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Abstract — The behavior of an inviscid-fluid drop surrounded by a different fluid under the action
of multi-frequency vibration is investigated. The second-order effects in the vibration amplitude are
studied. A superharmonic resonance is registered. The stability of the forced oscillations with respect to
small perturbations is studied. The condition of the onset of parametric resonance is found. An average
drop shape is investigated. The two-frequency case is considered as a particular case of multi-frequency
vibration.
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Vibration is one of the most widely used means of influencing the behavior of nonuniform hydrodynamic
systems. The non-trivial behavior of the system under the action of vibration makes the theoretical and
experimental investigation of these phenomena topical. The need for research is also conditioned by the fact
that vibration may either result from the action of external sources or be used for controlling engineering
processes.

We have investigated the effect of vibration on an interface. This subject was first explored by Faraday,
who considered the effect of one-frequency vertical vibrations on the horizontal interface between a liquid
and a gas. He discovered experimentally and described the excitation of parametric oscillations of the
interface (so-called “Faraday ripple” or “Faraday waves”) [1]. A theoretical explanation of this phenomenon
for the system considered was given in [2], using a linear stability analysis for a potential flow.

In recent years, the action of vibration on a curved interface has been comprehensively researched. The
behavior of a spherical drop of incompressible fluid surrounded by another fluid and subjected to high-
frequency vibrations was investigated in [3]. The main effect is an average contraction of the drop along
the vibration axis. This effect takes place for both a heavy and a light-weight drop. A similar result was
obtained for the average shape of a cylindrical drop of incompressible inviscid fluid located between two
rigid planes in the presence of monochromatic vibration perpendicular to the drop symmetry axis [4]. In the
case of the acoustic levitation of a spherical drop [5, 6], when the compressibility of the media is important,
similar phenomena were observed: the drop was compressed along the vertical axis and eventually took the
shape of an apple (“dog-bone” shape); however this shape was unstable. As in [6], in [7] the behavior of
liquid drops in a one-frequency acoustic field was investigated experimentally. Attention was focused on the
variation of the equilibrium drop shape with variation of the acoustic pressure and on drop fragmentation in
intense acoustic fields.

In [8], the behavior of a compressed cylindrical drop was studied experimentally in the case of small
ratios of the layer thickness to the equilibrium drop radius. It was found that, on average, heavy and light-
weight drops are, respectively, stretched and compressed along the vibration axis.

The parametric resonance registered in [1] takes place when the vibration frequency ω is twice the natural
frequency ω = 2Ω (here, Ω is the natural frequency). In [9], unlike most other studies, the case of single-
frequency vibration in which the surface and volume oscillation amplitudes are of the order of the bubble
size was considered. The study was aimed mainly at investigating the interaction between the bubble volume

0015–4628/05/4002–0183  2005 Springer Science+Business Media, Inc.



184 ALABUZHEV AND LYUBIMOV

and bubble shape oscillations due to the initial nonequilibrium bubble shape. For spherical bubbles, the 2:1
resonance condition was considered, and for non-spherical bubbles, the 1:1 and 2:1 conditions, i.e. Ω0 = Ωm

or Ω0 = 2Ωm (predicted in the small-amplitude approximation), where ω0 is the volume-oscillation natural
frequency, and Ωm is the natural frequency of the m-th shape oscillation mode. Parametric instability of the
forced oscillations of the shape of a spherical and a cylindrical drop is manifested when the synchronism
condition ω = Ωm + Ωm+1 is satisfied [10, 11] (here, ω is the vibration frequency, and Ωm and Ωm+1 are
the frequencies of two neighboring natural vibration modes).

In study [12] of the forced finite-amplitude waves on the surface of an inviscid fluid in an infinitely deep
channel, the linear ω = Ω and subharmonic ω = 3Ω resonances were considered. The linear resonance
proved to be more dangerous than the subharmonic one.

Similar phenomena are also observed in nonlinear mechanical systems with different numbers of degrees
of freedom (see reviews [13, 14]). In [15], the cases of 1:2, 1:3, and 1:4 internal resonance were considered
for a two-degree-of-freedom system with hysteresis. In [16], the parametric ω = 2Ω1 and subharmonic ω =
3Ω resonances were considered in studying the stability of a nonlinear single-degree-of-freedom system. It
was shown that the parametric resonance is the more dangerous.

