

Queueing network models for the analysis and optimisation of material handling systems: a systematic literature review

MohamedAmjath¹ · Laoucine Kerbache^{1,3} © · Adel Elomri¹ · James MacGregor Smith²

Accepted: 18 July 2023 / Published online: 7 September 2023 © The Author(s) 2023

Abstract

Material handling systems (MHSs) are an integral part of logistics functions in manufacturing and service organizations. Material handling equipment (MHE) is considered the pivotal actor of any given MHS. Decisions ranging from the strategic level, such as selecting the proper MHE, capacity, and ownership (in-house or outsourcing) to operational level decisions such as resource allocation, scheduling, and routing of MHEs, are critical to the efficiency of an MHS. Industry practitioners use various methods and tools to evaluate these MHSs to fnd the best policies for their operations. This study identifes past works related to the performance evaluation and optimisation of MHSs using queueing network models. Moreover, this study provides a comprehensive analysis of identifed research questions. The study methodology adopts a systematic literature review, bibliometric, and content analysis techniques proposed in similar research studies. This study provides material logistics scholars and practitioners with a thorough understanding of queueing networks as a modelling tool for analysing MHS applications in various domains.

Keywords MHS · Queueing networks · MHE · Performance analysis · Optimisation · Literature review

Abbreviations

ABA Asymptotic Bound Analysis AGV Automated guided vehicle

 \boxtimes Laoucine Kerbache lakerbache@hbku.edu.qa

- ² Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
- ³ Information Systems and Operations Management, HEC Paris, 78351 Jouy-en-Josas, Cedex, France

¹ Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

WIP Work-in-process WS Workstations

1 Introduction

Material handling systems (MHSs) are integral to logistics functions, enabling a smooth fow of materials to desired destinations. Material handling activities account for 15–70% of total manufacturing costs, depending on the product type (Souf et al. [2021](#page-39-0)). Similarly, 55% of warehouse operational costs consist of material handling activities (Tompkins et al. [2010](#page-39-1)). According to Eurostat ([2018\)](#page-37-0), 10.8 million people employed in the warehouse-transport-storage sector account for EUR 556.0 million in the European Union (EU). Material handling systems are needed to move raw materials, work-in-progress, and fnished goods from one point to another. These points include production foors, warehouses, and storage and shipping areas. Generally, the manufacturing process involves fabrication activities and assembly operations that change the material's shape, form, and make-up. In contrast, MHSs can be used to produce a "time and place utility" through the handling, storage, and control of materials (Castillo and Peters [2002;](#page-36-0) Furmans [2009](#page-37-1)).

The most critical MHS design decisions pivot around material handling equipment (MHE). Selecting the correct type of MHE and integrating it with the organisation's logistics operations are critical to the common goal of achieving low material handling costs (Cho and Egbelu [2005;](#page-37-2) Kay [2012](#page-37-3); Rajagopalan and Heragu [1997](#page-38-0); Stephens [2020\)](#page-39-2). Kay ([2012\)](#page-37-3) presented ten principles compiled by the Material Handling Institute (MHI) to check when designing an MHS. Planning, standardising, work, ergonomic, unit load, space utilisation, system, automation, environmental, and life cycle principles must be considered during the MHS design process. All these are bound by MHE selection and operation. The scope of this study does not focus on selecting MHE. Instead, it deals about the performance analysis and optimisation aspects of MHEs in an MHS.

Generally, MHE can be categorised into subgroups based on its operation, technology, and application. The following categories were identifed in past scientifc articles: manual systems, hoists, industrial trucks, pipe systems, robotic systems, automated guided vehicles (AGVs), unit load conveyors, and bulk load conveyors (Bouh and Riopel [2016\)](#page-36-1). Moreover, Smith ([2013\)](#page-39-3) classifed MHE into three major groups: conveyors, cranes and hoists, and transporters. Conveyors transport the materials in a fxed path. Cranes and hoists are used to transfer material over a limited area. Transporters are used to carry material over a wide area. Figure [1](#page-3-0) provides more detailed classifcations of MHE (Smith [2013](#page-39-3)).

Signifcant design decisions regarding setting up MHSs can be categorised into the design and operation-related features. Figure [2](#page-3-1) lists both features and their subcategories (Raman et al. [2009](#page-38-1)). Other factors that depend on specifc industry needs should be considered when selecting an appropriate MHS. For instance, the semiconductor wafer fabrication system (SWFS) industry faces issues of high re-entrant fows, high level of work-in-process (WIP), fexible product routes, and longer production cycle times (Chen et al. [2017a](#page-37-4), [b](#page-37-5)). In contrast, healthcare systems face

Fig. 1 MHE tree

Fig. 2 Decision structure for MHS selection

unpredictable arrivals and the need for higher responsiveness. Once an organisation selects an appropriate MHS, the organisation needs to assess the performance of the MHS to measure the system's productivity. Assessing MHS performance is a critical issue that industry practitioners face (Sahu et al. [2017\)](#page-39-4). Inherent variability factors such as irregular time-varying arrivals, congestions, human involvement, demand–supply fuctuations, resource breakdowns, changes in product blending, and machine capabilities may result in complications in assessing and optimising MHS performance (Lee et al. [2021\)](#page-38-2).

Queueing network models are used at frst to analyse and determine computer and communication systems performance measures such as mean response times, server utilisations, and queue lengths. These models have been extensively used in many other felds such as production, transportation, retail, and service industries. Queueing network models are often considered cost-efective, versatile, and powerful tools for analysing complex systems with relatively short development and computation time (Balsamo et al. [2003](#page-36-2)). The ability to inculcate fnite capacity queues

with blocking phenomena has made queueing network models more realistic to real-life applications in various domains. Similarly, queueing network models are used to model MHS in many supply chain nodes such as warehouses, distribution centres, intermediate storage and terminals. However, as these network models are often mathematically intractable, most studies focus on developing heuristics and approximations to determine the non-dominated performance measures (Kerbache and Smith [2004](#page-38-3); Smith et al. [2008](#page-39-5); Smith and Kerbache [2012](#page-39-6)).

So far, there have been very few review studies relative to queueing network modelling of MHS applications. Smith ([2013\)](#page-39-3) briefy mentioned MHS studies before 2012 that used a queueing network as a modelling tool. Fragapane et al. [\(2021](#page-37-6)) did a review study on planning and control strategies for autonomous mobile robots (AMR) in warehouses. They presented queueing networks as one of the essential tools used to model AMR systems. Gabrel et al. [\(2014](#page-37-7)) presented a review study on recent advances in robust optimisation where authors highlighted the use of queueing networks as a tool for stochastic optimization. Therefore, this paper provides an analysis of queueing network modelling in MHS applications by answering the following research questions:

- (i) What are the queueing network models of MHS applications used for performance analysis and optimisation purposes?
- (ii) What types of queues and networks are used to model MHSs?
- (iii) What approaches and methodologies are used to solve the queueing network models of MHS?
- (iv) What are recent trends and potential research topics about queueing network models of MHS applications?

The rest of the paper is structured as follows: Sect. [2](#page-4-0) presents the methodology of the presented systematic review while a comprehensive bibliometric analysis is discussed in Sect. [3.](#page-10-0) Section [4](#page-15-0) provides a content analysis of the reviewed publications. Section [5](#page-35-0) presents the research trends and gaps found throughout this study. Finally, concluding remarks are developed in Sect. 6.

2 Research methodology

This study aims to provide a systematic review of queueing network models of MHS applications used for the purpose of analysis and optimisation. A comprehensive methodology was used to answer the identifed research questions. According to Durach et al. [\(2021](#page-37-8)), this study used the following four (04) steps to carry out the research.

i. Formulation of research questions and keywords query

The primary goal of this step is to comprehensively search diferent databases to identify the relevant scientifc publications that assist in answering the formulated research questions. First, journal articles, conference papers, and book chapters were gathered from the Scopus, Science Direct, and Google Scholar **Table 1** Search query Search query

Queueing Networks

AND ("Material handling system")

AND ("warehouse", OR "distribution center" OR "manufacturing plant", OR "container terminal", OR "mining feld", OR "harvest feld")

Table 2 Summary of search query results

databases. The next part of this step is to identify relevant keywords for the search. Subsequently, appropriate Boolean operators were identifed and coupled with keywords to carry out a search query (Table [1](#page-5-0)). Finally, the papers containing keyword combinations in the title, abstract, and keywords were selected. The two critical areas of the study, "queueing network" and "material handling system", are included in the search query with the selected domain areas. Moreover, to capture the most number of relevant publications, keywords were used in the other possible forms (e.g., "material handling ?", "queueing network ?", queue*) in the search query. The following domains are selected to represent both goods and services production material handling activities, warehouses/distribution centres, manufacturing plants, mining felds, harvest (agriculture) felds, and container terminals.

ii. Inclusion and exclusion criteria.

The output of the initial search query and search results were summarised in Table [2.](#page-5-1) A total number of 251 publications were considered for further screening.

All duplicates were removed from the initial search. In the next step of the screening process, the studies in which queueing network models of MHS were not the primary focus of an article were removed. These exclusions included articles focused on inventory management and control, and location planning. Furthermore, only English language articles published from 2011 to 2021 were considered. Sixty-three (63) papers were selected for this study's systematic review.

iii. Analysis and results reporting.

