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MICHAEL OTTE

PROOF-ANALYSIS AND CONTINUITY

ABSTRACT. During the first phase of Greek mathematics a proof consisted
in showing or making visible the truth of a statement. This was the epagogic
method. This first phase was followed by an apagogic or deductive phase. Dur-
ing this phase visual evidence was rejected and Greek mathematics became a
deductive system. Now epagoge and apagoge, apart from being distinguished,
roughly according to the modern distinction between inductive and deductive
procedures, were also identified on account of the conception of generality as
continuity. Epistemology of mathematics today only remembers the distinc-
tion, forgetting where they agreed, in this manner not only destroying the unity
of the perceptual and conceptual but also forgetting what could be gained from
Aristotelian demonstrative science.

1. AN ARISTOTELIAN MODEL OF DEMONSTRATIVE SCIENCE

Aristotle’s Posterior Analytics is the first elaborated theory in the
Western philosophical and scientific traditions of the nature and
structure of science and its influence reaches well into our times.
It has long been accepted with such a degree of unanimity that
nobody even thought of imputing special merit to Aristotle for
his establishment of it. Indeed, its impact has been so profound
that only Kuhn’s The Structure of Scientific Revolutions could
be seen as its contemporary counterpart. In a contribution to a
conference on Kuhn’s work Lakatos wrote:

“For centuries knowledge meant proven knowledge [. . . ]. Wis-
dom and intellectual integrity demanded that one must desist
from unproven utterances [. . . ]. The proving power of the intel-
lect or the senses was questioned by the skeptics more than two
thousand years ago; but they were brow-beaten into confusion
by the glory of Newtonian physics. Einstein’s results again turned
the tables and now very few philosophers or scientists still think
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that scientific knowledge is, or can be, proven knowledge. But few
realize that with this the whole classical structure of intellectual
values falls in ruins and has to be replaced: one cannot simply
water down the ideal of proven truth – as some logical empiri-
cists [. . . ] or [. . . ] some sociologists of knowledge do” (Lakatos,
1970, p. 92).

We believe that these claims, although being correct in some
details, are fundamentally disoriented. First of all, in the math-
ematical case at least, the notion of proof has lost nothing of its
importance; on the contrary! Second, all major epistemological
conceptions of modernity – Kant’s epistemology and theory of
science in response to the Newtonian achievement as well the
philosophical digestion of Einstein’s results by the logical empir-
icists – formulated their contributions within the Aristotelian
framework, with the complementarity of analysis and synthe-
sis occupying a central place. Lakatos, who believes that Poppe-
rian falsificationism has substituted Aristotelian demonstrative
science, misses the point of these debates, which refers to the cir-
cular connection between theoretical structure and its intended
applications; or between ideal and concrete objects.

Lakatos writes: “Belief may be a regrettably unavoidable bio-
logical weakness to be kept under the control of criticism: but
commitment is for Popper an outright crime” (Lakatos, 1970,
p. 92). We think this to be a rather naive view of science and sci-
entific progress (taking into account Quine’s “Two Dogmas of
Empiricism”) and a view distorted by Lakatos’ blinded fighting
against Marxism and Freudianism (such that he does not draw
the appropriate conclusions even with respect to his own anal-
ysis of the problem). One must, however, also admit that it had
been Lakatos, not least through his very popular and influential
Proofs and Refutations, who had helped to free the philosophy
of mathematics from the straight jacket of analytical philosophy
and logical empiricism. Such that the weaknesses of his philo-
sophical and historical perspectives were at the same time their
strength (see also Kvasz, 2002).

Finally, trying to educate the younger generation within
to-days technological “knowledge society”, it seems worthwhile
to remember that knowledge fulfills two major roles in human
society: a practical one and a philosophical one, as well as that
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general education cannot limit itself to the training of practical
skills. Education is to be based on proven scientific knowledge
not the least because “it seems that science came into being with
the requirement of [. . . ] coherence and that one of the functions
it performs permanently in human culture consists in unifying
[. . . ] practical skills and cosmological beliefs, the episteme and
the techne [. . . ] despite all changes that science might have under-
gone, this is its permanent and specific function which differ-
entiates it from other products of human intellectual activity”
(Amsterdamski, 1975, p. 43/44).

Everybody agrees that mathematics distinguishes itself from
the rest of the sciences by the conception of reliable proof and
that there is in general unanimity or consensus of the informed
with respect to whether some mathematical truth has in fact been
established by valid proof or not. Proof is, however, also intended
to be a vehicle of introducing the student or newcomer to math-
ematics and the mathematical way of seeing the world, and it
therefore has been since the 19th century made more and more
rigorous and has been formalized until finally questions of mean-
ing and development had been lost sight of. Formal proof seems
absolutely reliable, but it is not quite certain any more “what it is
reliable about”, as Lakatos once said, paraphrasing a wellknown
bonmot of Russell. Proof was constructed as a developmental
and didactical device, but in the course of its improvement it lost
exactly these creative and explanatory qualities. With respect to
the Aristotelian conception of proof the knower’s and the lis-
tener’s status are at least as important as that of the known. And
concerning the latter it never was sufficient to give something as
a dead thing or strictly individual existent. Aristotle would never
separate science or mathematics from philosophy, and it has been
claimed indeed that to understand his work one would have to
consider “the four discourses”: Poetics, Rhetoric, Dialectics and
Logic as but variants of only one unified science (De Carvalho,
1996, p. 29).

We are not suggesting, to restore the Aristotelian world view.
That would be a futile undertaking – but it is worthwhile to
remember that Peirce had called himself “an Aristotelian of
the scholastic wing”. What we would like to defend, however,
is the thesis that all the technical devices which modern logic
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has invented to deal with the self-reference of meaning and truth
– Russell’s type hierarchies, for example, or Tarski’s distinction
between object-language and meta-language – are by no means
sufficient, or rather, are technologies and as such, do not prescribe
or orient their own application.

There is a paradox of formal proof, for example: Either a proof
is just a machine a mere causal compulsion or algorithmic pro-
cedure, then one cannot see how new knowledge can be brought
about by just reducing the new to the already given. A proof
can prove something only inasmuch knowledge possesses a firm
tautological structure, proof consisting, in the last instance, in a
reduction of the new and unproven to the already known and
proven. But then nothing new can arise and no new understand-
ing is stimulated. As Lakatos once said: “No logic can infallibly
increase content” (Lakatos, 1970, p. 95).

Or the proof leaves room for interpretative behavior and then it
is faced with the request of proving its correctness. And the proof
of the correctness of the proof again meets the same requirement
and the proof of the correctness of the correctness of the proof
also, etc. To interrupt the infinite regress of proving and explain-
ing by sheer force or mere outer compulsion leads back to the
other horn of the dilemma.

