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Abstract
Since electric vehicles (EVs) have definite benefits over gasoline vehicles, the vehi-
cle market could be dominated by EVs in the future. This paper focuses on the new 
valet charging service to send staffs to replace users for charging their EVs, which 
can largely reduce charging anxiety. In this study, the location of charging stations 
and the allocation of charging demands to charging stations are optimized simul-
taneously due to the interaction of these decisions. The queueing behavior at the 
charging station is incorporated into the model, and the average charging waiting 
time is derived. We construct a mixed integer nonlinear optimization model based 
on the characteristics of valet charge service and an infinite-source queuing model. 
The objective is to minimize a total cost of the construction of charging facilities 
and valet charge service launching (i.e., charging staffs’ road service, round-trip 
time, and the charging waiting time). The planning problem for valet charging ser-
vice in this paper contributes to the existing literature on self-charging way where 
the users of EVs drive at charging stations to recharge their EVs by themselves. An 
improved genetic algorithm is developed to obtain deployment and operation plans 
for large-scale instances constructed based a real case in Shanghai. The improved 
genetic algorithm shows high performance in convergence and solution quality, 
which provide the service providers an efficient decision support tool. Meaningful 
managerial insights are also provided, which can help the service provider make bet-
ter cost-effective design of charging location and allocation plans. For example, the 
charging station location decisions are not as much as sensitive to critical variables 
(such as demand level, charging capacities, and the value of time) than the overall 
cost to those. This means that partial location decisions remain unchanged when the 
key parameters vary.
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1 Introduction

In recent years, the climate change and energy supply are two major issues fac-
ing the world. The 2022 State of the Global Climate report shows that the global 
average temperature in 2022 is 1.15 °C higher than the 1850–1900 average. 
Climate change has brought about harmful socio-economic and environmental 
impacts such as sea level rise, drought, food insecurity, refugee displacement. 
Carbon dioxide emissions from fossil fuels are the main driver of climate change. 
To achieve the goal of net-zero emissions by 2050, the International Energy 
Agency (IEA) sees electricity as a key element of a successful energy transition. 
The share of electricity in final energy consumption will rise from current 20 to 
52% in 2050. The share of fossil fuels in the global energy mix will drop from 
current 80 to 60% in 2050. EVs as an alternative transportation solution play a 
huge role in achieving the net zero emission goal in 2050 (Varshosaz et al. 2019), 
as every 1% reduction in fuel consumption can reduce carbon dioxide emissions 
by nearly 7.5 million tons. In China, there is expected to be about 100 million 
EV owners in 2030. However, the experience of electric replenishment is still 
not as smooth as that of gasoline vehicles. At present, most EV users cannot be 
recharged timely with facing the charging troubles, such as no available charging 
piles and long charging waiting time (Sun et al. 2020).

In response to the charging issues, the government has strengthened the con-
struction of charging infrastructure. By the end of June 2023, the cumulative 
number of charging infrastructure in China is 6.652 million units, a year-on-year 
increase of 69.8%. At the same time, EV companies are actively implementing 
many substantive solutions. For example, Tesla has established a super charging 
station (Huanqiu 2022), and a new service mode known as valet charging was 
first proposed by NIO Corporation (NIO), a worldwide manufacturer of intelli-
gent EVs founded in 2014 and went public in the U.S. in 2018. The user can 
directly call the service on the specific mobile application, and the charging staff 
will drive the car from the user to the charging station and return it after it is fully 
charged (Nio 2023). By July 2022, the number of registered users of the appli-
cation of NIO Power has exceeded 3 million, and NIO has provided a total of 
821,350 valet charging services. The valet charging service will alleviate users’ 
recharging anxiety, free up users’ recharging time to focus on urgent matters, and 
promote to attracting new users of EVs.

From the perspective of overall operating costs, both tactical charging infra-
structures planning and operational charging demands allocation are pivotal for 
launching valet charging services. The site of the charging station will deter-
mine the travel distance of the charging staffs, which will affect the allocation of 
demand, and vice versa. Besides, due to the limited charging capacities, charg-
ing waiting is inevitable. These pose challenges for the company to obtain effi-
cient plans and motivate us to investigate the integrated optimization problem of 
EVs charging location and allocation for valet charging service. Therefore, two 
decisions on where to locate charging stations and how many charging demands 
at each node to be allocated to each station are optimized jointly. The charging 
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system is modeled as a queuing system to derive the average charging waiting 
time. The total cost, including the construction of charging facilities and valet 
charge service launching (i.e., charging staffs’ road service, round-trip time, and 
the charging waiting time), is minimized.

1.1  Literature review

In the last few years, researchers and decision-makers in the transportation filed 
have paid close attention to the EV charging infrastructures planning problem 
(Zhang et al. 2015; Rogge et al. 2018; Kunith et al. 2017; Mirchandani et al. 2014; 
Rahman et al. 2016; Shen et al. 2019). The charging facility locating problem con-
siders different optimization objectives from the viewpoints of EV users or charg-
ing service providers. Zhang et  al. (2017) at the minimum comprehensive cost 
of land cost, construction cost and operation cost. Li et al. (2016a) minimize the 
overall cost of new charging stations and relocation within a finite planning hori-
zon. From the perspective of users, Wu and Sioshansi (2017) consider the uncer-
tainty of demand and establish a random traffic flow capture model. Zhu et  al. 
(2016) comprehensively consider the user’s travel cost and entering the charging 
station. He et al. (2015) assume that the EV driver determines the driving route 
and charging plan at the same time, so as to minimize the trip and charging time, 
while ensuring that the battery will not be depleted before the trip is completed. 
According to the characteristics of urban residents’ travel behavior, Sun et  al. 
(2020) aim at maximizing the coverage area of EV flow by charging stations. 
Using a two-layer simulated annealing algorithm, Ouyang and Xu (2022) deploy 
the optimal location for both fast and slow charging stations. They set the goal of 
maximizing covered traffic flows within a constrained budget, incorporating EV 
customers’ partial charging habits and elastic demand.