A bibliometric analysis was carried out using these 63 papers. First, the analysis was done to identify the distribution trend of related studies over time and most sought out journals in the feld. Then, an in-depth analysis was carried out to answer the identifed research questions.

iv. Criterion design for in-depth analysis.

The types of MHS applications, domains, decision problems, and research methodologies were explored in this part. The criteria for the in-depth content analysis breakdown are presented in Table [3](#page-6-0).

2.1 The criterion for the content analysis of queueing network models of MHS

This section briefy describes each criterion presented in Table [3](#page-6-0). The comprehensive content analysis of the reviewed studies is carried out based on the above criteria. Decision problem, modelling and solution approach, performance measures, and optimisation scope are chosen to explore the reviewed studies and answer the identifed research questions. Under each criterion, sub-criteria are identifed, and a brief description of those are given below.

2.1.1 Scope of the study

This sub-criterion analyses the main scope of the reviewed studies. The scope of studies mainly falls into three application streams. (i). Estimate the performance of an existing system, (ii). Conceptualisation studies—estimate performance of design concepts, and (iii). optimisation studies. Moreover, some studies focus on more than one application in their work.

2.1.2 Types of queues

According to Rios Insua and Ruggeri ([2012\)](#page-37-9), queues can be classifed based on six characteristics: namely, arrival rate, service process, number of servers, the capacity of the systems, customer population and service discipline. Smith [\(2013](#page-39-3)) summarises the possible queueing systems using Kendall's notation as in Table [4](#page-7-0).

Table 3 Criteria for content analysis of queueing network models of MHS

- 1. Decision problem
	- 1.1 Scope of the study
- 2. Modelling and solution approaches
- 2.1 Types of queues
- 2.2 Types of queueing networks
- 2.3 Solution approaches and methods to solve the queueing network model
- 3. Performance measures
	- 3.2 Performance measures of network
- 4. Optimisation scope
	- 4.1 Optimisation problem and solution approaches
	- 4.2 Validation tools

Table 4 Structural box of queueing systems

M Markovian, *D* deterministic, *Ek* Erlang, *G* General, *GI* General independent and identically distributed, *PH* Phase distribution, *FCFS* First-come-frst-served, *LCFS* Last-come-frst-served, *SIRO* Server in random order, *PR* priority, *PS* processor sharing, *GD* general discipline

2.1.3 Types of queueing networks

A collection of queues is viewed as a queuing network, and these networks can be categorised based on many factors. Based on each factor, many diferent types of networks can be found in the literature. For instance, queueing networks can be of three types: open, closed and mixed, depending on the fows (population) circulation in the network. Similarly, many diferent types of networks can be found based on the network characteristics such as probability distribution, number of customer classes, the capacity of queues, number of servers and capacity of servers, and blocking mechanism. Figure [3](#page-7-1) (Smith [2018](#page-39-7)) shows diferent queueing networks categorised based on the abovementioned characteristics against the network

Fig. 3 Diferent types of queueing networks; Source: (Smith [2018](#page-39-7))

Fig. 4 Solution algorithms for product-form queueing networks. *BCMP* Baskett, Chandy, Muntz, and Palacios, *MVA-MIX* Mean Value Analysis for Mixed networks, *ABA* Asymptotic Bound Analysis, *BJB* Balanced Job Bounds, *FES* Flow Equivalent Server, *SCAT* Self-Correcting Approximation Technique, *SUM* Summation method, *BOTT* BOTTAPROX method

Fig. 5 Solution algorithms for non-product-form queueing networks. *MEM* Maximum Entropy Method, *PRIOMVA* Priority Mean Value Analysis, *ESCAT* Extended Self-Correcting Approximation Technique, *ESUM* Extended Summation method, *EBOTT* Extended BOTTAPROX method, *EMVA* Extended Mean Value Analysis, *PRIOSUM* Priority Summation method

complexity and generality index. However, many more types of queueing networks can be found in literature based on diferent characteristics.

2.1.4 Solution approaches and methods to solve the queueing network models

Depending on their mathematical complexity, queueing network models can be solved using exact analytical product form methods, approximate models, and/or simulation. Generally, smaller queueing network models can be of product form and thus, they can be solved exactly. Approximation methods are usually used for more complex queueing networks that are not of product form. Figures [4](#page-8-0) and [5](#page-8-1) (Bolch

et al. [2006](#page-36-3)) list the exact methods and approximation approaches used to solve various queueing network models with diferent characteristics.

2.1.5 Performance measures of networks

Performance measures of a queueing network include measurements such as queue length, queue waiting time, queue response time, server utilisation, throughput, and cycle time (sojourn time). These measures provide invaluable insights into the decision-making processes of a given network. For instance, the throughput of a queueing network that is used to model a container terminal provides insight into the terminal's operational productivity. Similarly, the utilisation of a network node provides an idea of the congestion or idleness of that resource.

2.1.6 Optimisation problems and solution approaches

Generally, the derivation of an optimisation problem can be drawn into three parts. A planned objective/s is to be achieved by determining the optimal value of decision variable/s while satisfying the given constraints. Optimisation problems related to queueing network models of MHS can be derived similarly. Figure [6](#page-9-0) shows the interaction between these factions. For instance, consider an optimisation problem of determining the optimal arrival rate of trucks to achieve the maximum throughput

Fig. 6 Variables and parameters interaction in optimisation problem of queueing network models

in a warehouse. Subsequently, the optimal arrival rate will result in a change in all other network performance measures. Also, optimisation problems are derived as single objective or multi-objective problems. The solution approaches range from exact solution algorithms to heuristics approaches based on the complexity and magnitude of the problem.

2.1.7 Validation tools

Using approximation methods to estimate network performance measures results in possible deviations from the exact solutions. However, the validations tools are used to prove that proposed methods yield signifcantly similar results or that the deviations are within acceptable limits.

3 Bibliometric analysis

This section identifes the distribution trend of related studies over time and the most sought journals in the studied area. Moreover, sub-sections provide co-citation network, keywords analysis and application domain analysis to identify the trends and evolution of studies.

3.1 Publications per year

Figure [7](#page-10-1) shows the distribution of the publications published from 2011 to 2021 that focus on queueing modelled MHS applications. The distribution indicates that from 2011 to 2020, the number of publications is consistent with an average of approximately five publications per year. However, in the last couple of years, there has been an increasing trend in the number of publications.

Fig. 7 Yearly distribution of publications

Figure [8](#page-11-0) shows the most important journals that published studies on queueing network models of MHS applications in various domains. More than half of (50%) the reviewed studies are from six journals. It shows that these journals are pioneers in the area of queueing network models of MHS applications related articles.

3.3 Co‑citation network of publications

The co-citation network provides a visual image of the importance of reviewed publications. A connected line between two circles indicates that another publication has cited these two publications together. The sizes of frames and thickness of lines imply stronger co-citations of publications. Figure [9](#page-12-0) shows the co-citation network of the reviewed publications based on the authors in the reviewed studies. The cocitation network visualisation map was created using VOSviewer software with the LinLog/modularity as the method option confguration. The layout was created using attraction and repulsion values of 2 and -1 , respectively. The minimum cluster size was set to 1, and the layout was allowed to merge small clusters.

3.4 High‑frequency keywords

Authors use keywords to convey the primary focus of studies. Figure [10](#page-12-1) shows a word tree map that summarises the occurrence of such words in the reviewed articles. The map was created using VOSviewer software and MS Excel. The co-occurrences of keywords are extracted using VOS viewer software. Extracted data was used to create the word tree map in MS Excel. The area of the rectangles is directly proportional to the occurrence of keywords used in the reviewed studies. In the following sub section, brief explanations of selected keywords were provided.

Fig. 8 Yearly distribution of publications by journal

Fig. 9 Co-citation network of reviewed publications

Fig. 10 Word tree map of indexed keywords

3.4.1 Open, closed, and semi‑open queueing networks

An open queueing network (OQN) is where the population fow is allowed to enter and exit the network after service. In this network, the population may go through one or many nodes and fnally leaves the system. A closed queueing network (CQN) is where the population fow is trapped, cyclically circulating within the network, and never leaves the network. *SOQNs, also referred to as mixed networks in the literature, are combinations of OQN and CQN, representing two types of networks in a system. Also, many studies have shown that both networks, OQN and CQN, can exist within a single system. For instance, the number of orders in a warehouse can be modelled as an OQN as orders come and go through the network without remaining in the loop. In contrast, the pickers/equipment that prepares the orders must be modelled as a CQN as they remain in the network after completing the order. Therefore, SOQNs ofer a useful framework for modelling these types of mixed networks, allowing a comprehensive understanding of the system as a whole and used by many authors in their studies.* Figure [11](#page-13-0) *provides a schematic representation of a SOQN.*

3.4.2 Decomposition

The basic concept of decomposition is to breakdown the whole network into subsystems that can be analysed individually and independently. In queueing networks, decomposition approach is a proven methodology to analyse product-form networks efficiently and parametric decomposition approach is used to analyse non-product form networks. Moreover, there are many methods and algorithms were presented in the literature that used for decomposition of queueing net-works. Smith ([2018](#page-39-7)) identifies the main properties of a network that enable the development of decomposition algorithms as, superposition of processes, reversibility, and splitting processes.

