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Abstract We present a generalization of the problem of pattern recognition to arbitrary

probabilistic models. This version deals with the problem of recognizing an individual

pattern among a family of different species or classes of objects which obey probabilistic

laws which do not comply with Kolmogorov’s axioms. We show that such a scenario

accommodates many important examples, and in particular, we provide a rigorous defi-

nition of the classical and the quantum pattern recognition problems, respectively. Our

framework allows for the introduction of non-trivial correlations (as entanglement or

discord) between the different species involved, opening the door to a new way of har-

nessing these physical resources for solving pattern recognition problems. Finally, we

present some examples and discuss the computational complexity of the quantum pattern

recognition problem, showing that the most important quantum computation algorithms

can be described as non-Kolmogorovian pattern recognition problems.

Keywords Quantum pattern recognition � Quantum algorithms � Convex operational

models

1 Introduction

Pattern recognition is an active field of research which has many applications in different

disciplines, such as information science, economics, engineering, and machine learning

(Bishop 2006; Chen and Chen 2016). Intuitively, pattern recognition could be defined as

the problem of how a rational agent (which could be an automata), decides to which class
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of objects a given new object belongs. In its simpler version, given a family of classes of

objects Ci (representing objects of different kinds), the rational agent must decide to which

class a given object a belongs. The comparison is made with regards to a given set of

properties aj of a. More sophisticated versions assume that the knowledge of the rational

agent is given in terms of probability distributions. In its classical version, the properties

involved are compatible (can have definite simultaneous values) and probabilities are

Kolmogorovian (in the sense that they can be described by the well known Kolmogorov’s

1933 axioms).

But it may happen that, for some particular models, the properties involved cannot be

determined simultaneously. This could be the case if, for example, there is a limitation in

the capability of acquisition of knowledge by the agent. This could be originated in

epistemic constraints (for example, in game theory), or in ontological limitations (as in

quantum mechanics). Non-classical effects have also been observed in cognitive phe-

nomena (see for example Aerts et al. 2015; Aerts and de Bianchi 2015). More concretely,

suppose that our rational agent deals with probabilistic models which do not obey the laws

of classical physics, in the sense that it is not possible to attribute simultaneous values to

the properties of the objects involved (Döring 2005; Kochen and Specker 1967). How can

we formulate the pattern recognition problem in this non-Boolean (Al-Adilee and Náná-

siová 2009; Svozil 2009) framework? The theory of pattern recognition for this case cannot

be the same as before, essentially, due to the non-commutative character of the properties

and the probabilities involved. In other words, complementarity poses a problem for the

treatment of objects as possessing simultaneous collections of well defined properties. For

example, in the quantum case, we must acknowledge the fact that the best way of

describing a class of objects is by attributing probabilities governed by the laws of quantum

mechanics (Gudder 1979; Rédei 1998). Then, observable quantities will be represented

mathematically by (possibly) non-commutative operators acting on a Hilbert space (von

Neumann 1996), and this gives a different formulation of the discrimination problem (for

concrete examples of this, see Sentı́s et al. 2015; Guţă and Kotlowski 2010; see also

Monràs et al. 2016 for more discussion).

In order to describe how things work when probabilities depart from the Kolmogorovian

case, we present a formal quantum patterns recognition’s framework for generalized

probabilistic models (Barnum et al. 2007, 2013; Barnum and Wilce 2011). In this way we

considerably expand the domain of applicability of this field of research. Our main aim is

to focus attention on the fact that there are several versions of the problem, depending on

the structural aspects of the probabilities involved. Our theoretical framework allows for

introducing rigorous definitions of the classical and quantum pattern recognition problems.

At the same time, it allows one to envisage the existence of other versions of the problem,

as it would appear, for example, in the relativistic or thermodynamic limits.