In [17], with reference to the example of the Duffing equation, the stability of a system with two equi-
librium states under the action of two-frequency vibration at low and high frequencies was investigated.
In a system with high friction subjected to high-frequency vibration, specific resonances (so-called vibra-
tional resonances) are possible, although the ordinary linear resonance is absent. In this case, the parametric
resonance is only weakly expressed.

A nonlinear oscillator under multi-frequency vibration was studied in [18]. Three cases were considered:
(i) the external frequencies differ significantly from each other and from the natural oscillator frequency, (ii)
the external frequencies are similar but differ significantly from the natural frequency, and (iii) the external
and natural frequencies are similar. It was found that, in the first case, the free natural oscillations are either
damped or have a constant value. In the other cases, depending on the vibration frequencies, the oscillations
may grow.

Study [19] was devoted to the basic forms of nonlinear oscillations of an oscillatory system with a single
degree of freedom and second-, third-, and fourth-order nonlinearities in the presence of harmonic multi-
frequency vibration. Linear, parametric, and superharmonic resonances were considered. The effect of
nonlinearity on the system behavior was studied. It was demonstrated that, in the case of synchronized
linear and superharmonic resonances, the oscillation amplitude can be controlled by adding new external
frequencies.

In [4], a nonlinear resonance, which appears when the vibration frequency is equal to one-half the fre-
quency of the basic natural-oscillation mode of a cylindrical drop, was detected. This superharmonic-
resonance phenomenon appearing when 2ω = Ωm was described in [14, 20], which dealt with mechanical
systems. For the stability of a nonlinear mechanical system with a single degree of freedom, the superhar-
monic resonance 2ω = Ωm is more dangerous than the linear and parametric resonances ω = 2Ω1 [16].

In [21], the scattering of a modulated acoustic wave with carrier frequency ωi and modulation frequency
ωp on the surface of a gas bubble was used for measuring the bubble size and density. When the frequency
ωp is close to the natural oscillation frequency of the bubble, resonant growth of the amplitude of the bubble
surface oscillations with the frequency ωi ± ωp occurs (linear resonance). Parametric resonance in a similar
system at the frequency ωi ± ωp/2 was considered in [22].

In this study, we will consider the behavior of a cylindrical drop located between two plane walls under
the action of multi-frequency vibration.

1. FORMULATION OF THE PROBLEM

We will consider the behavior of a drop of inviscid fluid with the density ρ∗
i surrounded by another fluid

with the density ρ∗
e . The entire system is bounded by two parallel rigid planes (Fig. 1). In the absence of

vibration, the drop is cylindrical with radius R. The contact angle between the lateral surface of the drop
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A∗, ω∗

Fig. 1. Geometry of the problem: A — drop, B — surrounding fluid

and the rigid walls is equal to π/2 and does not change in the course of the motion.
The flow around the drop is oscillating. The center of mass of the drop travels relative to the laboratory

(fixed) reference frame along the x axis at the velocity U(t), which has to be determined. Far away from the
drop, the fluid velocity is directed along the x axis and can be represented as

v = j
d
dt

f (t), f (t) =
N

∑
k=1

A∗
keiω∗

k t + c.c.

where A∗
k and ω∗

k are the amplitude and the frequency of the k-th vibration component, and j is the unit
vector of the x axis. Here and in what follows, the symbol “c.c.” signifies the complex conjugate terms. The
external-vibration amplitudes A∗

k are much smaller than the equilibrium radius R.
We assume that the vibration frequencies are sufficiently high to neglect the viscosity, but are low enough

to neglect the compressibility: l =
√

νi,e/ω∗
k � R and ω∗

k R � c, where l is the thickness of the viscous

boundary layer, ν is the kinematic viscosity, c is the sonic velocity, and the subscripts “i” and “e” denote the
parameters inside and outside the drop.

