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Abstract — Time-dependent natural convective heat transfer in a closed rectangular domain with heat-
conducting boundaries of finite thickness is investigated numerically in the case of local heating on
the inner side of the vertical wall. Convection-radiation heat transfer takes place on one of the outer
boundaries of the solution domain. The inhomogeneous temperature distribution in the gas cavity is
clearly manifested when the Grashof number Gr > 106. Circulation flows can be distinguished in various
zones of the solution domain on the basis of the numerical investigations carried out. These flows are
due to the effect of the heat-release source, the propagation of perturbations induced by elements of the
rigid wall, and the dynamics of conductive heat transfer in the solid material. The scales of the effect of
the Grashof number on the hydrodynamic and thermal characteristics are indicated.

Keywords: time-dependent natural convective heat transfer, closed rectangular domain, heat-conducting
rigid walls, local heat-release source.

The combined analysis of the thermogravitational convection in a cavity occupied by a gas or liquid and
the conductive heat transfer in the solid walls around the cavity is of practical interest in different area of
technology (gas turbines, design of vehicle fuel systems, heat exchangers, etc.) [1–5].

A few solutions of such problems are known [6–15]. The heat transfer processes have been simulated
numerically in the axisymmetric formulation but only for a one-dimensional time-dependent heat conduction
equation in the solid phase [6, 7]. It has been found that free cavity convection leads to an intensification of
heat removal to the walls [8]. The boundary conditions of the IV-th kind for the energy equation (equality
of the temperatures and heat fluxes on the interface between the two media) on all the internal boundaries
significantly affect the heat transfer during free cavity convection [8, 9]. For example, the rigid boundary
walls affect the conditions of free convection generation in a closed domain [10, 11]. In [12] the free
convection in a cavity with one-dimensional heat-conducting and radiating walls was analyzed numerically.
Investigations [13, 14] were devoted to the study of the effect of the thickness and thermal conductivity of
the transverse walls on the heat emission in free convection in inclined rectangular cavities for the purpose of
estimating the efficiency of using cellular structures for reducing the convective heat losses in flat-plate solar
collectors. In [15] the effect of the wall thermal conductivity on the free convection in a two-dimensional
rectangular cavity was analyzed.

However, in these problems the effect of a heat-release source located in the working cavity and the
nonlinear action of the surrounding medium were not considered simultaneously. In particular, this situation
can arise in forced-cooling systems for electronic equipment, in hazardous-freight transport containers, in
rooms used for social or industrial purposes, etc. The aim of the present study is to simulate mathematically,
with allowance for the mechanisms of conduction and natural convection, time-dependent heat transfer in
a closed rectangular domain with a locally concentrated heat-release source and inhomogeneous boundary
conditions.
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Fig. 1. Solution domain: elements of the solid phase (1, 2, and 3), gas phase (4), heat-release source (5)

1. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

We will consider the heat transfer process in the domain represented in Fig. 1. The solution domain
includes five rectangles of different sizes, similar in shape but with different thermal characteristics. The
length of the gas cavity is equal to L and the height to H . We introduce the following Cartesian coordinate
system: the origin coincides with the left lower corner of the solution domain. A heat-release source of
length lhs and height hhs is located on the inner side of one of the walls. The distance from the base of
the solution domain, which represents a subdomain of the solid phase, to the heat-release source is equal
to h2. The initial temperature is constant and equal to T0 over the entire solution domain, except for the
heat-release source. The heat-release source is assumed to have an always constant temperature T0. The
horizontal walls of finite thickness (y = 0, y = h1 + H + h3) and the vertical wall (x = 2l1 + L) which
form the cavity were considered to be adiabatic from the outside. Convective-radiative heat transfer with
the surrounding medium was taken into account on the wall x = 0.

In order to describe the flow and temperature fields in the gas phase we used the time-dependent two-
dimensional convection equations in the Boussinesq approximation [16–21] while in the solid phase we
considered the two-dimensional heat conduction equation [22, 23].

As the scale of the distance, we took the length of the gas cavity L. As the “velocity vorticity-stream
function-temperature” dimensionless variables, we took, respectively,
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where β is the thermal volume expansion coefficient, t is time, t0 is the time scale, u and v are the velocity
components in projection on the x and y axes, respectively, V0 is the velocity scale (convection velocity), T
is the temperature, T0 is the temperature of the surrounding medium, and g is the acceleration of free fall.

For the gas phase the dimensionless Boussinesq equations can be written as follows:
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where

Ho =
V0t0

L
, Gr =

βgL3(Ths − T0)
v2 , Pr =

v
a

For the solid phase the heat conduction equation has the form:

∂Θi

∂Foi
= ∆Θi, i = 1, 2, 3 Foi =

ait0
L2 (1.4)

Here, Ho is the homochronicity number, Gr is the Grashof number, ν is the kinematic viscosity coeffi-
cient, Ω is the vorticity, Ψ is the stream function, Pr is the Prandtl number, ai is the thermal diffusivity of
the ith subdomain, and Foi is the Fourier number corresponding to the ith subdomain.

