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Abstract — Direct numerical simulation and visualization of three-dimensional separated flows of a ho-
mogeneous incompressible viscous fluid are used to comprehensively describe different mechanisms of
vortex formation behind a sphere at moderate Reynolds numbers (200 ≤ Re ≤ 380).
For 200 < Re ≤ 270 a steady-state rectilinear double-filament wake is formed, while for Re > 270 it is a
chain of vortex loops. The three unsteady periodic flow patterns corresponding to the 270 < Re ≤ 290,
290 < Re ≤ 320, and 320 < Re ≤ 380 ranges are characterized by different vortex formation mecha-
nisms. Direct numerical simulation is based on the Meranzh (SMIF) method of splitting in physical fac-
tors with an explicit hybrid finite-difference scheme which possesses the following properties: second-
order approximation in the spatial variables, minimal scheme viscosity and dispersion, and monotonicity.
Two different vortex identification techniques are used for visualizing the vortex structures within the
wake.

Keywords: incompressible viscous fluid, sphere, vortex formation mechanisms, wake, numerical simu-
lation, visualization.

Studying the three-dimensional wakes behind bodies of finite dimensions in a homogeneous fluid flow
is a conventional problem of fluid dynamics. In the flow past actual three-dimensional bodies, unsteady
and three-dimensional separation zones of considerable interest are usually formed. Taking into account
the high cost of laboratory experiments, the many additional factors, such as oncoming flow nonuniformity
and surface roughness, which complicate the investigation and affect the flow pattern, and the continuing
advances in computer technology (upgrading of performance and capacity) it is to be expected that our
knowledge of separated flows obtained by numerical simulation on the basis of the complete fluid dynamics
equations will only be extended and refined.

In this study, the flow of a homogeneous incompressible fluid in the wake behind a simple three-
dimensional body (sphere) is numerically modeled at moderate Reynolds numbers 200 < Re ≤ 380; here,
Re = W0d/ν , W0 is the freestream velocity, d is the sphere diameter, and ν is kinematic viscosity. For many
years, the main purpose of most experiments concerning the flow past a sphere has been to determine the
sphere drag as a function of the Reynolds number [1]. Comprehensive experimental investigation of the
sphere wake flow pattern was begun in [2] and continued in [3–12]. Nevertheless, so far an exhaustive
description of the mechanisms of vortex formation in the sphere wake at moderate Re is still lacking. This
paper makes an attempt to provide such a description.

In the figures reproduced in [2] the main elements of the wake are clearly visible; these are (1) a re-
circulation region immediately behind the sphere, (2) a shear layer between this region and the outer flow
which constitutes a continuation of the boundary layer into the wake flow, and (3) the vortex structures of
the wake. In [2] the sphere wake flow patterns were classified as follows: (1) 0 < Re < 210, single-filament
wake (an axisymmetric recirculation (stagnation) region); (2) 210 < Re < 270, a rectilinear double-filament
wake; (3) 270 < Re < 290, a wavy double-filament wake; (4) 290 < Re < 410, a chain of vortex loops;
and (5) 290 < Re < 700, a double row of vortex rings (for 290 < Re < 410 different experimental sets gave
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Fig. 1. Schematic representation of the sequence of vortex loops in the sphere wake for 300 < Re < 420 in the experiment
[4]: 1, side view and 2, top view

different wake flow patterns). In [2] steady-state flows were formed for Re < 270 and unsteady flows for
Re > 270.

In the experiments [3] transition from an axisymmetric single-filament wake to a steady-state non-
axisymmetric double-filament wake was established at Re = 190. Different authors attribute transition from
the double-filament wake to an unsteady flow pattern to the 270 ≤ Re ≤ 400 range. Thus, in [4] the follow-
ing features were noted: (1) for Re > 300 hairpin-shaped vortex loops (Fig. 1) start to separate periodically
with regular variation in intensity and frequency, thus forming laminar vortices up to Re = 800 (on the
Strouhal number range 0.15 < St < 0.21, where St = f d/W0 and f is the vortex separation frequency; (2)
for 200 < Re < 420 all the loops are oriented to the same direction (upwards) and the symmetry of the wake
about a plane is observable, which no longer exists for Re > 420 when the loops in the wake are directed
alternately to the right and to the left.

For the case of uniform 280 < Re < 300 flow past a sphere, in [5] the alternate irregular appearance
of two vortex structures in the wake is established; these are pairs of wavy filaments and hairpin-shaped
loops. For uniform 300 < Re < 400 flow in [5] the Strouhal number range is 0.125 < St < 0.141, which is
narrower than that in [4] (0.15 < St < 0.17). In [5] the vortex formation mechanism in the wake is described
for Re = 375 for the case in which the flow incident on the sphere has a vertical shear; the investigation
used visualization of the shear layer and the vortex structures in the wake. In the flow two characteristic
regions can be distinguished, namely, the upper (with a greater velocity) and lower parts of the shear layer
enveloping the recirculation region. The mechanism of formation of a new hairpin-shaped loop can be
broken up into three stages. First, the upper part of the shear layer extends downstream much more rapidly
than the lower part; then its edge is rolled up around two vortex loops (stems of the first wake loop); and,
finally, it is transformed into a new hairpin loop.

