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Abstract In this paper we will offer a few examples to illustrate the orientation of
contemporary research in data analysis and we will investigate the corresponding role of
mathematics. We argue that the modus operandi of data analysis is implicitly based on the
belief that if we have collected enough and sufficiently diverse data, we will be able to answer
most relevant questions concerning the phenomenon itself. This is a methodological para-
digm strongly related, but not limited to, biology, and we label it the microarray paradigm.
In this new framework, mathematics provides powerful techniques and general ideas which
generate new computational tools. But it is missing any explicit isomorphism between a
mathematical structure and the phenomenon under consideration. This methodology used in
data analysis suggests the possibility of forecasting and analyzing without a structured and
general understanding. This is the perspective we propose to call agnostic science, and we
argue that, rather than diminishing or flattening the role of mathematics in science, the lack
of isomorphisms with phenomena liberates mathematics, paradoxically making more likely
the practical use of some of its most sophisticated ideas.
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2 D. Napoletani et al.

1 Introduction: The Role of Mathematics in Data Analysis

Data: what is given. It is difficult to find a more pervading word in today’s scientific practice.
In every field there is a surge of data collection, remarkable not only for its size, unthink-
able until recently, but especially for its modus operandi: streams of values of variables are
collected from a given phenomenon, without the pretension of understanding how they can
contribute to the explanation, or simply to a suitable general description of the phenomenon
itself.

This modus operandi is implicitly based on the following, almost paradoxical belief: if we
have collected enough and sufficiently diverse data, we will be able to answer any relevant
question concerning the phenomenon itself. A striking and important example of such a trend
can be observed in biosciences, where the effectiveness of drugs or the detection of diseases
are approached, in practice, by studying clusters, similarities and other structured character-
istics of huge arrays of chemical compounds (microarrays) derived by gene, protein or even
tissue samples. Microarrays may be superficially seen just as one application of quantitative
methods among many, but we believe instead that they are a paradigmatic example, and we
shall term microarray paradigm the modus operandi that we highlighted above and which
we can summarize as follows: if we collect enough and sufficiently diverse data regarding a
phenomenon, we can answer most relevant questions concerning the phenomenon itself. Our
point in choosing microarrays as emblematic is twofold: first of all, the microarray paradigm
is not limited to biology, as we will explicitly show in Sect. 4. Moreover, by choosing micro-
arrays as paradigmatic, we stress the obvious fact that biology is becoming one of the main
engines of quantitative scientific developments, and of applied mathematics as well. The
purpose of our paper is to clarify this principle and to discuss the way in which mathematics
is used within the paradigm of science which goes with it.

In this paper we will offer a few important examples to illustrate the orientation of
contemporary research in data analysis and we will investigate the corresponding role of
mathematics. The methods we describe in Sect. 4, neural networks, boosting, automatic con-
trol, are generally considered a form of statistical learning (or machine learning) (Hastie
et al. 2001), to signify the automated, data-driven nature of these methods, and their ability
to learn structures from the data. Some of them, like neural networks, have a long history and
are very well established techniques, while others, like boosting, are very recent new devel-
opments that have not yet been explored in their philosophical implications. Our purpose
is to show how all these methods are characterized by a weakness of purpose, an inabil-
ity to provide general and appropriate models for the problems they are supposed to solve.
Above all we ask ourselves whether these methods can provide the basis of a fruitful gen-
eral methodology of data analysis and whether they present novel philosophical questions, or
methodological possibilities, distinct from those generated by a more traditional way of doing
science.

The examples we put forward show how the role played by mathematics in the solution of
empirical problems is changing drastically. This change makes it possible for mathematics,
even in its very sophisticated forms, to play a significant role in domains that are relatively
new to a quantitative analysis, such as biomedical sciences and meteorology.

To better explain our argument, we note that, at the deepest and most general level,
mathematics is used to find symmetries and invariants and therefore to give a structure to
a particular phenomenon. The mathematician will then deduce more properties within the
mathematical theory which describes these structures, starting from suitable premises and
principles expressed in the language of this same theory. This traditional approach pro-
duces a sort of isomorphism between some aspects of the phenomenon and a mathematical
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structure; this isomorphism is not only responsible for accurate, appropriate and correct
forecasts, but, more importantly, it is taken as a manifestation of the hidden nature of the
phenomenon.

Current scientific practice in data analysis works differently. In this new framework,
mathematics provides powerful ideas and techniques which then generate broad classes of
generic computational tools. These tools will be applied to large data sets to find the solution
of a given particular problem. While in some case the computational tools may be useful
as an intermediate step between theories and phenomena, as stressed in Humphreys (1995)
and (2004), more often the way they are applied to the data is leading to a scenario where it
is missing any explicit isomorphism between a mathematical structure and the phenomenon
under consideration. The computational tools of data analysis therefore do not truly model
the phenomenon.

According to (Donoho 2000), this current trend in data analysis is temporary and depends
on a heuristic exigency in the face of new difficult problems. The present approach will
eventually be replaced by another, more traditional approach, which relies on new, yet undis-
covered, theories. We do not share this view. We believe, instead, that this trend is revealing
a new methodological paradigm, which characterizes data analysis to a large degree. Far
from being the result of a temporary inability of creating isomorphisms between phenom-
ena and theories, this paradigm depends on a new conception which is gradually imposing
itself and which deserves to be understood and appreciated as such. Instead of attempting
to understand and model a phenomenon, this paradigm suggests that a scientist needs to
approach a phenomenon with a limited set of assumptions, and needs to look for specific
techniques capable to solve some of the problems it presents, without attempting any sort of
structural understanding of the phenomenon itself. From this point of view, each phenome-
non requires its own description, that will vary according to the available type of data, that
cannot and should not be generalized to other phenomena that may be apparently similar. The
tools that we apply may be similar for broad classes of phenomena, but actual descriptions
will be very sensitive to the individual characteristics and fluctuations of the data from each
phenomenon.

The methods used in data analysis are suggesting the possibility of forecasting and ana-
lyzing without understanding (or at least without a structured and general understanding).
More specifically, we will argue in Sect. 2 that understanding occurs when we know how to
relate several descriptions of a phenomenon. Instead, these connections are disregarded in
many data analysis methodologies, and this is one of the key features of modern data analysis
approaches to scientific problems. The microarray paradigm is at work exactly when a large
number of measured variables concerning a phenomenon are algorithmically organized to
achieve narrow, specific answers to problems, and the connections among different levels of
descriptions are not explored. This is the perspective we propose to call agnostic science and
at its heart is the methodological principle that we called microarray paradigm. The notion of
such a paradigm is not intended to fix a specific procedure for questioning data, but rather an
epistemic modality of our relation to them and a modality of interaction between them and
mathematics. In this sense, even when we will talk of established statistical learning tech-
niques such as classification methods (cf. Sect. 4.1) and time series analysis (cf. Sect. 4.2),
the focus is not on the technique itself, but on the way the technique is applied in the context
of the microarray paradigm.

