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Abstract — Examples of numerical calculations of isothermal flows of two-phase two-component mix-
tures based on the density-functional method are presented. Using this method, the following problems
are calculated in the two-dimensional formulation: drop impact on a liquid layer, drop rupture in a Cou-
ette flowfield, wetting-angle formation for a drop on a solid surface, development of Rayleigh-Taylor
and Kelvin-Helmholtz instability on a gas-liquid interface.
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The density-functional method makes it possible to describe a multiphase multicomponent mixture con-
tinuously, without introducing density jumps and phase interfaces. This is achieved by introducing the
squares of the component density gradients into the expression for the free energy (or entropy) of the mix-
ture [1–5]. The main advantage of this approach is the possibility of finding the spatial phase distribution
as one of the results of solving a single problem; there is no need a priori to specify the phase interface
surface geometry, to solve the hydrodynamic equations for each phase separately, or to use jump relations.
An important feature of the density-functional method is taking the structure of the interphase region into
account. This leads to observable effects for fluid flow in a capillary with surface-active walls [6] and for
the capillary-gravity wave spectrum [7].

The study of the advantages of the density-functional method for the numerical simulation of multiphase
flows has only just begun. Positive results have been obtained for several typical problems. Some of those
obtained for plane isothermal viscous two-phase two-component flows are presented below.

In this paper, the basic equations of the theory are given, the numerical algorithms for solving these
equations are described, and examples of calculating several typical two-phase flows are presented. The
results and further possibilities of the method are discussed.

1. BASIC EQUATIONS OF THE DENSITY-FUNCTIONAL THEORY

We will first recall the basic propositions of the theory for nonisothermal and isothermal flows [3, 4].
Let an M-component mixture (gas or liquid) fill a region D with a piecewise-smooth boundary ∂D cor-

responding to contact with a stationary solid phase. We introduce the following notation: T is the absolute
temperature and ni is the molar density of the i-component. We will assume that the subscripts i, j, and k run
through the values 1, . . . , M corresponding to the mixture component numbers and that the indices a, b, and
c run through the values 1, 2, 3 corresponding to the Cartesian coordinates xa. If not otherwise specified, we
assume summation over recurring indices. We will use the following concise notation for derivatives:

g,T =
∂g
∂T

, g,i =
∂g
∂ni

, ∂ag =
∂g
∂xa

Nonisothermal case: statics. In accordance with [4], we will specify the entropy of the mixture as the
functional
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934 DEMYANOV AND DINARIEV

S =
∫

D

θ dV +
∫

∂D

s∗ dA (1.1)

where θ = s − α∂aT∂aT/2 − αi j∂ani∂an j/2, s = s(T, ni) is the entropy of the homogeneous mixture per
unit volume, s∗ = s∗(T, ni) is the entropy per unit surface area, α = α (T, ni) > 0, αi j = αi j(nk) are the
coefficients of a positive symmetric matrix, and dV and dA are volume and surface elements.

The energy of the mixture with account for the external gravity field is specified by the functional

U =
∫

D

(u + ρϕ)dV +
∫

∂D

u∗ dA (1.2)

where u = u(T, ni) is the internal energy of the homogeneous mixture per unit volume, u∗ = u∗(T, ni) is the
energy per unit surface area, ϕ = ϕ (xa) is the gravity potential, ρ = mini is the mass density of the mixture,
and mi is the molar mass of the i-component.

The total number of i-component particles is determined by the expression

Ni =
∫

D

ni dV (1.3)

The equilibrium states of the mixture are critical points of the entropy functional (1.1) for fixed values of
the energy (1.2) and fixed quantities (1.3). The locally thermodynamically stable points are local constrained
maxima of the entropy functional. The globally thermodynamically stable state of the mixture is the point
of absolute conditional maximum of the entropy functional.