Traditionally, there have therefore always been two ways
of dealing with proof or demonstration, two methods, which
Churchman has called the maximum- resp. minimum-loop
strategy. “The maximum-loop principle is based on a monistic
philosophy. There is one world of interconnected entities, not
many. . . . The principle is also teleological. For the mind to know
itself, it must also know the destiny of all minds as well as all mat-
ters. Indeed the principle comes straight down to us from Plato”
(Churchman, 1968, p. 114).

The minimum-loop principle for its part is mirrored by the
so-called ‘immediacy assumption’ for formal systems. On such a
basis Hilbert has called formal logic self-evident. “The problem
of logic is a very direct one: how can a proposition talk about
itself ?” (Churchman, 1968, p. 112). The starting point for this
problem is the assumption that every proposition immediately
implies itself. If I say “p” this implies “p”. And this in turn means
“p is true”. And this brings back the maximal loop. The predicate
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“is true” does not really add something to the status of the original
affirmation, although “p” and “p is true” are in general different
sentences. Truth is undefinable, at least in its common under-
standing (see Rucker, 1981, p. 148). Thus one might want to settle
with the view that “p is true”, really implies “p is true”. Therefrom
results the ‘immediacy assumption’ for formal systems.

The minimal loop orientation seems to have guided the intel-
lectual efforts of Descartes and Spinoza in the seventeenth cen-
tury. “For Descartes the problem was to find a proposition that
leads directly to its own validity” (Churchman, 1968, p. 113). The
very same spirit stimulated Leibniz to create the idea of a com-
pletely formal proof and to base truth on formal proof rather than
on meaning (Hacking, 1980). These ideas went hand in hand with
Leibniz’ representationalism and his belief that everywhere the
ideal has to determine the existent, as well as, that coherence is as
important to truth as is compliance with the phenomena. Consid-
ering the fact that if there were in cognition a direct access to the
object, an immediate relationship to it, this relationship would
exist in an automatic quasi-mechanized form also, one realizes
that these two alternatives – the Cartesian and the Leibnizean,
the intuitive and the mechanical–really do not make a difference.
Cartesian intuitionism and Leibnizean mechanism amount, on
certain accounts, really to the same thing, only in different cloth-
ing. In both cases no questions of meaning could arise, because an
affirmation would just be a fact, as if reality spoke for itself. But
why then search for proofs at all, as any analytical proposition
seems to be valid in its own right (A. J. Ayer, 1981).

But nothing seemed stable and real anymore, neither facts nor
ideas. Consider the situation of Descartes. “We have usually read
him as an ego, trapped in the world of ideas, trying to find out what
corresponds to his ideas, and pondering questions of the form,
‘How can I ever know?’ Underneath his work lies a much deeper
worry. Is there any truth al all, even in the domain of ideas? The
eternal truth, he tells us, are ‘perceptions [. . . ] that have no exis-
tence outside our thought’. But on our thought they are, in a sense,
isolated perceptions. They may be systematized by synthesis but
this has nothing to do with their truth. The body of eternal truths
which encompassed mathematics, neo-Aristotelian physics and
perhaps all reality was a closely knit self-authenticating system
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of truth, linked by demonstration. For Descartes there are only
perceptions which are ontologically unrelated to anything and
moreover are not even candidates for having some truth outside
my mind. One is led, I think, to a new kind of worry. I cannot
doubt an eternal truth when I am contemplating it clearly and dis-
tinctly. But when I cease to contemplate, it is a question whether
there is truth or falsehood in what I remember having perceived.
Bréhier suggested that demonstrated propositions may go false.
It seems to me that Cartesian propositions, rendered lone and iso-
lated, are in an even worse state. Perhaps neither they nor their
negations have any truth at all. They exist in the mind only as
perceptions. Do they have any status al all when not perceived?
When demonstration cannot unify and give ‘substance’ to these
truths, the constancy of a veracious God as the arena in which the
essences of possible worlds compete for existence, [. . . ] is needed
not just to guarantee our beliefs, but also to ensure that there is
some truth to believe” (Hacking, 1980, p. 176/177).

The whole edifice of rational knowledge therefore rested on
the socalled Ontological Argument for the existence of God. The
kernel of this argument of the Rationalists of the 17th century
was to claim that the notion of the nonexistence of God is a con-
tradiction; for God is perfect and existence is perfection, so God
must exist. Without God there would be no truth, nothing gen-
eral in fact. Leibniz “held that the realm of essences would have
no being at all, if it were not eternally contemplated by the mind
of God. ‘Every reality must be based upon something existent; if
there were no God there would be no objects of mathematics”’
(Lovejoy, 1936/1964, p. 147).

Generalization thus became the main interest and strength of
“modern” mathematics. And since Descartes and Leibniz gen-
eralization seems to mean foremost the postulation or introduc-
tion of ideal objects, or rather representations of them, rather
than mere abstraction and broadening the extensions of pre-given
concepts. Mathematics by this process of hypostatic abstraction
became meta-mathematics, it became a theory of mathematical
practice. The topologist Salomon Bochner conceives of the itera-
tion of abstraction as of the distinctive feature of the mathematics
of the scientific revolution of the 17th century.
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“In Greek mathematics, whatever its originality and reputa-
tion, symbolization . . . did not advance beyond a first stage,
namely, beyond the process of idealization, which is a process
of abstraction from direct actuality, . . . However . . . full-scale
symbolization is much more than mere idealization. It involves,
in particular, untrammeled escalation of abstraction, that is,
abstraction from abstraction, abstraction from abstraction from
abstraction, and so forth; and, all importantly, the general
abstract objects thus arising, if viewed as instances of symbols,
must be eligible for the exercise of certain productive manipu-
lations and operations, if they are mathematically meaningful”
(Bochner, 1966, p. 18). Generalization thus has to be understood
in a quasi Platonic sense, with modern instrumentalism and men-
talism added.

Still one might claim that the twofold nature of the general –
as predicative general, on the one hand, and as continuity, on the
other, had played a role in Antiquity too. Even though the nom-
inalist and instrumentalist twist had not yet developed. Aristotle
is most often regarded as the great representative of a logic and
mathematics, which rests on the assumption of the possibility of
clear divisions and rigorous classification. “But this is only half
the story about Aristotle; and it is questionable whether it is the
more important half. For it is equally true that he first suggested
the limitations and dangers of classification, and the non-confor-
mity of nature to those sharp divisions which are so indispens-
able for language [. . . ]” (Lovejoy, 1964, p. 58). Aristotle thereby
became responsible for the introduction of the principle of conti-
nuity into natural history. “And the very terms and illustrations
used by a hundred later writers down to Locke and Leibniz and
beyond, show that they were but repeating Aritotle’s expressions
of this idea” (Lovejoy loc.cit.).

It also seems that in Greek mathematics occurred two differ-
ent kinds of proof. “During the first phase of Greek mathe-
matics there a proof consisted in showing or making visible the
truth of a statement”. This was the epagogic method. “This first
phase was followed by an apagogic or deductive phase. During
this phase visual evidence was rejected and Greek mathemat-
ics became a deductive system” (Koetsier, 1991, p. 180f; and the
bibliographic reference given there). Epagogic proof primarily
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verifies and apagogic proof also generalizes in the sense that a
statement’s meaning is evaluated with respect to a whole system of
statements.