It is important to remark that there are other approaches that use non-classical tech-

niques or quantum systems (like quantum computers) to solve pattern recognition problems

(see for example Horn and Assaf 2002; Schuld et al. 2014; Schützhold 2003; Trugenberger

2002; Sergioli et al.). But they differ from our approach, mainly because the entities to be

discerned are classical (i.e., they do not exhibit quantum phenomena such as superposition

or entanglement). There also exist previous formulations of the problem which are similar

to ours for the particular case of non-relativistic quantum mechanics and quantum optics

(see for example Aı̈meur et al. 2006; Guţă and Kotlowski 2010; Monràs et al. 2016; Sasaki

and Carlini 2002; Sasaki et al. 2001; Sentı́s et al. 2015), that can be naturally accommo-

dated into our more general framework. Our generalization could be useful for a better
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understanding of these models, and, at the same time, it could serve as a suitable tool for

describing more general physical situations.

This perspective opens a field of research which is richer (from a physical point of view)

than its previous classical versions, mainly because we allow for the possibility that the

different classes of objects involved display non-classical features, such as complemen-

tarity, or non-classical correlations (such as entanglement or discord). Things may change

in a subtle manner when these non-classical features cannot be neglected. This behavior

would be expected in any situation in which the elements involved in the analysis are

‘‘small’’ enough and reach the molecular or atomic level. Of course, our approach can also

be useful for classical systems which are structured in such a way that, for one reason or

another, exhibit features that imitate quantum phenomena (this is the case in some

examples of game theory). Remarkably enough, a connection between the study of rela-

tional databases and the violation of Bell’s inequalities is presented in Abramsky (2013).

This study suggests that some mathematical structures underlying quantum contextuality

can be found in fields of research in which the data we might be dealing with is not

necessarily about physical objects. In this way, future developments of our mathematical

framework could be of use for the study of problems outside of physics, such as relational

databases and Big Data.

The paper is organized as follows. In Sect. 2 we review the standard approach to the

pattern recognition problem. Next, in Sect. 3, we review the different mathematical

frameworks which allow us to represent probabilities and properties which depart from the

Boolean–Commutative case. In Sect. 4 we present our version of the pattern recognition

problem for generalized probabilistic models, and show how non-classical correlations can

appear in the non-Kolmogorovian probabilistic setting. In Sect. 5 we describe the partic-

ular cases of the standard, relativistic and statistical quantum mechanical settings as

concrete examples. We study possible connections between quantum pattern recognition

theory and some relevant quantum algorithms in Sect. 6. Finally, in Sect. 7 we draw some

conclusions.

2 Classical Pattern Recognition Problem

Suppose that, given a family of different classes Ci, a rational agent (it could be a person or

an automata) must decide to which class a given individual X pertains. It is important to

remark that the classes could be disjoint or not. For example, if C1 is a collection of dogs

and C2 is a collection of cats, the aim of the agent is to decide, given an unknown

individual X, if it is a cat or a dog (from now on, following the jargon commonly used in

pattern recognition, we use the terms ‘‘object’’ and ‘‘individual’’ interchangeably). It is

usually assumed that knowledge about the different classes and the given individual is

given in terms of a particular collection of properties (also called features) of all possible

individuals in question. The collection of properties of a given individual Xi
j 2 Ci (indi-

vidual j belonging to class Ci) is represented by an n-vector aij ¼ ðai;j1 ; a
i;j
2 ; . . .; a

i;j
n Þ (where

the ai;jk take real values) and probability distributions representing degrees of belief of the

agent regarding each individual having a particular collection of properties. This is the

most elementary form of the problem of pattern recognition (Bishop 2006). We will refer

to it as the classical pattern recognition problem.

To be more specific, suppose that, given an individual X to be recognized, knowledge

about it is represented by a probability distribution pðaÞ. Suppose also that knowledge
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about each class Ci is represented by a probability distribution piðaijÞ assigning a weight to

each property vector aij in Ci. Thus, the classification problem, is the problem of deter-

mining to which class the individual is assigned to by contrasting knowledge about the

individual and the different classes. This can be done, for example, by comparing the mean

values of the considered properties using a suitable measure (or by directly comparing the

different probabilities involved). The output will be a probabilistic assertion of the form ‘‘x

is assigned to the class Ci with probability pðCiÞ’’ (in other words, the output will be a

vector ðpðC1Þ; . . .; pðCmÞÞ, with complete certainty when a particular pðCiÞ is one and the

rest is zero). When probabilities are involved, we will refer to it as the probabilistic

classical pattern recognition problem. If there are no probabilities involved, we will say

that the problem is deterministic.