Thus, experimental investigations have made a great contribution to the study of sphere wake flow pat-
terns for Re ≤ 380. Starting from the eighties of the last century mathematical modeling began to be used
for a more detailed study of vortex wakes downstream of a sphere [6, 7]. Researchers came up against the
problem of visualizing the vortex structures in the wakes. Thus, in [6] a special visualization technique was
used; it was based on instantaneous vorticity lines. For Re = 500 and a 50× 100× 50 difference grid the
deformation of an axisymmetric vortex ring of the recirculation region to a closed loop carried away down-
stream was schematically represented. In [13] it was proposed to identify the vortex flow cores by plotting
the surfaces Im(σ1, 2) = 0, where Im(σ1, 2) is the imaginary part of the complex-conjugate eigenvalues of
the velocity gradient tensor.

In the nineties, new approaches to the visualization of the vortex flow core were developed [14] and the
classification of the patterns of the flow past a sphere was further refined. In [14] it was proposed to identify
the vortex flow cores by plotting the surfaces λ2 = 0, where λ2 is the second eigenvalue of a symmetric
tensor representing the sum of the squares of the symmetric and antisymmetric parts of the velocity gradient
tensor. In [8, 9, 15–17] transition to the double-filament wake was observed at Re = 211, 210.5, 212, 210,
and 250, respectively, and a further transition to an unsteady flow at Re = 270, 297, 270 to 285, 277.5, and
375, respectively. In [8, 9] a poorly-known nontrivial fact was noted, namely, that the unsteady flow pattern
(for 270 < Re < 300 in [8] and for 297 < Re < 603 in [9]) is characterized by a nonzero time-average

FLUID DYNAMICS Vol. 41 No. 5 2006



VORTEX FORMATION MECHANISMS IN THE WAKE 797

coefficient of the overall lateral force. In [8] by plotting the λ2 = 0 surfaces for Re = 300 it was shown that
each hairpin-shaped loop observable in experiments [4] (Fig. 1) actually consists of two loops. In fact, let us
cut in two the stems of the loop in Fig. 1. Then the right halves of these stems belong to the main, upward-
oriented loop and the left halves to the induced, downward-oriented loop. The forward part of the induced
loop, located below the imaginary boundary between the hairpin stems in Fig. 1, cannot be visualized by
means of the technique used in [4]. In [18], as in Fig. 1, for the sphere wake flow at Re = 350 only the
upward-oriented loops are shown; in this case visualization was based on the construction of a surface
Im(σ1, 2) �= 0 (the particular value of Im(σ1, 2) is not mentioned in [18]). In [10–12] the λ2-technique [14]
was applied for identifying vortices; for 1 ≤ Re ≤ 20.5 and 20.5 < Re ≤ 200, respectively, separationless
and separated axisymmetric flows past a sphere were numerically obtained; for 200 < Re ≤ 270 it was
a rectilinear double-filament wake, for 270 < Re < 420 separation of the fixed edge of the vortex shell
enveloping the recirculation region, accompanied for 360 < Re < 400 by slow regular rotation of the shell
around the line of sphere motion; and for 400 ≤ Re ≤ 600 alternate separation of opposite edges of the
vortex shell.

This shows that for Re ≤ 380 the results of mathematical modeling of the separated wake flows behind
a sphere are in fairly good agreement with the experimental data; different techniques have now been de-
veloped for visualizing the vortices but the detailed mechanisms of vortex loop formation are still poorly
understood. Accordingly, in this paper we shall make an attempt to arrive at such an understanding.

1. FORMULATION OF THE PROBLEM

We will consider the problem of incompressible viscous flow past a sphere; the fluid is assumed to be
homogeneous and the flow uniform at infinity. The system of Navier-Stokes equations governing the flow
is as follows:

∂v
∂ t

+ (v∇)v = −∇p +
2

Re
∆v,

∇v = 0
(1.1)

where v is the velocity vector normalized by W0, p is the pressure normalized by ρW 2
0 , and ρ is the density.