Epagoge is usually translated as “induction”. But it is perhaps
not quite what we think of as induction, but is rather taking one
individual as prototypical for the whole kind. Aristotle writes
with respect to epagoge: “The consideration of similarity is useful
both for inductive arguments and for hypothetical reasoning [. . . ]
It is useful for hypothetical reasoning, because it is an accepted
opinion that whatever holds good of one or several similars, holds
good also for the rest” (Topics 108b 7). Aristotle’s attention is
more on what it is to be of a certain type A (something taken for
granted in our standard induction). One might say that investiga-
tion of a (new) species is a matter of looking carefully at a number
of specimens, checking whether features are in fact common to
the species, possibly discounting some variation as accidental,
possibly even deciding to reclassify some putative specimens as
a different species. Then one illustrates the truth of the (provi-
sionally) final classificatory statement by appeal to undisputed
and representative exemplars of the kind in question. Epagogic
proof depends on some law of the uniformity of nature or some
continuity principle. Fundamental starting-points, like axioms in
geometry, have to be grasped through the epagogic process by a
faculty Aristotle calls nous. There is not only predicative gener-
ality in our thinking, but also generality which cannot be defined
(Metaphysics 1048a 25).

Apagogic proof demonstrates the consequences of the axioms.
Now, the first proof we know of, it is said, is the apagogic proof
of the irrationality of

√
2. It is one which Aristotle will call reduc-

tion to the absurd. An apagogic proof then is one that proceeds
by disproving the proposition, which contradicts the one to be
established, in other words, that proceeds by reduction to the
absurd. Such a proof depends on certain existence claims, on the
affirmation that there are some completely determinate existents,
because the notion of an entity not wholly determinate is “imag-
inary” or merely possible. The continuity principle in contrast
negates that there were definite existents, or that the continuum is
composed from points. The opposition between geometric sub-
stantialism against relationalism played a very important role
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throughout history and in the controversy between nominal-
ism and realism (with respect to mathematical philosophy, see:
Burgess/Rosen 1997, 97).

The opposition of the epagogic and apagogic comes down
ontologically to the famous antinomy of the indivisibility and
the infinite divisibility of Time, Space and Matter, which had
been known from the days of Xenon and had been taken up and
again through history in the service of skepticism. This antinomy
consists in the fact that discreteness must be asserted just as much
as continuity. “The one-sided assertion of discreteness gives infi-
nite or absolute dividedness, hence an indivisible, for principle:
the one-sided assertion of continuity, on the other hand, gives
infinite divisibility” (Hegel, Science of Logic). The antinomy is
expressed in the opposition between Leibniz two fundamental
principles, the Principle of the Identity of Indiscernibles, on the
one hand, and the Principle of Continuity, on the other. Leibniz
tried to resolve the conflict by distinctions between the real and
the ideal, or the factual in contrast to the merely possible. Kant
rejected Leibniz’ conceptualization of the possible in terms of the
continuity principle and he used this antinomy to state the prin-
cipal limitations of human conceptual thinking. Apagogic proof
depends on existence claims and these, according to Kant can-
not be established by conceptual reasoning, but depend on (pure)
intuition. The epagogic proof, Kant calls “ostensiver Beweis”.

Ever since, these two sides of cognition, the intuitive or figu-
rative and the logical and operative, have remained opposed to
one another and even the process of mathematical knowledge has
a dualistic or complementary structure or quality, which evolves
over time. The duality seems reproduced nowadays in the duality
of the axiomatical versus constructive methods. Axiomatic think-
ing in the Hilbertian sense is full-blown relational thinking. And
relational thinking has since Leibniz at least, been firmly linked
to the continuity principle (with respect to Leibniz’ geometry see
Chasles, 1835; Cassirer, 1962). Relational thinking begins, how-
ever, already with Eudoxus’ theory of proportions as presented
in book V of Euclid. As mathematicians we know that there is no
theoretical entity really defined without giving criteria of its iden-
tity. Definition 5 of book V of Euclid presents Eudoxus’ definition
of equality between two relations: a/b= c/d. This definition in a
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sense uses the principle of continuity, as Dedekind’s definition
of real number was to reveal much later. Eudoxus theory is an
element alien to Euclid’s conception of geometry.

On the basis of relational thinking the continuity principle
served also to assure the existence of certain entities (as points
of intersection of two or more continuous curves). For instance,
the so-called Delian problem, the duplication of the cube (while
preserving the cube’s shape) demanded by Apollo in the oracle –
a central construction problem of Greek geometry – cannot be
solved constructively with ruler and compass alone. If we look at
the diagram of Figure 1 – provided by Hippocrates of Chios and
used in Antiquity to analyze the Delian problem – we come to
see also how essential the principle of continuity is to construct
this diagram which is intended to find the essential point D.

In Euclidean mathematics the continuity principle was
not admitted as a means of proof and the epagogic proof
seems forgotten. It was then really eliminated and buried by
the arithmetization of pure mathematics, since Bolzano until
Hilbert’s new axiomatics revitalized it. Bolzano proved the
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intermediate value theorem by an apagogic proof. Epagoge or
abduction is used in hypothetico-deductive reasoning, which in
turn is based on hypostatic abstractions and general objects, by
means of which subject–predicate expressions are transformed
into relations.

Aristotle’s, different from Euclid’s reluctance, had a much
broader view of apagogic proof, namely also admitting the conti-
nuity principle. This principle appears in Euclid only once namely
in the notion of geometrical similarity as it is established by
Eudoxus’ theory of proportionality. This appearance of the con-
tinuity principle has given birth to a second meaning of the term
apagoge (or reduction) in Aristotle. For instance we can by means
of similarity interpret length or area as a relation and thus con-
ceive of measurement in terms of invariance of relations, rather
than in terms of numerical approximation. A classical example is
furnished by the beautiful similarity proof of Pythagoras’ theo-
rem. The method reappears in Leibniz’ invention of the calculus
and in Grassmann’s theory of linear extension or vector calculus.

Now this meaning of epagoge or agagoge is prominent also in
Aristotle (see Prior Analytics, II, XXV (2)). In his Prior Analytics
Aristotle describes the reductive use of the continuity principle in
the very same terms that later Proclus was to use, dealing with the
Delian problem of doubling the cube, respective its reduction by
Hippocrates of Chios as in figure 1. Proclus writes: “Reduction
(=apagoge) is a transition from a problem or a theorem to another
one which, if known or constructed, will make the original prop-
osition evident. For example to solve the problem of the dupli-
cation of the cube geometers shifted their inquiry to another on
which this depends, namely, the finding of two mean propor-
tionals” (Proclus (Morrow, 1970, p. 167)). Reduction thus does
not necessarily mean reduction to the absurd. Rather reduction
or apagoge here requires a creative or metaphorical postulation
of some intermediate terms (or mean proportionals) in order “to
bring us nearer to knowledge” (Aristotle loc. cit). Aristotle’s inter-
pretation of apagogic proof is much wider than is Euclid’s, which
has come down on us. This means that Aristotle knew that proofs
have to be explanations as well as verifications. Contrary to the
views of Aristotle the use of the continuity principle was admitted
as a mathematical proof strategy only after the construction of the
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continuum of real numbers enabled its reformulation in Euclid-
ean terms.