Thus, the mixture equilibrium states must satisfy the variational principle

δS − λ0δU + λiδNi = 0 (1.4)

where λ0 and λi are Lagrangian multipliers.
Directly calculating the variation of functional (1.1), we obtain the expression

δS =
∫

D

(φ0δT + φiδni)dV +
∫

∂D

(φ0∗δT + φi∗δni)dA (1.5)

φ0 = s,T +
1
2

α,T ∂aT∂aT + α∆T

φi = s,i −
1
2

α,i∂aT∂aT − 1
2

α jk, i∂an j∂ank + αi j,k∂an j∂ank + αi j∆nj

φ0∗ = s∗,T + α la∂aT, φi∗ = s∗, i + αi jla∂an j

where la is the inward normal to the surface ∂D and ∆ = ∂a∂a.
Substituting expression (1.5) in the variational equation (1.4) and using the arbitrariness of the temper-

ature variations and component densities, we obtain the conditions of mixture equilibrium in the form of a
system of elliptical equations

φ0 − λ0u,T = 0 (1.6)

φi − λ0(u,i + miϕ ) + λi = 0 (1.7)

and boundary conditions

φ0∗ − λ0u∗,T = 0 (1.8)

φi∗ − λ0u∗, i = 0 (1.9)
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MODELING OF MULTICOMPONENT MULTIPHASE MIXTURE FLOWS 935

When solving problem (1.6)–(1.9), the (M + 1) Lagrangian multipliers λ0, λi must be found from the
specified values (1.2) and (1.3). An analysis of Eq. (1.6) for T = const shows that λ0 = T−1. The requirement
for any isothermal state to satisfy the boundary condition (1.8) imposes an additional restriction [4] which
will be assumed to hold below:

u∗,T = T s∗,T

Nonisothermal case: dynamics. As the basic hydrodynamic equations we will use the traditional equa-
tions for the densities, momentum and energy [8]:

∂tni + ∂aIia = 0 (1.10)

ρ(∂tva + vb∂bva) = ∂b pab − ρ∂aϕ (1.11)

∂tu + ∂a(vau) = pab∂avb − ∂aqa (1.12)

where Iia is the i-component flux vector, va = ρ−1miIia is the mean-mass velocity, pab is the mixture stress
tensor, and qa is the heat flux vector.

We introduce the following auxiliary quantities: Qia = Iia − niva — the i-component diffusion flux, qex
a —

the heat flux in the solid phase surrounding the multicomponent mixture considered, Σab = (φini − θ)δab −
α∂aT∂bT − αi j∂ani∂bn j, Ψ0 = φ0u−1

,T , and Ψi = φi − φ0u−1
,T u,i. The quantity Ψ0 has inverse temperature

dimensionality and is exactly equal to T−1 if T = const or α = 0. This gives grounds for introducing
the temperature Te = Ψ−1

0 [4] which is generally different from the temperature T . In the hydrodynamic
description we will use the following boundary conditions for the dynamic variables: the no-slip condition

va|∂D = 0 (1.13)

the impermeability condition for the diffusion fluxes:

laQia|∂D = 0 (1.14)

and the balance condition for the surface energy:

∂tu∗ = (qex
a − qa)la (1.15)

In addition, instead of the boundary conditions (1.8) and (1.9), in the dynamic description we will also
use other conditions [4] that do not contain Lagrangian multipliers

φ0∗ − T−1
e u∗,T = 0 (1.16)

φi∗ − T−1
e u∗, i = 0 (1.17)

Using relations (1.5), (1.10)–(1.17) and integrating by parts, it is easy to obtain an expression for the
derivative of the entropy functional (1.1)

dS
dt

=
∫

∂D

T−1
e qex

a la dA +
∫

D

σ dV (1.18)

σ = Ψ0τab∂avb + qa∂aΨ0 + Qia∂aΨi (1.19)

τab = pab − σab (1.20)

σab = Ψ−1
0 Σab + (u − u,i ni)δab (1.21)

The expression for the rate of entropy change (1.18) takes the standard form [9] of the sum of two terms:
flow across a surface and entropy production. The hydrodynamic model considered is consistent with the
second law of thermodynamics if the entropy production is nonnegative:
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936 DEMYANOV AND DINARIEV