A group of studies apply mathematical modelling approach and optimization 
theories to study the EV charging infrastructure planning problem (Kim and 
Kuby 2012, 2013; Huang et al. 2015; Chung and Kwon 2015; Chung and Kwon 
2015; Zhang et al. 2017; Chen et al. 2016; Liu and Wang 2017; Asamer et al. 
2016). Li et al. (2016b) combine the ideas of multi-path and multi-period to for-
mulate the dynamical public charging stations locating problem. The proposed 
heuristic based on a genetic algorithm solves the formulated mixed-integer lin-
ear model. Tu et  al. (2016) construct a location model with spatial–temporal 
demand coverage and propose a genetic algorithm to determine the electric 
taxi charging stations locations using real massive taxi GPS data. Guo et  al. 
(2022) simultaneously optimize charging station location and routing problem 
for EVs and propose a three-phase hybrid heuristic algorithm to solve the prob-
lem. Bao and Xie (2021) study the charging station location problem allowing 
en-route charges as many times as needed for electric vehicles. They propose 
the branch-and-bound algorithm and the nested partitions algorithm to find the 
optimal set of locations. Aghalari et  al. (2023) investigate EV location–rout-
ing decisions under climate and customer demand variability by proposing a 
progressive hedging-based heuristic algorithm. Wang et  al. (2021) jointly 
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optimize the charging location and road capacity allocation considering path 
choice, departure time choice and en-route charging behavior. Faustino et  al. 
(2023) introduce and determine charging zones to achieve high utilization rates 
for electric vehicles chargers. Unlike the traditional charging process, swapping 
the battery at the station takes less than 10 min, which is comparable to refu-
eling a conventional vehicle. The location-routing issue for EV battery swap-
ping stations is a topic of study for some researchers. For example, Mahoor 
et al. (2019), Yang et al. (2017a), Yang and Sun (2015), and Hof et al. (2017) 
all model the problem as a mixed-integer linear programming. They explore 
smart heuristics, such as adaptive large neighborhood search, four-phase sweep 
heuristic, and Tabu search, to solve optimization models for such problems. 
Moreover, there are studies focusing on the charging stations location planning 
(Li et al. 2016b; Brandstätter et al. 2017), assigning charging stations and dis-
tributing the fleet optimally (Li et al. 2016b; Hua et al. 2019) for shared EVs. 
The station-based carsharing mode is studied in Brandstätter et  al. (2017), Li 
et  al. (2016b), and Hua et  al. (2019). The mode of free-floating carsharing is 
also studied by researchers. For instance, Roni et al. (2019) develop an integer 
programming model to simultaneously optimize the locations of charging sta-
tions and the allocation of SEVs to charging stations.

To capture the characteristic of charging demands’ behaviors, literature such 
as Cavadas et al. (2015), Xi et al. (2013), Dong et al. (2014), and Cocca et al. 
(2019a) employ the simulation-based optimization approach to address the prob-
lem of EV charging infrastructure planning. Cavadas et  al. (2015) address the 
issue of where to place EV charging stations in an urban scenario. To maxi-
mize satisfied demand within a set budget, a mixed-integer mathematical model 
is created that introduces demand transference with traveller activities. Cocca 
et  al. (2019a) present a simulator driven by discrete events and based on mil-
lions of data to assess the location of charging stations for free-floating shared 
EVs. Data-driven approaches are also employed by Yang et al. (2017b), Li et al. 
(2017), Chen et al. (2017), Cocca et al. (2019b) to locate charging stations. Yang 
et al. (2017b), Li et al. (2017), and Chen et al. (2017) investigate the problem of 
locating and planning the size of electric taxi charging stations using actual taxi 
travel data. Cocca et al. (2019b) simultaneously determine the decisions of the 
locations of charging stations, whether or not customers were required to place 
rented SEVs back at the charging locations, and the quantity of chargers by pro-
posing a data-driven optimization method. Kłos and Sierpiński (2023) develop a 
charging station siting method that uses a GIS-based approach to properly dis-
tribute charging stations throughout a given urban area considering the distances 
between charging stations. Li et al. (2023) use reinforcement learning to solve a 
three-layer model for EV charging station location and dynamic pricing. Lai and 
Li (2022) propose an economic equilibrium model for on-demand valet charg-
ing to investigate how the planning of the charging infrastructure and regulatory 
action will impact the market outcome.
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1.2  Contributions

The following is a summary of the study’s contributions. First, we consider a new 
service mode named the valet charging service for joint decisions of charging station 
location and charging demand allocation. Scholars have carried out few studies in 
EVs infrastructure planning based on the characteristics of valet charging service. 
The objectives, including the building cost of charging facilities, the road service 
cost, round-trip time, and the charging waiting time of the charging staff, are mini-
mized all simultaneously. Second, a new modelling approach of EVs’ charging sys-
tem with the valet charging service is proposed based on an infinite-source queuing 
model. We also propose an improved genetic algorithm to resolve the joint optimisa-
tion problem rigorously. Third, the proposed model and algorithm are validated and 
applied with real data on valet charging service. New deployment plans of charging 
station location and charging demand allocation are provided for a real case with the 
valet charging service.

1.3  Paper organization

The remainder of the article is organized as follows. The EVs’ charging station loca-
tion and charging demand allocation problem is modeled based on the queuing the-
ory in Sect. 2. In Sect. 3, an improved genetic algorithm is proposed and designed 
according to the features for the optimization problem. Numerical studies related to 
a real case are conducted to evaluate the effectiveness of the developed model and 
algorithm in Sect. 4. Finally, Sect. 5 concludes by presenting some findings.