But as was said already, one could conceive of the general in
two ways either predicatively in terms of (propositional) func-
tions or in terms of free variables or concrete universals. We have
explained elsewhere (Otte, 1993, p. 87–89)how the construction of
a geometrical measurement theory, combining these two concep-
tualizations of the general (or the continuum) proceeds. In sum-
mary we conclude that the continuity principle and the relation
between general and particular that is represented by this princi-
ple appears in two very different ways, one justifying epagoge as
well as Aristolelian reduction, the other connected to apagoge in
the traditional Euclidean understanding.

The development of the axiomatic method from Euclid to
Hilbert is illustrative with respect to the changes in the interre-
lations between epagogic and apagogic reasoning. Modern axi-
omatics reintroduces epagoge and uses the continuity principle
on the meta-mathematical level. Hilbert had to postulate, for
instance, to be able to make use of the logical law of excluded mid-
dle, an exemplary or paradigmatic instantiation for every prop-
erty, and this amounts to assuming a, “Law of the Uniformity
of Nature”, or a “Principle of Continuity”, like in the induc-
tive empirical sciences. The difference between the theoretical
and empirical thereby becomes a matter of degree (as it was for
Leibniz), rather than being one of kind (as it was for Kant).
The axiomatic approach expresses a monistic philosophical
attitude.

Now a proof of axiomatical theory refers to some (perhaps
none, if the system is inconsistent) possible world. Leibniz used
the continuity principle to find out whether it states a truth with
respect to the actual world. This is not so bad an idea, given
Hilbert’s efforts, as well as the fact that most people “form an
unduly simplistic idea of what consistency (compatibility) of con-
ditions is. One thinks of the compatibility of conditions as some-
thing to be directly read off the complex of conditions, such that
one need only analyze and sort out the content of the conditions
clearly in order to see whether they are in agreement or not. In
fact, however, the role of the conditions is that they are effective
in functional use and by combination. The result obtained in this
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way is not contained in what is directly given through the con-
ditions. It is probably the erroneous idea of such inference that
gave rise to the view of the tautological character of mathematical
propositions” (Bernays, 1976, p. 98).

The Principle of Continuity applied empirically and without
further qualification is doomed to failure. This was already clear
to Hume and to Kant. Kant therefore emphasized that math-
ematics (like knowledge in general) is an activity and he drew
a sharp distinction between discursive and intuitive knowledge.
“Philosophical cognition is the cognition of reason by means of
conceptions; mathematical cognition is cognition by means of the
construction of conceptions. The construction of a conception is
the presentation a priori of the intuition, which corresponds to
the conception” (B 741). Thus Kant’s notion of “pure intuition”
is nothing but a subjective or mentalistic version of the continuity
principle.

Mathematical judgments, according to Kant are intuitive, and
are thus apodictic and synthetic, whereas for Aristotle or Bolzano
they always had also to give a reason why they are true. Here we
have the opposition between minimum- and maximum-loop prin-
ciple back. The constructive approach of modernity, in contrast
to the axiomatic method, is dualistic and follows a minimum-loop
strategy, assuming that the cognitive subject as well as the means
of its activity are completely known and transparent to herself.
We have privileged access to ourselves, as well as to the constit-
uents and motives of our activity it is assumed. Thus our expla-
nations and constructions are supposed to be true or necessary.
By this property Lakatos characterized what he called Euclid-
ean theories. Riemann complained that Euclid’s system was not
thoroughly constructive.

Mathematical proof and explanation in general contains ideal
objects or concrete universals, as well as particular existents.
Without generals there were no universality and no prediction;
without particular existents, – remember that to exist in mathe-
matics means to exist with respect to some model – there would be
no truth (or: truth in the model; to achieve truth in the common
sense, one would than further have to evaluate the adequacy of the
model). Cognitively a mathematical proof rests on metaphorical
associations of ideas and analogical reasoning, as well as, on
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immediate verification. Semiotically a proof seems a combina-
tion of icons and indices. A metaphor is based on an icon and is
therefore something not strictly defined. Metaphor is a means to
enlarge our language by creating new meanings, whereas indexical
expressions and strict definitions intend to make it more precise.
A proof has to be rigorous as well as meaningful.

The classification of proof strategies resp. notions of proof
given so far, is very schematic and it is not completely clear as the
meaning of terms, like “logic” or “continuity principle” changed
over time; but it is still useful. It is useful also to analyze Lakatos’
description of mathematical development, as presented in his
Proofs and Refutations. Lakatos’ description of mathematical
behavior and proof activity seems defective upon being compared
with the reality (Koetsier, 1991; Kvasz, 2002). The reason for this
is, we believe, to be attributed to his concentration on object cen-
tered proof, proof that wants to prove or verify, or on apagogic
proof. This becomes not only clear from the strategies of mathe-
matical development, which Lakatos describes–monster-barring,
exception-barring, lemma incorporation–but also from the way
he understands and interprets these strategies. One could, for
instance, understand monster-barring also as meaning that there
are more premises to be taken into account than one had per-
ceived, thus taking the perspective of proof-analysis rather than
interpret the situation referentially.

With respect to the first: It has been pointed out that Lakatos
omitted important methods, for instance, “lemma exclusion”
(Kvasz, 2002) from his catalogue of strategies. These are typi-
cally strategies resulting from proof-analysis, rather than from
the approach which uses counterexamples and verifications.
One example of lemma exclusion, Kvasz says, can be found in
Koetsier’s book Lakatos’ Philosophy of Mathematics. “We have
in mind the proof of the interchangeability theorem for partial
differentiation by H.A. Schwarz. Schwarz first stated the theo-
rem with six conditions, proved it, and then attempted to drop
as many of the conditions as possible. He succeeded to drop
three of the conditions, and ended with a much stronger theorem
than the one which he proved at the beginning” (Koetsier, 1991,
p. 268ff; Kvasz, 2002). We shall present a similar strategy with
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respect to a geometrical theorem by Euler in the last part of this
paper.

2. ARISTOTELIAN PROOF

Let us, before we come back to Aristotle’s conception of demon-
strative science and his description of mathematical proof, sum-
marize the main points of our argument.