We will consider only a two-dimensional flow in the plane (x, y). It is convenient to introduce the polar
coordinates (r, α ), in which the drop surface is described by the equation r = R + ζ (α , t), where ζ (α , t)
is the deviation of the lateral surface of the drop from the equilibrium state, and the angle α is measured
from the x axis. In [4], it was demonstrated that, in the leading order of the expansion in a small vibration
amplitude, the drop is displaced as a whole, with the drop shape remaining unchanged. Accordingly, it is
convenient to go over to the coordinate system fitted to the center of mass. The conditions of its fixity and
of drop volume conservation can be written as

2π∫

0

(R + ζ )3 cosα dα = 0,

2π∫

0

(R + ζ )dα = 2πR2

In the center of mass system, the Euler equation takes the form:

∂
∂ t

v + v · ∇ v = − 1
ρ∗ ∇ p − j

∂
∂ t

U

Far away from the drop, the following condition should be satisfied:

r → ∞ : v →
(

d f (t)
dt

− U

)
j

On the drop surface, the condition of continuity of the normal velocity, the kinematic condition, and the
balance condition for the normal stresses should hold:

[vn] = 0,
∂
∂ t

ζ = v∇ F, [p] = −σ divn, F = r − R − ζ , n = ∇ F/|∇ F |
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Here, n is the unit vector of the outward normal to the drop lateral surface and σ is the surface tension.
Square brackets denote the jump in the bracketed quantity on passage from the external to the internal fluid.

We will consider a potential flow and introduce the velocity potentials v = ∇ ϕ . The time, length, surface
deviation, velocity, density, and pressure scales are: t0, R, A0 (vibration amplitude), v0, ρ0, and p0, where

t0 =

√
(ρ∗

i + ρ∗
e )R3

2σ
, A0 =

1
N

N

∑
k=1

|A∗
k|, v0 = A0

√
2σ

(ρ∗
e + ρ∗

i )R3 ,

ρ0 =
1
2
(ρ∗

i + ρ∗
e ), p0 =

A0σ
R2

In the nondimensional variables, the problem formulation takes the form:

∆ϕi,e = 0, p = −ρϕt − 1
2

ερ(∇ ϕ )2 − ρUtr cosα (1.1)

r → ∞ : ϕ → ( ft − U)r cosα (1.2)

r = 1 + εζ : [ϕn] = 0, ζt = ∇∇∇ ϕ ∇∇∇ F, ε[p] = −divn (1.3)

2π∫

0

(1 + εζ )3 cosα dα = 0,

2π∫

0

ζ dα = −1
2

ε
2π∫

0

ζ 2 dα (1.4)

The subscripts “t”, “r”, and “α ” signify differentiation with respect to the corresponding variables. The
problem contains the following nondimensional parameters: the relative amplitudes ak, the vibration fre-
quencies ωk, the mean vibration amplitude ε , the ambient-fluid density ρe, and the drop fluid density ρi,
where

ak =
A∗

k

A0
,

N

∑
k=1

ak = N, ωk = ω∗
k

√
(ρ∗

i + ρ∗
e )R3

2σ
, ε =

A
R

ρe =
2ρ∗

e

ρ∗
i + ρ∗

e
, ρi =

2ρ∗
i

ρ∗
i + ρ∗

e
, ρi + ρe = 2

2. FORCED OSCILLATIONS

We will seek the solution of system (1.1)–(1.4) in the form of power series in ε:

ϕ = ϕ (0) + εϕ (1) + . . . , p = p(0) + ε p(1) + . . . , ζ = ζ (0) + εζ (1) + . . .

In the zero-order approximation, we obtain the problem:

δϕ(0) = 0, p(0) = −ρϕ (0)
t − ρUtr cosα

r → ∞ : ϕ (0)
e → ( ft − U)r cosα

r = 1 : [ϕ (0)
e ] = 0, ζ (0)

t = ϕ (0)
r , [p(0)] = ζ (0) + ζ (0)

αα

The solution of this problem is

ζ (0), ϕ (0)
i

= 0, ϕ (0)
e = Π ft

(
r +

1
r

)
cosα , Π =

1
2
(ρi − ρe)

U(t) = ρe ft

(2.1)

The conditions of stationarity of the center of mass and constancy of the volume (1.4) are automatically
satisfied. For a very heavy drop, the velocity U of the center of mass relative to the laboratory reference
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frame vanishes; for ρi = ρi = 1, U coincides with the ambient-fluid velocity; and, for a light-weight drop
(bubble) U is greater than the fluid velocity at infinity. This agrees with the results of [4].