Rather than reducing the impact of mathematics in science, this approach liberates math-
ematics from the constraints of strict isomorphisms; and it allows a plethora of theoretical
tools to be used in very practical scenarios as we will explore in Sect. 5.
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2 Scale and Understanding

For the purpose of this article, data analysis refers to the treatment of a class of scientific
problems considered as pairs composed by a phenomenon and a specific problem about it.
Concrete and emblematic examples of this situation include the problem of forecasting the
evolution of an hurricane during a certain lapse of time, or the intriguing problem of deter-
mining distinct sound sources from microphone recordings of their mixtures, what is often
called in the literature the cocktail party problem (cf. Cichocki and Amari 2002).

Some of these phenomena are such that their structure is partially known, for example, the
microscopic physics of a hurricane can be described by fluid-dynamics partial differential
equations, and yet the specific questions which are asked about these phenomena resist any
easy solution that relies on such structure. In the case of hurricanes, the global behavior of
the hurricane cannot be easily deduced by the microscopic description, since, in practice, any
useful description of the evolution of an hurricane would involve ad-hoc tuning of a great
number of model parameters that are not implicit in the microscopic physics. In other cases,
for example, the reconstruction of the independent sources of a mixed sound, we lack any
clear and/or precise understanding of the phenomena themselves, since we do not know the
sources that generated the mixtures.

In both these general settings, the solution of the (empirical) problem about the phenom-
enon under consideration depends, predictably, on the solution of a mathematical problem
that is connected to it. A deeper look at these connections will indicate what frustrates our
understanding of phenomena, and it will suggest that the very notion of understanding is
intimately related to the multiscale nature of any actual phenomenon.

Consider again the study of hurricanes, here the phenomenon under consideration is rela-
tively well known insofar as its knowledge depends on a representation by a system of differ-
ential equations derived from physics. The solution of this system, however, goes beyond the
limits of our actual mathematical abilities, and we are actually unable to effectively determine
the evolution of the hurricane from first principles. A typical strategy in such cases is to look
for a numerical simulation of the given system of differential equations. This means that one
looks for the determination of enough meteorological values to allow a sufficiently precise
prediction of the behavior of the hurricane. This process can be reduced to the problem of
solving a system of linear equations Ax = b, where A is a square matrix whose size is
very high, while b and x are two vectors, known and unknown, respectively. The size of A
depends on the number of values we want to compute: the more fine-grained is this simu-
lation, the larger the number of variables that the discretization of the system will generate
in the corresponding system of linear equations (cf. Trottenberg et al. 2000), and, again, our
computational abilities will be overwhelmed. In these cases, we need to resort to heuristic
adjustments that are not easy to justify from the microscopic physics of the hurricane, as we
pointed out earlier.

Let us now consider the cocktail party problem, i.e. the reconstruction of the independent
sound sources hidden in the recording of a mixed sound. The data we consider in this case are
the recordings of N long time series B = [b1, . . . , bN ] from a collection of microphones,
and we assume that there are M underlying sound sources X = [x1, . . . , xM ], linearly mixed
so as to produce the recorded time series. Hence the problem can be modelled, once again,
though a system of linear equations AX = B where B now is a known matrix and we have to
find simultaneously the unknown matrices A and X . This problem can be seen as the attempt
of solving simultaneously several linear equations, though we lack the relevant information
to solve them uniquely, and it can be solved only by making weak, but subtle assump-
tions on A and X (cf. Lee 1998). These methods are so successful that they are called blind
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methods (Cichocki and Amari 2002), since they seem to be able to solve problems without the
necessary information. Their importance is growing especially in signal processing and image
processing, where it is difficult to model the processes that generated the recordings and
the images, and where blurring and noise are a severe problem.

We can see that both for the mathematical problem derived from hurricane simulation, and
for the cocktail party problem, the size of the matrix A depends on the precision we want to
reach. In the second example, the size of A determines the number of distinct sources that we
want to identify, in the first case, it determines the accuracy of the simulation. The technical
term for speaking of such accuracy is scale. The notion of scale is usually involved both
when one is referring to the size of the discretization of the phenomenon (as in the case of the
hurricanes), and when one is referring to the number of quantities or parameters involved in
a computational description of such a phenomenon (as in the case of mixed sounds). In both
cases, one speaks of fine and coarse scale: in the first case to indicate, respectively small and
the large sizes; in the second case, to indicate large or small numbers of parameters.

We have until now purposely used the term ‘understanding’ without a specific definition.
Below we specify to some extent how we suggest to conceive understanding in the cases we
are interested in. However, our aim is not to provide any detailed account of understanding
for natural and social phenomena. We mostly appeal to the notion of understanding nega-
tively, as lack of it, and all that we need is therefore a term of comparison for our account
of forecasting and analyzing without understanding. In principle, such term of comparison
could be provided by some of the accounts of scientific understanding that can be found in
literature, often in connection with explanation (cf., among others, Scriven 1962; Toulmin
1963; Friedman 1974; Achinstein 1983; Salmon and Kitcher 1989; Weber 1996; Trout 2002;
Regt and Dieks 2005).1 However, most of these accounts are too specific for our purpose,
since they make understanding dependent on some specific logic or epistemic characters
of our theories, models, or, more generally, our modes of acquaintance with the relevant
phenomena, like deductive power, entailment, unification, causality, reduction, minimality,
representation of regularities, necessity, abstraction, familiarity, generality, simplicity, etc.
To use these accounts of understanding as terms of comparison in our work would wrongly
suggest that the contrast we would like to emphasize depends on their specific characters,
whereas the lack of understanding we talk about is much more general.

For example, De Regt and Dieks’ recent account (Regt and Dieks 2005) insists on the
opposition between scientific understanding and algorithmic methods, or, more generally,
calculations endowed by same appropriate mathematical apparatus. They propose the two
following criteria (ibid., pp. 150–151):

• A phenomenon P can be understood if a theory T of P exists that is intelligible (and
meets the usual logical, methodological and empirical requirements).

• A scientific theory T is intelligible for scientists (in a context C) if they can recognize
qualitatively characteristic consequences of T without performing exact calculation.

The relevant theories that De Regt and Dieks are concerned with are clearly supposed
to integrate a mathematical apparatus,2 and their account suggests that the algorithmic

1 A few of these accounts specifically point to the way mathematics enters understanding of natural and social
phenomena as in works such as (Batterman 2002) and (Morrison 2006); (Batterman 2010) includes a critical
discussion of more recent accounts of the explanatory role of mathematics for empirical phenomena and it
suggests an alternative account as well.
2 This is confirmed by footnote 7 (ibid., p. 167) where they write: “If one wants to apply our analysis to
non-mathematical, qualitative theories, we suggest to replace ‘exact calculation’ by ‘complete logical argu-
mentation’ ”. Moreover, by dealing with the example of Boltzmann “qualitative analysis” of the behavior of
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and/or calculative procedures endowed by such an apparatus do not enter science to provide
understanding, but are rather guided by a previous understanding that mathematical theories
help to provide on top of algorithmic aspects. This anti-algorithmic bias is the specific rea-
son this account of understanding is not appropriate to provide the term of comparison we
need in our work, since it suggests in turn that the opposition between understanding and
forecasting we would like to emphasize3 depends on the fact that understanding is conceived
in an anti-algorithmic way.