Modernity begins, as is sometimes affirmed, with Kant’s
“sharp discrimination of the intuitive and the discursive pro-
cesses of the mind” (Peirce CP 1.35). “Our knowledge springs
from two main sources in the mind”, Kant says, namely, concepts
and intuitions. Concepts are, according to Kant, always applied
to mental representations of objects, rather than on the objects
themselves. By intuition or mental representation an object is
given, but remains undetermined, whereas by means of concepts
it is thought relatively to the intuitive representation. When Kant
claimed that we have to establish the objectivity of our definitions
by means of intuition, he had in mind the fact that in general we
do not recognize something as something by means of definitions
or their verification (in difference to “The Man who mistook his
wife for a hat” (O. Sacks)). Therefrom results that the general
occurs in two forms, namely predicative generality on the one
hand, and perceptive continuity on the other. Both were present
in Aristotelian thought already.

Peirce, calling himself “an Aristotelian of the scholastic wing”,
describes them thus:

“The old definition of a general is Generale est quod natum
aptum est dici de multis. This recognizes that the general is essen-
tially predicative and therefore of the nature of a representamen.
. . . In another respect, however, the definition represents a very
degenerate sort of generality. None of the scholastic logics fails to
explain that sol is a general term; because although there happens
to be but one sun yet the term sol aptum natum est dici de multis.
But that is most inadequately expressed. If sol is apt to be predi-
cated of many, it is apt to be predicated of any multitude however
great, and since there is no maximum multitude, those objects, of
which it is fit to be predicated, form an aggregate that exceeds all
multitude. Take any two possible objects that might be called suns
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and, however much alike they may be, any multitude whatsoever
of intermediate suns are alternatively possible, and therefore as
before these intermediate possible suns transcend all multitude.
In short, the idea of a general involves the idea of possible varia-
tions”, or continuity (CP 5.102–103). Continuity or similarity is
the basis of the particular representing generality.

This twofold character of the general is expressed in the his-
tory of mathematics by two different interpretations of the con-
tinuity principle, two interpretations over which Cauchy and
Poncelet quarreled (Belhoste, 1991), when the idea of pure
mathematics was at stake, although they had been present since
Antiquity. It seems, indeed, that these interpretations occurred
in two different kinds of proof in Greek mathematics. During
the first phase of Greek mathematics a proof consisted in show-
ing or making visible the truth of a statement. This was the
epagogic method. This first phase was followed by an apagog-
ic or deductive phase. During this phase visual evidence was
rejected and Greek mathematics became a deductive system.
Now epagoge and apagoge, apart from being distinguished,
roughly according to the modern distinction between inductive
and deductive procedures, were also identified on account of the
conception of generality as continuity. Epistemology of mathe-
matics today only remembers the distinction, forgetting where
they agreed, in this manner not only destroying the unity of
the perceptual and conceptual but also forgetting what could
be gained from Aristotelian demonstrative science.

“Aristotelianism admitted two modes of being”, says Peirce
(CP 2.116). This position was attacked by nominalism since
William Ockham, on the ground that one kind sufficed to account
for all the phenomena. “The hosts of modern philosophers, to
the very Hegels, have sided with Ockham in this matter” (Peirce,
loc.cit.). “The categories now come in to aid us materially”, Peirce
continues, “and we clearly make out three modes or factors of
being, which we proceed to make clear to ourselves”. And the
logic of relations, being superior to Ancient subject-predicate
logic shows that there are three types of reasoning, abduction,
induction and deduction, as well as, that deductive reasoning
must build on the two others. This new logic appeared forcefully
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during the Scientific Revolution of the 17th century, but was
already present in Aritotle.

A proof, according to Aristotle, has, for example, not only
to show that something is true but has rather also to provide
reasons why it is true. “Demonstrations are also explanations.
Thus proofs do more than indicate logical relations among prop-
ositions” (McKirahan, 1992, p. 4). Now a demonstration “why”
in the Aristotelian understanding belongs to logic in the nar-
rower sense of the term as well as to poetics and rhetoric, or logic
in a wider sense depending on whether the “why” refers to the
objective foundations of the assertion or to its persuasive and
didactical justifications. Aristotle would never separate science
or mathematics from philosophy, and it has been claimed indeed
that to understand his work one would have to consider “the four
discourses”: Poetics, Rhetoric, Dialectics and Logic as but vari-
ants of only one unified science (O. de Carvalho, 1996, p. 29). A
proof contains essentially two kinds of moves, logical deductions
as well as inductive, or rather abductive arguments. The latter
can be called representative generalizations, as some particular is
representing a general truth, like in geometrical diagrams.

It seems best to render the problem of proof and explanation
in semiotic terms. An argument then is nothing but a represen-
tation: A is represented as B; or is seen as B. A representation is
a representation of A (of Pegasus, for example) either because it
looks like A (iconic sign), or because it is caused by A (indexical
sign) or because it can, having been established by means of some
conventions, be used to express thoughts about A. Now conven-
tions themselves depend on something perceivable such that one
has two basic types of representations constituted by similarity
or contiguity, respectively.

Our idea is to connect Aristotle to Peirce by asking how mean-
ing is to be conceived of in mathematics, and in particular how the
basic constituents of meaning, intension and extension are to be
interpreted. The intensions are simply the axiomatical structures,
determined up to isomorphism; but what about the objective or
extensional aspects of mathematical meanings. The objective side
of a sign seems twofold. One the one side, a sign expresses a pos-
sible interpretation of another sign (having the role of the object)
and thus expresses the meaning of the original sign qua sign. On
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the other hand, a sign is, as Cassirer or Peirce have said, merely
a possible, and as such a general, rather than an actually exist-
ing object, determined in every respect. The term possibility in
this description has to be understood as meaning that there are
constraints on this process of interpretation-representation or
interpreting representation, (possibilities as described in proba-
bility theory for example); such that the interpretation has nev-
ertheless an objective character, it is in a sense determined by
the sign, rather than by the interpreter. Finally, the sign to be
interpreted is referring to some object, which also partakes in the
objective meaning of it and which in the case of mathematics is
an element of some model (usually framed in set theoretic terms).

Mathematical deduction, for example, could be understood in
this way as interpretation or translation of one sign into another.
And doing so one might say that deductive reasoning unfolds the
intensions of the theoretical terms, as fixed in the premises and
axioms. This process is objectively constrained, but is not totally
determined or pre-programmed. We would like to say that it is
subject to a principle of continuity. The deductive process is split
up into so many small steps that the conclusions that lead from
one step to the next in the argument become obvious and per-
ceivable. Each step results in a statement of the form A=B.