Let x, y, z be Cartesian coordinates and (U, V, W ) be the components of the velocity vector v in the
directions x, y, z. It is assumed that the freestream velocity vector (0, 0, W0) is parallel to the z axis. Equa-
tions (1.1) are written in the spherical coordinate system R, θ , ϕ , where x = Rsinθ cosϕ , y = Rsinθ sinϕ ,
and z = Rcosθ . Let u, v, w be the components of the velocity vector v in the directions R, θ , ϕ . The
conditions of no-slip, v = 0 and w = 0, and impermeability, u = 0, are imposed on the spherical surface.
On the outer boundary of the computation domain (spherical surface of radius RN) the boundary conditions
corresponding to the undisturbed flow, u = cosθ , v = −sinθ , and w = 0, are imposed for z < 0, and for
z ≥ 0 the conditions u = cosθ , v = −sinθ , and ∂w/∂R = 0.

For the correct modeling of separated flows, the difference grid must be refined near the body surface in
order to resolve the boundary layer. For this reason, the following transformation is introduced in the radial
direction:

Ri = R(ri) = 1 +
i

N0

√
2

Re
+

(
i
N

rmax

)m

, i = 1 : N

where N0 is the number of cells of the computation grid located within a boundary layer of thickness δ =√
2/Re. In this work, in all the calculations we took m = 3 and rmax = 3; therefore, RN ≈ 14.5d. Thus,

the computation domain under consideration can be mapped onto the rectangular parallelepiped (r, θ , ϕ):
0 ≤ r ≤ rmax, 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π with a uniform N ×M×L grid inside it.
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For modeling separated flows of a homogeneous incompressible viscous fluid governed by Eqs. (1.1)
we used the Meranzh1 method of splitting in physical factors with an explicit hybrid difference scheme
for approximating the convective terms of the equations ensuring the second order of approximation in the
spatial variables, minimal scheme viscosity and dispersion, normal operation over a wide Reynolds number
range, and monotonicity [19–22].

The efficiency of the Meranzh (SMIF) method and the greater power of supercomputers make it possible
adequately to model three-dimensional separated incompressible viscous flows past a sphere at moderate
Reynolds numbers. Calculations were performed on the MBC-1000 multi-processor system (42 Intel Xeon
1.7 GHz processors).

2. VISUALIZATION OF THE VORTEX STRUCTURES IN THE SPHERE WAKE

For understanding the dynamics and the mechanisms of separation of the vortex structures of an incom-
pressible viscous fluid in a sphere wake, the three well-known intuitive vortex indicators, namely, a pressure
minimum, streamlines, and vorticity isosurfaces, do not suffice. Thus, in the simple case of axisymmetric
Re = 100 flow past a sphere, two vortex structures can be distinguished in the wake, namely, a ring in the
recirculation region and a shell around the ring [9–12]. At the same time, in the sphere-fitted reference frame
the streamlines can visualize only the ring and the ωωω = 0.5curl v vorticity contours only the shell, while the
pressure contours can visualize neither of the two [9–12].

Similarly, for a complicated three-dimensional flow, the vorticity magnitude isosurfaces indicate only
some of the vortex structures in the flow rather than all of them (Fig. 2a). Therefore, special visualization
techniques, which make it possible to visualize most of the wake vortices, have been proposed. We will
briefly describe the essence of the two methods [13, 14] used in this study (Fig. 2b and c).

Let us fix a certain point in the flowfield and study the behavior of the streamlines in a Cartesian coordi-
nate system x = (x, y, z) having its origin at this point and moving with its velocity. In the vicinity of this
point (0, 0, 0) in the linear approximation we can write v = dx/dt ≈ Tx, where T is the velocity gradient
tensor (Ti j = vi j = ∂vi/∂x j). If two eigenvalues σ1 and σ2 of the tensor T are complex-conjugate, that is,
σ1 = α − iβ and σ2 = α + iβ (β = Im(σ1, 2 > 0), then from the theory of ordinary differential equations
it is known that two corresponding complex-conjugate eigenvectors 0.5(h1 ± ih2) can be so chosen that
they are composed of two real vectors h1 and h2 which form a plane, in which the phase trajectories are
either closed ovals with a center at the fixed point (for α = 0) or spirals with a focus at this point which
indicates the presence of a vortex there [23]. In this case, the angular velocity of fluid rotation about this
fixed point is equal to β . Thus, the vortex flow core has been defined as a set of flow subdomains with
complex-conjugate eigenvalues of the velocity gradient tensor [13] (see the contours of Im(σ1, 2) > 0 in
Fig. 2d and the Im(σ1, 2) = 0.005 surface in Fig. 2c, where, in view of the plane symmetry of the flow, only
a half surface is shown).

In [14] the vortex flow core is defined as the set of flow subdomains with a negative second eigenvalue of
the S2 + ΩΩΩ2 tensor (λ2 < 0, Fig. 2b and e), where S and ΩΩΩ are the symmetric and antisymmetric parts of the
velocity gradient tensor (Si j = 0.5(vi, j + v j, i) are the strain rate tensor components and Ωi j = 0.5(vi, j − v j, i)
are those of the vorticity tensor; the symmetric tensor S2 + ΩΩΩ2 possesses three real eigenvalues λ1 ≥ λ2 ≥
λ3). The efficiency of this definition for visualizing certain actual three-dimensional incompressible flows
was demonstrated in [14].