More recently, Lehnard (2009) has made a case for a “pragmatic concept, mode or account
of understanding” (ibid., 171, 172, 182) open to the possibility that understanding can be
defined implicitly in terms of “the ability it generates” (ibid, 173–174). According to such an
account, understanding of a certain phenomenon or situation would occur when we have a
certain ability for dealing with this phenomenon or situation in order to solve some problems
concerned with it. Lenhard’s example is an instance of simulation, and his major point is that
in the face of simulation methods or algorithms two opposite attitudes are possible (ibid.,
183): either to stick to a “traditional” concept of understanding, based on the idea that under-
standing is “linked to a theoretical insight” (ibid., 172), and then maintain that simulation
“can provide control and options for intervention without understanding”4 (ibid., 172), or to
stick to such a pragmatic concept of understanding and then admitting that simulation models
can provide a mode of understanding.

Though the notion of understanding we refer to when we emphasize lack of understanding
is expressly general and weak (for the reasons indicated above), it clearly does not conform
to Lenhard’s pragmatic concept, and it is still well-matched with the idea that understand-
ing requires some sort of “theoretical insight”. Moreover, though it is common to consider
understanding as a subjective or even psychological state, we do not want to emphasize this
aspect, and rather we take the notion of understanding to differ from that of explanation not
because the former is psychological and the latter logic, but rather because we consider that
understanding does not necessarily involve an appreciation of the reasons for with something
happens, whereas explanation does. In our sense, understanding merely happens when some
structural connections characterizing the relevant phenomenon have been identified.

From the perspective we suggest, the understanding of a natural or social phenomenon is
not intrinsically different from its description, at least if the latter does not simply reduce to
a mere collection of data. Rather, the difference between description and understanding is a
question of emphasis. The statement of a problem concerned with a particular phenomenon,
and even the identification of the related problems, involves a form of description that one
could take as primitive or original understanding.

When we speak in this paper of lack of understanding of a certain phenomenon, we refer to
a situation where one has not gone beyond such primitive description. Specifically, a phenom-

Footnote 2 continued
gases under the effect of temperature increasing (ibid., pp. 152–153), they remark that the purpose of this anal-
ysis “is to give us understanding of the phenomena, before we embark on detailed calculations […][which]
are subsequently motivated, and given direction, through the understanding we already possesses”. And they
add: “Exact mathematical techniques […] are obviously essential in modern science. What we emphasize in
the importance of understanding as an additional epistemic aim of science”.
3 In his well-known 1974 paper on explanation and understanding (Friedman 1974, p. 8), M. Friedman has
remarked that “to have grounds for rationality expecting a phenomenon is not the same thing as to understand
it”, and mentioned, as an example of it, indicator-laws that make us able “to predict some phenomenon on
the basis of […] initial conditions” without requiring “understanding of why the phenomenon occurred”.
Unfortunately, he has not developed this point neither in general nor in relation with data analysis.
4 Though Lenhard’s concern is limited to the case of simulation (which is a case we consider only indirectly),
this approach is close to the one we are aiming to describe more in general and in details.
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enon has been identified; a problem has been stated; and this is done by choosing a number of
variables whose particular, measurable values are supposed to characterize a particular state of
the phenomenon itself. However, we cannot say or establish anything else about the phenom-
enon, since we have not advanced any hypothesis about the mutual relation of the variables
involved. In this situation, we say that the phenomenon does not admit an understanding.

From the primitive description, one can move on to a more comprehensive one, by relat-
ing different related variables to each other, or by introducing new variables, to reach a new
formulation of the given problem that can help solving it. We can then take the new variables
and their relations and use them to solve problems that we could not even formulate before.
This is what we regard as an understanding in a proper sense, this makes us able to relate
several problems and different features about the same phenomenon. This type of structural
understanding is intimately related to the scale at which we consider the phenomenon and
his relation between scale and understanding is so relevant that there are specific techniques
in some fields (most notably in physics) to relate descriptions at different scales, as we will
see in the sequel of the paper. We generally perceive some scales as being more fundamental,
because our physiological experience is limited in space and time. What we need to know in
these cases is how to connect our description of a phenomenon at one scale to a description
of the same phenomenon at some other scale, since the fundamental quantities at different
scales may be different and have different relations.

Following a notion from physics (cf. McComb 2008), we term renormalization any trans-
formation of a description at a fine scale J with its own set of variables in another description
at a coarser scale K with fewer variables, obtained by encoding in a few new parameters the
information relative to the larger number of variables that are significant at the finer scale.
Hence, a renormalization of a certain description involves a (significant) reduction of the
number of variables entering such a description. Since the phenomenon that is described is
the same before and after the renormalization, this may possibly lead to a new understanding
of the phenomenon.

As a classical example of how renormalization leads to new understanding, we note that in
Newtonian mechanics, position, velocity, acceleration and mass of every particle in a system
allow a complete description of this system at any scale; as we move to very large systems
like gases, understood as instances of a Newtonian system, such description is in fact not
achievable in practice, especially when we try to predict the evolution of the system. There-
fore, in the case of gases, we abandon the Newtonian model and find few other fundamental
quantities, such as temperature and pressure, forming a basis for another description of the
same phenomenon and its evolution at coarser scale. The essential point of this example is
that the new description results from a renormalization of the original one connected to it by
some rules that tell us how the Newtonian fundamental quantities have to be averaged to give
rise the thermodynamical quantities that we can observe (at least in principle). This example
can be considered the precursor of all renormalization techniques in the history of science.
Renormalization provides here a macroscopic description of gases which goes together with
a deeper understanding than the one that comes from their fine or coarse descriptions alone.
Specifically, the connections among different scale descriptions of gases are made explicit.