Peirce himself writes:
“That truth is the correspondence of a representation with its object is, as
Kant says, merely the nominal definition of it. Truth belongs exclusively to
propositions. A proposition has a subject (or set of subjects) and a predicate.
The subject is a sign; the predicate is a sign; and the proposition is a sign that
the predicate is a sign of that of which the subject is a sign. [. . . ] thought is of
the nature of a sign. In that case, then, if we can find out the right method of
thinking and can follow it out – the right method of transforming signs – then
truth can be nothing more nor less than the last result to which the following
out of this method would ultimately carry us. [. . . ]Truth is the conformity of
a representamen to its object, its object, ITS object, mind you. [. . . ] What the
sign virtually has to do in order to indicate its object – and make it its – all it
has to do is just to seize its interpreter’s eyes and forcibly turn them upon the
object meant: it is what a knock at the door does, or an alarm or other bell,
or a whistle, a cannon-shot, etc. It is pure physiological compulsion; nothing
else. [. . . ] So, then, a sign, in order to fulfill its office, to actualize its potency,
must be compelled by its object” (Peirce, CP 5.553–554).
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Relations of similarity or analogical reasoning shall thus never
lead to truth. Truth depends on objects or rather on indexical
signs. We may thus conclude that a demonstration in the sense of
Aristotle contains logical or syllogistic as well as metaphorical
and rhetorical elements. The very first page of the Posterior
Analytic already indicates nearly the whole conception:

“All teaching and learning of an intellectual kind proceeds
from pre-existent knowledge. This is evident if we consider the
different branches of learning, . . . Similarly too with arguments,
both deductive and inductive (abductive); both effect instruction
through what we already know, the former making assumptions
as though granted by an intelligent audience, and the latter prov-
ing the universal from the self-evident nature of the particular.
[. . . ] It is necessary to have two kinds of previous knowledge. (1)
For some things it is necessary to suppose in advance that they
are; (2) for other it is necessary to understand what the thing
being said is; and for yet others, both. Thus you already knew
that every triangle has angles equal to two right angles; but you
got to know that this figure in the semicircle is a triangle at the
same time as you were being led to the conclusion. In some cases
learning occurs in this way, and the last term does not become
known through the middle term - this occurs when the items are
in fact particulars and are not said of any underlying subject” (the
translation is a compilation based on the translations by Barnes,
McKirahan and Tredennick: I.71a, 1–29).

The situation is illustrated by Figures 2–5. Figure 2 presents
the problem, which is represented by Figure 3. If we already know
that the sum of the three angles in a triangle amounts to two right
angles we can proceed to Figure 5, otherwise we need the medi-
ation by Figure 4.

Every such diagram represents and thereby interprets the fore-
going in a certain way. This is abductive reasoning, seeing A as B
and for Aristotle it belongs more to rhetoric than to logic proper.
With respect to each particular diagram the reasoning proceeds
by formal deductions or inductions, as described in the quotation.

“One of the central themes of Aristotle’s Rhetoric is that in
order to persuade ordinary people to do ordinary things (such as
to defend their country) reason should be used but not demon-
strative arguments. Ordinary people do not take to . . . . systems
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Figure 2. Figure 3.

Figure 4. Figure 5.

of syllogisms complete with self-evident first principles. Aristotle
recommended the use of arguments which are easily understood,
even if weak, such as analogies, arguments from signs, likelihoods,
. . .” “(Tursman, 1987, p. 97). Similarly, Peirce assigned to rhetoric
the task “to ascertain the laws by which in every scientific intelli-
gence one sign gives birth to another, and especially one thought
brings forth another” (CP 2.229). And to bring forth this task
of generalization analogy, metaphor and similarity of ideas are
important means. On similar grounds Aristotle may have come
to the opinion that there must be counterparts to what a logician
calls a proof.

Now abductive inferences and their conception generating
power generally occur as part of analysis and analysis is applied
by Aristotle foremost in the investigation of nature. “Upon sur-
veying the treatises which are especially devoted to positive
research (De Caelo, Meteorologica, works on natural science), we
soon realise the important place occupied by a form of reasoning
whose logical character Aristotle nowhere examines. It consists
of ascertaining the nature of one fact, which cannot be directly
understood from another fact whose cause is obvious. In his many
attempts at explanation the scientist often resorts to observations
that bears on cases analogous to the one his research is concerned
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or which are more open to external view and therefore whose
significance is in general merely analogical” (Bourgey, 1975,
p. 175).

Peirce has similar views again and in addition to that he indi-
cates the essential role of the continuity principle in bringing forth
generalizations and new concepts. He writes:

“I desire to point out that it is by taking advantage of the idea
of continuity, or the passage from one form to another by insen-
sible degrees, that the naturalist builds his conceptions. Now, the
naturalists are the great builders of conceptions; there is no other
branch of science where so much of this work is done as in theirs;
and we must, in great measure, take them for our teachers in this
important part of logic. And it will be found everywhere that
the idea of continuity is a powerful aid to the formation of true
and fruitful conceptions. By means of it, the greatest differences
are broken down and resolved into differences of degree, and the
incessant application of it is of the greatest value in broadening
our conceptions” (2.646).

This breaking down of differences thereby making keen meta-
phors more accessible to the interpreter or learner is thus develop-
ing a logic of abductive reasoning. Geometry is based on insight,
and this involves two procedures, analysis and synthesis. Analysis
was essential to provide insight into the structure of mathemat-
ical problems, especially in cases were construction or synthesis
failed. For instance, the so-called Delian problem, the duplication
of the cube cannot be solved with ruler and compass alone, but
can be solved if one admits conics as legitimate instruments of
construction (as Descartes did). If we look at the diagram of Fig-
ure 1 – provided by Hippocrates of Chios and used in Antiquity
to analyze the Delian problem – we immediately realize that the
analysis depends on the insertion of an additional similar triangle,
that is of two mean-proportionals.

A straightforward identification of these processes is furnished
by the Cartesian solution to the Delian problem. Let x be the edge
sought, then x3 =2. This gives x4 =2x.
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y=x2

y2 =2x

Figure 6.

Now substituting y =x2 (1) yields y2 =2x (2). This means that
x is constructed as the intersection point of the parabolas (1) and
(2) (see Figure 6).

Descartes entire new analysis and analytical geometry was
derived from his examination of proportionality. The discovery of
one or more mean-proportionals through the appropriate asso-
ciation of known terms with unknown terms is the paradigm of
ingenious discovery and construction in terms of figurative rep-
resentation that Descartes explains in the Regulae, in particular
in the second part, beginning with Rule 14.

Now this process of insertion of mean proportionals is derived
from analysis in the Aristotelian understanding, that is signifying
the breaking up of inferences into smaller and smaller steps by
inserting mean concepts and in this manner achieving a “conden-
sation” of the original reasoning, making it appear more natural
and more obvious and secure. So if A a C (meaning A applies on
all C) we have to look for a mean concept B such that A =B and
B = C together imply A a C; and so forth (Detel, 1993, p. 302f).