For the system of equations (1.1)–(1.4) the dimensionless boundary conditions have the form:
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Here, Bii is the Biot number corresponding to the ith subdomain; α is the coefficient of heat transfer be-
tween the external medium and the solution domain considered; Ni is the number characterizing the ratio of
the heat fluxes due to radiation to the heat fluxes due to conduction corresponding to the ith subdomain; ε is
the reduced emissivity; α is the Stefan-Boltzmann constant; λi j = λi/λ j is the relative thermal conductivity
coefficient; and λi is the thermal conductivity coefficient of the ith subdomain.

Equations (1.1)–(1.4) were solved by a finite-difference method [24] on a uniform grid using an implicit
two-layer scheme.

In order to approximate the convective terms in the evolutionary equations we used the Samarskii mono-
tonic scheme [24]. The value of the vorticity on the boundary was determined from the Woods formula [25].
For solving Eqs. (1.1) numerically, (1.2) we used a finite-difference scheme constructed by analogy with the
well-known variable-direction scheme proposed in [26, 27] for solving the heat conduction equation. In this
scheme the solution of the two-dimensional system reduces to the successive solution of one-dimensional
systems by means of the sweep method [24] as systems of finite-difference equations with three-diagonal
matrices. Equations (1.3), (1.4) were solved using the Samarskii locally one-dimensional scheme [24], a
simple iteration method being used for solving the nonlinear boundary condition of the IIIrd kind.

FLUID DYNAMICS Vol. 41 No. 6 2006



884 KUZNETSOV AND SHEREMET

Fig. 2. Streamlines for Gr = 107

The variable-direction method used and the locally one-dimensional scheme are absolutely stable and the
order of approximation of the input differential problem by the finite-difference scheme is O(τ + h2 + l2)
[24].

The Poisson equation (1.2) for the stream function was solved in each time step by the stabilization
method [25].

2. DISCUSSION OF THE RESULTS

The investigations were carried out for the following values of the dimensionless parameters: Ho =
1, Gr = 107–109, and Pr = 0.71, and the determining temperatures Te = 253 K, Ths = 333 K, and T0 =
293 K. The numerical analysis was carried out using a uniform 200×200 grid for the following geometric
parameters (Fig. 1): l1 = 1.0 m, lhs = 0.5 m, L = 3.0 m, h1 = 0.6 m, h2 = 0.8 m, hhs = 0.8 m, h3 = 0.6 m, and
H = 2.8 m. Since we considered the essentially time-dependent process Ho = 1, the expression t0 = L/V0 =√

L/gβ∆T was used for determining the time scale. The hydrodynamic and thermal parameter distributions
presented correspond to the instant of time t = 24 h.

The heat-release source results in the development of three circulating flows (Fig. 2). In the largest eddy
located at the center of the cavity the air moves along closed curves, ascending in the neighborhood of the
heat-release source and descending in the neighborhood of the opposite wall. In the gas cavity there are two
other small-scale eddies above the heat-release source whose development is attributable to the finite size
of the source. The domain above the source can be regarded as a zone in which one of the walls has the
maximum temperature. As can be seen from Fig. 2, masses of the gas phase descend along the cold wall
and ascend on the side of the central eddy.

The vorticity isoline distribution clearly shows the propagation of perturbations initiated by the wall and
the heat-release source into the interior of the air cavity (Fig. 3a). The eddies are most intensively formed
in the neighborhood of the heat-release source. This is attributable to the intensification of the transfer
processes in the neighborhood of the heated section.

The temperature distribution (Fig. 3b) demonstrates the effect of the lift force ρgβ (Ths − T0) which
develops as a result of the inhomogeneity of the temperature field. In the gas medium the temperature is
fairly nonuniformly distributed as a result of the effect of the buoyancy force. The heat-release source also
affects the temperature distribution in the rectangle next to which it is located. The domain in question
having inhomogeneous thermophysical characteristics, is should be noted that, as the distance from the base
decreases, the isotherms become aligned on the interface between the two media.
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Fig. 3. Fields of the vorticity vector (a) and temperature (b) for Gr = 107 (isotherms are shown in steps of 5 K)

The internal friction forces impede the perturbations departing from the walls. Conversely, the body
forces intensify the flow disorder. Consequently, the viscous friction and body forces oppositely affect the
flow. In the domain considered the nature of the motion is related with the numerical value of the Gr number.
A change in the nature of the motion results in a change in the mechanism of momentum and heat transfer.

