, however, apply to every theory in which contexts can be defined, irre-
spective of whether the results of measurements are context-depending (locally, or also at a distance) or not.

Footnote 3 (continued)
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intersection, union, inclusion, difference, empty set and power set of the set Ψ , respec-
tively. Moreover, N will denote the set of natural numbers.

Definition 3.1 Let  ,  and  be disjoint sets whose elements we call properties, states 
and μ-contexts, respectively, and let us set

Then, we denote by L(x) a classical predicate logic, constructed as follows.
Syntax

(i) An individual variable x.
(ii) A set Π = C ∪  of monadic predicates.
(iii) Connectives ¬ (not), ∧ (and), ∨ (or).
(iv) Parentheses (,).
(v) A set Ψ(x) of well formed formulas (wffs), obtained by applying recursively stand-

ard formation rules in classical logic (to be precise, for every A ∈ Π , A(x) ∈ Ψ(x) ; 
for every �(x) ∈ Ψ(x) , ¬�(x) ∈ Ψ(x) ; for every �(x), �(x) ∈ Ψ(x) , �(x) ∧ �(x) ∈ Ψ(x) 
and �(x) ∨ �(x) ∈ Ψ(x)).

Semantics

 (i) A universe U, whose elements we call individual objects.
 (ii) An injective mapping. 

 (iii) The boolean sublattice Θ = (ext(Π),c ,∩,∪) of ℙ(U) generated by ext(Π).
 (iv) The surjective mapping (still called ext by abuse of language) 

 recursively defined by the following rules:

for every A ∈ Π , ext(A(x)) = ext(A);
for every �(x) ∈ Ψ(x) , ext(¬�(x)) = U ⧵ ext(�(x)) = (ext(�(x)))c;
for every �(x), �(x) ∈ Ψ(x),  ext(�(x) ∧ �(x)) = ext(�(x)) ∩ ext(�(x)) and 
ext(�(x) ∨ �(x)) = ext(�(x)) ∪ ext(�(x)).

 (v) A set Σ of interpretations of the variable x such that, for every � ∈ Σ , 

 (vi) For every � ∈ Σ , a truth assignment 

(where t stands for true and f for false), such that ��(�(x)) = t iff �(x) ∈ ext(�(x)) (hence 
��(�(x)) = f  iff �(x) ∈ (ext(�(x)))c).

The logical preorder and the Lindenbaum–Tarski algebra of L(x) can then be intro-
duced in a standard way, as follows.

 =
{
EC = (E,C) ∣ E ∈  ,C ∈ 

}
.

ext ∶ A ∈ Π ⟶ ext(A) ∈ ℙ(U).

ext ∶ �(x) ∈ Ψ(x) ⟶ ext(�(x)) ∈ Θ

� ∶ x ∈ {x} ⟶ �(x) ∈ U.

�� ∶ �(x) ∈ Ψ(x) ⟶ ��(�(x)) ∈ {t, f }
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Definition 3.2 We denote by < and ≡ the (reflexive and transitive) relation of logical 
preorder and the relation of logical equivalence on Ψ(x) , respectively, defined by standard 
rules in classical logic (to be precise, for every �(x), �(x) ∈ Ψ(x) , 𝛼(x) < 𝛽(x) iff, for every 
� ∈ Σ , ��(�(x)) = t whenever ��(�(x)) = t , and �(x) ≡ �(x) iff 𝛼(x) < 𝛽(x) and 𝛽(x) < 𝛼(x) ). 
Moreover we put Ψ�(x) = Ψ(x)∕ ≡ and denote by <′ the partial order canonically induced 
by < on Ψ�(x) . Then (Ψ�(x),<�) is a boolean lattice (the Lindenbaum–Tarski algebra of 
L(x)) whose operations ¬� , ∧�,∨� are canonically induced on Ψ�(x) by ¬,∧,∨ , respectively).

As stated in Definition 3.1, the language L(x) is a classical predicate logic. It has, how-
ever, some innovative features from the point of view of the interpretation I. Indeed the 
words “states”, “properties”, “μ-contexts” and “individual objects” occur in Definition 3.1 
just as nouns of elements of sets, but obviously refer to an interpretation that makes these 
elements correspond to empirical notions denoted by the same nouns. Then, each state S is 
classified in L(x) as a predicate, and an elementary wff of the form S(x) (interpreted as “the 
individual object x is in the state S”) is argument of truth assignments, at variance with 
widespread views that consider states as possible worlds of a Kripkean semantics in QL 
(see, e.g., Dalla Chiara et al. 2004). Furthermore properties are not classified as predicates 
of L(x). Rather, a predicate either is a state or it is a pair EC = (E,C) (an elementary wff 
of the form EC(x) is then interpreted as “the individual object x has the property E in the 
context C”).