Despite the crucial role that renormalization plays in the understanding of many empirical
phenomena, modern data analysis does not often relies upon it. Instead, we see more and
more frequently the development of fields where the maximal scale of resolution (i.e. the
finest scale at which the phenomenon is observed) is decided on the basis of the possibility
of quickly generating large amounts of data at that scale, even though it is known that a
proper description of the phenomenon itself is possible at much finer scales. In this way,
different descriptions at different scales are detached from each other, and we do not explain
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how to move from one to another. The breakdown of distinct descriptions is most often due
to pragmatic needs: even though finer scale dynamics are still considered essential for a
structured understanding of the phenomenon, their consideration is excluded because of a
preventive decision based on inherent computational or experimental limitations. Microarrays
are a fundamental case where we see this breakdown of knowledge at work.5

3 Lack of Structural Understanding: The Microarray Paradigm

In order to understand where the microarray paradigm is coming from, we need to take a
short detour through some basic notions of experimental molecular biology. Recall that the
DNA (deoxyribonucleic acid) molecule is made of two connected long chains (strands) of
complementary building blocks (nucleotides) that encode the genetic material of the organ-
ism. Some parts of the DNA molecule are used in the cell for the production (transcription)
of related messenger RNA (ribonucleic acid) molecules that are involved in the synthesis of
proteins.

A DNA microarray (cf. Hastie et al. 2000), and (Baldi and Hatfield 2002) for a more
mathematically oriented introduction) is essentially an array of microscopic sites where up
to several thousands different short pieces of a single strand of DNA have been attached. Each
microscopic site of the array has attached to it several copies of the same short piece of DNA
strand to increase its chance of binding with the possible complementary strand of messen-
ger RNA (mRNA). The mRNA molecules are extracted from some specific tissue and then
amplified with a variety of techniques (chiefly polymerase chain reactions: cf. Mullis et al.
1994). They are marked with some fluorescent substance and finally dropped on each site
of the microarray. Each site take a less or more intense florescence according to the amount
of mRNA that binds with the strands of DNA already placed in this same site. The intensity
and distribution of the fluorescence on the microarray give thus a way to evaluate the degree
of complementarity of the DNA strand on the array, and the mRNA strands from the tissue.

The level of complementarity at a single site of the microarray is the expression level
of that particular strand of DNA. The set of all expression levels on a microarray is called
DNA expression profile of the tissue analyzed with that specific microarray.The reason such
emphasis is put on the amount of different strands of mRNA is that the specific behavior of
a cell depends in great part on the activity, concentration, and state of proteins in the cell
itself. In turn, the distribution of proteins is influenced by the changes in levels of mRNA.
This correspondence of the information on the DNA microarray with the behavior of a cell is
by no means exact or univocal, since the function of many proteins in the cell is not known,
and several strands of DNA are complementary to the mRNA strands of all protein types.

Nevertheless, a DNA microarray carries a great deal of information about cells: since
thousands of strands of DNA are checked on a single microarray, one expects to obtain a
description of the state of the cells from the DNA microarray. Such a description does not
offer, however, an understanding of the correspondent phenomenon. Any DNA microarray
supplies a particular value for a huge number of variables (the specific strand of DNA on the
individual sites) and therefore displays in some way the state of the cells from the chosen
tissue, but we do not know how to relate the values of the variables directly to the state of

5 Note however that multiscale techniques are at the heart of modern data analysis. There are very refined
signal analysis methods, such as wavelets (cf. Mallat 2008), that are based exactly on idea of exploring the
data at several resolution levels. But these methods are used on whatever data is available, as a way to analyze,
and preprocess the data, very much in the spirit of an unstructured query of data, and they do not allow, by
themselves, the type of structural understanding that we defined in this section.
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the cells. We do not use some mathematical theory to provide a systematic framework lead-
ing to the understanding of the cell behavior, starting from the variables determined by the
microarray. Instead, we appeal to specific mathematical algorithms to simply classify DNA
microarrays, that is, to extract a minimal, but useful, information from the huge mass of data.

If we are interested in the DNA expression profile of cancerous tissues, we begin, for
a given microarray, by comparing the DNA expression profile of the cells of interest with
that of some reference cells. We do this by dropping in each site of the microarray some
mRNA strands derived from cancerous cells with green fluorescent pigment, and mRNA
strands derived from healthy cells with red fluorescent pigment. This procedure allows to
see directly in the quotient of green and red intensities which strands of DNA are activated
mostly in cancerous cells and which ones in healthy cells. Regardless of the eventual role
of these detected strands in the activity of the cells, we can regard their respective degree
of activation as a significant and characteristic feature of these cells which distinguishes the
cancerous ones from the healthy ones. We can moreover classify the cancerous cells and
theirs changes in time after addition of potential drugs on the basis of their DNA expression
profile. We may realize in this way which drugs are effective, or detect a common pattern
that characterizes precancerous cells and so on.

Mathematics plays a crucial role in this analysis by providing the procedures that make
these classifications possible. Suppose for example that we want to predict whether a patient
has a specific cancer on the base of his DNA microarray expression profile X . One way
to approach this problem is to turn it into a classification problem, and to consider several
other patients that are known to have that specific cancer, and other patients that are known
to be cancer free. Assuming that the total number of such patients is N , we measure their
respective DNA expression profiles x1, . . . , xN . The DNA expression profile of each patient
is then labeled with a value y that determines the class to which it belongs: for example, we
can set this value to be y = −1 if the patient does not have cancer and y = 1 if he does
have cancer. In this way, for each DNA expression profile x1, . . . , xN , we get a correspond-
ing value for y, say y1, . . . , yN . Finally we look for a function f , belonging to a chosen
space of functions, such that yi = f (xi ), i = 1, . . . , N . Therefore, the empirical problem
of prediction and classification can be reduced to a mathematical problem of approximate
interpolation in which the classifier function f is determined, and we can predict whether
the initial patient had cancer with his DNA expression profile X by computing Y = f (X).
If Y = 1, the patient will likely have cancer, and he will likely be cancer free if Y = −1.

The key to a successful solution of this classification problem is the identification of
an appropriate space of functions F where we search for the best function f that satisfies
yi = f (xi ), i = 1, . . . , N . Such space has to be large enough to adapt to the diversity of
data we may have, but also small enough to avoid to overfit these data: adapting f exactly
to the data can entail the risk of making f susceptible on possible noise disturbances in
measurements, as discussed at great length in Ramsay and Silverman (1997) and (2002).6

Because of the very large size, and apparently random nature, of DNA expression profiles,
it is very difficult to determine a suitable function f in the previous classification scheme.
Often the variables of the DNA expression profiles are split into groups that are significantly
different, before attempting the search for the function f that solves the classification prob-
lem. This is a a technique aiming to reduce the size of the microarray variables, but it adds
another layer of complexity in the mathematical analysis of the microarray that is not essen-
tial in our discussion (cf. Kaufman and Rousseeuw 2005). Incidentally, this reduction of the

6 The structure of the general classification procedure we outlined here will be used again in the description
of the data analysis methods of Sects. 4.1 and 4.3.
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complexity of the data was at the basis of one of the earliest attempts to find the philosophical
implications of data analysis, see (Good 1983).