Resource queue (waiting for a customer)

Fig. 11 A sample of a semi-open queueing network

3.5 Social network analysis (SNA) of queueing network models of MHS applications

SNA is well-suited for bibliometric clustering and conceptual model development based on the co-occurrences of keywords in the reviewed studies (Cho [2011](#page-37-10); Jaewoo and Woonsun [2014](#page-37-11)). This tool was used to identify the current trends in the investigated study area. In this study, Mendeley and VOSviewer software are used to extract the keywords, to develop the SNA model. The frequency of the appearance and co-existence of keywords is depicted by the circle's size and links between circles. The same colours indicate that the clustering of keywords falls under similar areas of interest. Figure [12](#page-14-0) shows the SNA of queueing network models for the MHS applications in the reviewed publications.

3.6 Number of studies according to the application domain

The selected studies are identifed under four (4) domains: warehouses and distribution centres, manufacturing facilities, mining and harvesting felds, and container terminals. Figure [13](#page-15-1) shows the number of articles under each domain used to carry out the in-depth content analysis in the following section related to the criterion identifed in Table [3](#page-6-0).

Fig. 12 SNA of queueing network models of MHS applications

4 Content analysis

This section provides an in-depth analysis of the reviewed publications based on the criteria provided in Table [3](#page-6-0). The reviewed studies are analysed under identifed domains, namely: warehouses and distribution centres, manufacturing facilities, mining and harvesting felds, and container terminals.

4.1 Queueing network models of MHS applications in warehouses and distribution centres

Conventional warehouses and distribution centres (DCs) provide "time and place utility" for products and raw materials in a value chain. Modern warehouses and DCs are designed to create value by performing postponement, value addition, and cross-docking processes. Material handling is one of the key cost components of warehouse operations and is labour intensive. Material handling systems evolved from human-powered to semi-automated and then fully automated systems. Modern warehouses are typically fully or partially automated to increase storage and picking efficiency. Compact storage systems are famous for low unitload demand and high space utilization. Diferent types of handling systems that allow movement along the x, y, and z-axes for compact storage systems are classifed as conveyor-based (using cranes) and shuttle-based (using cranes and lifts) (Tappia et al. [2017\)](#page-39-8). An automated vehicle system/retrieval system (AVS/RS) is a shuttle-based handling system used in compact storage systems with single deep racks (Heragu et al. [2011](#page-37-12)). Automated handling systems, which can move along a free path, are known as automated guided vehicles (AGVs).

4.1.1 Decision problems of queueing network models of MHS applications in warehouses and DCs

Table [5](#page-16-0) lists the study's scope in the reviewed publications related to warehouses and DCs. Performance measurement studies are carried out to evaluate the performance of the existing facilities concerning single or many design parameters. In contrast, conceptualisation studies are done in the planning stages of building or outsourcing a facility to estimate the system's performance. Similarly,

References	Scope of the study
Heragu et al. (2011)	Design conceptualisation—evaluate of alternate facility configura- tions
Marchet et al. (2012)	Performance measurement of existing layout arrangement and fleet
Roy et al. (2012)	Conceptualisation-optimal design criteria
Schleyer and Gue (2012)	Optimal batch size for maximised throughput
Roy et al. (2014)	Conceptualisation-evaluate design trade-offs
Ekren et al. (2014)	Performance measurement
Seyedhoseini et al. (2015)	Minimize transportation and operation costs through layout design
Roy et al. (2015a)	Evaluate cross-aisle locations and dwell policies
Roy et al. (2015b)	Evaluate congestion effects on storage and retrieval process
Yuan and Gong, (2016)	Determine robot's velocity and fleet size for a desired order cycle time
Motaghedi and Aminnayeri (2017)	Determine waiting time for trucks
Tappia et al. (2017)	Design conceptualisation-evaluate of alternate facility configura- tions
Zou et al. (2018)	Determine optimal strategy between battery swapping or charging
Motaghedi and Aminnayeri (2018)	Determine optimal number of outbound doors (servers) in cross dock
Azadeh et al. (2019)	Determine optimal system layout for maximum throughput
Tappia et al. (2019)	Evaluate CONWIP
Wang et al. (2020)	Evaluate throughput and cycle time in an existing facility
Lamballais et al. (2020)	Determine the number of stock locations for existing S/R policies
Liu et al. (2020)	Performance measurement
Shen et al. (2021)	Performance measurement of different operating policies
Lamballais et al. (2021)	Determine resource allocation during peak and off-peak periods
Yang et al. (2021)	Determine throughput, utilisation, and queue length
Duan et al. (2021)	Determine resource allocation during peak and off-peak periods
Ekren and Akpunar (2021)	Determine design parameters number of bays, aisle, and tiers
Otten et al. (2021)	Determine minimum number of robots needed for a desired service level
Liu et al. (2021)	Performance measurement of RMFS

Table 5 Scope of the reviewed studies in the field of warehouses and DCs

optimisation studies are also carried out with existing facilities or based on the conceptualisation of facilities.

4.1.2 Modelling and solution approaches of queueing network models of MHS applications in warehouses and DCs

Heragu et al. ([2011\)](#page-37-12) and Marchet et al. [\(2012\)](#page-38-4) modelled an AVS/RS as an open queueing network to analyze the system's performance. The orders are considered as the network customers. Moreover, the AVS/RS was modelled as a multi-class, semi-open queueing network (SOQN) to measure the system's performance and determine the

warehouse's design criteria and resource allocation (Ekren et al. [2014](#page-37-13); Roy et al. [2012,](#page-39-9) [2015b](#page-39-14)). Roy et al. [\(2014](#page-39-11)) modelled an AVS/RS as a SOQN with a blocking phenomenon to estimate performance. Schleyer and Gue ([2012](#page-39-10)) modelled a picking process in a warehouse with a single picker as a queueing network model to estimate the throughput time for a stationary order arrival system. Roy et al. $(2015a)$ $(2015a)$ $(2015a)$ modelled an AVS/RS as a continuous system as a SOQN in a multi-tiered warehouse.

Seyedhoseini et al. ([2015\)](#page-39-12) modelled inbound (IB) and outbound (OB) trucks as two Markovian queues in a cross-docking warehouse set up to determine the optimal design needed to minimize transportation costs. Motaghedi and Aminnayeri [\(2017,](#page-38-5) [2018](#page-38-6)) modelled a cross-dock in a supply chain using a non-stationary queueing model, a novel approach, to estimate design layout efficiency.

Yuan and Gong ([2016](#page-40-0)) used non-Markovian queues to model an order fulflment system operated by robots to estimate the throughput of the system and determine the optimal number of robots for a desired level of service. Zou et al. ([2018](#page-40-1)) modelled a robotic mobile fulfilment system (RMFS) in a warehouse using a single queuing system and used a nested SOQN to model the battery swapping process. Shen et al. ([2021](#page-39-16)) modelled a drone feet that serviced a multi-warehouse system as a closed queueing network (CQN) and a battery swap process as a SOQN to estimate performance measures.

A multi-tiered warehouse with a shuttle-based storage and retrieval system (SBS/ RS) with lifts was modelled as a SOQN to measure system performance (Tappia et al. [2017](#page-39-8)). Azadeh et al. ([2019](#page-36-4)) modelled an automated storage and retrieval (AS/R) system run by robots using a CQN to estimate the maximum system throughput under diferent blocking protocols. Tappia et al. [\(2019\)](#page-39-15) compared the performance of a shuttle-based and automated handling system using queueing models. Wang et al. ([2020](#page-40-2)) and Lamballais et al. [\(2020\)](#page-38-7) modelled RMFSs as an OQN and SOQN, respectively, to estimate performance measures. Yang et al. [\(2021\)](#page-40-3) and Duan et al. ([2021](#page-37-14)) used SOQNs to model a multi-deep RMFS and RMFS with time-varying arrivals. To determine the optimal feet size, Otten et al. [\(2021](#page-38-10)) modelled an RMFS as a SOQN with a back-ordering (BO) phenomenon. Ekren and Akpunar [\(2021](#page-37-15)) used an OQN to model an SBS/RS that handled mini unit loads. Lamballais et al. [\(2021\)](#page-38-9) modelled a handling system run by robots and humans as a SOQN to fnd the optimal resource allocation for the picking and replenishment activities.

In another study, a case-level order picking process in a multiple in-aisle picking position (MIAPP) system operated with a narrow-aisle lift truck (NILT) was modelled as an M/G/1/K/N queue (Liu et al. [2020\)](#page-38-8) and as M/G/1/K (Liu et al. [2021\)](#page-38-11) queue to estimate performance measures.

Table [6](#page-18-0) summarises the queue types and employed solution approaches for solving the network in MHS applications in warehouses and DCs in the reviewed studies.

4.2 Queueing network models of MHS applications in manufacturing environments

Generally, a manufacturing system's physical confguration encompasses an arrangement of workstations (WS), machines, and other types of equipment in

stationaly queues $\frac{1}{2}$ 5

various layouts that are physically connected by the MHE (ElMaraghy et al. [2021\)](#page-37-16). The imperious fuctuations of global trade demands and associated uncertainty necessitate a manufacturing system's responsiveness. Material handling confguration plays a crucial role in the process, and material handling cost is one of the critical indicators of a manufacturing facility's efficiency (Amjath et al. [2022;](#page-36-5) Besbes et al. [2021\)](#page-36-6). Arrangements of workstations, aisle structure, and positions of machines infuence material handling costs (Pourvaziri et al. [2021](#page-38-12)).