4  A Contextual Probability Structure on L(x)

We state now an assumption that is suggested by our introduction of new entities 
(μ-contexts) which do not occur explicitly in the formal apparatus of QM.

Axiom P  A mapping � ∶ ext(�(x)) ∈ Θ ⟶ �(ext(�(x))) ∈ [0, 1] exists such that 
Φ = (U,Θ, �) is a classical probability space.4

Based on Axiom P we can introduce now a probability measure on L(x) by means of the 
following definition.

Definition 4.1 Let Ψ+(x) ⊂ Ψ(x) be the set of wffs of L(x) such that, for every 
�(x) ∈ Ψ+(x), �(ext(�(x))) ≠ 0 , and let p be a binary mapping such that

We say that the pair (Φ, p) is a μ-contextual probability structure on L(x) and that 
p(�(x) ∣ �(x)) is the μ-contextual conditional probability of �(x) given �(x) . Moreover, 
whenever ext(�(x)) = U we say that p(�(x) ∣ �(x)) is the μ-contextual absolute probability 
of �(x) and simply write p(�(x)) in place of p(�(x) ∣ �(x)).

p ∶ (�(x), �(x)) ∈ Ψ(x) × Ψ+(x) ⟶ p(�(x) ∣ �(x)) =
�(ext(�(x)) ∩ ext(�(x)))

�(ext(�(x)))
∈ [0, 1].

4 Following a standard terminology we call classical probability space here any triple (Ω,Σ,�) , where Ω 
is a set, Σ is a Boolean �-subalgebra of ℙ(Ω) , and � ∶ Δ ∈ Σ ⟶ �(Δ) ∈ [0, 1] is a mapping satisfying 
the following conditions: (i) �(Ω) = 1 ; (ii) if 

{
Δ

i

}
i∈N

 is a family of pairwise disjoint elements of Σ , then 
�(∪

i
Δ

i
) = Σ

i
�(Δ

i
).
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The terminology introduced in Definition 4.1 (where the word μ-contextual underlines 
the dependence of probabilities on μ-contexts through the wffs of L(x)), is justified by the 
following statement.

Proposition 4.1 Let �(x) ∈ Ψ+(x). Then, the mapping

satisfies the following conditions.

 (i) Let �(x) ∈ Ψ(x) be such that ext(�(x)) = U (equivalently, �(x) ≡ �(x) ∨ ¬�(x)). Then, 
p�(x)(�(x)) = 1 .

 (ii) Let �1(x), �2(x) ∈ Ψ(x) be such that ext(�1(x)) ∩ ext(�2(x)) = � (equivalently, 
𝛼1(x) < ¬𝛼2(x)). Then, p�(x)(�1(x) ∨ �2(x)) = p�(x)(�1(x)) + p�(x)(�2(x)).

Proof Straightforward.   □

Proposition 4.1 shows indeed that, for every �(x) ∈ Ψ+(x) , p�(x) is a probability meas-
ure on (Ψ(x),¬,∧,∨).

Examples  Let E,F ∈  , R, S ∈  , C,D ∈  , and let FD(x), S(x) ∈ Ψ+(x) . Then, we obtain 
from Definition 4.1:

 (i) p(EC(x) ∣ FD(x)) =
�(ext(EC(x))∩ext(FD(x)))

�(ext(FD(x)))
;

 (ii) p(EC(x) ∣ S(x)) =
�(ext(EC(x))∩ext(S(x)))

�(ext(S(x)))
;

 (iii) p(R(x) ∣ S(x)) =
�(ext(R(x))∩ext(S(x)))

�(ext(S(x)))
.

Example (iii) is especially interesting because it shows that the μ-contextual conditional 
probabilities do not always depend on μ-contexts.

By using Axiom P we have thus introduced μ-contextual conditional and absolute prob-
abilities on L(x). We stress that the μ-contextual probability structure introduced in Defini-
tion 4.1 is basically classical, hence these probabilities admit an epistemic interpretation. 
In other words, they can be considered as indexes of our lack of knowledge of the truth 
assignments on L(x).