3 Non-Kolmogorovian Measures and Convex Operational Models

In the above formulation of the pattern recognition problem, it is assumed that the prop-

erties involved are classical. In other words, the objects are assumed to possess a collection

of properties which can assume definite values at the same time. But if the objects involved

obey the laws of quantum mechanics, then, incompatible properties may come into play.

As it is well known, the Kochen–Specker theorem precludes the possibility of assigning

states defining simultaneous definite properties to quantum systems (see for example

Kochen and Specker 1967 for standard quantum mechanics and Döring 2005 for general

von Neumann algebras). Consequently, the probabilistic measures involved will no longer

be Kolmogorovian (Rédei and Summers 2007): probabilities are now assigned to elements

in the orthomodular lattice of projection operators in a Hilbert space (von Neumann 1996).

In the following we review the formal structure of these non-classical features.

A suitable framework to begin the study of non-Kolmogorovian probabilities is that of

measures in orthomodular lattices (Al-Adilee and Nánásiová 2009; Beltrametti and Cas-

sinelli 1981; Hamhalter 2003; Kalmbach 1983; Ledda and Sergioli 2010) (see also Aerts

2002, for a formulation of non-Kolmogorovian probabilities as functions valued in subsets

instead of numbers). Suppose that an algebra of events can be represented as an ortho-

modular lattice L.1 Then, a generalized probabilistic measure can be represented as a

function (Dalla Chiara et al. 2004):

m : L ! ½0; 1�;

such that

mð1Þ ¼ 1;

and, for a denumerable and pairwise orthogonal family of events

fEigi2I ;

m
X

i2I
Ei

 !
¼
X

i2I
mðEiÞ:

ð1Þ

When L is a Boolean algebra, the above axioms reduce to the well known Kolmogorov’s

1 An orthomodular lattice L, is an orthocomplemented lattice satisfying that for any a, b and c, if a� c, then

a _ ða? ^ cÞ ¼ c. We refer the reader to Kalmbach (1983) for a detailed exposition.
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axioms for classical probability calculus. In this framework, the elements of a Boolean

algebra are intended to represent properties of a classical system. On the other hand, if L
represents the orthomodular lattice of projection operators acting on the Hilbert space of a

quantum system,2 we recover—via the celebrated Gleason’s theorem (Buhagiar et al.

2009; Gleason 1957)—the probability assignment given by Born’s rule: if a quantum

system is prepared in state q, the probability of observing the property represented by

projection P is given by

pqðPÞ ¼ tr ðqPÞ: ð2Þ

Typically, more general theories of interest can be considered, as for example, the pro-

jection lattices of algebraic relativistic quantum field theory, which involves projection

lattices of Type III factors (Rédei and Summers 2007), or algebraic quantum statistical

mechanics (Rédei and Summers 2007). We want to stress that the underlying algebraic

structure determines the structural features of the probabilities and correlations involved,

and this defines essentially different pattern recognition models.

We will discuss some examples of this in the following sections. As is well known,

observables in quantum mechanics can be represented as operators in a Hilbert space,

being a non-commutative algebra their most distinctive feature (von Neumann 1996). This

is strongly related with the non-Booleanity of the lattice of projection operators (Bel-

trametti and Cassinelli 1981; von Neumann 1996). In the next section, we present a version

of the pattern recognition problem for non-Kolmogorovian probabilistic measures which

includes the quantum and classical cases as particular instances.