The microarray technique can be used also in other biomedical applications, we have for
example the important case of protein microarrays (Simpkins et al. 2004), that directly check
the activity level of several proteins at once. The two basic conditions that have to be satisfied
to make microarray possible are: the ability to build large and inexpensive arrays of testing
sites in a reasonably short time; and the ability to detect, in a reliable way, the expression
level of the specific substances that are being probed at each site. Solutions to biological
and medical questions may be based on the properties of microarrays, even though we know
microarrays do not provide any explanation of the biological functions, at fine scales, that
determine the macroscopic property—for example, presence or absence of disease—we are
interested in. The coarse scale biology, namely the presence of cancer in an individual, is thus
detached from the fine scale microbiology, namely the specific structure of genes interactions,
even though we know that some fundamental piece of information related to our problem
lies at the fine scale level. It is in this sense that there is already a breakdown of structural
understanding, before we even start to analyze the data. And the robustness and legitimacy
of the solutions gathered from microarrays is often extrapolated by artificially adding noise
to the data, and testing the reproducibility of the classification results on these perturbed data
(see Simon et al. 2003), Section 9.5 and (McShane et al. 2002.), rather than by probing the
possible biological reasons that could explain the solutions we found.7

To summarize, the mathematical study of microarrays is a clear example of prediction and
inference from unstructured data that is a trademark of modern data analysis. According to a
more traditional paradigm of mathematization of empirical sciences, especially exemplified
in Newtonian science, mathematical techniques are used in order to establish a conceptual
framework which provides a technical characterization of the phenomenon to be studied.
This characterization is understood as a mathematical structure whose intrinsic relations
make possible to associate a formalism to the phenomenon itself. This structure provides an
objective representation of the phenomenon that makes it intelligible by involving appropri-
ate interpretative categories (like, speed, force, energy, etc.).8 Moreover, the other purpose of
the mathematical structure is exactly to transform the phenomenon in a piece of mathematics,
with local empirical inputs, to make possible to rely on known techniques in order to prove
theorems, solve problems and compute values of quantities related to the phenomenon. In
this way mathematics works together with a conceptual interpretation of the phenomenon,
which is the modern form of what Aristotle, in the beginning of physics, termed διαίρεσ ις :
the reduction of the sensible data to a system of general principles.

Whereas in the traditional paradigm the identification of invariants is largely a conceptual
endeavor, in the case of the microarray paradigm, it is essentially the outcome of an algo-
rithm. In the main examples of Sect. 4 we will see how the data arising from a phenomenon
can be directly used to solve specific, narrowly defined, problems, making superfluous the
conceptual identification of the variables that come with an understanding of the phenomenon
at different scale levels.9

7 This is the case especially for large microarrays, like DNA microarrays. The analysis of smaller micro-
arrays, such as protein microarrays, is often followed by in vitro validation of the results inferred through the
microarray.
8 Though in a quite different context (that of population genetics), M. Morrisson (2006, p. 340) has insisted
on this point, by arguing that “mathematical abstraction can play an important role in shaping the way we
think about and hence understand certain phenomena”.
9 The study of microarrays show that mathematics can be used to identify some useful characteristics in a huge
amount of data before, and independently of, any conceptual interpretation. Even though the mathematical
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Needless to say, the data used in data analysis methodologies can hardly count as raw
(cf. Harris 2003). As we have already emphasized, in order for data analysis to apply, a phe-
nomenon must be identified and a problem about it must be stated. This is done by measuring
values for a large number of variables and different states of the phenomenon are taken to
depend on the measured data. In our parlance, this is a description of the phenomenon itself,
and this description is not only necessary for collecting data, but is also already sufficient for
organizing them. Still, there is a difference between large amount of data, organized accord-
ing to a certain description of a given phenomenon (which assumes that the data are related to
this phenomenon and to particular problems relative to it), and a “model of data” in Suppes’
classical sense (Suppes 1962). According to Suppes, models of data belong to a “hierarchy
of model that connect data to theory” (Harris 2003, 1508). Further, they are “designed to
incorporate all the information about the experiment which can be used in statistical tests of
the adequacy of the theory” (Suppes 1962, 258). Hence, models of data strictly depend on a
theory, and—however it might be conceived—a theory cannot help depending on some sort
of understanding, which is just what is lacking, in the case of microarrays.

There is thus something in between a body of raw data and a model of data, and it is here that
the microarray paradigm applies. In cases like these, data are chosen and measured according
to a basic description of a certain phenomenon, but no theory and/or understanding is avail-
able for transforming them in a model in Suppes’ sense. This does not mean of course that no
theory and/or understanding are necessary in order to provide the relevant data. In the very
case of microarrays, a significant background of genetic biology, histology, and chemistry, is
necessary to build such an array, and these tools come with a very sophisticate understanding
of related phenomena. Still, these theories and the relative understanding are not illuminating
the phenomenon and problem to be studied, and therefore in this sense a microarray is not
a model of data for them. The microarray paradigm prescribes, in cases like these, to apply
mathematics (usually appropriate computational algorithms) not in order to get a reproducible
curve that fits available data in an appropriate space (of the right dimension), or to transform
them in some suitable way so to produce a model (Harris 2003, 1510–1512), but rather in order
to question the data as such, to solve the problem before any understanding.10 The way this
is done depends of course on the particular case under examination, and the microarray para-
digm can prescribe neither a particular method nor a family of methods to do it. To understand
how the microarray paradigm can apply in other cases, essentially different from the very
case of microarrays (both for the nature of the phenomenon and problem under examination,
and the mathematical theories involved), other examples are needed. We hope they might be
useful to clarify the way in which the microarray paradigm is exemplified in a variety of fields.

4 The Microarray Paradigm at Work

Our selection of data analysis methodologies that exemplify the microarray paradigm is very
limited with respect to the great variety of methods that we could explore. We have decided

Footnote 9 continued
structure of the classification method used for DNA microarrays does not fully capture the way the microarray
paradigm can be used as a methodological guiding principle in data analysis.
10 The very construction of a model (of data or of phenomena) requires some understanding and we pur-
posely chose not to address the longstanding question of whether a model represent reality, or is instead only
an instrument for prediction. Our objective is to show something different and stronger, i.e. that it is possible
to make predictions without models, and therefore without understanding.
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to highlight a few where we can see very clearly that no understanding on the phenomenon
is gained while solving the problem.

The first method that we describe in Sect. 4.1 makes use of artificial neural networks, a
well established technique that was first developed in 1943 in (McCulloch and Pitts 1943).
We focus on an applications of neural networks to hurricane strength prediction, since this
setting was already touched upon in Sect. 2, and since it demonstrates that interpretable sim-
ulations can be less effective than non-interpretable techniques. We move then in Sect. 4.2
to a subtle use of mathematics in the study of physiological data with techniques from non-
linear dynamics. What is remarkable in this application is that it is necessary to invoke quite
advanced theorems on the immersion (embedding) of geometrical structures in large ambi-
ent spaces. And yet the actual model of the physiological data remains hidden up to the
end. Finally, Sect. 4.3 summarizes one of the most interesting techniques in data analysis,
boosting, that purposely does not build interpretable, efficient models, and trades them for a
powerful combination of weak, not-interpretable ones.