4.2.1 Decision problems of queueing network models of MHS applications in manufacturing environments

During the last decade, many studies have been conducted using queueing networks to determine the optimisation and performance evaluation of MHS in various manufacturing environments, including fabrication plants, workstations (WS), assembly lines, job shops and fexible fow shops (FFS). Table [7](#page-20-0) lists the

References	Scope of the study
Govind et al. (2011)	Calculate WIP and queue delays
Nazzal, (2011)	Estimates throughput capacity
Raman, (2011)	Determine layout and fleet size based on WIP
Choobineh et al. (2012)	Determine optimal fleet size based on throughput
Sukhotu and Peters (2012)	Identify performance measurements with WS arrangement
Smith and Kerbache (2012)	Analysis of different Network topologies
Bedell and Smith (2012)	Analysis of different Network topologies
Tu et al. (2013)	Analysis performance measures with capacity of AMHS
Chen and Zhou (2013)	Calculate WIP with layout changes
Zhou and Chen (2013)	Calculate WIP
Tu and Chang (2014)	Determine the bottleneck and queue time
Zhu and Wu (2014)	Determine optimal design considering vehicle blocking
Smith and Barnes (2015)	Determine optimal server allocation according to the topology
Zhou et al. (2015)	Identify performance measurements considering priority rules
Smith (2016)	Determine optimal buffer allocation and network population
Zhou et al. (2016)	Calculate WIP considering priority rules
Xu et al. (2016)	Determine system design and resource allocation
Xi et al. (2017a)	Determine the optimal resource allocation for an assembly system
Xi et al. (2017b)	Determine the optimal buffer allocation based on WIP
Chen et al. $(2017a, b)$	Capacity planning for wafer fabrication plant based on WIP
Chen et al. $(2017a, b)$	Estimate performance measurements
Liao et al. (2017)	Identify performance measurements considering uncertainty
Mohammadi et al. (2020)	Estimate product cycle time
Zhang et al. (2021)	Estimate performance measurements

Table 7 Scope of the reviewed studies in the field of manufacturing facilities

scope of reviewed studies of queueing network models of MHS in various manufacturing environments.

4.2.2 Modelling and solution approaches of queueing network models of MHS applications in manufacturing environments

Work-in-process (WIP) is one of the key performance indicators of the efficiency of an MHS in a manufacturing environment. Govind et al. [\(2011](#page-37-17)) used a CQN to model the inter-bay AMHS of a semiconductor manufacturing system and estimate the queue delays and WIP levels. A multi-vehicle AMHS was modelled as a closedloop queueing network with a finite buffer to estimate the throughput capacity considering the stochastic loading and unloading time (Nazzal [2011\)](#page-38-13). Tu et al. [\(2013](#page-40-4)) proposed a queueing model for the AMHS of a semiconductor manufacturing system to estimate the required number of MHEs. Zhou and Chen [\(2013](#page-40-5)) modelled an AMHS of a semiconductor wafer fabrication system using a fnite Markovian queueing model to estimate the expected WIP when considering crossovers. A multi-class non-Markovian infnite queueing model was proposed for continuous fow transporters (CFTs) in a semiconductor manufacturing system with a non-pre-emptive priority rule to estimate the WIP in the material intersection points (Zhou and Chen [2013](#page-40-5)). A GI/G/M queueing model was used to determine the capacity of an AHMS in a semiconductor manufacturing system (Tu and Chang [2014\)](#page-40-6). Zhu and Wu [\(2014](#page-40-7)) modelled an AMHS in a semiconductor wafer fabrication system while using the vehicle blocking phenomenon and a queueing network to estimate performance measures. As part of an AMHS in a semiconductor manufacturing facility, a CFT was modelled with priority rules to estimate the WIP (Zhou et al. [2015,](#page-40-8) [2016\)](#page-40-9). In a semiconductor manufacturing facility, Chen et al. [\(2017a,](#page-37-4) [b](#page-37-5)) modelled an AMHS as an OQN and service stations as infnite Markovian queues under uncertain wafer lots transfer probability to estimate the WIP level.

WIP is a critical factor in a manufacturing system, and WIP accumulation can occur for various reasons. Raman [\(2011](#page-38-14)) used the queueing theory to estimate the WIP and server utilization while considering manufacturing variability. The author used the WIP to determine the optimal layout and feet size using the Genetic Algorithm (GA) and the two-step analytical approach. Choobineh et al. ([2012\)](#page-37-18) modelled an MHS with AGVs using a multi-class CQN and used the state-dependant behaviour of the network to determine the optimal fleet size.

Sukhotu and Peters [\(2012](#page-39-17)) modelled a multi-class MHS with a job-specifc routing using queues with non-Poisson arrival rates and generally independent and identically distributed service time, to analyse the efect of workstation arrangements in a manufacturing facility. Smith and Kerbache [\(2012](#page-39-6)) and Bedell and Smith [\(2012](#page-36-7)) proposed a state-dependent multi-server queueing network with a fnite bufer to estimate the performance of an MHS under diferent network topologies such as series, merge, and split configuration. Smith and Barnes [\(2015](#page-39-18)) and Smith [\(2016](#page-39-19)) modelled an MHS using a CQN with a finite buffer to determine the optimal buffer allocation and network population.

The design of an MHS in a fexible fow shop (FFS) is one of the critical factors to be considered when deciding on the layout design, resource allocation, and design criteria. Xu et al. [\(2016](#page-40-10)) modelled the MHS of an FFS in a mould manufacturing facility with a random lot size using an OQN with a fnite bufer to determine system design and resource allocation. Liao et al. [\(2017](#page-38-15)) used an OQN with a fnite bufer to model an FFS with non-equivalent AGVs to estimate system performance considering manufacturing uncertainty and random lot size. Zhang et al. ([2021\)](#page-40-13) modelled an integrated production and the MHS of an FFS using an OQN with blocking after service (BAS) blocking to estimate performance measurement.

Xi et al. [\(2017a\)](#page-40-11) modelled an assembly manufacturing system with bulk transportation using a queueing network to study the impact of bufer allocation on the system's performance. The authors determine the optimal WIP and feet size to minimize the total investment cost. Xi et al. $(2017b)$ $(2017b)$ modelled a customized assembly manufacturing system with an OQN with a fnite bufer and blocking consideration to estimate the MHS's efficiency.

Chen et al. $(2017a, b)$ $(2017a, b)$ $(2017a, b)$ $(2017a, b)$ used an OQN with a finite buffer to model an MHS with AGVs to estimate the performance indexes in a manufacturing system. Mohammadi et al. [\(2020](#page-38-16)) presented a novel queue-based aggregation (QAG) model to estimate the performance of an AMHS in a multi-product job shop facility.

Table [8](#page-23-0) summarises the queue types and employed solution approaches for solving the network in MHS applications in manufacturing facilities in the reviewed studies.

4.3 Queuing network models for MHS applications in mining and harvesting systems

Munoz and Lee [\(2021](#page-38-17)) presented a study where queues in the mill and harvest front of a sugarcane harvesting system were modelled as two independent queues to estimate the system's performance. The authors used a node diagram and balance equations to solve the closed network model and used performance measures to determine the optimal number of trucks for smoother operation. Sembakutti et al. [\(2017](#page-39-20)) studied the problem of equipment (shovel and trucks) allocation in an earth and surface mining pit. To estimate the truck waiting time and queue length, they modelled the operations using a model with 'Generally defned distribution" arrivals and service times.

Tables [9](#page-23-1) and [10](#page-23-2) summarise the scope and queue types and employed solution approaches for solving the network in MHS applications in mining and harvest felds, respectively.

4.4 Queueing network models of MHS applications in container terminals

Container terminals are one of the critical nodes in global trading that have radically changed over time. Integration between seaside and landside activities is vital to the efficiency of terminal operations. Adequately planning the MHS, including quay cranes, yard cranes, yard trailers, and trucks, is critical to a smooth terminal operation and a lower turnaround time for container ships (Li and He [2021](#page-38-18)).

References	Queue Type	Solution approach to solve the queueing network model
Govind et al. (2011)	M/G/C	Simulation
Nazzal (2011)	G/G/C	Iterative algorithm to solve the model
Raman (2011)	G/G/C	Queueing theory
Choobineh et al. (2012)	M/M/1	Calculated steady-state performance measures using transi- tion probabilities
Sukhotu and Peters (2012)	GI/G/1	Parametric decomposition; Method of Whitt (1983) algo- rithm
Smith and Kerbache (2012)	M/G/C/C	Decomposition approach; solved with GEM
Bedell and Smith (2012)	M/G/C/C	Decomposition approach; solved with MVA algorithm
Tu et al. (2013)	GI/G/C	Parametric decomposition; Method of Whitt (1983) algo- rithm
Chen and Zhou (2013)	M/M/1/K	Continuous Time Markov Chain (CTMC)—Steady state behaviour
Zhou and Chen (2013)	M/G/1	Decomposition approach; solved with AMVA algorithm
Tu and Chang (2014)	GI/G/C	Decomposition approach; Method of Whitt (1983) algorithm
Zhu and Wu (2014)	M/M/1/K	Parametric decomposition
Smith and Barnes (2015)	M/G/C/C	Decompose approach; solved with MVA algorithm
Zhou et al. (2015)	M/G/1	Parametric decomposition; Matrix Analytical Method (MAM)
Smith (2016)	M/G/C/C	Decompose approach; solved with MVA algorithm
Zhou et al. (2016)	GI/G/1	Queueing theory—CTMC
Xu et al. (2016)	M/G/1	State space method for decomposition
Xi et al. $(2017a)$	M/G/1/K	State space method for decomposition
Xi et al. $(2017b)$	M/G/1/K	State space method for decomposition
Chen et al. $(2017a, b)$	M/M/1	Parametric decomposition; Flow balance equations
Chen et al. $(2017a, b)$	M/M/1	Parametric decomposition; State space method
Liao et al. (2017)	M/M/1/K	Improved state space decomposition method
Mohammadi et al. (2020)	GI/G/C	Queue-based aggregation (QAG) model
Zhang et al. (2021)	M/G/C/K	State space method for decomposition

Table 8 Modelling and solution approach analysis of models in manufacturing facilities

4.4.1 Decision problems of queueing network models of MHS applications in container terminals

Stakeholders' interests in container terminal operations difer from one another. The vessel operators desire for lowest waiting time, and terminal operators are staking for maximum throughput. The throughput is considered a container terminal operator's main performance index. Similarly, trucks or trailers are aiming for the lowest cycle time. Queueing network models are used from diferent stakeholders' perspectives in the reviewed studies. Table [11](#page-24-0) lists the purpose of the studies related to the queueing network models of MHS applications in container terminals.