It is easy to show that the set of states defined by Eq. (1) is convex. This feature can be

taken as the starting point for a more general approach to the study statistical theories,

based on the geometrical properties of convex sets (Barnum et al. 2007, 2013; Barnum and

Wilce 2011). Assume that the set of states of a given model is represented by a convex set

S. Then, for each observable with outcome set X, a given state s 2 S should define a

probability p(s, x) for each possible outcome x 2 X. Given a state s 2 S and any outcome

x 2 X, it is natural to define an affine evaluation-functional fx : S ! ½0; 1� by fxðsÞ :¼ sðxÞ
(where s(x) is a real number in the interval [0, 1] that represents the evaluation). Then, it is

reasonable to consider each functional f : S ! ½0; 1� as representing a measurement out-

come, and thus represent that outcome by f(s) (if the state of the system is s). In this way,

states are interpreted as points of a convex set, embedded in a vector space VðSÞ, and

observables (called effects in the generalized setting) as continuous linear functionals in the

dual space V�ðSÞ acting on this set. It turns out that the shape of the convex set has

information about the model involved. For example, the faces of the convex set of a

quantum system define an orthomodular lattice which is isomorphic to the lattice of pro-

jection operators, while for classical systems, the set of faces forms a Boolean lattice

(Bengtsson and Zyczkowski 2006). In this way, for some important models, it is possible to

relate the approach based on measures over lattices with the approach based on convex

sets. Notions like those of pure and mixed states, entanglement and information, are

defined in a natural way, which generalizes the quantum scenario. We refer the reader to

Barnum et al. (2007), Barnum et al. (2013) and Barnum and Wilce (2011) for more details.

2 In the Hilbert space case, projection operators are in one to one correspondence to closed subspaces (thus,
these notions are interchangeable). Representing ‘‘_’’ by the closure of the sum of two subspaces, ‘‘^’’ by its

intersection, ‘‘ð. . .Þ?’’ by taking the orthogonal complement of a given subspace and ‘‘� ’’ by subspace
inclusion, it is possible to show that subspaces (and thus, projections) possess an orthomodular lattice
structure.
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4 Pattern Recognition in the Generalized Setting

Let us now introduce our general framework for dealing with the quantum pattern

recognition problem in generalized probabilistic models. It will contain the quantum and

classical versions of the problem as particular cases.

Given a collection of classes of objects Oi, let us assume that the state of each object oij
(i.e., object j of class Oi) is represented by a state mij 2 Ci, where Ci is the convex opera-

tional model representing object oij. We will assume that all objects in the class Oi are

represented by the same convex operational model Ci (i.e., they are all elements of the

same type). Then, suppose that weights pij are assigned to the objects oij, representing the

rational agent’s knowledge about the importance of object oij as a representative of class Ci
with respect to other objects in the class (if all objects are equally important, the weights

are chosen as pij ¼ 1
Ni

, where Ni is the total number of objects—i.e., the cardinality—of the

class Ci). This means that the probabilistic state of the whole class Oi can be represented by

a mixture mi ¼
P

j pjm
i
j 2 Ci. As we discuss below, it is also possible to assume that non-

local correlations are given between the different classes, and the states mi are reduced

states of a global—possibly entangled—state ~m. But we notice that under these conditions,

the states mi will be improper mixtures, and then, no consistent ignorance interpretation can

be given for them (D’Espagnat 1976).

The generalized pattern recognition problem is then posed as follows. A particular

object o must be identified and compared with the information given by the generalized

states of the classes represented by mi (or more generally, by ~m), obtained in the learning

process. The comparison could be also restricted to a collection of properties

a ¼ ða1; . . .; amÞ, represented now by generalized effects ai. We will assume, as usual, that

knowledge about o is represented by a generalized state m. Notice that, in order to obtain m,
several copies of the unknown object o may be needed, whenever the probabilistic char-

acter of the model is irreducible. This is the case in quantum mechanics: if more copies are

available, the reconstruction of the state of the unknown object will be more accurate, and

this can be used to improve the classification process.

Different techniques for discriminating the given state with regard to the states of the

classes were studied for some particular models (see for example Guţă and Kotlowski

2010; Sentı́s et al. 2015). Notice that optimal classification strategies may depend strongly

on the structural properties of the probabilities associated to the model involved. Notice

also that non-classical correlations between the classes represented by states mi may come

into play (the mi may be reduced states of a global state l). Again, the particularities of the

correlations originated in each model may be critical here (see for example Clifton and

Halvorson 2001, for a discussion of the differences between relativistic and non-relativistic

quantum entanglement).