5  Measurements and Mean Probabilities

Based on the notions introduced in Sects. 3 and 4, we intend to supply in this section a 
theoretical description of measurements testing probabilities. To this end, let us observe 
that our remarks in Sect. 2 suggest that a test of the probability of a wff �(x) ∈ Ψ(x) con-
sists in choosing a measurement that checks all the properties that occur in �(x) (hence 
these properties must be compatible) on an individual object, performing it on a large num-
ber of individual objects, and then evaluating the frequencies of the outcomes that have 
been obtained. Moreover, the theoretical description of this test must refer to a probability 
measure defined on some set of μ-contexts, to take into account our limited knowledge 

p�(x) ∶ �(x) ∈ Ψ(x) ⟶ p(�(x) ∣ �(x)) ∈ [0, 1]
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of the μ-context that must be associated with each implementation of the measurement 
on an individual object. Bearing in mind these requirements, we introduce the following 
assumption.

Axiom M  Every E ∈  is associated with a set E of measurement procedures, and 
every M ∈ E determines a macroscopic measurement context CM associated with a clas-
sical probability space (M ,ΣM , �M) , where M is a set of μ-contexts and, for every C ∈ M , 
{C} belongs to ΣM.

We have seen in Sect. 2 that a quantum measurement may require that more than one 
property be simultaneously tested. We are thus naturally led to introduce the notions of 
compatibility, testability and conjoint testability in our present framework, as follows.

Definition 5.1 Let {E,F,…} be a countable set of properties of L(x). We say that E,F,… 
are compatible iff E ∩F ∩⋯ ≠ � , and denote by k the binary compatibility relation 
on  defined by setting

Moreover, let �(x) ∈ Ψ(x) and let E,F,… be the properties that occur in the formal expres-
sion of �(x) (with indexes in  ). Then we say that �(x) is testable iff the following condi-
tions hold.

 (i) E,F,… are compatible.
 (ii) E,F,… occur in the formal expression of �(x) with the same index C and a macro-

scopic measurement procedure M ∈ E ∩F ∩… exists such that C ∈ M.

Finally, let {�(x), �(x),…} be a countable set of wffs of Ψ(x) . We say that �(x), �(x),… are 
jointly testable iff the wff �(x) ∧ �(x) ∧ … is testable. Then we denote by ΨT (x) the set of 
all testable propositions of Ψ(x) and, for every �(x) ∈ ΨT (x) , we write �C

M
(x) in place of 

�(x) whenever explicit reference to the measurement procedure M and to the μ-context C 
defined in (ii) must be done.

We can now state the following proposition.

Proposition 5.1  

 (i) The binary relation k  on  introduced in Definition 5.1 is reflexive and symmetric, 
but, generally, not transitive.

 (ii) Let E ∈ , M ∈ E and C ∈ M. Then, EC(x) ∈ ΨT (x).
 (iii) Let M be a measurement procedure, C,C� ∈ M and C′ ≠ C. Moreover, for every 

�C
M
(x) ∈ ΨT (x) , let �C�

M
(x) be the wff obtained from �C

M
(x) by replacing C with C′ . 

Then, �C�

M
(x) ∈ ΨT (x).

for every E,F ∈  ,EkF iff E and F are compatible.
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Proof Straightforward.   □

Of course, in every theory of the class that we are considering, each measurement pro-
cedure M provides a theoretical description, via an empirical interpretation I (see Sect. 2) 
of a concrete measurement. Then, it remains to understand what one actually tests when 
evaluating the frequencies of outcomes obtained as explained above. It is apparent indeed 
that such a test does not refer to the μ-contextual conditional probabilities introduced in 
Definition 4.1, because we cannot know nor fix the μ-context associated with each imple-
mentation of the measurement (hence μ-contextual probabilities must be classified as theo-
retical entities that can be interpreted only indirectly, see Sect. 2). But the unpredictable 
change of μ-context that generally occurs when performing the measurement on different 
individual objects suggests that one actually tests a mean of contextual μ-conditional prob-
abilities over the family 

{
�C
M
(x)

}
C∈M

 . The following definition and assumption formalize 

this idea.

Definition 5.2 Let �(x), �(x) ∈ ΨT (x) be jointly testable and let E,F,… ∈  be the prop-
erties that occur in one or both the formal expressions of �(x) and �(x) . Furthermore, let 
�(x) ∈ Ψ+(x) . For every M ∈ E ∩F ∩⋯ we put

Moreover, whenever the following equality holds for every M,N ∈ E ∩F ∩⋯

we omit the symbols M, N, C, D, M and N , and say that < p(𝛼(x) ∣ 𝛽(x)) > is the mean 
conditional probability of �(x) given �(x).