4.4.2 Modelling and solution approaches of queueing network models of MHS applications in container terminals

Chen et al. $(2013a)$ modelled a terminal gate operation using a non-stationary queueing network to determine the optimal number of trucks that need to be allowed at any given time to reduce the truck queue length. The authors experimented with two scenarios, static and dynamic terminal appointment systems, to fnd the optimal truck arrival rate. Chen et al. [\(2013b](#page-37-19)) used a queueing network to model a terminal gate system to fnd the optimal truck arrival pattern needed to reduce carbon emissions from idling trucks. Chen et al. ([2013c](#page-37-20)) used a queueing model to estimate truck queue length to minimize the congestion at a terminal gate. Zeng et al. ([2016\)](#page-40-14) used a vacation queueing model to model IB and OB trucks to determine the optimal truck appointment policy. Dhingra et al. ([2018\)](#page-37-21) used a SOQN to model trucks arriving at an automated container terminal at various times to estimate the number of trucks to be permitted in the terminal. Ansorena ([2020\)](#page-36-9) used a closed Jackson network (CJN) approach to study port operations and determine truck congestion.

Roy and de Koster [\(2018\)](#page-39-21) modelled overlapping quay crane (QC) and automated stacking crane (ASC) operations as an OQN and a SOQN to analyse

Scope of the study
Determine optimal number of trucks per hour to reduce the truck queue length
Optimise truck arrival patterns to reduce emissions
Control truck arrivals to reduce congestion at the gate
Determine optimal truck appointment for outbound and inbound operations
Regulate the number of trucks for resource allocation and demand levelling
Analyse the performance of overlapping loading and unloading operations
Determine optimal truck allocation to minimize cost under double cycling
Analysis of stowage and traffic impact on port productivity
Estimate maximum throughput considering stack layout arrangements
Determine performance measurement of terminal operations
Design criteria decision on comparing performance of LAGVs and AGVs

Table 11 Scope of the reviewed studies in the feld of container terminals

performance. The authors suggested that layout planning is paramount for single and overlapping operation efficiency. Zhang et al. (2019) used a queueing network to model the double cycling operation of a container terminal. The authors used the queuing model to identify the system bottleneck and server utilization (QC, yard cranes, trucks) and determine the optimal truck allocation to mini-mize the terminal operation cost. Roy and de Koster [\(2020\)](#page-39-22) used a CQN to model yard operations and a SOQN to model landside operations to fnd the maximum throughput based on a stacking layout. Legato and Mazza [\(2020\)](#page-38-19) used a CQN

and an OQN to model yard and seaside operations to estimate the terminal performance. Finally, Kumawat and Roy ([2021](#page-38-20)) used a SOQN to model the sea-toshore operations in a container terminal to compare the performance of AGVs and LAGVs.

Table [12](#page-26-0) summarises the queue types and employed solution approaches for solving the network in MHS applications in container terminals in the reviewed studies.

4.5 Performance measures of queueing network models

Assessment of queueing model performance measures plays a crucial role in managing and controlling the networks. Measuring the system's performance is always a key objective of queueing network models. There are mainly identifed performance measures of queueing network models: utilisation, throughput, response time, waiting time, cycle time, queue length, and the number of jobs in the system. Depending on the system, specifc performance measures play a crucial role in understanding the system's behaviour.

Table [13](#page-27-0) summarises the key performance measures of queueing network models used in the reviewed studies.

4.6 Optimisation problems and solution approaches

Queueing network models are used to design optimisation problems in MHS applications in various domains, improve existing confgurations, or design new systems. Queueing network models are extensively used to model stochastic models and proved to be a robust tool in optimisation. Optimisation problems under queueing network models of MHS can be categorised into a few application streams. The identifed application streams can be categorised into layout design and confguration problems, feet sizing and allocation problems, determination of customer/job arrival rates and scheduling problems, and server and bufer allocation problems. Table [14](#page-29-0) summarises the optimisation problems identifed in the reviewed studies along with the problem objective, decision variables and solution approach. Figure [14](#page-30-0) provides the dendrogram of keywords used in the optimisation studies of queueing network models of MHS. These diagrams show the hierarchical clustering of indexed keywords to identify diferent classifcation criteria (Aria and Cuccurullo [2017](#page-36-10)).

References	Performance measures					
			Throughput Utilisation Waiting time		Cycle time Queue length	
Govind et al. (2011)					✓	
Heragu et al. (2011)	✓					
Nazzal (2011)						
Raman (2011)						
Bedell and Smith (2012)						
Choobineh et al. (2012)						
Marchet et al. (2012)						
Roy et al. (2012)						
Schleyer and Gue (2012)						
Smith and Kerbache (2012)						
Sukhotu and Peters (2012)						
Chen et al. $(2013a)$						
Chen et al. $(2013b)$						
Chen et al. $(2013c)$						
Chen and Zhou (2013)						
Tu et al. (2013)						
Zhou and Chen (2013)						
Ekren et al. (2014)						
Roy et al. (2014)						
Tu and Chang (2014)						
Zhu and Wu (2014)				✓		
Roy et al. (2015a)				✓		
Roy et al. (2015b)				✓		
Seyedhoseini et al. (2015)						
Smith and Barnes (2015)						
Zhou et al. (2015)						
Smith (2016)						
Xu et al. (2016)						
Yuan and Gong (2016)						
Zeng et al. (2016)						
Zhou et al. (2016)						
Chen et al. $(2017a, b)$						
G. Chen et al. (2017a, b)						
Liao et al. (2017)						
Motaghedi and Aminnayeri (2017)						
Sembakutti et al. (2017)						
Tappia et al. (2017)						
Xi et al. (2017a)						
Xi et al. (2017b)						
Dhingra et al. (2018)						
Motaghedi and Aminnayeri (2018)			✓			

Table 13 Identifed performance measures in the reviewed studies

Table 13 (continued)

4.6.1 Layout design and confguration problems

Layout designs are closely related to the performance of an MHS in any intralogistics setup. Many studies in the reviewed articles were found related to determining the optimal layout design and confguration for a given facility to achieve the desired objective/s, such as maximum throughput, minimum cycle time or minimising the cost of operations. Raman ([2011](#page-38-14)) developed an optimisation problem to determine the optimal layout plan and feet size to minimise the WIP level in a semiconductor fabrication facility. Zhu and Wu ([2014\)](#page-40-7) modelled a warehouse facility using the finite queueing system to find the optimal layout configuration. The authors used the study to fnd the optimal number of aisles, aisle width, and rack confgurations to minimise the blocking and congestion efect in the order picking process. Seyedhoseini et al. [\(2015\)](#page-39-12) presented an optimisation problem to fnd the optimal number of doors in a cross-docking warehouse to minimise the waiting time of trucks. Motaghedi and Aminnayeri ([2018](#page-38-6)) and Azadeh et al. [\(2019](#page-36-4)) used the queueing network models of MHS to determine the optimal layout design to minimise the waiting time and maximise throughput, respectively.

Fig. 14 Dendrogram of hierarchical cluster analysis of optimisation problems

Roy and de Koster ([2020](#page-39-22)) presented a study to determine a container terminal's optimal stack layout confgurations to maximise the berth throughput.

4.6.2 Fleet sizing and allocation problems

In a closed or mixed queueing network, the population is a critical factor that infuences the performance measures of the network. An overcrowded population/customers can create longer waiting times in queues, whereas a low number of customers in the network can result in the under-utilisation of servers. Choobineh et al. [\(2012](#page-37-18)) presented a study to determine the optimal number of AGVs in a manufacturing environment to achieve the desired level of throughput. Yuan and Gong ([2016\)](#page-40-0) modelled a robotics warehouse to determine the optimal robots and the velocity of the robots to minimise the order throughput time. Zhang et al. [\(2019](#page-40-15)) carried out a study to determine the optimal truck allocation in a container terminal to minimise the cost while ensuring truck allocation reduces the double handling of the containers. Munoz and Lee [\(2021](#page-38-17)) presented a study to determine the optimal feet size of trucks in a sugarcane harvest feld to ensure an uninterrupted operation. Otten et al. [\(2021](#page-38-10)) modelled an automated robotics warehouse considering the back-ordering phenomenon to fnd the optimal number of robots required to minimise the lost customers. Schleyer and Gue [\(2012](#page-39-10)) developed a study to fnd the optimal load size of an AGVs to minimise the order throughput time in a warehouse.