Two more methodologies that fit within the approach of the microarray paradigm are
briefly described in Sect. 5, but with a different purpose: we will show that the lack of struc-
tural understanding in data analysis does not diminish the use of sophisticated mathematical
ideas, but on the contrary it increases their relevance to very concrete problems.

4.1 Neural Networks and Hurricanes Forecasting

We highlight in this subsection a method that uses neural networks to forecast the intensity of
winds of hurricanes (up to 48 h in advance), on the basis of a set of available meteorological
data (cf. Baik and Paek 2000).

We recast here neural networks in the language of classification problems as in Sect. 3.
According to this viewpoint, neural networks are nothing more than a very specific choice
of space of functions of the input variables used to perform approximate interpolation (see
Hastie et al. 2001, chapter 11 for more on this interpretation of neural network in terms of
approximation in functional spaces). The structure of the functions in this functional space
provides a primitive modelization of the dynamics of actual neurons.

The construction of neural networks can be seen as a two steps process. First, input
variables X = (X1, . . . , X N ) are preprocessed to get new variables Zi = σ(α0i +∑

j αi j X j ), i = 1, . . . , M , where the parameters α0i and αi j are to be determined, and
where the function σ is selected to mimic an important property of the activation patterns
of neurons, i.e. the fact that their firing is very small when the input is small, and then sud-
denly large when the stimulus of the neurons is above a set threshold. Choosing σ to be
σ(r) = 1

1+e−r provides exactly such sudden switch of the intensity of σ(r) as r goes from

large negative values (when σ(r) ≈ 0) to large positive values ( when σ(r) ≈ 1).11 Second,
after defining the variables Zi , we try to express the output variable Y as a linear combination
of the variables Zi , i.e. we adjust parameters β0 and βi so that Y ≈ β0 + ∑

i βi Zi . This last
step is essentially the approximate interpolation step that we introduced for the classification
of DNA expression profiles in Sect. 3, with the notable difference that the output variable is
allowed to assume any real value.

11 The historical reason for defining the variables Zi in the neural network procedure was the belief that a
plausible approximation of the structure of interconnected neurons in the brain may be useful to approach
complex problems (see the discussion of Bailer-Jones and Bailer-Jones 2002 on the analogy to the brain). The
distinctive feature that is believed to be the key for the success of neural networks is their ability to adapt to
input data in a non-linear manner (cf. Ripley 1996).
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It is remarkable that (cf. Baik and Paek 2000) the use of neural networks gives better fore-
casts of the intensity of winds than the best available simulations of atmospheric dynamics.
In this context, the input variables Xi are sets of measured meteorological data relative to
a developing hurricane, and the output variable Y is the intensity of winds of the hurricane
after 48 h. The crucial point of this method is that the structure of neural networks does not
express any understanding of the hurricane dynamics. It does not mirror in any understand-
able way the structure of the atmosphere: the specific problem is solved, but with no new
knowledge of the phenomenon. Note moreover that only the ability to access a large quantity
of measurements for the hurricane during its development allows this technique to work, in
line with the general tenants of the microarray paradigm.

An interesting consequence of such opaque way to make predictions is the compelling
need of validating them very carefully. In (Kalnay 2003), individual predictions are validated
by looking at ensemble weather predictions, where several predictions are made, possi-
bly with different methodologies and different initial conditions, and only the most likely
result, or group of results, is then used for the actual forecasting. This technique clearly
does not improve basic understanding since, even though we may trust more the prediction
of a collection of methods because of a well understood a posteriori statistical analysis,
the individual methods will not be more transparent because of this postprocessing. There
is a similarity between the ensemble forecasting and the boosting technique described in
Sect. 4.3, these parallels are one more sign of a convergence, in different fields, to similar
weak approaches.

4.2 Data-Driven Control of Seizures

Another very interesting problem in which a lot can be done without understanding the
details of the phenomenon is the detection and control of abnormal physiological behav-
ior. Both electric cardiogram (ECG) and electric encephalogram (EEG) show complex, but
deterministic, behavior at the onset of heart arrhythmia (cf. Christini et al. 2001) and sei-
zures, respectively (cf. So et al. 1998). This behavior can be described with relatively simple
systems of differential equations ẋ(t) = S(x(t)), where x(t) = [x1(t), . . . , xn(t)] ∈ R

n

and ẋ(t) is the vector of the derivatives of each variable (cf. Kantz and Schreiber 2003).
If the system of differential equations admits a low-dimensional region G contained in R

n

where most trajectories x(t) that satisfy ẋ(t) = S(x(t)) converge, we say that the system
of differential equations has a low dimensional attractor and knowledge of G encodes some
important features of solutions of ẋ(t) = S(x(t)). The question is then whether G can be
inferred from measurements of the trajectories x(t).

In particular, assume now that we measure a single quantity q(t) derived from the trajec-
tories components, say q(t) = G(x1(t), . . . , xn(t)), where G is a differentiable function.
We measure q(t) at a uniformly sampled set of time values t = t0, t0 + dt, . . . , T , with dt a
small sample unit, T = t0 + Qdt and Q some large integer value. These discrete measure-
ments of q(t) can be used, if the number of samples Q is sufficiently large, to gain a rough
geometrical understanding of the system ẋ = S(x), through the use of so called delay maps.
Essentially a delay map takes a fixed number d of consecutive points in the measurement
q(t) at constant intervals of τ starting from a given point q(t̄) and maps them in the space
Rd . If d is large enough the set of all points mapped to R

d from a single measured quantity
q(t) (for all possible values of t̄ ), will often look like a deformation of the attractor G where
the trajectories of the system ẋ = S(x) converge (cf. Alligood et al. 1996; Takens 1981,
and (Sauer et al. 1991). It is somewhat surprising to realize that even measuring a single
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trajectory variable can be sufficient for this technique to work, i.e. we can take q(t) = xi0

for some index i0.
In the case of EEG data, delay maps allow, at least in principle, a data-driven control of

seizures as outlined in (So et al. 1998), see also (Kapitaniak 1996) and (Ott et al. 1990).
The key idea is to reconstruct the attractor G associated to the EEG data from the delay
map and to use this information to prevent the trajectories from displaying the determinis-
tic behavior that is often a precursor to seizures, by using a suitable, slight perturbation of
the system. Since we can get an idea of the important features of the dynamics from the
delay map, we do not need a previous knowledge of the form of the system, as long as we
assume a simple enough deterministic dynamics before a seizure. The information deduced
from the delay map is enough to perform some type of control of the seizure and, ideally,
to avoid it.