It is easy to see that, if the Ci’s are simplices (hyper-tetrahedrons), then, we will recover

the classical problem of patterns’ recognition, discussed in the introduction. Indeed,

probabilities on simplices are isomorphic to measures over Boolean algebras, and thus, we

have Kolmogorovian probabilities. And this is nothing but our definition of classical

pattern recognition problem. As it is well known, simplices admit dispersion-free states:

this means that using this description, we can also recover the deterministic version of the

problem described in Sect. 2. On the other hand, as we remarked in Sect. 3, the sets of

states of quantum systems are naturally convex sets, but are not simplices (Bengtsson and

Zyczkowski 2006).
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5 Examples

As examples of the general framework introduced above, in this section we briefly describe

non-classical examples of the pattern recognition problem which originate in non-equiv-

alent physical theories of interest.

5.1 Quantum Pattern Recognition

Suppose that we are given a collection of quantum objects each belonging to a particular

class Qi, and given a particular object q, the rational agent aims to determine to which class

it is assigned. We look now for a quantal version of the problem posed in Sect. 2. First, we

must assume, as the most general possibility, that the collection of chosen properties can be

non-commutative. Thus, the properties of object qij (object j of class Ci) will be represented

by operators3 acting on a Hilbert space Hi (representing the class Qi). It is now impossible

(in the general case) to assign a vector of definite properties to each object, due to possibly

non-commutativity of the operators involved. The only thing that we can do, is to assign

probabilities for each property coordinate using the quantum state qij of each object qij.

Thus, if—as in the classical case—we assign weights pij to each object qij, knowledge about

the class Qi can now be represented by a mixture qi ¼
P

j p
i
jq

i
j. Given the fact that in

general, interaction between physical systems represented by classes Qi can be non-neg-

ligible, and thus, non-trivial correlations may be involved, we will assume that the states qi
are arbitrary states of the Hilbert space Hi (i.e., the qi are not necessarily proper mixtures).

We call ~q the global state of the whole set of classes.

Given an arbitrary individual q, we are thus faced with the problem of determining to

which class Qi it should be assigned. In the general case, the state of q will be represented

by a density operator q (acting on one of the unknown Hilbert spaces Hi, but certainly

embedded in the Hilbert space H1 �H2 � � � � Hn). Notice however, that the state q could,

in the general case, be unknown to the agent, and he may have only access to a sample of

values fajg of the operators rj. Thus, for the classification problem, he should be able to,

either reconstruct the unknown state q using quantum statistical inference methods, or just

directly compare the sampled values with the information provided by the global state ~q.

Our version of the quantum pattern recognition problem can be interpreted in a very direct

physical way. What we have shown in this section is that if the objects involved exhibit non-

classical features (and this could be the case each time that the systems involved are small

enough to exhibit quantum behavior), then, the rational agent will be confronted with com-

plementarity phenomena, non-Kolmogorovian probability measures, and non-classical corre-

lations. In this way, the information about the parties involved must be necessarily represented

by density operators. Furthermore, as we have seen, the classification problem must be adapted

to this situation in such a way that quantum statistical inference techniques must be used in order

to decide which will be the class to which the object will be most likely assigned.

From this physical perspective, how is it possible to represent information updating and

learning? In other words, which is the quantum analogous of a semi-supervised system? This

can be suitably described using quantum operations as follows. Suppose now that at an initial

state, the agent has an information qið0Þ for each class Qi, and he is confronted with an

individual of which it has information qð0Þ, and a global state ~qð0Þ. Then, after the classi-

fication process at time t, it is necessary to update knowledge about the classes and the global

3 Notice that these operators could be quantum effects without loss of generality.
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state to new states qiðtÞ and ~qðtÞ, respectively. This can be suitably modeled by a quantum

operation KðtÞ acting on the convex quantum set of states of CðH1 �H2 � � � � HnÞ, such that

KðtÞ~qð0Þ ¼ ~qðtÞ. A quantum learning operator will be thus a family of quantum operations

fKðt1Þ; . . .;KðtnÞg. Hence, a quantum learning process will be a succession of global states

f~qð0Þ;Kðt1Þ~qð0Þ;Kðt2Þ~qðt1Þ; . . .;KðtnÞ~qðtn�1Þg. The goal of the learning process will be

achieved if the uncertainty of the final state is reduced. The dispersion could be measured

using the von Neumann entropy (or other quantum entropic measures) (Bosyk et al. 2016;

Holik et al. 2016, 2015).