4.6.3 Arrival rates and scheduling problems

Arrival rates and inter-arrival rates are paramount to network performance measures. The probability distribution of arrival patterns of customers/jobs is a signifcant

basis for the queueing system [c](#page-37-19)lassification. Chen et al. (c, $2017a$), , , , $2013b$, , conducted studies to determine the optimal inbound truck arrival rate in a container terminal to minimise the queue length, carbon emissions, and congestion, respectively. Zeng et al. [\(2016](#page-40-14)) developed an optimal truck appointment schedule to reduce congestion at a gate in the container terminal.

4.6.4 Server and bufer allocation problems

The number of servers and buffer sizes are essential factors in a finite queueing system. With the evolution of queueing network model analysis, practitioners started to use more realistic models where the number of servers and queue capacities are limited. These fnite networks with multiple server's environment result in non-product form networks which need approximation algorithms to solve. Smith and Barnes [\(2015](#page-39-18)) presented a study to determine the optimal number of servers in a manufacturing setup to maximise the system's throughput. Smith [\(2016](#page-39-19)) conducted a study to fnd the optimal bufer and population to maximise the throughput of a given facility. Xi et al. [\(2017a\)](#page-40-11) studied bulk material transportation in an assembly process to fnd the optimal resource (server) allocation strategy to maximise the line's throughput. Xi et al. $(2017b)$ $(2017b)$ further developed the study to find the optimal buffer allocation strategy to minimise the infrastructure confguration investment cost and WIP level.

4.7 Simulation as a validation tool

Generally, queues and queueing networks are complex systems and are possible to tractable when assumptions are made to simplify them. However, most of the assumptions may not precisely describe the actual system properties and features. Therefore, most of the studies focus on developing approximation algorithms and heuristics approaches to tackle the solving of these queueing network models. In such situations, simulation tools are used to validate the accuracy of the proposed methodologies. Table [15](#page-32-0) summarises the details of the simulation tools and experiments used in the reviewed studies. The simulation run column contains the general information on the number of replications, run time and warm-up period. Replications are used to ensure the stability of the model, and warm-up period data is excluded from calculation due to the transient state of the model in the initial stages of the run. Generally, steady-state data is used in the simulation model for performance measures calculations.

5 Trends in queueing network models for MHS applications

Figure [15](#page-33-0) shows the trend topics plot of study areas of queueing network models for MHS applications within the last decade. This plot is created using the bibliometrix software package with the bibiloshiny application (Aria and Cuccurullo [2017\)](#page-36-10). The trend topic plot shows the most frequently appeared keywords in the relevant

References	Simulation software	Run time			
		Replications	Run time	warm-up period	
Heragu et al. (2011)	Arena 12.0	100	1100h	100 _h	
Marchet et al. (2012)	Arena 13.0	20	48h	3 _h	
Roy et al. (2012)	AutoMod software	15	600 _h	120 _h	
Roy et al. (2014)	AutoMod software	15	24,000 units	5000 units	
Ekren et al. (2014)	Arena 12.0	10	2 years	3 months	
Roy et al. (2015a)	AutoMod software	15	600 _h	120 _h	
Roy et al. (2015b)	AutoMod software	15	20,000 units	2000 units	
Tappia et al. (2017)	Arena 14.7	15	25,000 units	5000 units	
Zou et al. (2018)	Arena 14.8	100	1000h	100 _h	
Azadeh et al. (2019)	AutoMod software	40			
Tappia et al. (2019)	Arena	15	1,250,000 s	250,000 s	
Wang et al. (2020)	Arena	30	72 h		
Lamballais et al. (2020)	Java	10	168h	56 h	
Liu et al. (2020)	Monte Carlo simulation	100	500h	50 _h	
Shen et al. (2021)	Arena	30	240 h	24 h	
Lamballais et al. (2021)	RAWSim-O	10	1 year		
Duan et al. (2021)	Java	100	168h		
Otten et al. (2021)	Simpy 3.0	20	365 days		
Govind et al. (2011)	SIGMA	10	100,000 units		
Choobineh et al. (2012)	SIMAN		100,000 min		
Sukhotu and Peters (2012)	Arena	40			
Smith and Kerbache (2012)	Arena	30	100,000 units	1000 units	
Bedell and Smith (2012)	Arena	30	120,000 units	20,000 units	
Tu et al. (2013)	eM-Plant 7.0	50	60 days	30 days	
Smith (2016)	Arena	30	100,000 units	1000 units	
Mohammadi et al. (2020)	Anylogic	20	15,000 units	1500 units	
Zhang et al. (2021)	SIEMENS	50	100,000 units	2000 units	
Dhingra et al. (2018)	Arena 14.0	25	1000 days	500 days	
Roy and de Koster (2018)	AutoMod software	15	480h	24 h	
Kumawat and Roy (2021)	Arena	10	10 days	1 day	

Table 15 Simulation software and experiments details of reviewed studies

periods, and the area of the circle on the timeline is proportional to the frequency of appearances.

In the initial period, most studies focus on the MHS applications regarding layout design and planning. Similarly, topological network design problems of facilities were modelled and analysed using queueing network models. Also, queueing network models were used for continuous systems in contrast to discrete systems, such as conveyor belt modelling. In early 2013, manufacturing facilities and container terminals' intra-logistics operations were modelled using queueing networks for performance analysis. WIP was identifed as one of the critical

Fig. 15 Trend topics of queueing network models of MHS applications between 2011 and 2021

performance measures in analysing the performance of manufacturing facility material handling operations. Studies related to the semiconductor manufacturing facility's material handling systems were in constant interest between 2013 and 2016 to analyse the efficiency of their MHS. The studies on terminal operations in ports started using queueing network models to study and analyse the behaviour of outbound and inbound truck arrivals concerning cost, congestion and emission.

The operation of trucks and automobiles was one of the major topics studied using queueing network models during 2015–2018. Warehouse operations also used queueing network models to analyse the system performance and optimisation purposes. Determination of throughput capacities of facilities seems to be one of the signifcant explored performance measures in the recent past. Around 2016, queueing network models were used to analyse automated MHS applications such as AGVs and robots. With the evolution of studies in queueing network models of MHS applications, the optimisation modelling was coupled with queueing models to fnd the system's optimum. Also, the focuses of such optimisation studies tend to include social efects in their problem formulations. Using numerical experiments and methods in optimisation has been a critical observation in the last few years.

6 Discussion

Scholars and industry practitioners have recognized that material handling is one of the most critical logistic functions in the manufacturing and service sectors. Companies employ different approaches and methods to ensure the efficient flow of materials and minimize the cost of handling operations. This study presents a systematic literature review on the performance evaluation and optimization of MHS applications, primarily using queueing networks as the modelling tool in various domains. A total of 63 studies published from 2011 to 2021 were systematically and meticulously analysed to understand the queueing network models of MHS applications comprehensively.

A bibliometric analysis indicated that the number of publications published on the subject is generally consistent throughout time but increased in 2020 and 2021. Moreover, few journals stand out from the rest regarding the number of queueing-based MHS application-related publications. The co-citation networks based on authors, word tree map of keywords, SNA model, trend topic plots and dendrogram were developed to identify trends and patterns in the queueing network models of MHS.

Content analysis showed four main application domains studied in the reviewed publications: warehouses and DCs, manufacturing systems, container terminals, and mining/harvest felds. Queueing networks were used in studies to model the MHSs in these domains, evaluate system performances, and decoupled with analytical models to optimise selected parameters. The performance measures presented in the studies were throughput, cycle time (sojourn time), server utilisation, queue length, WIP, and waiting time. Depending on the application domain and scope of the study, the authors determined the required performance measures by solving the queueing network models. Regarding the optimisation of the systems, most of the reviewed studies focused on maximising throughput under diferent constraint conditions. Several studies focused on minimising cycle time, waiting time, and WIP levels. These parameters were primarily coupled with the objective cost or revenue functions. A select number of studies focused on determining the optimal population (feet size), bufer size, or arrival rate of the network's customers to achieve desired objectives such as minimal cost, maximum proft/revenue, or minimal cycle time. Some studies regarding MHS applications in warehouses were used to determine design confguration criteria such as aisle width, the distance between racks, the height of racks, and the number of loading/unloading bays and routing topologies. Similarly, a few studies in the manufacturing domain were used to determine the optimal number of workstations, layout confgurations, and routing plans for MHEs. In general, studies related to container terminals focus on IB and OB truck management.

There was evidence that modelling approaches have been becoming complex with time to emulate the real world systems to their closest. Use of finite queueing systems, inculcating blocking mechanisms in the queues, multi-server networks with asymmetric nodes, including non-Markovian properties in the queueing systems, and implementation of advance queue disciplines, have been used in the models of MHS applications. However, Smith [\(2018\)](#page-39-7) points out certain types of networks have not been used in modelling MHS applications, such as loss networks and Engset networks.