2  Problem formulation

To formulate a tractable model without losing crucial problem features, we set 
a few key modeling assumptions before building the model. Some of them are 
carried over from earlier research, while others are specific to our model. First, 
within our transportation networks, we assume that there are only battery-pow-
ered automobiles and there is only one type of EV in the study, that is, all are 
pure EVs. This assumption has been recognized by the research community (see, 
for example, Bao and Xie 2021). Second, all EV charging users are valet charg-
ing service users to simplify modeling as adopted by Li et al. (2021) and Lai and 
Li (2022), which could help us to focus on exploring the impact of valet charging 
service on the charging station locations and allocations. Third, the shortest path 
from the electric vehicle at each demand node to each charging station candidate 
node in the network is assumed to be known, and a vehicle always selects the 
shortest transportation route (Bao and Xie 2021; Sun et  al. 2020). Forth, it is 
assumed that the difference in land price at different nodes has an impact on the 
construction cost of charging facilities. This assumption brings our model closer 
to practical applications. Fifth, we overlook other potential operational costs, such 
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as charging fee, maintenance, electricity prices, and environmental impact. Our 
current model assumes that the service capacity of the charging staff is infinite, 
and there are no time window requirements for charging demand. If the variable 
electricity price is introduced, the model needs to output the time-accurate charg-
ing staff assignment and charging planning solutions that considers time-varying 
electricity price and meet the constrictions of the time window. In addition, if we 
jointly optimize the maintenance decision of charging facilities, it will inevitably 
lead to some unexpected modeling and solution challenges. Sixth, we assume that 
the charging demand is known and determined, and there is no traffic congestion.

The process of valet charging service can be regarded as a queuing system, 
as used by Lai and Li 2022, Xiao et  al. (2020), and Kumar et  al. (2022), for 
example. In this queuing system, the EVs that arrive at the charging station are 
the input sources of the system. The user uses the mobile application to call the 
valet charging service. Then, the charging staff picks up the car and arrives at the 
charging station to queue up for charging. The whole process is quite random, 
so we assume that the time interval for an electric car to arrive at a charging 
pile follows the negative exponential distribution with parameter � . That is, the 
arrival process of EVs is a Poisson flow, and the average arrival rate of EVs at the 
charging station is � . In addition, there are multiple charging piles at a charging 
station. So, the charging system is a multi-server system and the service rule is 
first come first service. A charging station is set to accommodate b charging piles. 
Each charging pile operates separately from the others. The service time of the 
fast charging pile follows the negative exponential distribution with the parameter 
� , that is, the average service rate of one charging pile is � . It is assumed that the 
service efficiency of charging piles at different charging stations is the same as 
following the assumption in Bao and Xie (2021). Therefore, the M∕M∕b queuing 
system for the valet charging service can be summarized as follows: each charg-
ing station has b charging piles. The process of EVs arriving at the charging sta-
tion for charging is a Poisson flow, and the average arrival rate is � . EVs receive 
charging services based on the first-come-first-served principle, and the charging 
time follows the negative exponential distribution with parameter � . Each charg-
ing pile can only provide services for one EV. Once a vehicle occupies a charging 
pile, other EVs will not occupy the charging pile.

Due to the randomness of the EV arrival process, we assume that both the source 
of EVs and the capacity of the queuing system are infinite, as recognized in Lai and 
Li (2022). Let n represent the number of arriving EVs. When n < b , it indicates that 
there are n charging piles in a certain charging station charging EVs at this time, and 
b − n charging piles in the system do not provide charging services. When n > b , 
it means that the quantity of EVs arriving at this time is larger than the number 
of charging piles. All b charging piles are charging EVs, and there are n − b EVs 
waiting in line for charging. When the EV has finished charging, the charging staff 
leaves the charging station and sends the vehicle back. Then the EV behind begins 
to charge.

To continuously improve the user experience level and the resource utilization 
efficiency of the valet charging service, while ensuring that the capacity of charging 
stations can meet all charging demands, an optimization model for charging station 
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location and demand allocation is proposed. Before establishing the mathematical 
model, the following definitions are given:

Definition 1 (The cost of the entire charging system). These include the construction 
cost of charging facilities, and the road service cost of the charging staff.

Definition 2 (User experience level). The user experience level is quantified as the 
round-trip time and the average waiting time of the charging staff at the charging 
station, and the spent time is costed.

This is in line with the status quo of EV valet charging service in NIO. The cur-
rent valet charging service is gradually being upgraded. Through model optimiza-
tion, the charging system cost and user service experience level can be balanced, and 
the valet charging demand can be completed in a short time at the lowest cost. In this 
context, we consider two optimization objectives: minimizing the cost of the entire 
charging system and minimizing the round-trip time and the time spent queuing up 
for charging of the charging staffs. Further, we combine the two sub-objectives into 

O1 =

m
∑

i=1

Xi ⋅ Ci +

m
∑

i=1

n
∑

j=1

Dj ⋅ fji ⋅ dij ⋅ c
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m
∑

i=1
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∑

j=1

(

Djfji ⋅ 2dij
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v
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)

Table 1  Model notations

Sets Description

I = {1, 2, ...,m} Set of potential locations of fast charging station
J = {1, 2, ..., n} Set of all demand nodes
Parameters Description
Ci The construction cost of charging facilities at location i
c The average charging staff service fee charged per unit of distance between nodes
v The driving speed of charging staffs
�i The average arrival rate of EVs at the fast charging station i
� The average service rate of one charging pile
ai The variable from 0 to b-1 represents the arrival state of the EV at fast charging 

station i
b The number of charging piles constructed at one fast charging station
Dj The number of demands at node j
dij The distance between node j ∈ J and node i ∈ I

� The value of unit time
Decision variables Description
Xi Binary variable, 1 if a fast charging station is constructed at candidate location i, 0 

otherwise
fji The proportion of the charging demand at node j allocated to fast charging station i
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one objective through the “value of unit time” coefficient. Table 1 includes a list of 
notations that are used to formulate the practical problem studied in this paper into 
mathematical model. The corresponding model is established as follows:

A series of relevant parameters of the charging queuing system can be obtained 
from the queuing theory. Equation (2) obtain the average waiting time spent by the 
charging staff in the charging station. Equation (3) represent the steady-state prob-
ability of the charging queuing system. Equation (5) indicate the service intensity of 
charging service facilities.