σ ≥ 0 (1.22)

We note that the expression for the entropy production (1.18) contains a tensor τab (1.20) obtained from
the stress tensor pab by subtraction of the tensor σab (1.21). The tensor σab does not contribute to the entropy
production and can be interpreted as the static stress tensor. In the case of an equilibrium homogeneous
mixture, this tensor can be reduced to the ordinary stress tensor in an ideal fluid

σab = −pδab (1.23)

where p = (T s − u + (u,i − T s,i)ni) is the hydrostatic pressure.
To close the hydrodynamic problem (1.10)–(1.17), we need the material relations, that is, expressions

for the quantities τab, qa and Qia which must be compatible with inequality (1.22). Of most interest is the
model that gives a minimal generalization of the model of a viscous heat-conducting mixture [8, 9]. For the
viscous stress tensor we can use the linearly viscous Navier-Stokes model

τab =
(

µv − 2
3

µs

)
∂cvcδab + µs(δavb + δbva) (1.24)

where µv and µs are the positive coefficients of bulk and shear viscosity. When formulating the expressions
for the heat and diffusion fluxes, it is convenient to denote Q0a = qa. Then, by definition, the quantities Qα a

(α = 0, 1, . . . , M) include the fluxes qa and Qia. Obviously, if the relations

Qα a = µαβ ∂aΨβ (α , β = 0, 1, . . . , M) (1.25)

where µαβ is a symmetric nonnegative matrix, hold, then so does the inequality

qa∂aΨ0 + Qia∂aΨi ≥ 0

In order to exclude a contradiction between (1.25) and the definition of diffusion fluxes, the transfer
coefficient matrix µαβ must satisfy the additional requirement µαβ aβ = 0, where a0 = 0 and ai = mi.

Relations (1.24) and (1.25) close the hydrodynamic problem. It can be shown [4] that the hydrodynamic
equations are consistent with the static equations (1.6)–(1.9), i. e., the static solution automatically satis-
fies the hydrodynamic equations and, conversely, the solution of a hydrodynamic problem with the zero
component and heat fluxes satisfies the static equations.

Isothermal case: statics. In some cases, a multiphase multicomponent medium can be described in
the isothermal approximation. For example, the approximation T = const can be justified if the thermal
conductivity or the heat capacity are high. In the isothermal approximation, the constitutive equations can be
obtained by passing to the limit T = const in the nonisothermal equations. At the same time, the isothermal
description can be developed independently on the basis of the principle of minimization of the free energy
of the mixture. Then the approaches based on the entropy and free-energy functionals are interrelated.

The free-energy functional can be constructed from the entropy and energy functionals (1.1) and (1.2),
respectively:

F = U − T S =
∫

D

ωdV +
∫

∂D

f∗ dA (1.26)

ω = f +
1
2

νi j∂ani∂an j + ρϕ

where f = f (T, ni) = u − T s is the free energy of a homogeneous mixture per unit volume, f∗ = f∗(T, ni) =
u∗ − T s∗ is the free energy per unit surface area, and νi j = Tαi j(nk).

The mixture equilibrium states are critical points of functional (1.26) at fixed values of (1.3).
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Calculating the variation of functional (1.26), we obtain the expression

δF =
∫

D

Φiδni dV +
∫

∂D

Φi∗δni dA (1.27)

Φi = f,i + miϕ +
1
2

ν jk, i∂an j∂ank − νi j,k∂an j∂ank − νi j∆nj

Φi∗ = f∗, i − νi jla∂an j

The variational equation for equilibrium states with Lagrangian multipliers Λi

δF − ΛiδNi = 0

leads to the system of elliptic equations
Φi − Λi = 0 (1.28)

and boundary conditions
Φi∗ = 0 (1.29)

Equations (1.28) correspond to Eqs. (1.7) with Λi = Tλi. The boundary conditions (1.29) correspond to
the boundary conditions (1.9).