This analysis is actually indeed based on a compression or
introduction of intermediate terms between assumption and
conclusion, something which later also determined the Carte-
sian analysis which is based precisely on introducing mean
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proportionals. This method is essential if one tries to understand
how mathematical proofs, which indeed consist, according to log-
ical understanding, in reducing the new to the old, can serve to
obtain or convey new insights at all. With the Aristotelian method
of inference, we may assume that compression by inserting inter-
mediate terms is necessary to make similarities obvious, and thus
turn the demonstrative method into an intuitive and apodictic
process. In such reasoning, equalities are regarded as similarities,
and respectively quite different aspects may then underlie the sim-
ilarities or equalities of this chain. This is what we have illustrated
using the example of proving the theorem about the Eulerline (see
part 3).

The connection of the individual terms of the chain of infer-
ence, in my own terminology A=B1, B1 =B2, . . . , Bn =C, shall
remain logically undetermined here. Generally speaking, it is
always a matter of regarding an A as a B1, and a B1 as a B2,
etc., respectively of representing A by B1, etc. this relation of rep-
resentation being supported by an idea. In the last instance, one
can say that this is a case of triadic sign relations in Peirce’s sense,
i.e. of representations mediated via an idea.

Figures 2–5 provide, as was shown already, an example of this
kind of reasoning.

3. PROOF-ANALYSIS AND THE DEVELOPMENT OF
GEOMETRICAL THOUGHT

Modernity began with Kant, we have said. Piaget was a Kantian,
he adhered to Kantianism, as he often affirmed, but to a
Kantianism “that is not static, that is, the categories are not there
at the outset, it is rather a Kantianism that is dynamic that is,
with each category raising new possibilities, which is something
completely different. I agree that the previous structure by its very
existence opens up possibilities, and what development and con-
struction do in the history of mathematics is to make the most
of these possibilities, to convert them into realities, to actualize
them” (Piaget, 1980, p. 150).

Piaget lost, however, also something of the Kantian heri-
tage namely the importance of continuity and intuition. Piaget
describes the process of mathematical development in terms of
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hypostatic abstractions, which he calls “reflective abstractions”,
but he separated them too sharply from empirical abstraction and
perception. Kant making the continuity of space and time subjec-
tive faculties had thereby at the same time discovered the objec-
tivity of the subject. Piaget appreciated this and his “dynamical”
version of Kant’s epistemology is nothing but a particular further
elaboration of Kant’s fundamental insight. Only that Piaget con-
ceives of this objectivity exclusively in terms of formal structure
and logical necessity.

Piaget characterizes the historical development of geometry
as a succession of three periods of intrafigural, interfigural, and
finally, transfigural or structural thought. The second stage marks
the appearance of relational thinking during the Scientific Revo-
lution. And with the third stage mathematics seems to be trans-
formed into an analytical science, based on logical consistency
alone. This is not Kantianism any more. Describing the three
developmental stages Piaget writes:

“Geometry begins with Euclid – with a period during which
the object of study is geometrical properties of figures and solids
seen as internal relations between elements of figures and solids.
No consideration is given to space as such, or consequently, to the
transformations of these figures within a space that contains them
all. We shall call this period intrafigural – an expression already
used in developmental psychology to account for the develop-
ment of geometrical concepts in the child.

The following period is characterized by efforts to find rela-
tionships between the figures. This manifests itself specifically
in the search for transformations relating the figures according
to various forms of correspondence. However, these transforma-
tions are not yet subordinated to structured sets. This is the period
where projective geometry predominates. We shall call this period
interfigural.

Following next is a third period, which we call transfigural.
It is characterized by the predominance of structures. The work
most characteristic of this period is the Erlanger Programm of
Felix Klein” (Piaget and Garcia, 1989, Chapter III, Conclusions,
p. 109).

We shall discuss an example to illustrate Piaget’s concep-
tion of geometrical development and we shall simultaneously
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provide a particular interpretation of it in the light of what has
been exhibited in Part 2 of this paper. Our conclusion will be
that Piaget’s three stages of cognitive development – from the
consideration of individual objects, to the orientation towards
actions and transformations and finally to structures – seems
grosso modo correct. Piaget, however, makes too radical a dis-
tinction between acting and perceiving and between empirical
and reflective abstraction. The reason lies exactly in his structur-
alism. Piaget therefore seems unable to grasp the dynamics of the
development, providing rather a mere static description of it.

Piaget points out the importance of the concept of transforma-
tion for the development of geometrical thought, and he under-
stands Descartes algebraization of mathematics as the essential
force behind it. “It was to require a long period of uninterrupted
work in algebra and infinitesimal calculus [. . . ] to finally come
to a conceptualization of the very idea of geometrical transfor-
mation without going through algebra or analysis” (Piaget and
Garcia, 1989, p. 106). Piaget seems to pay no attention to the
fact, however, that at least infinitesimal analysis and the function
concept essentially depend on the very idea of space and the prin-
ciple of continuity as well. The concept of mathematical function
or transformation has a double root, algorithm and objective
relation, as exemplified by the regularities of nature. As we have
stated as a thesis in the last section, this complementarity might
be fundamentally important for the transition to the interfigural
and structural stages of development.

To understand mathematical functions means to understand
the complementarity of formula and relation, as well as the self-
referentiality that governs its evolution, as became apparent in
Cauchy’s definition of a continuous function. In the mathematics
of the 17th/18th centuries, discontinuous functions could not be
represented, because a function was an analytical law. A geomet-
rical curve, on the other hand, was called continuous if it could
be represented by a(n) (analytical) function (Euler, 1748, Vol. II).
But this characterization proved to be incoherent.

Cauchy, after having demonstrated the inconsistency of these
efforts (Grattan-Guinness, 1970), revised the whole approach on
the basis of the principle of continuity, transforming mathematics
into extensional theory. A function in Cauchy’s or Dirichlet’s
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sense can be seen as an equivalence class of analytic expres-
sions or formulae, where the equivalence relation is based on
the axiom of extensionality. This switch from an intensional to
an extensional view has made it possible since Cauchy to single
out sets of functions by certain of their properties, and in general
to reason about them without representing them explicitly. For
instance, instead of giving a linear function directly by f(x) = ax,
Cauchy proves that a continuous function having the property
f(x + y) = f(x)+f(y) can be represented as above (Cauchy, 1821,
p. 99/100). Now this kind of reasoning on the mathematical con-
cept itself came to dominate mathematics at the very time when
proof-analysis became its basis.

Still, strictly speaking we cannot operate on the concept as
such, because it has to be represented anyway to become accessi-
ble. A concept is not to be conceived as a completely isolated and
distinct entity in Platonic heaven, but must not on the other hand
be confused with any set of intended applications. Two predi-
cates or concepts or functions (or functions of functions) are to
be considered as different even if they apply to exactly the same
class of objects because they influence mental activity differently
and may lead to different developments. The extensional view on
mathematics ignores these facts completely.