The fields of the unknown quantities were obtained in the free-convection flow regime corresponding
to Gr = 108. As the Grashof number increases from 107 to 108, the flow structure is observed to change
significantly (Fig. 4a). The central eddy is unstable and breaks down into smaller-scale eddies. A secondary
low-intensity flow develops in the base zone as a result of the effect of the perturbations induced by the solid
phase. The temperature field (Fig. 4b) changes appreciably; as Gr increases, the heating of the gas phase
becomes more intense. This is reflected in the location of the isotherm corresponding to 300 K. In the region
above the heat-release source the nonmonotonic isotherm structure is clearer than in Fig. 3b. The intense
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Fig. 4. Streamlines (a) and temperature field (b) for Gr = 108 (isotherms are shown in steps of 5 K)

free-convection flow can lead to intensification of the conductive heat transfer in the solid phase [8]. The
calculation results (Fig. 4b) confirm this. Thus, a displacement of the isotherm corresponding to 295 K into
the interior of the solid phase can be observed on the interface between the solid and gas phases above the
heat-release source. In the Gr = 107 regime a similar isotherm distribution was not observed. This proves
that the heat transfer processes in the gas phase and in the wall elements are essentially interrelated.

In the Gr = 109 flow regime the dimensions of the eddy above the heat-release source increase and the
eddy envelops the upper gas-phase region (Fig. 5a). There is a marked increase in the dimensions of the
region corresponding to the secondary flow in the zone above the heat-release source. This is reflected
in the temperature distribution (Fig. 5b). The eddy on the interface between the base and the gas cavity
disappears. In this case a secondary flow similar to the vanished eddy develops on the same interface but
displaced toward the right corner. The structure of the central circulating motion changes, the fragmentation
disappears, and the eddy structure becomes more integral.
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Fig. 5. Same as in Fig. 4 for Gr = 109

The temperature is appreciably redistributed (Fig. 5b). The dimensions of the higher-temperature zone
(the boundary is the 300 K isotherm) decrease as compared with the case Gr = 108. The region enveloped
by the isotherm corresponding to 305 K also decreases in size. The zone of conductive heat transfer in the
solid phase above the heat-release source decreases as compared with it in Fig. 4b, while the conductive heat
transfer in the wall element located to the right of the source is intensified. The intense heat transfer region
is displaced toward the left upper corner of the heat-release source.

We considered the effect of Gr on the temperature distribution along the solution domain in three char-
acteristic cross-sections, namely, below the heat-release source, through the source, and above the source.

When Gr = 108 the maximum temperature below the source is reached on the interval 1.8 < x < 4.0
(Fig. 6a). In this case in the zone close to the heat-release source 1.2 < x < 1.8 the maximum temperature
corresponds to the Gr = 109 regime. The high temperature gradient on the interface between the solid and
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Fig. 6. Temperature distribution in cross-sections passing below the heat-release source (a) (y = 1.0 m), through the source
(b) (y = 1.8 m), and above the source (c) (y = 2.8 m) for Gr = 107, 108, and 109 (curves 1–3, respectively), I and II
correspond to the solid wall and the gas cavity, respectively

gas phases (x = 1.0 m) is attributable to the fact that in the solid phase the temperature is fairly uniformly
distributed, whereas in the gas phase the heat transfer process is intensified in the region above the heat-
release source as a result of the significant effect of the lift force.

In the cross-section passing through the heat-release source in the heater region on the interval 1.5 < x <
1.8 the maximum temperature corresponds to the Gr = 107 regime (Fig. 6b). In the direction toward the
interior of the gas phase the maximum temperature corresponds to the Gr = 108 regime.

In each regime the temperature (Fig. 6c) has a fairly nonmonotonic profile. This is attributable to the
strong effect of the lift force.

The numerical analysis showed that the free-convection flow regime corresponding to Gr = 109 differs
qualitatively from the other regimes. For these Grashof numbers the temperature field formed is almost
uniform in the upper half of the solution domain. This is due to the fact that the flow and heat transfer are
stabilized at a certain level of intensity of the processes of heat transfer from the source and heat removal
through the outer boundaries. In this case the localization and boundedness of the source are only slightly
reflected in the temperature field of most of the solution domain. A comparison of these results with the
characteristics of the heat transfer processes corresponding to the regimes of relatively low Gr (Figs. 2 and 3)
shows that intensification of the local heat release leads to a rather non-obvious result. Instead of an increase
in the number of vortex structures due to their disintegration with increase in Gr and the corresponding
change in temperature distribution, a certain stabilization of the flow and heat transfer is realized due to the
effect of the power-consuming condensed phase.

Summary. Heat transfer in a closed rectangular domain is investigated numerically with allowance for
heat exchange with the outer medium at Grashof numbers equal to 107, 108, and 109 in the presence of
an internal finite-dimension heat-release source and walls of finite thickness with different thermophysical
characteristics. As a result of the effect of free convection, an intensification of the heat transfer in the solid
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phase is observed at Gr = 108 and 109 (in the solid phase the temperature increases by 2 K). As the Gr num-
ber increases, both the scales and the location of the zone of intensification of the heat transfer processes
change. At Gr = 109 the temperature is more uniformly distributed over the entire cavity as compared with
Gr = 107 and 108. This indicates a change in the flow regime. At greater Gr the flow and heat transfer are
stabilized due to the effect of the power-consuming condensed phase which is capable of accumulating the
energy in amounts hundreds of times greater than the source heat release.

The work was carried out with financial support from the Russian Foundation for Basic Research and the
Administration of the Tomsk region (project No. 05-02-98006 competition r ob’ a).
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