This dynamical view of the quantum learning process can be easily generalized to

arbitrary statistical models by appealing to affine maps. The entropies used to measure the

success of the learning process could be the Measurement Entropy (or any other entropic

measure of interest which can be suitably generalized Holik et al. 2016, 2015).

Let us also notice that in the case of unsupervised learning—where the training data are

not labeled—the classes of the classification process are, in principle, unknown and the

learning process is fundamental in order to individuate the distribution of these classes. If

the assignment of each object to its respective class is given by a Kolmogorovian prob-

ability function, then the distribution of the classes that arises from the learning process is a

kind of partition such that each member of the dataset is classified within one and only one

class; the Voronoi diagram is an instance of this kind of partition. On the other hand, if the

probabilities involved to describe the objects in question are non-Kolmogorovian, the

distribution of the classes that arises from the learning process has to take into account this

change in the mathematical description. For the quantum case, the mathematical

description of the states of the objects in the dataset is given in terms of vectors in a Hilbert

space (or more generally, density operators), while their properties are represented by self-

adjoint operators (see Aı̈meur et al. 2006).

5.2 Pattern Recognition in ARQFT

In algebraic relativistic quantum field theory (ARQFT), a C�-algebra is assigned to any

open set O of a differential manifold M (Halvorson and Müger 2006; Haag 1996). Open

sets are intended to represent local regions, and M models space-time with its symmetries.

Local algebras are intended to represent local observables (such as particle detectors). For

example, in ARQFT, M is Minkowski’s four dimensional space-time, endowed with the

Poincare group of transformations.

It turns out, that (global) states of the field define measures over the local algebras. But

in general, the local algebras of ARQFT will not be Type I factors as in standard quantum

mechanics. For example, it can be shown that for a diamond region, a Type III factor must

be assigned (Yngvason 2005). This means that the orthomodular lattice involved in axioms

1, will not be the lattice of projection operators of a Hilbert space, but a one with different

properties. For a discussion on the properties of lattices associated to von Neumann

algebras see Sect. 6.2 (Rédei 1998). Consequently, operator algebras in ARQFT are quite

different to those of standard quantum mechanics. This is expressed, for example, in the

properties of correlations (see for example Clifton and Halvorson 2001 and Chapter 3 in

Halvorson and Müger 2006).

This means that the discrimination problem must be posed between classes Fi repre-

sented by states of the field ui and a given individual state u.4 As far as we know, this

4 In practical implementations, these states and the discrimination problem, could be restricted to a concrete
space-time region.

126 F. Holik et al.

123



problem was not addressed in the literature from the point of view of pattern recognition.

But it is an important one, because in the general case, it could be useful for information

protocols based on quantum optics (where the effects of the field character of the theory

cannot be neglected). In particular, a simpler but analogous version of the problem could

be conceived by appealing to the Fock-space formalism, in order to describe the fields and

the states involved (see for example Sentı́s et al. 2015, for a version of the problem posed

in terms of coherent states of light using the Fock-space formalism).

5.3 Pattern Recognition in AQSM

As in the quantum field theoretic example, a similar problem can be posed in the algebraic

approach to quantum statistics (AQSM). Here, a typical problem could be to discern a kind of

atoms from a set of classes of gasses; now, the comparison will be between the state of the item

and the classes involved. But it can be shown that the global states of a gas, as described by

AQSM, will be in general, a measure over a factor different from the Type I case (see for

example Bratteli and Robinson 1997, Chapter 5 and Rédei and Summers 2007). This means

that, again, the pattern recognition problem will depart from that of the classical one, but also

from that of standard quantum mechanics (where we have Type I projection lattices).