For plane flows we have σ1,2 = ±
√

λ2; therefore, the definitions of the vortex flow core proposed in
[13] and [14] are equivalent. At the same time, for axisymmetric flows in the sphere wake the Im(σ1,2) = 0
surface envelops a greater volume than the λ2 = 0 surface; however, the surfaces are similar in topology. In
the recirculation region the extrema of the functions λ2 and Im(σ1,2) approximately coincide with a singular
point (center) of the streamline pattern in the sphere-fitted reference frame.

1Meranzh is the abbreviation for MEtod RAsshchepleniya v Neszhimaemoii Zhidkosti or Splitting Method for Incompressible
Flows (SMIF).
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Fig. 2. Double-filament wake at Re = 250; a to c relate to the surfaces |ωωω | = 0.2 (ωωω = 0.5 · curlv), λ2 = −2 · 10−5, and
Im(σ1,2) = 0.005; d and e relate to the isolines of Im(σ1,2) > 0 with a step of 0.006 and λ2 < 0 with a step of 0.02 against
the background of the streamlines in the plane of symmetry of the wake (180×90×180 grid)

3. METHODOLOGICAL AND TEST CALCULATIONS

For all the Reynolds numbers under consideration (Re ≤ 380) the axisymmetric flow corresponding to
the axisymmetric boundary conditions is first calculated. In order to obtain a non-axisymmetric solution
of system (1.1) for a chosen Re, a brief disturbance must be introduced into the calculated axisymmetric
flowfield corresponding to this Re. The disturbance was taken in the form of a shear in the flow incident
on the sphere; after it has been introduced, symmetry about a plane is established in the wake downstream
of the sphere. The plane of symmetry of the wake passes through the line of body motion and the straight
line along which the flow incident on the sphere is subjected to uniform shear. Thus, any initial orientation
of this plane can be preassigned. With time, the plane of symmetry may turn through an arbitrary angle
about the z axis and its position can be traced using, for example, the friction lines on the rear of the sphere
(Fig. 3b). On the primary separation line in Fig. 3b the saddle S and nodal N critical points, through which
the plane of symmetry of the wake passes, are clearly visible.
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Fig. 3. Double-filament wake at Re = 250; a — three-dimensional streamline starting in the plane of symmetry of the
wake; b — friction lines on the rear of the sphere; and c — pressure isolines with a step of 0.01 against the background of
the streamlines in the plane of symmetry of the wake

The software package for homogeneous incompressible viscous flow past a sphere was comprehensively
tested in [10, 11, 22], the results of the testing being found to be in good agreement with the experimental
data and the calculations of other authors. The methodological calculations performed in [11] on 60×36×
72, 120× 60× 120, and 180 × 90× 180 grids for Re = 250 showed that the flow topology is conserved
(Fig. 2).

4. RECTILINEAR DOUBLE-FILAMENT WAKE (200 < Re ≤ 270)

For 20.5 < Re ≤ 200 an axisymmetric steady-state recirculation region is formed in the sphere wake (in
the streamline pattern in the sphere-fitted reference frame); this region is associated with a vortex ring in
the Im(σ1,2) > 0 and λ2 < 0 isoline patterns. In turn, the vortex shell of the wake in the same patterns is
associated with the recirculation zone in the streamline pattern in the reference frame fitted to the oncoming
flow. As Re increases from 20.5 to 200, the ring enlarges; the vortex shell approaches the ring, extends along
the line of the sphere motion, and connects with the ring [10, 11]. Meanwhile, the fluid particle velocity in
the ring increases and a local pressure minimum is formed in the recirculation region. For Re = 200 the local
pressure minimum, the Im(σ1,2) maximum, and the λ2 minimum in the recirculation region approximately
coincide with each other and with the singular point (center) in the streamline pattern in the sphere-fitted
reference frame. After a small short disturbance in the form of oncoming flow shear along the vertical x axis
(∂W/∂x > 0) has been introduced into the calculated axisymmetric flow, the flow remains axisymmetric for
Re ≤ 200, whereas for Re > 200 the pressure is so redistributed along the vortex ring core that it becomes
smaller in the lower than in the upper part of the ring. The fluid particles move along a spiral from top to
bottom in the ring core and from bottom to top on the ring periphery.

Then the ring tilts and the stable upper focus in Fig. 3a corresponding to the upper part of the ring
begins to be fed by fluid from the incident flow which has passed beneath the sphere (a streamline is twisted
toward the center of a stable focus and untwisted away from the center of an unstable focus). In Fig. 3a
the fluid flows from the upper focus along the ring core to the lower unstable focus and then, untwisting,
flows away downstream enveloping the upper focus from the left and from above. Streamlines different
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from the streamline in Fig. 3a, which originate in the flow incident on the sphere and pass near the primary
separation line on the sphere, envelop the wing core along a spiral several times, rising upward, and then
depart downstream forming two vortex filaments (Fig. 2b and c). Therefore, it may be concluded that these
filaments are connected with the ring.