In the first approximation, we obtain the problem:

∆ϕ (1) = 0, p(1) = −ρϕ (1)
t − 1

2
ρ(∇ ϕ (0))2

r → ∞ : ϕ (1)
e → 0

r = 1 : [ϕ (1)
r ] = 0, ζ (1)

t ϕ (1)
r , [p(1)] = ζ (1) + ζ (1)

αα

The solution of this problem is

ϕ (1)
i

=
1
2

Br2 cos2α , ϕ (1)
e = −1

2
Bt

1
r2 cos2α (2.2)

ζ (1) = Bcos2α (2.3)

The function B(t) is found from the solution of the differential equation

Btt + 3B = −ρeΠ2 f 2
t (2.4)

The solution of the previous order (2.1) contains only terms with exp(±iωkt). In the first approximation,
as is clear from the form of the nonuniform term in Eq. (2.4), solution (2.2)–(2.3) depends on pair combi-
nations (sum or difference) of the vibration frequencies exp(±i(ωk ± ωl)t). In the units used, the natural
frequencies of the drop oscillations are given by the formula [23]

Ω2
n = 1/2n(n2 − 1), n ≥ 2 (2.5)

The natural frequency of the general solution of the uniform equation (2.4) is equal to the quadrupole
mode frequency (n = 2) of the natural drop oscillations. If, in the nonuniform term in (2.4), some combina-
tion of the external frequencies is close to this frequency, a resonance appears. In the case of monochromatic
vibration, the resonant growth of the oscillation amplitude occurs at a frequency which is one-half the min-
imum natural-oscillation frequency (superharmonic or, in the terminology of [20], nonlinear resonance). In
the case of multi-frequency vibration, as is clear from (2.4), forced oscillation resonance may also appear
when the sum or difference of two vibration frequencies is equal to the quadrupole mode frequency.

The time-independent part of the function ζ describes the variation of the mean drop shape:

〈ζ 〉 = −(1/3)ρeΠ2〈 f 2
t 〉cos 2α (2.6)

Here, the parentheses signify the time averaging of the corresponding quantity. As is clear from (2.6), no
matter what the density ratio, the drop compression along the vibration axis takes place. This agrees with
the results of [4]. In the experimental study [8], the compression of a light-weight drop and the stretching of
a heavy drop were registered. This is apparently attributable to the nonstationary contact angle dynamics.
In any case, in [8] the drop radius was much greater than the layer thickness. This means that the contact
line phenomena become decisive. The contact-angle dynamics, taken into account in [24] for the degenerate
case of an equilibrium angle equal to π/2, demonstrated the fundamental possibility of stretching a heavy
drop.

3. STABILITY OF THE FORCED OSCILLATIONS

To study the stability of the forced oscillations, we will introduce the main-flow perturbation:
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ϕ ′ = ϕ + ψ, ζ ′ = ζ + ξ , p′ = p + q (3.1)

Here, ϕ ′, ζ ′, p′ are the perturbed fields, ϕ , ζ , and p denote the main flow, and ψ, ξ , and q are small
unsteady perturbations. After the introduction of perturbed fields (3.1) into the original system (1.1)–(1.4)
and linearization, for the perturbations we obtain the system of equations and boundary conditions

∆ψ = 0, q = −ρ(ψt + ∇ ϕ · ∇ ψ)

r → ∞ : ψ → 0

r = 1 : [ψn] = 0, ξt = ∇ ψ · ∇ F − ∇ ϕ · ∇ ξ

[q] = ξ (0) + ξ (0)
αα − ε(ξ (1) + ξ (1)

αα ) + . . .