Isothermal case: dynamics. In the isothermal approximation, the mixture hydrodynamics are described
by Eqs. (1.10) and (1.11). We will use the boundary conditions (1.13), (1.14) and (1.29). The latter group
of conditions corresponds to conditions (1.17).

Let us denote the functional of the total energy of the system as the sum of the free-energy functional
(2.26) and the kinetic energy of the mixture

E = F +
1
2

∫

D

ρvava dV (1.30)

Directly calculating the time derivative of functional (1.30), with account for expression (1.27) and equa-
tions (1.10) and (1.11), we arrive at the relation

dE
dt

=
∫

D

ΣdV (1.31)

Σ = −τab∂avb + Qia∂aΦi (1.32)

As in the nonisothermal case, the viscous stress tensor τab and the static stress tensor σab are defined by
relations (2.20) and (2.21). We note that in the isothermal case the expression for the static stress can be
simplified:

σab = (ω − Φini)δab − νi j∂ani∂bn j (1.33)

To close the hydrodynamic problem, we must specify the expressions for the quantities τab and Qia in
such a way as to satisfy the dissipative system condition

Σ ≤ 0 (1.34)

It is easy to show that if the material relations (1.24) and (1.25) are assumed, inequality (1.34) is satisfied.
We must then use the following relation between the quantities Φi and Ψi, valid in the isothermal case:

Ψi = −T−1(Φi − miϕ )

The isothermal theory based on functional (1.26) is thus a particular case of the theory based on func-
tional (1.1). It is worth noting that the interrelation between functionals (1.1) and (1.26) leads to a linear
temperature dependence of the coefficients νi j.
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938 DEMYANOV AND DINARIEV

2. EXAMPLES OF NUMERICAL SIMULATION OF TWO-PHASE FLOWS

As the basic system of equations we will take the component conservation equations (1.10) and the
momentum conservation equation (1.11). We will specify the viscous stress tensor by expression (1.24), the
static stress tensor by expression (1.33), and the diffusion flux by formula (1.25).

When using the density-functional method for two-phase media, such as liquid-liquid and gas-liquid
systems, we must specify the form of the free-energy function, the coefficients of viscosity, diffusion and
surface tension on the mixture-solid interface, and the coefficients νi j.

If the deviations of the densities from certain fixed equilibrium values are small, then the free energy of
one phase (phase A) can be represented in the form of a quadratic polynomial

fA(ni) = fA0 + fAi(ni − niA) +
1
2

fAi j(ni − niA)(nj − njA) (2.1)

where niA is the unperturbed molar density of phase A.
The coefficients fA0 and fAi do not enter into the hydrodynamic equations and are used only for calculat-

ing the initial unperturbed pressures and chemical potentials.
Therefore, we can assume them to be equal to zero. For hydrodynamic modeling, only the coefficients

fAi j are important. We select these coefficients in accordance with the data on the bulk elastic modulus of
phase A:

EA = fAi jniAn jA (2.2)

In the case of two-phase flow (phases A and B), the free energy is determined from the expressions for
fA(ni) and fB(ni) as follows:

f =
fA fB

fA + fB
(2.3)

We will assume that the shear and bulk viscosities are known for each phase. For arbitrary component
densities, the viscosities can be calculated from the formulas

µs =
(

cAµ1/3
sA

+ cBµ1/3
sB

)3
, µv =

(
cAµ1/3

vA
+ cBµ1/3

vB

)3
(2.4)

cA =
zB

zA + zB
, cB =

zA

zA + zB

zA =

(
2

∑
i=1

(ni − niA)2

)1/2

, zB =

(
2

∑
i=1

(ni − niB)2

)1/2

In the isothermal case, relations (1.25) lead to the following expression for the diffusion fluxes:

Qia = −Di j∂aΦ j (2.5)

where the symmetric and nonnegative matrix Di j satisfies the condition

Di jm j = 0 (2.6)