An example of interest could appear in problems related to image recognition. To

clarify ideas, let discuss first a classical version of the problem. Suppose that a machine has

to solve a problem of recognizing handwritten digits. These drawings are first transformed

into digitalized images of n� n pixels. This means that the information of each image is

stored in a vector x of length n� n. The goal is to build our automata in such a way that it

takes a vector x as an input, and gives us as output the identity of the digit in question

(Bishop 2006). Now we pose the question: in a real hardware, this vector should be stored

using bits of a given length. But if the components of the hardware are so small that they

become quantal (as in Yang et al. 2016), then, we may have a large chain of qubits used to

store this information. This means that the information will be stored now in a potentially

large chain of qubits b
n

i¼1
C2

i . When n is big enough, the number of particles involved to

store the information may become statistical. Thus, the approximation of n �! 1
becomes more and more realistic in order to represent global properties of the information

stored. But in this limit, we need the algebras corresponding to the algebraic formulation of

quantum statistical mechanics.

Let us illustrate this with a concrete model. Suppose that we have a spacial arrangement

L of N-dimensional quantum systems. For each point x 2 L we have a Hilbert space Hx,

and for each subset of points C 2 L, the associated Hilbert space is given by the tensor

product HC ¼ b
x2CHx. Thus, every subset C 2 L has associated an algebra AðHCÞ. The

norm completion of the collection A ¼ fACgC2L is a quasi-local CH-algebra when

equipped with the net of CH-subalgebras AC. Thus, the classification problem must be

done with respect to states defined in this algebra (such as KMS-states Bratteli and

Robinson 1997), whose properties are different to that of a Type I factor.

6 Quantum Algorithms as Quantum Pattern Recognition Problems

Recent developments suggest that quantum speedups appear in structured problems

(Aaronson and Ambainis 2014): the problem must exhibit some structure or pattern in

order that the quantum computer display an overhead with respect to a classical one.
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Indeed, in Sasaki et al. (2001) the authors suggest that in a certain sense, the most

important quantum computation algorithms can be viewed as pattern recognition problems.

Let us now outline how our generalized formalism could be useful to formulate these deep

intuitions on a more solid ground, by looking at some examples of quantum algorithms.

6.1 Deutsch–Jozsa algorithm

Let us examine first the Deutsch–Jozsa algorithm (Nielsen and Chuang 2010). In this case,

the task is to determine if a function f is constant or balanced. There are four functions from

f0; 1g �! f0; 1g, namely:

f1ð0Þ ¼ 0 f1ð1Þ ¼ 1

f2ð0Þ ¼ 1 f2ð1Þ ¼ 0

f3ð0Þ ¼ 0 f3ð1Þ ¼ 0

f4ð0Þ ¼ 1 f4ð1Þ ¼ 1

ð3Þ

Thus, we have two classes: C ¼ ff1; f2g and B ¼ ff3; f4g, and we must determine if the

function f belongs to B or to C. Up to now, this is just a classical pattern recognition

problem.

Let us see now how the quantum computer transforms this problem into a quantum

pattern recognition one. The computer is prepared first in the quantum state j0ij1i. Next,

the Hadamard operator is applied to both qubits yielding the state:

1

2
ðj0i þ j1iÞðj0i � j1iÞ:

Next, the quantum implementation of the function f (which brings the connection between

the classical problem and the quantum computation) will be given by a quantum operator

such that it maps jxijyi to jxijf ðxÞ 	 yi. Applying this function to the state gives

ð�1Þf ð0Þ1
2

j0i þ ð�1Þf ð0Þ	f ð1Þj1i
� �

ðj0i � j1iÞ:

Now, applying the Hadamard transformation again to the first qubit we get:

jwi ¼ ð�1Þf ð0Þ1
2

1 þ ð�1Þf ð0Þ	f ð1Þ
� �

j0i þ 1 � ð�1Þf ð0Þ	f ð1Þ
� �

j1i
� �

ðj0i � j1iÞ:

The next step consists in determining the projection of the above state to the subspaces

represented by projection operators j0ih0j � 1 and j1ih1j � 1. This is nothing but deter-

mining if the system represented by state jwihwj belongs to the classes represented by

projections j0ih0j � 1 and j1ih1j � 1: the computation of the projections is nothing but the

Hilbert Schmidt distance between these operators. Thus, this simple problem shows that

this is a pattern recognition problem in which the rational agent has to decide if an

individual (the output state of the computer previous to measurement) represented by state

q ¼ jwijwi belongs to the class represented by state q1 ¼ j0ih0j � 1 and the class repre-

sented by state j1ih1j � 1.
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6.2 Period of a Function Determination

The determination of the period of a periodic function f lies at the heart of the Shor and

Simon quantum computation algorithms (Nielsen and Chuang 2010). Here we show that

this problem can be reduced to a quantum pattern recognition one.