The objective function (1) minimizes the overall cost, including the construction 
cost of charging facilities, the charging staff’s road service cost, the round-trip time 
cost, and the average waiting time cost in charging queues, where � is the value coef-
ficient per unit time. Constraints (6) define that Xi is a binary variable. Constraints 
(7) ensure that all vehicles at the demand node will be assigned to a charging station 
for charging, and all demands are fully satisfied. Constraints (8) ensure that only 
when a charging station is constructed at the location i, vehicles will be allocated 
to location i for charging. Constraints (9) are the conditions that the system has a 

(1)minO1 + � ⋅ O2
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(9)𝜌i =
ri

b
=

∑

j∈J Dj ⋅ fji
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steady-state solution. That is, the average arrival rate of the system must be less than 
the average service rate.

3  Solution approach

The problem of EVs’ charging location and allocation belongs to NP-hard problem 
as the objective function in the model is nonlinear. It is hard to obtain the exact solu-
tion. Due to the genetic algorithm’s powerful random search capability, an improved 
genetic algorithm is developed to optimize the location of the charging station and 
the allocation ratio of the demand at each demand node to the charging station. The 
proposed framework of the improved genetic algorithm is as the following Fig. 1, 
where mainly including the steps of chromosome encoding, elitist selection, crosso-
ver and mutation, and convergence. Next, each step will be described in detail.

3.1  Chromosome encoding

The encoding operation refers to converting the phenotype into a genotype that 
can be processed by the genetic algorithm to match the practical problem with the 
genetic algorithm. This paper adopts the natural number coding method. There 
are m candidate locations for the charging station, and the numbers of the candi-
date locations are represented by natural numbers 1, 2, ...,m . The gene string is in 
the form of a1a2a3 ⋯ am , its length is m, and ai,∀i = 1, 2,⋯ ,m is a natural number 
from 1 to m. In this study, we first generate an initial population of charging station 
candidate locations. There are 15 coding bits representing 15 genes on each chromo-
some. 30 chromosomes are randomly generated, representing an initial population 
of 30 individuals. Then we generate the initial population of the allocation ratio of 
the demand at each node to the charging station. It is two-dimensionally encoded, 
that is, each chromosome is a 30 × 8 matrix. 30 matrices, that is, the initial popula-
tion is 30 individuals, are generated. Each row of the matrix is normalized to satisfy 
the constraints.

Fig. 1  The proposed framework for the improved genetic algorithm
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3.2  Elitist selection

The fitness function in this study is determined according to the objective function 
in the model, taking the cost of the entire charging system and the value of user time 
occupied as the fitness function, as shown in formula (10). Another name for the 
fitness function is the evaluation function. The selection of the fitness function is 
related to the convergence speed of the genetic algorithm and whether the optimal 
solution can be searched.

We use sorting method for individual selection operation. Sorting selection is a 
commonly used selection method in genetic algorithm. The sorting method is effi-
cient and easy to implement. The basic idea of the sorting method is: calculate the 
fitness value of each individual in the population based on the fitness function, and 
arrange all the individual fitness values from large to small. The individual with the 
largest fitness value is chosen as the parent generation and copied to the children 
generation. Then, new children generations are generated after crossover and muta-
tion operations, and the individual with the largest fitness value is selected to be 
copied. Therefore, in the problem, we calculate the fitness values of individuals in 
the children and the parent generations respectively, and sort them from small to 
large. We select 30 chromosomes with the top 30 target values as the new genera-
tion. Then repeat the above steps to form a new parent generation.

3.3  Crossover and mutation

The sequential crossover strategy is adopted to crossover 30 chromosomes accord-
ing to a certain crossover probability to form children chromosomes. The implement 
steps of the sequential crossover method are as follows:

Step 1: Select the same gene start and end positions on the two parent chromo-
somes.
Step 2: Inherit the genes selected in the first step to the children generation, and 
ensure that the gene positions remain unchanged.
Step 3: Find out the position of the gene selected by Parent 2 in Parent 1, and 
delete them to obtain Child2-1. In the same way, find out the position of the gene 
selected by Parent 1 in Parent 2, and delete them to get Child2-2.
Step 4: Put the genes in Child2-2 into Child1-1 in order. Similarly, put the genes 
in Child2-1 into Child1-2 in order. Finally, we get the cross children generation.

 An illustration example of the sequential crossover method is as Fig. 2. First, we ran-
domly select a substring code “6 2 3 1” from Parent 1, and put it in the corresponding 
position of Child 1, as shown “Child1-1” in Step 2. Then, the vacant position of child 1 

(10)
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is selected from parent 2 in the order of parent 2 (with the existing code not repeated). 
For example, put the substring code “5 7 9 4 8” of parent 2 in Step 3 into the vacant 
position of “Child 1–1”, and finally get “Child 1” as shown in Step 4. Child 2 can be 
obtained in the same way.