Then the wake transformation process ceases at 200 < Re ≤ 211 and continues at 211 < Re ≤ 270
(decaying azimuthal fluctuations occur in the recirculation region, see Section 5). Thus, at 100 < Re ≤ 270
the axisymmetric wake transforms into a steady rectilinear double-filament wake (Figs. 2 and 3) charac-
terized by the presence of a plane of symmetry and nonzero coefficients of the overall lateral force Cl and

rotational moments (Cl =
√

C2
x + C2

y , where Cx and Cy are the coefficients of the forces acting on the sphere

along the x and y axes). The Re-dependence of Cl and the drag coefficient of the sphere Cd is given below.

Re 200 203 210 220 230 250 270
Cl 0.000 0.029 0.045 0.058 0.064 0.065 0.076
Cd 0.772 0.768 0.758 0.747 0.734 0.702 0.691

Let us consider the different ways of visualizing the double-filament wake vortex structure, as presented
in Fig. 2. The vorticity magnitude surface (Fig. 2a) distinguishes neither the filaments nor the deformed
ring in the wake. From a comparison of the λ2 contours and the streamlines in the plane of symmetry of the
wake (Fig. 2e) it is clear that the upper local minimum of λ2 does not correspond to the upper stable focus in
the streamline pattern but belongs to the wake shell. For this reason, for the correct perception of the vortex
structure of the wake visualized using the λ2 = −2 ·10−5 surface in Fig. 2b, this surface should be mentally
cut in two by the streamplane proceeding from the primary separation line (Figs. 2e and 3b). Then one part
corresponds to the wake shell and the other to the deformed ring. The cut line can be fairly clearly traced in
the λ2 and Im(σ1,2) surfaces (Fig. 2b and c).

In Fig. 2 the Im(σ1,2) = 0.005 surface envelops a larger space than the λ2 isosurface. It also reveals a
more complicated topology of the vortex structure in the recirculation region (Fig. 2c and d). In Fig. 2d
three local maxima of Im(σ1,2) are observable in the plane of symmetry of the wake, of which two lie on
the upper and lower boundaries of the recirculation region, while the third approximately coincides with the
lower focus in the streamline pattern and the lower local pressure minimum (Fig. 3c). In Fig. 2e there are
two local minima of λ2, of which the upper belongs to the shell and the lower approximately corresponds
to the lower focus in the streamline pattern. Therefore, the topologies of the Im(σ1,2) and λ2 isosurfaces
in Fig. 2 do not coincide. Since the function Im(σ1,2, as distinct from the function λ2, has a clear physical
meaning (see Section 2), it is preferable to use Im(σ1,2) isosurfaces for visualizing the three-dimensional
vortex structures in the wake.

5. UNSTEADY WAVY DOUBLE-FILAMENT WAKE (270 < Re ≤ 290)

For 200 < Re ≤ 270, once a disturbance has been introduced into the calculated axisymmetric flow,
after a time a balance is established between the amounts of the fluid feeding the upper focus and passing
along the deformed ring core and further downstream (Fig. 3a; see Section 4). For Re > 270 this balance
is not achieved; instead, a steady periodic process of formation of new links of the vortex loop sequence in
the sphere wake can be observed (〈Cd〉 = 0.683, St = 0.133, 〈Cl〉 = 0.079, and the fluctuation amplitude
∆Cl = 0.0042).

We will consider this process over a single period. We will begin with the moment t = 1496.4, when
Cl is near-minimal. In Fig. 4a a shell enveloping the recirculation region, two upward-oriented main loops,
and a downward-oriented induced loop can be discerned in the vortex structure. Let us trace the appearance
of new induced and main loops during one period. First, two stems of the first main loop (two filaments
proceeding from the recirculation region and connected with its ring) generate the forward part of the new
induced loop in the external flow and extend downstream the lateral edges of the shell (Fig. 5b, 3b and
2s). At the same time, a new ring R1 is generated in the recirculation region due to the Kelvin-Helmholtz
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Fig. 4. Sequence of vortex loops in the sphere wake for Re = 280; Im(σ1,2) = 0.02 surfaces during a period: a and b relate
to t = 1496.4 and 1504.4 (120×60×120 grid)

shear instability (Figs. 5 and 6a); for t = 1498.4 the upper part of R1 vanishes and for t = 1498.9 reappears
(Figs. 5 and 6b).