The objective now is to determine the period of a function f : ZN �! Z, such that

f ðxþ rÞ ¼ f ðxÞ for all x. It is assumed that the function does not take the same value twice

in the same period. Start the computer as usual by generating the state:

jf i ¼ 1ffiffiffiffi
N

p
XN�1

x¼0

jxijf ðxÞi: ð4Þ

It is not possible to extract the period yet. Even if we measure the value of the second

register and obtain the value y0, we will end up with the following state in the first register

(with x0 the smallest x such that f ðxÞ ¼ y0 and N ¼ Kr):

jwi ¼ 1ffiffiffiffi
K

p
XK�1

k¼0

jx0 þ kri: ð5Þ

But jwi does not give us information about r yet. To do that, it is necessary to apply the

quantum Fourier transform (QFT), which is a unitary matrix with entries

F ab ¼
1ffiffiffiffi
N

p exp2piabN : ð6Þ

By applying the QFT to jwi we obtain

Fjwi ¼ 1ffiffi
r

p
Xr�1

j¼0

exp2pi
x0 j

r j
N

r

����
�
: ð7Þ

Now, a measurement is performed in the basis fjjN
r
ig, and using the result it is possible to

determine the period of the function as follows. The obtained value c will be such that

c ¼ jN
r
, for some 0� j� r � 1. Then, c

j
¼ N

r
, and if j is coprime with r, it will be possible to

determine r. The success of the algorithm depends on the fact that j and r will be coprimes

with a high enough probability.

The key observation here, is that this can be cast as a pattern recognition problem as

stated below. The objective is to decide to which class pertains an individual (again,

the output of the computer after the second register measurement and application

of the quantum Fourier transform) represented by state FjwihwjF (with jwi ¼
1ffiffiffi
K

p
PK�1

k¼0 jx0 þ kri). The classes are represented by states fqig, with qi ¼ jjN
r
ihjN

r
j. From

the expression tr ðF jwihwjF jj0Nr ihj0Nr jÞ, which is the same as tr ðjwihwjF jj0Nr ihj0Nr jFÞ, we

obtain an equivalent problem by comparing state jwihwj with states Fjj0Nr ihj0Nr jF . We are of

course interested in identifying those measurements for which c0

N
is an irreducible fraction.
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7 Conclusions

In this paper we have presented a generalization of the pattern recognition problem to the

non-commutative (or equivalently, non-Kolmogorovian) setting involving incompatible

(non-simultaneously determinable) properties. In other words, we have cast the problem of

pattern recognition for the case in which the state spaces involved are not simplexes. In this

way, we have shown that it is possible to find some important (and non-equivalent)

examples of interest: standard quantum mechanics, algebraic relativistic quantum field

theory, and algebraic quantum statistics. The examples do not restrict only to these ones,

but can include more general models, and particular, hybrid systems (classical and

quantum). In particular, studies such as Abramsky (2013), suggest that the study of the

pattern recognition problem in non-Kolmogorovian probabilistic models could, in princi-

ple, turn out to be particularly beneficial for the treatment of relational databases.

Next, we have shown hat our perspective could be useful to characterize some of the

most important quantum computation algorithms (Shor, Simon and Deutsch–Jozsa) as

quantum pattern recognition problems. This may also suggest that it is to be expected that,

translating classical pattern recognition problems into quantum ones, could lead to an

improvement in the efficiency of the concomitant computation.

Our framework allows for clear definitions of the classical and quantum pattern

recognition problems, respectively, and for an extension of the applicability of the problem

to a wider domain.
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