Using a two-point mutation strategy, we select a chromosome and two mutation 
points on the chromosome to mutate with a certain mutation probability. The specific 
steps of the two-point mutation are as follows: first, two genes are selected on a parent 
chromosome, and the positions are represented by X and Y, respectively. Then the two 
selected genes are exchanged to obtain the final mutant children generation. Figure 3. 
demonstrates an example of the two-point mutation strategy. We exchange the position 
of code “9” and code “8” in the Parent and keep the other codes unchanged to obtain 
the Child.

The children chromosomes generated by mutation and crossover together constitute 
the children population.

3.4  Convergence

This study adopts the convergence criterion of the maximum number of iterations. 
When the number of genetic algorithm iterations reaches the previously set threshold, 
the iteration is terminated. The individual with the largest fitness value at this time is 
output, and the ideal resolution to the actual issue is attained through decoding. At the 

Fig. 2  The specific steps of the sequential crossover method

Fig. 3  The two-point mutation strategy
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same time, the number of iterations and the change trend graph of the optimal solution 
of each iteration are output to analyze the effectiveness of the algorithm.

4  Case study

4.1  Input data

We choose the real case of Yangpu District, Shanghai as the research case. The 
Yangpu District, as shown in Fig.  4, which spans a total area of 60.61 square 

Fig. 4  The considered case area of Yangpu district, Shanghai
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kilometers and carries a permanent population of over 123,000 by the end of 2021, 
is situated in the northeast of Shanghai’s downtown area.

Without loss of generality, we construct a simulation case that closely resembles 
the real case. The values that were chosen for the parameters of the developed case 
study are described in detail in Table 2. The data provided by NIO, EV operations 
literature, the EV charging facility planning literature, and pertinent online sources 
were used to develop the adopted parameter values (Li et al. 2021; Lai and Li 2022; 
Aghalari et al. 2023). Eight locations will be selected from fifteen candidate loca-
tions for charging station construction. 30 demand nodes are to be served. Accord-
ing to the scale in the map and combined with the scope of the whole region, the 
simulation area of Yangpu District, Shanghai is represented by the 11 × 12 plane in 
MATLAB. Among them, 15 charging station candidate nodes and 30 demand nodes 
are randomly generated and their locations in the plane are determined. As shown in 
Fig. 5, the red square points represent candidate charging station nodes with coordi-
nates listed in Table 3, and the blue dots represent demand nodes with coordinates 
listed in Table  4. Considering practical situation of each candidate location with 
varying land price, Table 3 summarizes varying unit construction cost of a charg-
ing pile and total charging station construction cost in each target area. According 
to the historical order data provided by NIO, the total daily charging demand Dj at 
each demand node j are estimated and determined, as shown in Table 4. The aver-
age arriving rate of EVs �i is equal to the demand per hour at each demand node in 
Table 5, which can be obtained by averaging the daily demand to each hour. Accord-
ing to the coordinates of each candidate location and demand node, we use MAT-
LAB to calculate the Euclidean distance between each candidate location and each 
demand node.

According to the price information provided by NIO, if the customer who is a 
NIO car owner has not applied for the “Energy Worry-Free” package, the unit price 

Table 2  Data setting for the case study

Parameter Value

Number of charging station candidate locations 15
Number of selected charging station locations 8
Number of demand nodes 30
The construction cost of charging facilities at loca-

tion i:Ci

Values are varied based on land price as summa-
rized in Table 3

The average charging staff service fee charged per 
unit of distance between nodes:c

10 CNY/km

The number of demands at node j:Dj Values are daily demand as summarized in Table 4
The average arrival rate of EVs at the fast charging 

station i:�i
Values are the demand per hour at each demand 

node as summarized in Table 5
The average service rate of one charging pile:� 2/h
The number of charging piles constructed at one fast 

charging station:b
106

The distance between node j ∈ J and node i ∈ I : dij Values are Euclidean distances between nodes
The value of unit time:� 100 CNY/h
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Fig. 5  Distribution simulation of demand nodes and candidate sites in Yangpu District, Shanghai

Table 3  Location and construction cost of candidate sites in Yangpu District, Shanghai

No. of 
potential 
site

X Y Destination area Unit construc-
tion cost 
(CNY)

Total con-
struction cost 
(CNY)

1 8.28 10.21 New Jiangwan Ronghui Court 3600 381,600
2 7.74 8.95 Champs Center 3700 392,200
3 2.08 6.77 Fudan University (Jiangwan New Campus) 3300 349,800
4 5.73 5.40 Capital of New Jiangwan City 3900 413,400
5 3.93 3.58 New Jiangwan City Times Garden 3600 381,600
6 5.92 8.52 Jiangwan Stadium 4100 434,600
7 4.59 3.29 Wujiaochang 4000 424,000
8 4.74 1.64 Yangpu District Government 3700 392,200
9 2.63 8.67 Obstetrics and Gynecology Hospital Affili-

ated to Fudan University
4000 424,000

10 3.30 7.71 Yin Xing 3400 360,400
11 1.18 8.15 Shiguang 3200 339,200
12 9.31 7.42 Huangxing Park 3300 349,800
13 6.88 5.19 Yangpu Park 3200 339,200
14 9.39 4.91 University of Shanghai for Science and 

Technology
3500 371,000

15 2.47 9.16 Yangpu District Central Hospital 3800 402,800
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Table 4  Locations of demand nodes and associated total demands in Yangpu District, Shanghai