Then the restored new ring develops and occupies the place of the gradually vanishing previous ring
of the recirculation region (Figs. 5 and 6c and d). In the instantaneous streamline pattern, this process is
characterized by enlargement of the upper focus (the upper part of the new ring) due to its also being fed
with fluid that has passed above the sphere (Fig. 6d and a). At the same time, the development of the restored
new ring is accompanied by the formation of new filaments connected with it (Fig. 5c, 1f ) and the generation
of an embryo of the forward part of the incipient (new main) loop in the external flow (above the first loop
stems, Fig. 5c, 3t). As the new filaments connected with the new ring develop, the connection between the
first loop stems and the vanishing previous ring of the recirculation region ceases to exist (Fig. 5c). Then
the upper edge of the shell rolls up, separates, and vanishes (Figs. 5d (2t), and 6, c and d), thus terminating
the formation of the new main loop (Fig. 5, d and a).

In the periodic process described above five main mechanisms of vortex formation can be distinguished;
they operate in three different flow regions, namely, the recirculation region D1, the shell D2, and the outer
flow D3. They are:

(1k) ring (or half-ring) generation in D1 near the spherical surface due to the Kelvin-Helmholtz shear
instability (Figs. 5 and 6a);

(1f ) formation of two filaments in D1 (stems of an incipient loop) connected with this ring (Fig. 5, c and
d);

(2s) downstream extension of the lateral edges of the shell D2 (Fig. 5b);
(2t/b) rolling up and separation of the upper or lower edges of D2 (Figs. 5 and 6, c and d); and
(3t/b) generation in D3 of the forward part of the upward- or downward-oriented loop.
Processes 2s, 2t, 2b, 3t, and 3b are induced by filaments proceeding from D1.
Thus, for 270 < Re ≤ 290 the detailed mechanism of vortex formation in the sphere wake during one

period can be written in symbolic form as M{1k– 2s–1k–3b}–{1f –3t–2t}, where the curly brackets indicate
the mechanisms operating in the first and second halves of the period. On the Re range under consideration,
in experiments [2, 5] a wavy double-filament wake corresponding to the filaments in Figs. 4 and 5 was
observable. The forward parts of the wake loops were not visible in experiments [2, 5], which involved
using dye particles starting from the spherical surface, since they were induced in the outer flow rather than
separating from the shell edges.

Returning to the comparison of the two techniques for visualizing vortices in the wake, it should be noted
that for 270 < Re ≤ 290 the λ2-technique is unable to identify the upper part of the R1 ring [11].

We will now return to the rectilinear double-filament wake or, to be more precise, to its process of
formation (see Section 4). Whereas for 200 < Re ≤ 211 the axisymmetric ring deforms after a disturbance
has been introduced and the subsequent flow structure does not change with time, for 211 < Re ≤ 270 a set
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Fig. 5. Near wake at Re = 280; Im(σ1,2) = 0.005 surfaces during a period: a to d relate to t = 1496.4, 1500.4, 1504.4, and
1507.4; the flow regions where the main vortex formation mechanisms 1f, 2s, 2t, and 3t/b operate, are marked
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a

b

c

d

R1

Fig. 6. Instantaneous streamlines and isolines of Im(σ1,2) > 0 with a step of 0.04 in the plane of symmetry of the wake at
Re = 280; a to d relate to t = 1496.4, 1500.4, 1504.4, and 1507.4
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of new rings is generated in the recirculation region after the initial deformation of the axisymmetric ring.
This periodic process decays with time and can be described as M{1k–2s–1k– 3b}–{1f –3t}, since the upper
edge of the shell does not separate. The duration of this approach to the steady state increases with Re (three
new rings are generated for Re = 250 and 35 rings for Re = 270).

6. DETAILED VORTEX FORMATION MECHANISM AT Re = 350

We will now consider the detailed mechanism of formation of the new induced and main loops during a
single period at Re = 350 (Fig. 7, 〈Cd〉 = 0.627, St = 0.133, 〈Cl〉 = 0.068, and ∆Cl = 0.033). We will again
start from the moment t = 882 when Cl is near-minimal.

Due to the similarity of the loop formation mechanisms for Re = 320 and 350 over the larger part of the
period, we will use Fig. 8 (Re = 320) for the further demonstration of the process occurring at Re = 350.

At t = 882 a new R1 ring is generated (Figs. 7 and 8a (1k)), whose upper part has already vanished at
t = 883.5. For Re = 350 the sizes of the upper and lower foci in the instantaneous streamline patterns in the
plane of symmetry of the wake are naturally larger than those for Re = 280 (Fig. 6a). Moreover, at t = 882
the fluid that has passed below the sphere does not flow into the recirculation region due to the formation in
this region of a second new ring R2 (Fig. 8b) connected with the stems of the first main loop. These stems
form a new induced loop, thus extending the lateral shell edges downstream (Fig. 7a (2s)). The stems of the
new induced loop are connected with the main ring of the recirculation region (Fig. 7b).