Based on Definition 5.2 we maintain in the following that performing the measurement 
corresponding (via I) to a measurement procedure M ∈ E ∩F ∩⋯ on a large number 
of individual objects provides a test of < p(𝛼(x) ∣ 𝛽(x)) > , or, briefly, a mean probability 
measurement.

Axiom C  Mean conditional probability (hence mean probability measurements) do exist 
for every pair (�(x), �(x)) of jointly testable wffs such that �(x) ∈ Ψ+(x).

It follows from Definition 5.2 and Axiom C that mean conditional probabilities take 
into account two different kinds of ignorance. First, the lack of knowledge about the truth 
assignments on L(x) mentioned at the end of Sect. 4. Second, the ignorance of the μ-context 
to be associated with a measurement when this measurement is performed. Hence mean 
conditional probabilities admit an epistemic interpretation even if they are not bound to 
satisfy Kolmogorov’s axioms, for they are average quantities.

To close this section, let us observe that our present perspective is supported by some 
previous research in the literature. Indeed, as we have anticipated in Sect.  1, mean con-
ditional probabilities and mean probability measurements are conceptually similar to the 
universal averages and the universal measurements, respectively, introduced by Aerts 
and Sassoli de Bianchi (2014, 2017). Moreover, the recognition that two kinds of lack of 

<p
(
𝛼C
M
(x) ∣ 𝛽C

M
(x)

)
>M

=
∑

C∈M

𝜈M({C})p
(
𝛼C
M
(x) ∣ 𝛽C

M
(x)

)
.

<p
(
𝛼C
M
(x) ∣ 𝛽C

M
(x)

)
>M

= <p
(
𝛼C
N
(x) ∣ 𝛽C

N
(x)

)
>N

,
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knowledge occur when a measurement is performed fits in well with similar remarks of 
these authors.5

6  Q‑Probability

The set  of all properties has a relevant role in QM, hence we focus on it in the present 
section.

By using the notion of mean conditional probability introduced in Sect.  5, we firstly 
define an order structure on  , as follows.

Definition 6.1 Let E ∈  , M ∈ E , C ∈ M , S ∈  , let S(x) ∈ Ψ+(x) , and let

be the mapping defined by setting

Then, we denote by ≺ and ≈ the preorder and the equivalence relation on  , respectively, 
defined by setting, for every E,F ∈ ,

and

It is now important to consider a special case that allows us to connect our present 
framework with QM. We therefore introduce the following definition.

Definition 6.2 Let ≺ be a partial order on  and let ( ,≺) be an orthocomplemented 
lattice. We denote meet, join, orthocomplementation, least element and greatest ele-
ment of ( ,≺) by ⋒ , ⋓ , ⊥ , � and � , respectively. Moreover, we denote by ⊥ the (binary) 

PS ∶ E ∈  ⟶ PS(E) ∈ [0, 1]

PS(E) = <p(EC(x) ∣ S(x))> =
∑

C∈M

𝜈M({C})p(EC(x) ∣

S(x)) =
∑

C∈M

𝜈M({C})
𝜉(Ext(EC(x)) ∩ Ext(S(x)))

𝜉(Ext(S(x)))

E ≺ F iff , for every S ∈  , PS(E) ≤ PS(F)

E ≈ F iff E ≺ F and F ≺ E

5 We recall that the Aerts and Sassoli de Bianchi proposal finds its roots in the hidden measurement 
approach (see, e.g., Aerts 1986). This approach led the author to introduce state property systems (see, e.g., 
Aerts 1999), that successively evolved in the state-context-property (SCoP) formalism (see, e.g., Aerts and 
Gabora 2005; this formalism was mainly used for working out a theory of concepts, in particular in the field 
of quantum cognition). It is then possible to show that the SCoP formalism can be (partially) translated into 
the formalism developed in the present paper, and conversely, which explains the conceptual similarities 
pointed out above. For the sake of brevity we do not deal with this issue in detail here.
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orthogonality relation canonically induced by ⊥ on ( ,⋒,⋓,⊥ ).6 Then, for every S ∈  , we 
say that PS is a generalized probability measure on ( ,⋒,⋓,⊥ ) iff it satisfies the following 
conditions.

 (i) PS(�) = 1.
 (ii) If 

{
E1,E2,…

}
 is a countable set of properties of  and E1,E2,… are pairwise disjoint 

(i.e., for every k, l,Ek⊥El ), then

 

Whenever PS is a generalized probability measure on ( ,⋒,⋓,⊥ ) , for every E ∈  we say 
that PS(E) is the Q-probability of E given S.