No. of 
demand node

X Y Number of 
demands

No. of 
demand node

X Y Num-
ber of 
demands

1 0.36 10.88 556 16 1.33 8.40 535
2 6.17 10.56 485 17 6.48 7.66 458
3 9.70 9.81 418 18 2.49 0.40 534
4 7.36 3.13 453 19 4.23 0.83 539
5 2.09 7.13 431 20 6.41 3.84 414
6 4.06 0.27 456 21 2.77 6.37 451
7 5.07 5.10 488 22 3.19 7.85 445
8 10.80 3.75 505 23 6.79 4.89 534
9 1.72 1.94 491 24 2.92 9.84 569
10 9.41 2.15 575 25 9.07 8.62 469
11 7.09 5.07 504 26 10.81 11.62 556
12 4.14 1.13 589 27 8.03 6.38 535
13 2.10 7.18 528 28 3.78 3.90 401
14 4.71 5.65 592 29 6.42 1.27 520
15 5.30 8.35 448 30 1.19 7.33 477

Table 5  Demand per hour at 
each demand node in Yangpu 
District, Shanghai

No. of demand 
node

Number of 
demands

No. of demand 
node

Num-
ber of 
demands

1 23 16 22
2 20 17 19
3 17 18 22
4 19 19 22
5 18 20 17
6 19 21 19
7 20 22 19
8 21 23 22
9 20 24 24
10 24 25 20
11 21 26 23
12 25 27 22
13 22 28 17
14 25 29 22
15 19 30 20
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for enjoying the valet charging service is 180 CNY per time. Or if they apply for 
a package of 980 CNY, which includes 15 services per month, equivalent to 65.3 
CNY per service. Non-NIO car owners can only purchase services in units of times, 
and each time of service costs 380 CNY. The service cost of the charging staff per 
kilometer between demand nodes and charging stations is 10 CNY/km. Accord-
ing to the average distance dij between nodes and the average once service time of 
118 min provided by NIO, we determine that the average service rate of one charg-
ing pile is � = 2 per hour. According to the data provided in the document “Shang-
hai Electric Vehicle Charging Infrastructure Special Planning”, we can set that the 
quantity of charging piles built at a candidate location is b = 106. The unit user time 
value is � = 100 CNY/h.

4.2  Solution results

Based on the actual data and the real situation, we conduct numerical analysis to 
examine the effectiveness of the mathematical model and proposed methodology. 
We code the genetic algorithm designed in Sect. 3 in MATLAB. We set the fixed 
initial population size N to be 30, the maximum number of iterations to be 7, 10, 

Fig. 6  Convergence of the proposed genetic algorithm
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100 and 1000, respectively. The crossover probability  p1
c
 and mutation probabil-

ity p1
m
 of solving Xi are taken as 0.15 and 0.2, respectively. The crossover probabil-

ity p2
c
 of solving fji is set as 0.95, 0.15. The mutation probability p2

m
 is set to be 

0.35, 0.2 respectively. To investigate how different parameter combinations impact 
the performance of the designed genetic algorithm, we design test instances under 
the above-mentioned different parameter combinations. All numerical experiments 
are run on a personal computer with Intel Core i7-7500U CPU 2.70 GHz and 4 GB 
memory. Figure 6 illustrates the convergence of the optimal fitness value obtained 
by the genetic algorithm with the increase of the number of iterations under different 
parameter combinations (hereafter referred to as Combo). Table 6 summarizes the 
optimal objective values generated from genetic algorithm under different parameter 
Combos.

We can conclude from the solution results of different parameter Combos that the 
number of evolution generation has a great impact on the algorithm optimization 
performance. With the increase of the evolution generations, the optimal objective 
value tends to decrease gradually and the algorithm performs better. Under param-
eter Combo 4, the obtained solution quality is the best with the minimal optimal 
objective value. The optimal charging station location scheme is to build the charg-
ing stations in serial numbers 10, 11, 7, 13, 8, 5, 3, and 4, and the associated target 
areas are Yinhang, Shiguang, Wujiaochang, Yangpu Park, Yangpu District Govern-
ment, and New Jiangwan City Times Garden, Fudan University (Jiangwan New 
Campus), New Jiangwan City Capital. The demand ratio of each demand node allo-
cated to each charging station is presented as the following Table 7. The solution can 
ensure that all the demands of each demand node among the 30 demand nodes are 
fully satisfied.

4.3  Sensitivity analysis

In this section, we investigate the impact of key parameters, including charging 
demand level, charging capacity (e.g., the number of charging piles to be built for 
each charging station), and value of time, on planning decision and system cost. Dif-
ferent scenarios are generated by varying the key parameters based on basic value.

Table 6  Comparison results 
of the solution performances 
under different parameter 
combinations

Combo N p
1

c
p
1

m
p
2

c
p
2

m
Maximum 
number of 
iterations

Objective 
values  (106)

1 30 0.15 0.2 0.95 0.35 7 7.1567
2 30 0.15 0.2 0.15 0.2 10 7.3822
3 30 0.15 0.2 0.15 0.2 100 7.1293
4 30 0.15 0.2 0.15 0.2 1000 6.7905
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Table 7  The solution result of 
demand allocation ratio