What is essential to the functioning of this technique is the ability to access long measure-
ments of EEG data, which allows a rough geometrical representation of the salient features
of the dynamical evolution of the neurons whose activity generated the seizure captured by
the EEG. So the exact equations in ẋ = S(x) are not necessary, and a graphical description
of the underlying dynamics is sufficient for this control technique to work. Note again that, in
principle (cf. Kantz and Schreiber 2003), even a single long measurement, i.e a measurement
followed for a sufficiently long time, can lead to a geometrical representation of the dynamics
of the underlying system. This implies that under suitable conditions on the dynamics of the
system, almost any single long measurement can be used to infer the general characteristics
of the system.

We can understand this result in view of the microarray approach if we see that the diver-
sity of measurements that is asked for in the microarray approach is provided by the number
Q of time samples of the measured quantity q(t). This requirement is sufficient in this case
because the dynamics of the measurements is so complex, that the longer we record them in
time, the more we learn about the whole system.

Note also that the dynamics of EEG measurements cannot be equated to the dynamics
of single neurons. In practice the electrical signals we measure will be the sum of many
electrical signals from nearby neurons. This is also the fundamental reason why the actual
dynamics of the neurons is not directly used for the control of their collective behavior, i.e. of
global phenomena such as seizures. These techniques have been used in practice with success
for small groups of neurons, while their applicability to large systems is still the subject of
active research.

4.3 Boosting

The previous two examples show to a great extent the characteristics that we expect from an
approach based on the microarray paradigm. Let us now consider a mathematical technique
which is having a consistent impact on data analysis since its domain of applicability is wide,
but whose ability to shed light on the structure of the phenomenon is quite limited. This
method goes under the name of boosting, and it is remarkably well suited to be the backbone
of a microarray-paradigm-based data analysis. Unlike what we have done in the previous two
subsections, here we only describe the algorithmic outcome of this method, without specific
applications. However, it turns out that boosting is a way to put together weak classifiers (i.e.
algorithms that can distinguish classes of objects just a bit better than randomly) to obtain
an arbitrarily strong classifier, i.e. an algorithm that classifies objects correctly most of the
time. All the empirical classification problems we described earlier in the paper could in
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principle benefit from this technique. We give a quick description of boosting that closely
follows (Hastie et al. 2001), chapter 10.

Suppose we have a standard classification problem and that we consider only two classes
of phenomena, each labelled by a variable y that can take values in the discrete set {−1, 1}.
Suppose also that we can measure some variables x associated with the phenomena belonging
to both classes. As we have seen in Sect. 3, a classifier is a function f such that f (x) = 1
if x is a measurement of a phenomenon from class {y = 1} and f (x) = −1 if x is a mea-
surement from class {y = −1}. We take a weak classifier to be a function g that correctly
classifies measurements x with frequency f = 1

2 + ε, with ε fairly small, i.e. the frequency
of right guesses is only slightly better than a random guessing. Recall now that the function
f is adjusted (trained) according to a set of training measurements X = {x1, . . . , xn} where
each element of the set is known to belong to one of the two classes. The key advance of
boosting methods is to generate slightly different versions of the classifier f , say f1,…, fn ,
by modifying the importance of each individual measurement in X , before training the clas-
sifier. This is done according to a rather sophisticated strategy that we do not report here
(cf. Hastie et al. 2001) chapter. 10). It suffice to say that the final outcome of the boosting
algorithm is a classifier f̄ (x) = sign[∑ αi fi (x)], where the coefficients αi determine the
importance of each individual weak classifier in the overall classifier defined by f̄ . Note
that f̄ (x) can only take values in {−1, 1} and it gives therefore a formally correct prediction
on the class of belonging of x . It has been observed in some experiments that if the rate of
correct classification of each individual weak classifier fi is just 54%, then boosting can give
a final f̄ with success rate of 88% (cf. Hastie et al. 2001 chapter. 10).

In (Freund and Schapire 1999) (see page 10 of the English translation), the initial devel-
opers of the boosting technique point out that such a technique depends on “a shift in mind
set for the learning-systems designer: instead of trying to design a learning algorithm that
is accurate […], we can instead focus on finding weak learning algorithms that only need
to be better than random.” This approach to data analysis fits perfectly in the context of the
microarray approach, as it suggests that weak techniques can be combined to obtain strong
techniques that are devoid of any meaningful interpretation.

5 Discussion. What Role for Mathematics?

Our claim in this paper is that modern data analysis, faced with increasingly data-heavy
problems, has challenged mathematics to assume a different role in its relationship to phe-
nomena. We have argued that, unlike the traditional approach in which mathematics models
a phenomenon while fostering its understanding, the modern paradigm used in data analysis
gives up understanding, in favor of increasingly powerful forecasting tools. We have summed
up our claim under what we called the microarray paradigm, which insists on the fact that
enough, diverse data may help to solve most questions related to a specific phenomenon, even
though they may not shed any light on its actual understanding. Our choice of terminology
is heavily influenced by the remarkable success that DNA microarray technology has had in
modern biomedical applications, but we have included in our paper a series of examples from
other areas of current research, to show that, in fact, problems far removed from microbiology
lead to methods that can be interpreted and systematized under the heading of the microarray
paradigm.

We discuss now two recent works that tried to understand the methodological and philo-
sophical implications of data analysis, and that come close to our viewpoint. In Sect. 3.1 of
(Bailer-Jones and Bailer-Jones 2002), Daniela and Coryn Bailer-Jones contrast “data analysis
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models” with “theoretical scientific” ones. In elaborating the latter models, they argue that
“one is interested in determining the values of some important, physically meaningful param-
eter or parameters with the aim of better understanding” the relevant phenomenon (they
consider the example of a model for the temperature variation in the Earth’s atmosphere). In
data analysis, and especially in computational data analysis, instead, “the primary interest is
in training a model to make predictions” and “the model parameters are a mean to an end
and not necessarily of physical significance themselves”. It follows from their considerations
that data analysis models “are conceived without regard to the theories and concepts of the
various problems to which they can be applied” and “are sufficiently general so that they can
be applied to a wide class of problems with only general requirements having to be met”. As a
consequence, “data analysis techniques are not specific to the type of data that are modelled”
and “are designed to be independent of specific applications” or “application-neutral”. It
seems thus that, for D. and C. Bailer-Jones, data analysis is simply a set of techniques for
computation and classification, and it is, in fact, disjoint or poorly related to the study of
phenomena. To the useful techniques of traditional mathematization, data analysis is adding
new ones that are neutral, and that are used in practice more by relying on the analogy among
different phenomena than by developing insight in the specific phenomenon.

While this neutrality viewpoint certainly captures some important characteristics of data
analysis, we note that any mathematical technique is neutral by itself, and the use of analogy
in shifting the same mathematical structure from one field to another has been extremely
successful also in a more traditional approach to science. Examples are the use of techniques
from quantum field theories in condensed matter physics (Altland and Simons 2006), and
the use of techniques from the theory of spin glasses to optimization and image processing
problems (Nishimori 1999). We believe that data analysis is indeed an innovative way to
study phenomena, and not merely a collection of convenient techniques. And we have tried
to describe in this paper the uniqueness and novelty of this approach to scientific discovery.