2π∫

0

(1 + 2εζ + ε2ζ 2)ζ cosα dα = 0,

2π∫

0

ξ dα = −ε
2π∫

0

ζξ dα

We will seek the solution of this problem using the multiple-scale method:

ψi = ∑
m

C(m)
1

rmeimα , ψe = ∑
m

C(m)
2

1
rm eimα , ξ = ∑

m
Tm(t)eimα

C(m)
1,2

= C(m,0)
1,2

+ εC(m,1)
1,2

+ . . . , Tm = T (0)
m + εT (1)

m + . . .

d
dt

=
∂

∂ t0
+ ε

∂
∂ t1

+ . . . = D0 + εD1 + . . .

where m is the natural-oscillation mode number.
As mentioned above, in the presence of monochromatic vibration the parametric instability for the prin-

cipal resonances appears when the synchronism condition ω = Ωm + Ωm+1 is satisfied. This condition also
applies in the case of multi-frequency vibration, because it is associated only with the fact that for the forced
oscillations the fundamental mode is translational while for the natural oscillations it is quadrupole. For a
quantitative description of the proximity of the external frequencies to the sum Ωm + Ωm+1, we introduce
the detuning parameter ωk − (Ωm + Ωm+1) = γ = εγ1 + ε2γ2 + . . .

Thus, in the zero-order expansion, we obtain the problem

∆ψ(0) = 0, q(0) = −ρψ(0)
t

r → ∞ : ψ(0) → 0

r = 1 : [ψ(0)
r ] = 0, ξ (0)

t = ψ(0)
r , [q(0)] = ξ (0) + ξ (0)

αα

The solution of this problem is

ψ(0)
i

= ∑
m=2

i
Ωm

m
B(0)

m (t1, . . . )r
meiΩmt0 eimα + c.c.

ψ(0)
e = − ∑

m=2

i
Ωm

m
B(0)

m (t1, . . . )
1

rm eiΩmt0 eimα + c.c.

ξ (0) = ∑
m=2

B0
m(t1, . . . )e

iΩmt0 eimα + c.c.
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In the first order, we have the following problem:

∆ψ(1) = 0, q(1) = −ρ(ψ(1)
t0

+ ψ(0)
t1

) − ρ∇ ψ(0) · ∇ ϕ (0)

r → ∞ : ψ(1) → 0

r = 1 : [ψ(1)
r ] + ξ (0)ϕ (0)

err − ξ (0)
α ϕ (0)

eα = 0, ξ (1)
t0

+ ξ (0)
t1

= ψ(1)
ir

[q(1)] + ξ (0)[p(0)
r ] = ξ (1) + ξ (1)

αα

Eliminating the secular terms gives the differential equations for the amplitudes

iΩmD1B(0)
m eiΩmt0 − mρeΠB̄(0)

m+1
e−iΩm+1t0(D2

0 f1 − iΩm+1D0 f1) = 0 (3.2)

Ωm+1D1B̄(0)
m+1

e−iΩm+1t0 − (m + 1)ρeΠΩmB(0)
m eiΩmt0 D0 f̄1 = 0

f1(t) =
N

∑
k=1

akeiωkt
(3.3)

We introduce the function f1(t) into system (3.2)–(3.3) and take the frequency detuning γ into account:

D1B(0)
m + iγ1B(0)

m =
mρeΠωkak

2iΩm
(ωk − Ωm+1)B̄

(0)
m+1

D1B̄(0)
m+1

− iγ1B̄(0)
m+1

=
(m + 1)ρeΠωkΩmāk

2iΩm+1
B(0)

m

Representing the solution for the amplitudes B(0)
m , B(0)

m+1
in the form exp(λ t1), we obtain the equation for

the growth rate λ :

λ 2 =
m(m + 1)ρ2

e Π2ω2
k Ωm|ak|2

4Ωm+1
− γ2

1 (3.4)

If the natural frequencies Ωm and Ωm+1 have different signs, then the right side of Eq. (3.4) is negative
and the disturbances do not grow. As a result, resonance is possible only for the sum of the frequencies of
two neighboring modes, i.e. when the frequencies are of the same sign. For fairly large vibration amplitudes,
we have λ 2 > 0 and, hence, growing disturbances exist. From this equation, we find the threshold vibration
amplitude as a function of the detuning parameter γ1. The form of the neutral curve ε(ωk) is given by the
expression

ωk = Ωm + Ωm+1 ± ε

√
m(m + 1)ρ2

e Π2ω2
k |ak|2Ωm

4Ωm+1
(3.5)

4. TWO-FREQUENCY VIBRATION

We will consider the main effects obtained for a specific case of external action. We represent the function
f (t) in the form

f (t) = A1eiω∗
1 t + A2eiω∗

2 t + c.c.