Demand node Decisions of the charging station locations

10 11 7 13 8 5 3 4

1 0.19 0.04 0.32 0.23 0.05 0.30 0.18 0.12
2 0.14 0.04 0.19 0.32 0.03 0.35 0.15 0.12
3 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
4 0.14 0.04 0.32 0.23 0.05 0.29 0.15 0.12
5 0.22 0.03 0.21 0.15 0.03 0.17 0.37 0.30
6 0.14 0.03 0.21 0.11 0.23 0.35 0.15 0.12
7 0.14 0.04 0.19 0.32 0.03 0.35 0.15 0.12
8 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
9 0.14 0.04 0.32 0.23 0.05 0.29 0.15 0.12
10 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
11 0.14 0.04 0.19 0.32 0.03 0.35 0.15 0.12
12 0.14 0.03 0.21 0.11 0.23 0.35 0.15 0.12
13 0.14 0.20 0.20 0.14 0.03 0.35 0.15 0.12
14 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
15 0.14 0.16 0.25 0.18 0.04 0.29 0.15 0.12
16 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
17 0.14 0.15 0.23 0.16 0.04 0.35 0.15 0.12
18 0.14 0.03 0.26 0.18 0.04 0.41 0.15 0.12
19 0.14 0.03 0.21 0.11 0.23 0.35 0.15 0.12
20 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
21 0.14 0.03 0.18 0.10 0.21 0.41 0.15 0.12
22 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
23 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
24 0.14 0.13 0.20 0.15 0.03 0.41 0.15 0.12
25 0.14 0.03 0.21 0.11 0.23 0.35 0.15 0.12
26 0.14 0.04 0.21 0.35 0.03 0.29 0.15 0.12
27 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
28 0.14 0.03 0.21 0.11 0.23 0.35 0.15 0.12
29 0.14 0.04 0.29 0.21 0.05 0.35 0.15 0.12
30 0.14 0.03 0.26 0.18 0.04 0.41 0.15 0.12

Table 8  Results under different 
charging demands

Scenario Demand (EVs/h) Overall 
cost  (106 
CNY)

1 Basic demand level 3.4107
2 Double the basic demand level 4.6866
3 Four times of the basic demand level 15.373
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Fig. 7  Results of demand allocation ratio under a Basic demand level, b Double the basic demand level, 
c Four times of the basic demand level
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(1) Charging demand level.

 The current customer demand is set based on a conservative estimation that may not 
accurately represent the reality. In particular, with the development of battery charg-
ing and swapping technology and the improvement of charging facilities, the volume 
of electric vehicle users will continue to grow. Table 8 illustrates the impact of cus-
tomer demand level on the overall cost. When customer demand is set to the dou-
ble- and four-times quantity of the basic value, the overall cost increases 1.2759  (106 
CNY), and 11.9623  (106 CNY), respectively. Figure 7 visualizes the charging sta-
tion location and allocation decisions under different demand levels. If the demand 
level increases, then half of the locations of the selected charging stations remain 
unchanged, with location number 4, 5, 10, and 13. The other half of the number 
of charging stations to be built has a change in siting decision. Demand allocation 
decisions have undergone major changes. The results clearly demonstrate that the 
charging station location and allocation decisions under the valet charging service 
are highly sensitive to the demand level.

(B) Charging capacity.

 Table 9 indicates the impact of the number of charging piles to be built for each 
charging station on the charging station location decisions and the overall system 
cost under the valet charging service. To run the experiments, we set the number of 
charging piles per charging station to 53 (half of the basic level) and 159 (1.5 times 
of the basic value). The results in Table 9 reveal that the charging station locations 
with number 3, 4, 5, 7, 10, 13 are always selected to be constructed, as the number 
of charging piles to be built in each charging station increases. The overall system 
cost is much more sensitive to the number of charging piles. For instance, when the 
number of charging piles increases from 53 to 159, the the overall cost increases 
approximately 2.8185  (106 CNY), and 7.2869  (106 CNY), respectively. For presen-
tation brevity, we do not list the demand allocation decisions here. This experiment 
shows that demand allocation decisions are also susceptible to the variabilities of the 
number of charging piles.

Table 9  Results under different charging capacities

Scenario Number of charging 
piles per charging 
station

Overall cost 
 (106 CNY)

Charging station location 
decisions

1 Half of the basic value 53 0.5922 10, 13, 2, 6, 7, 4, 5, 3
2 Basic value 106 3.4107 11, 13, 2, 3, 5, 7, 10, 4
3 1.5 times of the basic value 159 7.8791 7, 13, 10, 4, 11, 15, 5, 3
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(C) Value of time.

We conduct the final set of experiments to investigate the impact of the value of time 
on the charging station location and allocation decisions and the overall cost. To 
generate the instances, we change the value of time to 150 and 200 CNY/h, respec-
tively, while the other parameters are kept fixed to their basic values. The experi-
mental results indicate the demand allocation decisions and the overall cost are 
much more sensitive to the value of time than charging station location to that. For 
instance, when the value of time increases from low to high values, the overall sys-
tem cost increase 1.9499 and 6.061, respectively, while 6 of the 8 charging station 
locations selected for construction remain unchanged with charging station location 
number 3, 4, 5, 7, 10, 13 (see Table 10).

4.4  Discussions

This study’s main contribution is to use an improved genetic algorithm to locate charg-
ing stations and allocate demands for valet charging service by taking charging wait 
times and staff travel costs into account. This study lays the groundwork for intelligent 
transportation while promoting the use of EVs. We give company employees the smart 
decision-making tools and effective deployment plans they need to perform valet charg-
ing services. However, the model simplifies some practical issues when interpreting 
the findings and drawing to conclusions. There are many possible directions for future 
research on the decision model. First, the routes planning problem can be optimized 
jointly when multiple charging staffs are providing services simultaneously. Other poten-
tial costs, such as maintenance cost of charging infrastructures and electricity prices, 
can be incorporated into the decision model and can fully evaluate the operational cost. 
Another extension to our model pertains to considering the environmental impact of the 
valet charging service. According to the remaining mileage of the vehicle, the surround-
ing charging resources and the grid load, using the model to make the optimal deci-
sion to dispatch orders for the charging staffs, and to plan the optimal charging strategy 
(determining specified charging time to achieve the purpose of peak-shaving and valley-
filling, and planning the shortest route), to help save energy and reduce emissions. Sec-
ond, the paper assumes that each link’s travel time and each node’s charging demand are 
known and deterministic, while in reality, traffic congestion may make the travel time 
uncertain. The stochastic charging demand and travel time of charging staff can be con-
sidered in the model to portray EV customers’ demands and travel costs more accurately. 