Piaget himself accepts the idea that setting up correspondences
on the one hand and operational constructions on the other might
be two processes “common to all fields of knowledge” (Piaget
and Garcia, 1989, p. 11). It seems indeed to be important to be
aware of the fact that the Cartesian innovation already had a
twofold nature from the very beginning, represented by the com-
bination of number and variable on the one hand, and of space
and quantity on the other; “for the extension in length breadth
and depth, which constitute space is plainly the same as that which
constitutes body”, says Descartes. Cartesian mathematics is not
algebraic in our sense, it is not “a science of pure structure”, but is
based on an interaction of number and geometric visualization.
This duality which is, in our view, the basis of a complementarist
understanding of algebra proper, (i.e. understanding algebra as
a system blending those two lines) becomes crucial as soon as
we consider relations between bodies, or in Piagetian terms, if we
pass from the intrafigural to the interfigural.
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Let us come back to the idea of proof. Leibniz invented for-
mal proof, as we know it today (Hacking, 1980). He got the
essential ideas from Descartes’ algebraization of geometry, which
was at the same time a geometrization of algebra, because of the
continuity principle used in the process. The continuity principle
presupposes a reasoning in terms of general ideal objects, that are
distributive not collective in their character, that means things are
considered as species of a kind and evaluated on grounds of the
general conditions of their possibility or genesis. We have above
already indicated this. Now today’s philosophy of mathematics
considers the implied conception of proof as a spatio-temporal
entity “as quite outlandish” (Friedman, 1992, p. 57). It believes
that formal proof begins were every reference to intuition has
been eliminated (Schlick, Tarski).

We have seen that the maximal loop strategy of explanation,
proving and justification suggests exactly the contrary. We want
to profit from new computer programs that allow ample use of
the continuity principle and illustrate some important truths of
mathematical epistemology by means of specific example. Now
Dynamic Geometry Systems (DGS) are apt to make the princi-
ple of continuity operative and thus to foster the growth of fertile
hypotheses. Representational systems like DGS, having revital-
ized this principle, play a very important role in cognitive develop-
ment because they realize an intimate and indissoluble interaction
between observation and reasoning.

The example, which is the principal means of our argument,
concerns Euler’s theorem, stating that the concurrency points of
the perpendicular bisectors, the medians and the altitudes of any
triangle were collinear.

“Theorem 1 (Euler 1765): The orthocenter O, centroid CG and circumcen-
ter M of any triangle are collinear. The line passing through these points is
called the Euler line of the triangle. The centroid divides the distance from the
orthocenter to the circumcenter in the ratio 2:1.”

By analyzing the proofs of this theorem as presented by text-
books of elementary geometry (see for example: Coxeter and
Greitzer, 1967, p. 18ff), one might hit upon the idea that the the-
orem is not at all about the relations between different properties
of a single triangle, but rather is an affirmation about the relation
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between one and the same property (namely the location of the
orthocenter) of two different triangles (the original one and its
medial triangle, the triangle formed by joining the midpoints of
the sides of the given triangle). In this manner we proceed from
the intrafigural to the interfigural perspective (see Figure 7).

Now these two triangles are related to one another by means
of a rotation of 180ºabout the centroid of the given triangle and
an additional shrinking of the rotated triangle towards the cen-
troid to half its size. Thus the image point X’ of any point X of
the plane under this transformation lies on the line that contains
X and the centroid, the center of the transformation, to the other
side of the centroid and half the distance from it. We shall call
such a transformation a DST, just for the sake of convenience.

Let us pause for a moment and reflect about what has hap-
pened. The argument of our new transformational proof rests on
analogy or on some principle of continuity according to which
similar things in the givens are mapped on to similar things again.
Such a view immediately opens the doors to further generaliza-
tion. Whereas the traditional synthetic or “Euclidean” proofs,
for instance, use all the premises of the theorem in the most
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intricate and ingenious manner (another such proof is indicated
in Figure 8) the new proof does not.

It must be considered to be a general proof scheme, rather than
a particular proof. Our interfigural perspective, in fact, not only
yields a proof of the original theorem, but also proofs of some
other ones. The theorem about the nine-point center, i.e. the fact
that the center F of the Feuerbach circle, or nine-point circle, also
lies on the Euler line, can immediately be established in a like man-
ner (Figure 9) by observing that F is just the circumcenter of the
transformed triangle A′ B′ C′.

Finally the proof also provides a first generalization of our
original theorem 1, because the consideration of the intersection
point of any cevians of the given triangle, and not just the ortho-
center, leads to a similar theorem (see Figure 10).

“Euler’s theorem 2: Take any two cevians and their point of intersection (for
the sake of visual clarity, we shall in the sequel use only two lines of each type,
but two already determine the important collinear points) and construct par-
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allels to these lines through the midpoints of the corresponding opposite sides
of the given triangle as well as their intersection point. Then the line through
these two intersection points contains also the centroid of the triangle.”
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Looking once more at our proof by means of a geometrical
transformation of type DST we realize that the factor 2 can also
be substituted by any other number, that is the two similar trian-
gles in question need not necessarily be related in the ratio 2:1.
This means that the centroid CG of the given triangle which is also
the center of the DST may be substituted by any other “center of
gravity”, as long as the cevians CC′ and BB′ passing through it
intersect the sides of the triangle at points C′ and B′ such that the
line B’C’ through these points remains parallel to the third side
BC of the given triangle (see Figure 11).

Stated differently, the two similar triangles should have paral-
lel sides. Are we not already now taking a glimpse of a Desarguen
configuration?

Our configuration essentially consists of three pairs of paral-
lel lines. Mark two points on both lines of the first pair (C and
B resp. C′ and B′) and let the other two pairs of parallel lines pass
through these points respectively (see Figure 12).

The pairs of parallel lines thus are determined by AC and A′C′;
AB and A′B′; AC and A′C′. We thus arrive at a Desarguen con-
figuration, were the respective sides of the two triangles ABC and
A′B′C′ in perspective intersect on the line at infinity, that is remain
parallel. The existence of the “Eulerline” AA′ is now guaranteed
by the inverse of Desargues theorem, stating that if the intersec-
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Figure 12.
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tions of corresponding sides of two different triangles ABC and
A′B′C′ (or the prolongations) lie on the same line, then the lines
through corresponding vertices all pass through the same point
CG. Now in our case this same line is the line at infinity, but a
simple transformation of the coordinate system gives the general
statement, thus generalizing once more our original theorem.

We gain also, interpreting Figure 12 in the light of these new
insights, another proof of our original theorem. The triangles
CBO and C′B′M have parallel sides. Define CG as the intersec-
tion of the lines CC′ and BB′ then Desargues’ theorem says that
the line joining the third vertices of our triangles, namely O and
M, also passes through this point of intersection CG. There cer-
tainly might exist extremely talented persons, who would have
immediately hit upon this new proof idea, thereby shortcutting
the whole process of generalization. But such a thing might not
happen frequently and our proof and the diagram on which it
was based, marking a more natural path rather impedes such a
radical idea. That means that there exists a logic of abduction
and generalization, which is firmly connected with our cognitive
means and representational systems (see Figure 13).
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