There are also chronological patterns that can be seen in the types of MHS applications studied. For instance, many studies modelled robotics and AGVs of MHSs as queueing networks for analysis and optimisation purposes during 2019–2021. Similarly, the focus of studies tends to change from performance analysis problems to optimisation modelling problems.

There is potential for developing a decision support system (DSS) for designing and operating an MHS using queueing network models. The abovementioned studies primarily focus on the MHS design problems from a uni-dimensional perspective. For instance, a study that focuses on layout topologies to maximise the throughput without concentrating on the cost of feet, the congestion, and resource utilisation. Therefore, the challenge is to develop multicriteria decision support systems to design and operate optimal MHS confgurations in a given supply chain domain. Moreover, the study and analysis of asymmetric and heterogeneous nodes in networks remain limited in queueing network models relative to MHS applications. In contrast, they are abundantly used in analysing computing and communication network applications.

6.1 Conclusion

The use of queueing networks to model material handling systems in various intralogistics domains has signifcantly helped academics and industry practitioners to study and analyse complex system topologies and behaviours. The coupling of queueing networks with numerical methods and approaches has undeniably helped to improve and optimise the studied systems. As pointed out in the discussion, the complexity of networks has been increasing with time, and novel approaches to solving models have been reported in the literature. Moreover, these studies have focused more on automated and integrated systems in the recent past. However, the queueing network models of MHS are yet to be systematically used as robust decision support systems in designing optimal MHS topologies in organisation setups. As presented in this study, most surveyed queueing network models focus on single criteria analysis and optimisation. However, an organisation can potentially use the queueing network models as a robust tool in all strategic, managerial and operational decision-making processes in designing and operating its MHS.

Author contributions All authors contributed to the study idea. MA: performed the literature search, data collection and analysis. Supervision was provided by LK, AE and JMS. The frst draft of the manuscript was written by MA, and all authors commented on previous versions. All authors read and approved the fnal manuscript.

Funding Open Access funding provided by the Qatar National Library. The authors did not receive support from any organisation for the submitted work.

Data availability We confrm all data, materials and software applications comply with feld standards.

Code availability Not applicable.

Declarations

Confict of interest The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval We confrm that this work is the result of original research and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://creativecommons.org/licen](http://creativecommons.org/licenses/by/4.0/) [ses/by/4.0/](http://creativecommons.org/licenses/by/4.0/).