Definition 6.2 implies that a generalized probability measure PS does not satisfy Kol-
mogorov’s axioms if ( ,⋒,⋓,⊥ ) is not a boolean lattice. Nevertheless the Q-probability 
PS(E) of a property E ∈  given S admits an epistemic interpretation and can be empiri-
cally tested, as it is a special case of the mean conditional probability introduced in Defi-
nition 5.2. It is then natural to wonder whether a conditional Q-probability of a property 
E ∈  given another property F ∈  can be defined by means of PS , generalizing standard 
procedures in classical propositional logic. But if one tries to put

then the mapping

is not a generalized probability measure on ( ,⋒,⋓,⊥ ) whenever this lattice is not boolean. 
Indeed, consider a property E = E1 ⋓ E2 , with E1,E2 ∈  and E1⊥E2 . Then, we obtain

which is generally different from

whenever ( ,⋒,⋓,⊥ ) is not distributive.
To overcome this difficulty one can intuitively refer to a sequence of two measurements 

and introduce a non-standard kind of conditional probability, as follows.

Definition 6.3 Let E ∈  and let us put E =
{
S ∈  ∣ PS(E) ≠ 0

}
 . We say that a meas-

urement procedure M ∈ E is of first kind iff it is associated with a mapping

PS(⋓kEk) =
∑

k

PS(Ek).

PS(E ∣ F) =
PS(E ⋒ F)

PS(F)
,

PSF ∶ E ∈  ⟶ PS(E ∣ F) ∈ [0, 1]

PSF(E) = PSF(E1 ⋓ E2) = PS(E1 ⋓ E2 ∣ F) =
PS((E1 ⋓ E2) ⋒ F)

PS(F)
,

PS((E1 ⋒ F) ⋓ (E2 ⋒ F))

PS(F)
= PS(E1 ∣ F) + PS(E2 ∣ F) = PSF(E1) + PSF(E2)

6 We recall that ⊥ is a unary operation on ( ,≺) such that, for every E,F ∈  , E⊥⊥ = E , E ≺ F implies 
F
⊥ ≺ E

⊥ , E ⋒ E
⊥ = � and E ⋓ E

⊥ = � . Then ⊥ is the non-reflexive and symmetric binary relation on  
defined by setting, for every E,F ∈  , E⊥F iff E ≺ F

⊥.
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such that PtE(S)
(E) = 1 . For every F ∈  we then put

Moreover, let ( ,≺) be an orhocomplemented lattice and let PS and PtE(S)
 be generalized 

probability measures on ( ,≺) . Then we say that PS(F‖E) is the conditional Q-probability 
of F given E and S.

If a measurement corresponding (via I) to a first kind measurement procedure M ∈ E 
exists and the conditions at the end of Definition 6.3 are fulfilled, then PS(F‖E) can be 
tested whenever S ∈ E , as Axiom C implies that PtE(S)

(F) can always be tested (but no 
analogous of the Bayes theorem can be stated for conditional Q-probabilities). Definition 
6.3 thus introduces a non-standard conditional probability on ( ,≺) that coexists with the 
(classical) μ-conditional probability introduced in Definition 4.1 (which instead cannot be 
tested directly and has the status of a purely theoretical notion, as we have seen in Sect. 6).

7  Back to QM

Axiom P in Sect. 4 and axioms M and C in Sect. 5 characterize a broad class   of theories, 
even if they have been introduced mainly by bearing in mind QM. They do not occur in the 
standard formulation of QM, but if we assume that they underlie QM, so that QM belongs 
to   , we can explain some relevant aspects of QM in terms of the general notions charac-
terizing   and obtain a new perspective on quantum probability.

To attain these results let us firstly recall that in Hibert space QM the following math-
ematical representation is adopted.

Entity (physical system) ⟹ Hilbert space .
State S ∈  ⟹ Density operator �S on .
Property E ∈  ⟹ Orthogonal projection operator PE on .
Furthermore, the set of all orthogonal projection operators on  is an orthomodular lat-

tice in which the partial order is defined independently of any probability measure. Hence, 
the representation above induces on  an order, that we denote by ≪ , and ( ,≪) is an 
orthomodular lattice.