Table 10  Results under different value of time

Scenario Value of time 
(CNY/h)

Overall cost 
 (106 CNY)

Charging station location decisions

1 Basic value 100 3.4107 11, 13, 2, 3, 5, 7, 10, 4
2 1.5 times of the basic value 150 5.3606 6, 4, 10, 7, 13, 3, 11, 5
3 2 times of the basic value 200 9.4717 11, 5, 13, 6, 3, 10, 14, 4
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It is helpful to develop multi-period deployment models with random demand since it 
might not be possible to finish building charging stations quickly due to a variety of rea-
sons, involving the restricted budget and the current low level of demand. Third, the pro-
posed valet charging service could be compared with other alternative solutions (e.g., 
conventional self-charging approaches, battery swapping mode, etc.) to fully evaluate its 
advantages, limitations, and cost-effectiveness. Such comparisons would contribute to 
the broader discussion on the future of EV charging infrastructure. Another perspective 
of this research is to model user acceptance and behavioral considerations. Investigat-
ing user acceptance, preferences, and behavioral aspects of the valet charging service 
and how to adopt this service could provide valuable insights for further improvement 
and refinement. The user preferences or choices for different charging approaches, such 
as valet charging, self-charging, and battery swapping, can be set to be exogenous with 
fixed proportions of different types of users. The user preferences or choices can also be 
regarded endogenous. In this way, the utility functions and choice model of users for dif-
ferent charging approaches can be incorporated into the model.

Exploring other advanced optimization algorithms (e.g., new types of hybrid heu-
ristics and metaheuristics, adaptive algorithms, self-adaptive algorithms, island algo-
rithms, polyploid algorithms, etc.) to solve the charging stations location and allo-
cation problem for valet charging service addressed in this study remains an open 
problem. The aforementioned different types of advanced optimization algorithms 
have been applied as solution approaches in many different domains such as online 
learning, scheduling, multi-objective optimization, transportation, medicine, data clas-
sification, and others. Many researchers have proved the effectiveness of the proposed 
advanced optimization algorithms in the applications of aforementioned fields, espe-
cially for the more realistic large-scale problems. Zhao and Zhang (2020) proposed a 
learning-based algorithm that can learn to adjust strategies based on the problem fea-
tures. In the case of multi-objective optimization, the proposed algorithm was found 
superior to compared algorithms on most of the test cases. Dulebenets (2021) explored 
a new Adaptive Polyploid Memetic Algorithm for the trucks scheduling of at the cross-
docking terminal. The results had proved the better effectiveness of the proposed algo-
rithm compared to the well-known state-of-the-art metaheuristics. Gholizadeh et  al. 
(2021) proposed a scenario-based genetic algorithm for the flexible flowshop sched-
uling and showed its superiority over an exact optimization method and a canonical 
genetic algorithm. For the berth scheduling in marine container terminals, Dulebenets 
(2017) and Kavoosi et al. (2019) developed a novel memetic algorithm and an island-
based metaheuristic algorithm, respectively. The results in Dulebenets (2017) showed 
that the performance of the developed memetic algorithm was better than the results 
reported by previous berth scheduling literature using a memetic algorithm that does 
not apply the deterministic parameter control strategy, typical evolutionary algorithm, 
simulated annealing and variable neighborhood search. Kavoosi et  al. (2019) found 
the proposed algorithm outperformed evolutionary algorithm, particle swarm opti-
mization, estimation of distribution algorithm and differential evolution conducted in 
isolation, and other metaheuristic algorithms including variable neighborhood search, 
tabu search and simulated annealing. Rabbani et al. (2022) developed Non-dominated 
Sorting Genetic Algorithm II and Multi-Objective Particle Swarm Optimization which 
can solve the ambulance routing problem in a short time. Even with the acquisition of 
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high-quality solutions, exact methodologies can be very time-consuming for practical 
applications. Advanced optimization algorithms (including heuristics, hybrid heuris-
tics, metaheuristics, etc.) are of great importance for real-world large-scale problems 
to obtain satisfactory solutions in a quite shorter computational time as compared to 
exact methods. In previous literature, a variety of advanced optimization algorithms 
have been applied to address EV charging stations planning problem, such as genetic 
based algorithm (Li et al. 2016b; Tu et al. 2016), hybrid heuristic (composed of the 
modified Sweep heuristic, the Iterated Greedy, and the Adaptive Large Neighborhood 
Search algorithm in Aghalari et al. 2023; combining of Clarke and Wright saving algo-
rithm, an iterative greedy algorithm, and an adaptive large neighborhood search with 
simulated annealing in Guo et al. 2022), neighborhood search heuristic (Wang et al. 
2019), etc. Future research extensions may be to develop other new advanced opti-
mization approaches such as hybrid heuristic for the decision problem addressed in 
this study and to conduct performance comparison of the developed improved genetic 
algorithm against these algorithms.

5  Conclusion

This study examines how to deploy charging stations and allocate the charging 
demands of the valet charging service optimally. We develop a mixed-integer non-
linear program considering the characteristic of valet charging service. Based the 
queueing theory, we formulate the charging queuing system as queuing system, and 
the average charging waiting time is derived. The charging facilities construction 
cost (i.e., the charging piles construction cost) and service cost of charging staff (i.e., 
the cost of road service, round-trip time and charging waiting time) are balanced. 
We propose an improved heuristic using a genetic algorithm framework as the foun-
dation to find superior station deployment and allocation plans efficiently. Numerical 
studies are conducted to examine the effectiveness of the proposed improved genetic 
algorithm in the Yangpu District of Shanghai, China. The results indicate that the 
modeling formulation and solution heuristic can converge efficiently and generate 
satisfactory deployment plans. It is necessary to conduct additional research to con-
sider the practical limitations such as uncertainty and routes planning.
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