Next the upper part of the R2 ring generates a new third half-ring R3 in the upper part of the recirculation
region and vanishes (Figs. 7b and 8c). Then the R3 half-ring connects with the shell (Fig. 7c), while the
induced loop stems form in the outer flow an embryo of the forward part of the incipient (new main) loop
and extend the lateral edges of the shell downstream (Fig. 7c and d (3t and 2s)), while the upper part of the
main ring of the recirculation region splits into two parts, of which the left part drifts toward the sphere and
connects with the shell (Fig. 7c and d (1d)) transforming into the new fourth ring. Now the new induced
loop stems are connected with the right half of the main ring, while the development of the new fourth ring
is accompanied by the formation of filaments (stems of the incipient (new main) loop) connected with the
fourth ring (Fig. 7d (1f )). At the same time, the rolling up and separation of the upper edge of the shell are
also observable (Fig. 7d (2t)).

Thus, at Re = 350 the detailed mechanism of vortex formation in the sphere wake during a single period
can be described in symbolic form as M{〈1k〉–2s–1k–〈1k〉}–{〈2s〉–1d–〈1f–3t– 2t〉}; here, the angle brackets
contain the mechanisms which are also observable for Re = 280. For Re = 350 using the λ2-technique for
visualizing the vortex structure dynamics in the wake gives the same detailed mechanism [10, 11]. Here, a
new (sixth) main vortex formation mechanism has appeared, namely:

(1d) drift of the main ring of the recirculation region toward the sphere (Fig. 7c and d).

In spite of the numerous complicated processes that occur in the recirculation region at Re = 350, the
pattern of the instantaneous friction lines on the rear of the sphere varies only slightly during a period.
Only insignificant oscillations of the rear stagnation point take place (Fig. 3b). Methodological calculations
carried out for Re = 350 on different grids (60×36×72, 120×60×120, and 180×90×180) showed that
the flow topology and the detailed vortex formation mechanism are conserved.

In the experiments [4] conducted for 300 < Re < 420 the forward parts of the induced loops (directed
downward in Fig. 7b) were not visualized (Fig. 1) and the stems of these loops were taken for the continu-
ations of the stems of the main loops (directed upward in Fig. 7b). Approximately the same effect can be
observed in the present study when considering isosurfaces with the greater value Im(σ1,2) = 0.05. With
account for this remark, the vortex flow topology in the sphere wake obtained for Re = 350 coincides with
that presented in Fig. 1. The integral flow characteristics for Re = 350 are also in good agreement with those
obtained in [1, 4, 5].
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Fig. 7. Near wake at Re = 350; Im(σ1,2) = 0.02 surfaces during a period: a to d relate to t = 882, 886.5, 889.5, and 891
(180×90×180 grid); the main mechanisms 1d, 1f, 2s, 2t, and 3t are marked
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Fig. 8. Near wake behind the sphere at Re = 320; Im(σ1,2 > 0) isolines with a step of 0.04 in the plane of symmetry of the
wake during a period: a to d relate to t = 453, 455, 456.5, and 460 (120×60×120 grid)

7. THREE UNSTEADY FLOW PATTERNS AT 270 < Re ≤ 380

As the Reynolds number increases from 270 to 380, the vortex formation mechanism changes consider-
ably (see Table 1). For Re = 290 during a time interval ∆t ≈ 1 a second new ring is observable. With further
increase in the Reynolds number up to Re = 320 the upper part of the second new ring enlarges and generates
a third new ring, which later transforms into the main ring (Fig. 8c and d). In this case, the 3b mechanism
is replaced by 2s, since the induced loop is formed starting from its forward part for 270 < Re ≤ 290 (see
Section 5) and from the stems for 290 < Re ≤ 320 (see Section 6). For Re = 320 an incipient drift of the
left part of the main ring toward the sphere can be observed (1d mechanism, Fig. 8d).

Thus, the vortex formation mechanisms are essentially different for 270 < Re ≤ 290, 290 < Re ≤ 320,
and 320 < Re ≤ 380. In other words, a new flow pattern is detected for 290 < Re ≤ 320, since previously it
was believed that the same flow pattern was realized over the entire 290 < Re≤ 380 range [2, 4, 5]. The new
flow pattern is characterized by the periodic formation of a second new ring in the recirculation region. This
ring is connected with the stems of the first main loop of the wake, while the stems of the induced loop in
process of formation are connected with the main ring of the recirculation region. Therefore, starting from
Re = 290 four filaments proceeding from the recirculation region can be periodically observed (Fig. 7b),
whereas for 270 < Re ≤ 290 only two filaments can be visualized (Fig. 5). For 320 < Re ≤ 380 part of
the main ring is periodically displaced toward the sphere; with further increase in the Reynolds number the
induced loops become “doubles” of the main loops (their mechanisms formation become the same, that is,
during a period the M{〈2s〉–1d–1k–〈1 f –3b–2b〉}–{〈2s〉–1d–1k–〈1 f –3t–2t〉} mechanism is realized .