Secondly, let us recall that the Born rule associates a probability value Tr
[
�SPE

]
 (that 

does not depend on any context) with the pair (E, S). Hence a quantum probability

is defined which is said to be a generalized probability measure on ( ,≪) (see, e.g., Belt-
rametti and Cassinelli 1981). Moreover, the family 

{
QS

}
S∈

 is ordering on ( ,≪) (ibid.), 
which means that the order induced by it on  coincides with ≪ . Therefore the lattice 
structure of ( ,≪) can be seen as induced by 

{
QS

}
S∈

.
Based on the above remarks, and assuming that QM belongs to   , the order ≪ and the 

quantum probability QS can be considered as the specific forms that the order ≺ and the 
mapping PS (see Definition 6.1), respectively, take in QM. We thus obtain

tE ∶ S ∈ E ⟶ tE(S) ∈ E

PS(F‖E) = PtE(S)
(F).

QS ∶ E ∈  ⟶ Tr
[
�SPE

]
∈ [0, 1]

PS(E) = P(E ∣ S) = QS(E) = Tr
[
�SPE

]
.
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If the quantum probability QS replaces PS in the conditions (i) and (ii) stated in Definition 
6.2, then these conditions are satisfied, which makes the above classification of QS as a 
generalized probability measure consistent with Definition 6.2.

The above interpretation of quantum probability leads to consider it as a mean condi-
tional probability (see Definition 5.2). This explains its non-classical character and shows 
that it can be considered epistemic, at variance with its standard ontic interpretation (see 
Sect. 5). Our main goal in this paper has thus been achieved.

Let us denote now by � the compatibility relation introduced in QM on the set of all 
properties by setting, for every pair (E, F) of properties, E�F iff 

[
PE,PF

]
= 0 . This rela-

tion is reflexive and symmetric but not transitive. Hence it can be considered as the specific 
form that the relation k introduced in Definition 5.1 takes in QM.

Coming to quantum measurements, let us remind that first kind quantum measurements 
exist in QM (see e.g., Piron 1976; Beltrametti and Cassinelli 1981), and that the Lüders 
rule states that, whenever a first kind (ideal) quantum measurement of a property E is per-
formed on an individual object x in the state S and the yes outcome is obtained, then the 
state of the object after the measurement is described by the density operator PE�SPE

Tr[�SPE]
 . Let 

us therefore denote by D() the set of all density operators on  . Then the mapping

can be considered as the specific form that the mapping tE introduced in Definition  6.3 
takes in QM.

Finally, we recall that the conditional probability QS(F ∣ E) , in a state S, of a property F 
given a property E, is defined in QM by referring to a quantum measurement of F after a 
quantum measurement of E yielding outcome yes on an individual object in the state S, and 

it is given by 
Tr
[
PFPE�SPEPF

]

Tr
[
PE�SPE

] . . Hence this quantity can be considered as the specific 

form that the conditional Q-probability of F given E and S introduced in Definition 6.3 
takes in QM. We thus obtain

8  Closing Remarks

As we have observed in Sects.  1 and 5, our mean conditional probabilities and mean 
probability measurements are conceptually similar to the universal averages and univer-
sal measurements, respectively, introduced by Aerts and Sassoli de Bianchi (2014, 2017). 
In particular, our recognition that mean conditional probability summarizes two kinds of 
lack of knowledge fits in well with the perspective of these authors. However, Aerts and 
Sassoli de Bianchi uphold that their proposal leads to a possible solution of the quantum 
measurement problem. Our approach, instead, has been conceived to show that nonclas-
sical (yet epistemic) probabilities may occur as a consequence of contextuality in a broad 
class of theories. By assuming that QM belongs to this class we obtain an explanation of 
some typical features of QM in terms of more primitive notions. In particular, the compat-
ibility relation on the set of all physical properties and the quantum notion of conditional 

�E ∶ �S ∈ D() ⟶ �E(�S) =
PE�SPE

Tr
[
�SPE

] ∈ D()

PS(F‖E) = QS(F ∣ E) =
Tr
�
PFPE�SPEPF

�

Tr
�
PE�SPE

� .
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probability can be seen as special cases of general notions that can be introduced whenever 
the links between contextuality and nonclassical probability are inquired. More important, 
we obtain an epistemic interpretation of quantum probability, notwithstanding its nonclas-
sical structure, that opposes its standard ontic interpretation. We cannot provide instead an 
explanation of the reduction of the state vector carried out by a quantum measurement in 
our framework, or avoid the “paradox” of nonlocality of QM (see Sect. 1 and footnote 3).

Acknowledgements We thank Dr. Karin Verelst for useful discussions at the Symposium “Worlds of Entan-
glement” in Brussels.
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