From (2.5), for νi j = 0, there follows the expression for the component concentration flux

qia = n−1Qia = −n−1Di j

(∂κ j

∂c

)
n
∂ac − n−1Di j

(∂κ j

∂n

)
c
∂an

where n =
2

∑
i=1

ni is the total density, c = n1/n is the concentration of component 1, and κi = f,i is the chemical

potential.
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Thus, the tabular value of the diffusion coefficient d for component 1 in the mixture is linked with the
matrix Di j by the relation

d = n−1D1 j

(∂κ j

∂c

)
n

(2.7)

The diffusion coefficient d can be calculated from the known values of the phase diffusion coefficients
dA and dB: d = cAdA + cBdB. If the free energy is given (see (2.1)–(2.3)) and the coefficient d is known,
then Eq. (2.7) with account for (2.6) unambiguously determines the matrix Di j.

We will assume that the surface tension on the mixture-solid interface is a linear function of the compo-
nent densities

f∗ = ξ1ini + ξ0 (2.8)

The parameters ξ0 and ξ1i can be calculated from the known values of the surface tensions on the inter-
faces between the solid and each phase (A and B):

θA = ξ1iniA + ξ0, θB = ξ1iniB + ξ0 (2.9)

The system of linear equations (2.9) always has a solution but this solution is nonunique. The arbitrari-
ness in specifying the dependence (2.8) affects the component distribution near the wall but does not affect
the wetting angle.

We will assume the matrix of coefficients νi j to be proportional to the unit matrix. The unknown propor-
tionality coefficient can be fixed from the formula for the surface tension between phases A and B [3]

γ =

+∞∫

0

νi j∂rni∂rn j dr (2.10)

In formula (2.10), the integral is calculated for the static solution of the problem of a phase A drop in
phase B or, conversely, of a phase B drop in phase A.

Thus, relations (2.1)– (2.10) make it possible to specify the dimensional parameters of the model. For
all the problems considered, we assumed that γ = 0.1 N/m.

The system of equations (1.10), (1.11), (1.24), (1.33), (2.5) was solved numerically using an explicit
conservative difference scheme based on the concept of the method of large particles [10]. In the algorithm
developed, the “Lagrangian” stage is completely the same as in [10], while the “Eulerian” stage is con-
structed starting from the absence of the pressure function from the conservation equations (the terms with
the pressure gradient are defined in terms of the derivatives of the free energy f : p = ni f,i − f ).

In order to study the opportunities afforded by the density-functional method, we numerically calculated
the following model problems: (1) interaction of a liquid drop (phase A) surrounded by another liquid
(phase B) with a plane liquid layer (phase A); (2) fragmentation of a liquid drop (phase B) by a liquid flow
(phase A); (3) interaction of a liquid drop (phase A) surrounded by another liquid (phase B) with a plane
solid wall; (4) development of Rayleigh-Taylor and Kelvin-Helmholtz instability on the interface between
two phases.

The problems considered can also be solved by other numerical methods [11–20]. Nevertheless, the
density-functional method has at least three advantages: multiphase states can be calculated continuously
without the separation of interfaces between the phases; the multiphase states are stable, that is, numerical
time steps do not lead to phase “smearing”; all the coefficients used in the algorithm can be calculated on the
basis of well-studied experimental data. Other approaches to the description of multiphase flows [11–20]
fail to satisfy at least one of these conditions.

We must now consider the choice of a specific class of numerical algorithms [10]. Since at present both
experience in numerically solving the above-mentioned system of equations and information on the behavior
of the solutions obtained are almost entirely lacking, as the first stage in the development of numerical algo-
rithms for the continuous calculation of multiphase flows it is expedient to use simple difference methods,
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Fig. 1. Drop falling onto a liquid layer

such as the method proposed in [10]. This method is, firstly, simple to realize and efficient and, secondly,
has proved its advantages in the calculation of such complex unsteady flows as the Rayleigh-Taylor and
Richtmayer-Meshkov instabilities, even in the turbulent mixing stage [11–17]. Moreover, the calculations
of the same problems performed on the basis of more complex high-accuracy methods, such as the method
of artificial compressibility [13, 17, 19] and the method of [18, 20], have confirmed the high quality of the
solution based on the method of [10].