For 270 < Re < 375 symmetry about a plane can be observed in the sphere wake. In this case, the time-
average coefficients of the overall lateral force 〈Cl〉 and the rotational moment 〈CT,y〉 about a line passing
through the sphere center and perpendicular to the plane of symmetry of the wake, are different from zero
(for example, at Re = 360 we have 〈Cl〉 = 0.084 and 〈CT,y〉 = 0.0068). For 375 ≤ Re ≤ 380 the shell starts
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Table 1

Re M1 M2 Figure

[270, 290] 〈1k–2s–1k〉–3b 〈1 f –3t–2t〉 5 and 6

290 〈1k〉–1k–〈2s–1k〉–3b 〈1 f –3t–2t〉 –

[290, 320] 〈1k〉–2s–1k–〈1k〉 〈2s〉–〈1 f –3t–2t〉 8

[320, 380] 〈1k〉–2s–1k–〈1k〉 〈2s〉–1d–〈1 f –3t–2t〉 7

to rotate slowly around the line of motion of the sphere (Strot = 0.0054 and 0.0088 for Re = 375 and 380,
respectively). Similar rotation with Strot = 0.0067 was numerically modeled in [24] for Re = 420. Thus, the
plane symmetry of the wake vanishes at Re = 375, whereas in experiments [4, 5] it disappeared at Re = 420.
Therefore, for Re < 375 we can speak of the similarity of the calculated and experimental [4, 5] topologies
of the vortex structure of the wake (Fig. 1). For Re < 375 the values of the time-average coefficients Cd and
Cl and the Strouhal number St are also in good agreement with the data [1, 4, 5]:

Re 270 280 290 300 320 350 360 375 380
St 0.125 0.133 0.140 0.145 0.148 0.133 0.150 0.183 0.183
〈Cl〉 0.076 0.079 0.082 0.084 0.086 0.068 0.084 0.082 0.083
〈Cd〉 0.691 0.683 0.675 0.669 0.654 0.627 0.630 0.622 0.619

For Re = 350 the calculations made on a finer 180× 90× 180 grid give better agreement with the ex-
perimental data. The increase in the Strouhal number to 0.183 obtained for 375 ≤ Re ≤ 380 is due to the
uniform rotation of the shell, that is, the loss of the plane symmetry of the wake. A similar sharp increase in
the Strouhal number was also observable in experiments [4, 5] with loss of the plane symmetry of the wake
at Re > 420.

Summary. Uniform homogeneous incompressible viscous flow past a sphere is mathematically modeled
at moderate Reynolds numbers 200 ≤ Re ≤ 380. The system of Navier-Stokes equations governing the
flow is solved using the explicit difference Meranzh (SMIF) method. For visualizing the vortex structure
of the wake, isosurfaces of two functions are plotted, namely, the imaginary part of the complex-conjugate
eigenvalues of the velocity gradient tensor T and the second eigenvalue of a symmetric tensor representing
the sum of the squares of the symmetric and antisymmetric parts of the tensor T.

The different vortex formation mechanisms in the wake behind a sphere are described in detail. Thus,
a steady rectilinear double-filament wake is formed when 200 < Re ≤ 270 and a sequence of vortex loops
when Re > 270. The three unsteady periodic flow patterns for 270 < Re ≤ 290, 290 < Re ≤ 320, and
320 < Re ≤ 380 are characterized by different vortex formation mechanisms, the main difference being
observable in the recirculation region of the wake. When 290 < Re ≤ 320 a new flow pattern is detected,
since it was previously believed that the same flow pattern is realized over the entire 290 < Re ≤ 320 range.
The vortex formation process during a single period can be presented in the form of a sequence of six main
mechanisms operating in three different flow regions, namely, the recirculation region D1, the vortex shell
D2 enveloping D1, and the outer flow D3. These mechanisms are (1) ring (or half-ring) generation in D1;
(2) formation in D1 of two filaments connected with this ring; (3) drift of the main ring in D1 toward the
sphere; (4) downstream extension of the lateral edges of the D2 shell; (5) separation of the upper or lower
edge of D2; and (6) generation in D3 of the forward part of an upward- or downward-oriented loop. The
flows under consideration are characterized by plane symmetry (for 200 < Re < 375) and nonzero time-
average coefficients of the overall lateral force (lift) and the rotational moment about a line passing through
the sphere center and perpendicular to the plane of symmetry of the wake. This unique property of the flow
can be used in practice. As the Reynolds number increases from 270 to 380, the amplitude of the periodic
azimuthal fluctuations in the recirculation region increases, which leads to the loss of plane symmetry at
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Re = 375. The calculated results are in good agreement with the experimental data and the calculations of
other authors.
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