The velocity of the center of mass relative to the laboratory reference frame (2.1) is

U(t) = ρe(iω1a1eiω1t + iω2a2eiω2t + c.c.)

In the first-order expansion, solution (2.2)–(2.3) takes the form:

ϕ (1)
i

= (iω1Ae2iω1t + iω2Be2iω2t − 1/2i(ω2 − ω1)Cei(ω2 −ω1)t +

1/2i(ω2 + ω1)Dei(ω2 +ω1)t + c.c.)r2 cos 2α
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ω2

ω1

Fig. 2. Isolines of the oscillation energy dependence on the external frequencies (Ω2
2 = 3). The maxima, shown by the

broken lines, correspond to the resonances ω1 ± ω2 = ±Ω2, ω1 = ω2/2, ω2 = ω2/2

ϕ (1)
e = −(iω1Ae2iω1t + iω2Be2iω2t − 1/2i(ω2 − ω1)Cei(ω2 −ω1)t +

1/2i(ω2 + ω1)Dei(ω2 +ω1)t + c.c.)r−2 cos 2α

ζ (1) = (Ae2iω1t + Be2iω2t − Cei(ω2 −ω1)t + Dei(ω2 +ω1)t + c.c.)cos2α −
(1/3ρeΠ2(|a1|2ω2

1 + |a2|2ω2
2 ))cos 2α

A =
ρeΠ2a2

1ω2
1

3 − 4ω2
1

, B =
ρeΠ2a2

2ω2
2

3 − 4ω2
2

, C =
ρeΠ2ā1a2ω1ω2

3 − (ω2 − ω1)2 , D =
ρeΠ2a1a2ω1ω2

3 − (ω2 + ω1)2

The time-independent part of the function ζ describes the variation of the mean drop shape. No matter
what the density ratio, the drop is compressed in the vibration axis direction.

The time-dependent part of the function ζ is resonant in nature: the drop oscillation amplitude grows
without bound as the external frequencies approach the resonant values. Resonant growth of the oscillation
amplitude may occur not only when the vibration frequency is equal to one-half the frequency of the natural-
oscillation quadrupole mode (superharmonic or nonlinear resonance) but also when the sum or the difference
of the vibration frequencies is equal to this frequency. We recall that, in the monochromatic case, the terms
contain only the double frequency of the external vibrations.

Figure 2 shows the isolines of the oscillation energy as a function of the vibration frequencies. As the
frequencies approach the resonant values, the oscillation amplitude grows without bound. This is attributable
to the absence of dissipation. The broken curves correspond to the resonances ω1 ± ω2 =±Ω2, ω1 = Ω2/2,
and ω2 = Ω2/2. Parametric resonance takes place when the synchronism conditions are satisfied: ω =
Ωm + Ωm+1, where the vibration frequency ω = {ω1, ω2}. In the case considered, the neutral curve (4.5)
takes the form:

ω = ωm + Ωm+1 ± ε

√
m(m + 1)ρ2

e Π2ω2|b|2Ωm

4Ωm+1

where b = {a1, a2}. Figure 3 shows the first two parametric-resonance regions.
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ε

ω

Fig. 3. Regions of parametric instability (shaded)

Summary. The oscillations and mean deformation of a cylindrical drop of inviscid fluid surrounded by
another inviscid fluid and located between two rigid surfaces are studied. The drop is immersed in a multi-
frequency pulsating flow. It is assumed that the mean distortion of the drop shape is small. The contact
angle is constant and equal to π/2.

The phenomenon of superharmonic (nonlinear) resonance is registered when the vibration frequencies
are equal to one-half the frequency of the natural-oscillation quadrupole mode or when the sum/difference
of the vibration frequencies is equal to the natural frequency. In the monochromatic case, resonance occurs
when the external-vibration frequency is equal to half the natural frequency.

The stability of the forced oscillations with respect to small disturbances is investigated. It is shown that
parametric resonance appears when the synchronism condition is satisfied, i.e. when one of the vibration
frequencies is equal to the sum of the frequencies of the neighboring modes of the natural oscillations. The
detuning parameter is determined and the regions of instability are found.

The deviation of the mean drop shape from cylindrical is proportional to the square of the vibration
amplitude. Compression of the drop in the direction of the axis of vibration is observed for an arbitrary
density ratio.
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