In Figs. 1–4, the shades of grey in the calculation cells reflect the distribution of the concentration of one
of the components present, which practically corresponds to the spatial distribution of the corresponding
phase.

Problem 1. Initially, the upper half-plane is occupied by a liquid layer (phase B) at rest and the lower
half-plane by another liquid layer (phase A). A liquid drop (phase A) moves from the upper into the lower
region, at an angle of 30◦ to the horizontal (see Fig. 1a). The initial velocity of the drop is equal to
10 m/s. The body force field is directed vertically downward. On the upper and lower boundaries, con-
ditions (1.13) and the conditions of vanishing of the component diffusion fluxes (1.14) are assigned. On
the left and right boundaries the periodicity conditions are imposed. The following problem parameters are
specified: the calculation domain dimensions are 60× 50; the grid cells are squares with a 0.001 m side;
m1 = 18 kg/kmol, m2 = 200 kg/kmol, µsA = 10−3 Pa · s, µsB = 10−2 Pa · s, µv = 10µs, the phase mass
densities ρA = 1000 kg/m3, ρB = 800 kg/m3, EA = EB = 109 Pa, and dA = dB = 10−9 m2/s.

Figure 1a–d shows the process dynamics at successive moments of time. It can be seen that the inter-
action leads to the formation of a structure with a thin stem of phase A (Fig. 1b) and subsequent liquid
“outflow” from the drop into the layer (Fig. 1c) over which perturbations in the form of gravity waves
propagate (Fig. 1d).

Similar collision problems have been considered in connection with the need to predict the parameters
of jets and sprays formed upon the interaction of various devices with liquids [21]. In simulations, the
approximation of high collision velocities, when the viscous and surface-tension effects are negligible, is
often used. The problem considered in this paper corresponds to the little studied hydrodynamic phenomena
for which the high-velocity approximation is incorrect.

Problem 2. Initially, a liquid drop (phase B) is introduced into an inhomogeneous flow of another liquid
(phase A). This is a Couette flow formed by upper and lower boundaries that move at equal velocities

FLUID DYNAMICS Vol. 39 No. 6 2004
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Fig. 2. Liquid drop rupture in shear flow

Fig. 3. Spread of a drop over a solid wall

U = 10 m/s (in their own planes) in opposite directions (the upper boundary moves from left to right). On
the boundaries we assign conditions (1.13) and (1.14) (Fig. 2a). There are no body forces. On the left and
right boundaries the periodicity conditions are imposed. The calculation domain is 80×60 and µs = 10−2 Pa
for both phases; the other problem parameters are the same as in problem 1.

Due to the work done by the viscous forces, the drop begins to change shape (Fig. 2b), elongating in
the stream direction. In Fig. 2c, the typical thinning of the middle of the drop can be seen. Then this zone
ruptures with the formation of two drops (Fig. 2d).

The phenomena of drop rupture in a liquid flow have been studied experimentally and theoretically
[22–26]. Due to the variety of these phenomena, it has proved convenient to combine them into classes.
So far, six main fragmentation mechanisms have been distinguished [25, 26]. The problem considered
corresponds to the first of these mechanisms (so-called vibrational fragmentation mode). In this case, the
drop introduced into the flow is deformed, turning into an elongated ellipsoid, and then disintegrates into
two or more droplets. For simulating this process numerically, the Navier-Stokes model, which allows the
drop dynamics to be fairly well reproduced up to disintegration, is commonly used. The advantage of the
approach proposed in this paper is that it offers the possibility of a unified description of the two-phase
system in all stages of drop evolution.
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942 DEMYANOV AND DINARIEV

Fig. 4. Development of unstable perturbations on the interface between moving phases

Problem 3. A liquid drop (phase A) at rest, surrounded by a liquid phase B, is initially spherical and
touches the lower boundary of the calculation domain (Fig. 3a) which models a solid surface. On the lower
boundary, conditions (1.13) and (1.14) for the velocity and the diffusion fluxes and (1.29) for the molar
phase densities are assigned. The surface-tension function on the mixture-solid interface is calculated from
formula (2.9), where θB − θA = 0.06 N/m. On the other boundaries of the calculation domain free-boundary
conditions are assigned. There are no body forces. The calculation field dimensions are 80× 40, the side
of the square difference-grid cells measures 10−4, and µs = 10−3 Pa for phases A and B; the other problem
parameters are the same as in problem 1.