The author that explored most carefully the impact of computational methods in science
is Paul Humphreys. His work, culminating in (Humphreys 2004), is mainly concerned with
the way mathematical models of physics are actually transformed into computational mod-
els with adjustable parameters, or “computational templates”, as Humphreys calls them,
which have effective predictive power. According to him, the computational models cannot
be developed unless the mathematical models have been worked out beforehand. This means
that a certain degree of understanding is necessary for computational science to work, even
if this understanding is then weakened in the development of effective predictive templates.
In (Humphreys 1995) Humphreys argues that the effective prediction power of the latter
is reached through the use of a few mathematical forms that are valid across disciplines
(similarly to the neutral techniques of Bailer-Jones and Bailer-Jones 2002).

This is certainly true in many cases. Humphreys mentions, as an example, the case of
differential equations, some of which famously apply to disparate fields. Still, he does not
highlight enough the profound shift in perspective that leads often to radical, not simply
pragmatic, removal of understanding. In (Humphreys 2004) (Section 1.2 pp. 6–8), he argues
that “our own intellectual and computational capabilities as human beings is no more the
benchmark of scientific thought”, and in (Humphreys 2009) (Sect. 2) he adds that “Compu-
tational science introduces new issues into the philosophy of science because it uses methods
that push humans away from the center of the epistemological enterprise” and that: “[…]the
situation within which humans deal with science that is carried out at least in part by machines
[is] the hybrid scenario and the more extreme situation of a completely automated science
[is] the automated scenario […]”. In our view the changes brought by the methods of data
analysis are not simply an issue of automated versus human science. They depend, much
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more fundamentally, on they way a phenomenon is approached, namely on the fact that the
aim of solving a specific question and getting predictive power comes first, and is often
opposed to, the effort of getting any understanding.

A key question is rather whether the new modality of interaction of mathematics and
empirical science can be fruitful not only in solving problems, but in fostering new ideas
in mathematics as well. While the answer may be negative at some level, it opens a new
perspective on the prominence of mathematical thought in science. Mathematics has often
benefited from ideas and formalisms developed in physics, where a less rigorous development
of mathematical concepts pairs with the profound intuition that is generated by the structural
understanding of phenomena.

The lack of this structural understanding in data analysis does not diminish the use of
sophisticated mathematical ideas, but on the contrary it increases their relevance to very
concrete problems. However, data analysis cannot be a source of ideas and methods the way
physics has been and continues to be. The microarray paradigm affects the development of
methodologies by liberating mathematics from the necessity of strong isomorphisms with
phenomena. Mathematical ideas, no more constrained by the actual structure of the phenome-
non, are free to directly affect the way we solve problems. This process realizes itself not only
by a strong use of analogies, but literally by forcing the data to fit into known mathematical
structures of sufficient complexity.

Take the case of chemical graph theory (see Bonchev and Rouvray 1991). In this field,
the graph of the links of the atoms in molecules is considered crucial for the prediction of
specific chemical properties of molecules, such as toxicity, or carcinogen effect. Only the
configuration of the links is considered, not the angles or the distances among atoms, so
that we are effectively looking at the topology of the graph. Prediction of a given chemical
property for a target molecule is obtained in two steps: first, by searching for topological
invariants that assume very close values for the graphs of a large number of molecules with
the chemical property; second, by computing the topological invariant for the target mole-
cule, and checking whether it assumes a value close to the cluster of all the values computed
in the first step. Because it may not be transparent how the most suitable invariant relates to a
chemical property, this application of graph theory is very much in the spirit of the microarray
paradigm. At the same time, the topological invariants have to be searched among those that
carry significant graph properties, and therefore we need a sophisticated knowledge of graphs
simply to be able to propose new invariants to test in the basic procedure highlighted above.
Instead of being a source of discovery of new topological invariants for graphs, chemistry
becomes, in the context of this application, only a recipient of ideas from advanced graph
theory.

Another instance of forcing of mathematics on the data is the use of geometry in text
organization and labeling. Here the assumption is that it is useful to derive a well defined
geometrical manifold from the data of a problem, because on such geometrical object it is
possible to define functions that can be used for further manipulation of the object. Con-
sider, following the review in (Coifman and Maggioni 2008), a collection of articles from a
multidisciplinary scientific journal. If we fix a large set of N , randomly chosen words, the
frequency of the n-th word for each article can be used to define the n-th coordinate of a point
in a N dimensional space. We can then associate this point to the article itself. We obtain
in this way a cloud of points in the N -dimensional space, where each point is associated to
an article. There are standard techniques (cf. Ramsay and Silverman 1997) to identify the
directions of maximal variance of the cloud of points, and these main directions can be used
to visualize a low dimensional image of the set of points. The geometry of the low dimen-
sional image carries interesting information on the similarity of different articles, and even of
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different topics; for example, it is possible to find out that earth science articles are very close
geometrically to biology articles, and, not surprisingly, mathematics and physics articles are
close to each other. Conversely, the shape of the geometrical image can provide automati-
cally the labeling of article in distinct topics. The body of work reviewed in (Coifman and
Maggioni 2008) (see also Szlam et al. 2008) makes the further subtle observation that there
are suitable functions on the geometrical manifold that can be used to preserve the edges and
the boundaries of the subsets associated to each topic. These functions, too involved to be
described here, are useful when we try to go from a small set of labeled articles to a larger
set of unlabeled ones. This process of propagation of labels can be seen as a diffusion along
the geometrical image of the set of articles, and the functions defined on the object make
diffusion across edges difficult, so that mislabeling of unlabeled articles is minimized. The
resulting field of diffusion geometry (cf. Szlam et al. 2008) has a very strong emphasis on
finding techniques that lead from unstructured large discrete sets, to geometrical, smooth
objects, that are much better understood mathematically. The emphasis on large data sets is
clearly reminiscent of the microarray paradigm, and the effort put in leading the data to a
target field of mathematics, exclusively for manipulation and analysis purposes, is exactly
what we mean by forcing.

These examples should clarify why the effectiveness of mathematics in relating to phe-
nomena is not affected by the methods of modern data analysis. Only the flow of ideas is
somewhat inverted, as mathematics is required to take the lead in providing the setting and
the quantities necessary for solving problems, without receiving much insight in the process.

Mathematics becomes perhaps the only domain in which to develop structural understand-
ing, since such pretense is lost in the study of phenomena. Ideas are then forced upon the
phenomenon in problem solving, only temporary, and with little expectations that go further
than the solution of the problem. Scientific methods may become weak, but the mathematical
language in which they are phrased will be increasingly complex, as we attempt to mould
our desires, coarsely, upon reality.
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