In Fig. 3b–d, we can see the dynamics of establishment of the drop shape on the solid surface with the
formation of a sharp wetting angle. The calculation results demonstrate the possibility of using the density
functional for the description of the static and dynamic wetting effects. With reference to the present state of
experimental and theoretical research in this field (see review [27]), we note two advantages of the approach
proposed: (a) the density-functional method is a natural generalization of Cahn’s static theory [28] to include
the case of multicomponent multiphase viscous mixture flows; (b) the method makes it possible to overcome
a certain limitation of the Navier-Stokes model in which, since the particle velocity on the mixture-solid
interface is equal to zero (no-slip condition), displacement of the three-phase contact line is forbidden.

Problem 4. Initially (Fig. 4a), the upper half-plane is occupied by a gas phase A moving from right to
left at a velocity U and the lower half-plane by a liquid phase B moving in the opposite direction at the same
velocity. The body force is perpendicular to the interface and directed into the lighter gas phase. This is a
case of Rayleigh-Taylor instability [11]. In the neighborhood of the interface the initial perturbations are
specified in the form:
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vx = sign(y)Asin(kx)e−k|y|, vy = Acos(kx)e−k|y|

Here, k is the wave number, A is the perturbation amplitude, x is the longitudinal coordinate, and y is the
transverse coordinate measured from the interface. On the left boundary, at y < 0, the boundary conditions
vx = U and vy = 0 and on the right boundary, at y ≥ 0, the conditions vx = −U and vy = 0 are assigned.
On the other boundaries of the calculation domain free-boundary conditions are imposed. The problem
parameters are as follows: the calculation field dimensions are 200× 50; the side of the square grid cells
measures 4 ·10−4 m; m1 = 2 kg/kmol, m2 = 200 kg/kmol, µs = 10−5 Pa · s for phase A and µs = 10−3 Pa · s
for phase B, µv = 10µs, ρA = 2 kg/m3, ρB = 800 kg/m3, EA = 107 Pa, EB = 109 Pa, dA = 10−6 m2/s,
dB = 10−9 m2/s, U = 5 m/s, A = 1 m/s, and k = 314 1/m.

From an analysis of the dispersion equation for the chosen parameters, it follows [17] that in the neigh-
borhood of the interface Rayleigh-Taylor and Kelvin-Helmholtz instabilities develop, which initially leads
to a slight curvature of the interface (Fig. 4b). This process then goes over into a nonlinear stage with a
highly deformed interface (Fig. 4c) followed by the formation of separate gas bubbles (Fig. 4d).

This type of hydrodynamic instability has been studied experimentally and theoretically [29, 30] but
mainly in the initial stage of the process. Within the framework of linear perturbation theory, the calculations
performed on the basis of the density-functional method correspond to the known results [29, 30]. The
behavior of the perturbations in the nonlinear stage has still not been sufficiently studied.

Summary. The density-functional method adequately models complex multiphase flows without the use
of special techniques for separating the interfaces between phases (the calculation is continuous). This
simplifies the algorithm which can easily be adapted for various problem types. In the future, to make the
calculations more efficient, it would be desirable to use implicit difference schemes.

The examples of numerical calculations considered show that the density-functional method models the
two-phase mixture dynamics quite efficiently in the isothermal approximation. The continuous calculation
method proposed is time-saving and can easily be generalized to include both mixtures with more compo-
nents or phases and three-dimensional problems.

For nonisothermal problems the theory is fairly well developed but the numerical realization of the cor-
responding system of equations needs further research.

The results were visualized using VR-Geo software (Servis-Nafta Limited).
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