References

- Amjath M, Kerbache L, Macgregor J, Elomri A (2022) Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks. Oper Res Perspect 9(April):100245. [https://doi.](https://doi.org/10.1016/j.orp.2022.100245) [org/10.1016/j.orp.2022.100245](https://doi.org/10.1016/j.orp.2022.100245)
- Ansorena IL (2020) Operational strategies for managing container terminals. An approach based on closed queuing networks. Int J Ind Syst Eng 35(1):13–27. [https://doi.org/10.1504/IJISE.2020.](https://doi.org/10.1504/IJISE.2020.106847) [106847](https://doi.org/10.1504/IJISE.2020.106847)
- Aria M, Cuccurullo C (2017) bibliometrix: An R-tool for comprehensive science mapping analysis. J Informet 11(4):959–975
- Azadeh K, Roy D, De Koster R (2019) Design, modeling, and analysis of vertical robotic storage and retrieval systems. Transp Sci 53(5):1213–1234.<https://doi.org/10.1287/trsc.2018.0883>
- Balsamo S, De Nitto Personè V, Inverardi P (2003) A review on queueing network models with fnite capacity queues for software architectures performance prediction. Perform Eval 51(2–4):269–288. [https://doi.org/10.1016/S0166-5316\(02\)00099-8](https://doi.org/10.1016/S0166-5316(02)00099-8)
- Bedell P, Smith JM (2012) Topological arrangements of M/G/c/K, M/G/c/c queues in transportation and material handling systems. Comput Oper Res 39(11):2800–2819. [https://doi.org/10.1016/j.cor.2012.](https://doi.org/10.1016/j.cor.2012.02.009) [02.009](https://doi.org/10.1016/j.cor.2012.02.009)
- Besbes M, Mahjoub YI, Bonte T, Berger T, Sallez Y, Zolghadri M (2021) Solving Facility Layout Problem with safety consideration of Reconfgurable Manufacturing and Assembly Systems. Procedia CIRP 104:1942–1947.<https://doi.org/10.1016/j.procir.2021.11.328>
- Bolch G, Greiner S, De Meer H, Trivedi KS (2006) Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. John Wiley and Sons
- Bouh MA and Riopel D (2016) Material handling equipment selection: New classifcations of equipments and attributes. In: Proceedings of 2015 International Conference on Industrial Engineering and Systems Management, IEEE IESM 2015, October, 461–468. [https://doi.org/10.1109/IESM.](https://doi.org/10.1109/IESM.2015.7380198) [2015.7380198](https://doi.org/10.1109/IESM.2015.7380198)
- Castillo I, Peters BA (2002) Unit load and material-handling considerations in facility layout design. Int J Prod Res 40(13):2955–2989
- Chen G, Govindan K, Golias MM (2013a) Reducing truck emissions at container terminals in a low carbon economy: proposal of a queueing-based bi-objective model for optimizing truck arrival pattern. Transp Res Part E 55:3–22.<https://doi.org/10.1016/j.tre.2013.03.008>
- Chen G, Govindan K, Yang Z-Z, Choi T-M, Jiang L (2013b) Terminal appointment system design by non-stationary M(t)/E k/c(t) queueing model and genetic algorithm. Int J Prod Econ 146(2):694– 703.<https://doi.org/10.1016/j.ijpe.2013.09.001>
- Chen G, Govindan K, Yang Z (2013c) Managing truck arrivals with time windows to alleviate gate congestion at container terminals. Int J Prod Econ 141(1):179–188. [https://doi.org/10.1016/j.ijpe.2012.](https://doi.org/10.1016/j.ijpe.2012.03.033) [03.033](https://doi.org/10.1016/j.ijpe.2012.03.033)
- Chen G, Chen Q, Mao N, Yu A, Zhang H (2017a) Modeling and analysis of queuing network in manufacturing system with stochastic path AGV. Jisuanji Jicheng Zhizao Xitong 23(1):52–65. [https://doi.](https://doi.org/10.13196/j.cims.2017.01.007) [org/10.13196/j.cims.2017.01.007](https://doi.org/10.13196/j.cims.2017.01.007)
- Chen W, Wang Z, Chan FTS (2017b) Robust production capacity planning under uncertain wafer lots transfer probabilities for semiconductor automated material handling systems. Eur J Oper Res 261(3):929–940. <https://doi.org/10.1016/j.ejor.2017.02.026>
- Cho C, Egbelu PJ (2005) Design of a web-based integrated material handling system for manufacturing applications. Int J Prod Res 43(2):375–403.<https://doi.org/10.1080/0020754042000268866>
- Cho I, Kim N (2011) Recommending core and connecting keywords of research area using social network and data mining techniques. J Intell Inf Syst 17(1):127–138
- Choobineh FF, Asef-Vaziri A, Huang X (2012) Fleet sizing of automated guided vehicles: a linear programming approach based on closed queuing networks. Int J Prod Res 50(12):3222–3235. [https://](https://doi.org/10.1080/00207543.2011.562560) doi.org/10.1080/00207543.2011.562560
- Dhingra V, Kumawat GL, Roy D, Koster RD (2018) Solving semi-open queuing networks with time-varying arrivals: an application in container terminal landside operations. Eur J Oper Res 267(3):855– 876.<https://doi.org/10.1016/j.ejor.2017.12.020>
- Duan G, Zhang C, Gonzalez P, Qi M (2021) Performance evaluation for Robotic Mobile Fulfllment Systems with time-varying arrivals. Comput Ind Eng.<https://doi.org/10.1016/j.cie.2021.107365>
- Durach CF, Kembro JH, Wieland A (2021) How to advance theory through literature reviews in logistics and supply chain management. Int J Phys Distrib Logist Manag 51(10):1090–1107. [https://doi.org/](https://doi.org/10.1108/IJPDLM-11-2020-0381) [10.1108/IJPDLM-11-2020-0381](https://doi.org/10.1108/IJPDLM-11-2020-0381)
- Ekren BY, Akpunar A (2021) An open queuing network-based tool for performance estimations in a shuttle-based storage and retrieval system. Appl Math Model 89:1678–1695. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.apm.2020.07.055) [apm.2020.07.055](https://doi.org/10.1016/j.apm.2020.07.055)
- Ekren BY, Heragu SS, Krishnamurthy A, Malmborg CJ (2014) Matrix-geometric solution for semiopen queuing network model of autonomous vehicle storage and retrieval system. Comput Ind Eng 68(1):78–86. <https://doi.org/10.1016/j.cie.2013.12.002>
- ElMaraghy H, Monostori L, Schuh G, ElMaraghy W (2021) Evolution and future of manufacturing systems. CIRP Ann 70(2):635–658.<https://doi.org/10.1016/j.cirp.2021.05.008>
- Eurostat (2018) Database—Eurostat.<https://ec.europa.eu/eurostat/web/main/data/database>
- Fragapane G, Roy D, Sgarbossa F and Strandhagen JO (2021) Planning autonomous material transportation in hospitals. In Dolgui A, Bernard A, Lemoine D, von Cieminski G, Romero D (eds) IFIP WG 5.7 International Conference on Advances in Production Management Systems, APMS 2021: Vol. 632 IFIP (pp 24–32). Springer Science and Business Media Deutschland GmbH. [https://doi.org/10.](https://doi.org/10.1007/978-3-030-85906-0_3) [1007/978-3-030-85906-0_3](https://doi.org/10.1007/978-3-030-85906-0_3)
- Furmans K (2009) Material handling and production systems modelling: based on queuing models. Springer
- Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235(3):471–483
- Govind N, Roeder TM, Schruben LW (2011) A simulation-based closed queueing network approximation of semiconductor automated material handling systems. IEEE Trans Semicond Manuf 24(1):5–13. <https://doi.org/10.1109/TSM.2010.2089659>
- Heragu SS, Cai X, Krishnamurthy A, Malmborg CJ (2011) Analytical models for analysis of automated warehouse material handling systems. Int J Prod Res 49(22):6833–6861. [https://doi.org/10.1080/](https://doi.org/10.1080/00207543.2010.518994) [00207543.2010.518994](https://doi.org/10.1080/00207543.2010.518994)
- Insua DR, Ruggeri F (eds) (2012) Robust bayesian analysis. Springer
- Jaewoo C, Woonsun K (2014) Themes and trends in Korean educational technology research: a social network analysis of keywords. Procedia Soc Behav Sci 131:171–176. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.sbspro.2014.04.099) [sbspro.2014.04.099](https://doi.org/10.1016/j.sbspro.2014.04.099)
- Kay MG (2012) Material handling equipment. In: Fitts Dept. of Industrial and Systems Engineering North Carolina State University, 65
- Kerbache L, Smith JM (2004) Queueing networks and the topological design of supply chain systems. Int J Prod Econ 91(3):251–272
- Kumawat GL, Roy D (2021) AGV or Lift-AGV? Performance trade-ofs and design insights for container terminals with robotized transport vehicle technology. IISE Trans 53(7):751–769. [https://doi.org/10.](https://doi.org/10.1080/24725854.2020.1785648) [1080/24725854.2020.1785648](https://doi.org/10.1080/24725854.2020.1785648)
- Lamballais T, Merschformann M, Roy D, de Koster MBM, Azadeh K, Suhl L (2021) Dynamic policies for resource reallocation in a robotic mobile fulfllment system with time-varying demand. Eur J Oper Res. <https://doi.org/10.1016/j.ejor.2021.09.001>
- Lamballais Tessensohn T, Roy D, De Koster RBM (2020) Inventory allocation in robotic mobile fulfllment systems. IISE Trans 52(1):1–17.<https://doi.org/10.1080/24725854.2018.1560517>
- Lee S, Lim D-E, Kang Y, Kim HJ (2021) Clustered multi-task sequence-to-sequence learning for autonomous vehicle repositioning. IEEE Access 9:14504–14515
- Legato P, Mazza RM (2020) Queueing analysis for operations modeling in port logistics. Maritime Bus Rev 5(1):67–83.<https://doi.org/10.1108/MABR-09-2019-0035>
- Li B, He Y (2021) Computational logistics for container terminal handling systems with deep learning. Comput Intell Neurosci.<https://doi.org/10.1155/2021/5529914>
- Liao Y, Chen Q, Mao N, Yu A, Li X (2017) Modelling and analysis of queueing network in fexible fow shop with non-equivalent parallel AGVs. Jisuanji Jicheng Zhizao Xitong 23(9):1950–1961. [https://](https://doi.org/10.13196/j.cims.2017.09.014) doi.org/10.13196/j.cims.2017.09.014
- Liu J, Liao H, White JA (2021) Queueing analysis of the replenishment of multiple in-the-aisle pick positions. IISE Trans 53(1):1–20. <https://doi.org/10.1080/24725854.2020.1731773>
- Liu J, Liao H and White Jr., JA (2020) Queueing analysis of a class-based MIAPP-NALT order-picking system. In: C. L., S. R., and W. P. (eds) 2020 Institute of Industrial and Systems Engineers Annual Conference and Expo, IISE 2020 (pp 1306–1311). Institute of Industrial and Systems Engineers, IISE
- Marchet G, Melacini M, Perotti S, Tappia E (2012) Analytical model to estimate performances of autonomous vehicle storage and retrieval systems for product totes. Int J Prod Res 50(24):7134–7148. <https://doi.org/10.1080/00207543.2011.639815>
- Mohammadi M, Dauzère-pérès S, Yugma C, Karimi-Mamaghan M (2020) A queue-based aggregation approach for performance evaluation of a production system with an AMHS. Comput Oper Res. <https://doi.org/10.1016/j.cor.2019.104838>
- Motaghedi-Larijani A, Aminnayeri M (2017) Optimizing the admission time of outbound trucks entering a cross-dock with uniform arrival time by considering a queuing model. Eng Optim 49(3):466–480. <https://doi.org/10.1080/0305215X.2016.1206414>
- Motaghedi-Larijani A, Aminnayeri M (2018) Optimizing the number of outbound doors in the crossdock based on a new queuing system with the assumption of beta arrival time. Scientia Iranica 25(4):2282–2296. <https://doi.org/10.24200/sci.2017.4452>
- Munoz F and Lee S (2021) A stochastic model to determine the required number of trucks in sugarcane harvest systems. In G. A., K. K., and P. K. (eds) IISE Annual Conference and Expo 2021 (pp 704– 709). Institute of Industrial and Systems Engineers, IISE
- Nazzal D (2011) A closed queueing network approach to analyzing multi-vehicle material handling systems. IIE Trans (institute of Industrial Engineers) 43(10):721–738. [https://doi.org/10.1080/07408](https://doi.org/10.1080/0740817X.2011.566907) [17X.2011.566907](https://doi.org/10.1080/0740817X.2011.566907)
- Otten S, Krenzler R, Xie L, Daduna H, Kruse K (2021) Analysis of semi-open queueing networks using lost customers approximation with an application to robotic mobile fulflment systems. Or Spectrum.<https://doi.org/10.1007/s00291-021-00662-9>
- Pourvaziri H, Pierreval H, Marian H (2021) Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution. Eur J Oper Res 290(2):499–513. [https://doi.org/](https://doi.org/10.1016/j.ejor.2020.08.012) [10.1016/j.ejor.2020.08.012](https://doi.org/10.1016/j.ejor.2020.08.012)
- Rajagopalan S, Heragu SS (1997) Advances in discrete material handling system design. Sadhana 22(2):281–292. <https://doi.org/10.1007/BF02744493>
- Raman D, Nagalingam SV, Gurd BW, Lin GCI (2009) Quantity of material handling equipment—a queuing theory based approach. Robot Comput-Integrat Manuf 25(2):348–357
- Raman D (2011) Integrated optimisation of facilities layout and material handling system. In: IEEE International Conference on Industrial Engineering and Engineering Management, IEEM2011, 758–762. <https://doi.org/10.1109/IEEM.2011.6118018>
- Roy D, de Koster R (2018) Stochastic modeling of unloading and loading operations at a container terminal using automated lifting vehicles. Eur J Oper Res 266(3):895–910. [https://doi.org/10.1016/j.ejor.](https://doi.org/10.1016/j.ejor.2017.10.031) [2017.10.031](https://doi.org/10.1016/j.ejor.2017.10.031)
- Roy D, Krishnamurthy A, Heragu SS, Malmborg CJ (2012) Performance analysis and design trade-ofs in warehouses with autonomous vehicle technology. IIE Trans (institute of Industrial Engineers) 44(12):1045–1060. <https://doi.org/10.1080/0740817X.2012.665201>
- Roy D, Krishnamurthy A, Heragu SS, Malmborg CJ (2014) Blocking efects in warehouse systems with autonomous vehicles. IEEE Trans Autom Sci Eng 11(2):439–451. [https://doi.org/10.1109/TASE.](https://doi.org/10.1109/TASE.2013.2243910) [2013.2243910](https://doi.org/10.1109/TASE.2013.2243910)
- Roy D, Krishnamurthy A, Heragu S, Malmborg C (2015a) Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems. Eur J Oper Res 242(1):72–87. <https://doi.org/10.1016/j.ejor.2014.09.040>
- Roy D, Krishnamurthy A, Heragu S, Malmborg C (2015b) Stochastic models for unit-load operations in warehouse systems with autonomous vehicles. Ann Oper Res 231(1):129-155. [https://doi.org/10.](https://doi.org/10.1007/s10479-014-1665-8) [1007/s10479-014-1665-8](https://doi.org/10.1007/s10479-014-1665-8)
- Roy D and de Koster R (2020) Optimal stack layout confgurations at automated container terminals using queuing network models. In: Operations Research/ Computer Science Interfaces Series (pp 437–461). Springer. https://doi.org/10.1007/978-3-030-39990-0_19
- Sahu AK, Sahu AK, Sahu NK (2017) Appraisements of material handling system in context of fscal and environment extent: a comparative grey statistical analysis. Int J Logist Manag 28(1):2-28. [https://](https://doi.org/10.1108/IJLM-09-2015-0163) doi.org/10.1108/IJLM-09-2015-0163
- Schleyer M, Gue K (2012) Throughput time distribution analysis for a one-block warehouse. Transp Res Part E 48(3):652–666.<https://doi.org/10.1016/j.tre.2011.10.010>
- Sembakutti D, Kumral M, Sasmito AP (2017) Analysing equipment allocation through queuing theory and Monte-Carlo simulations in surface mining operations. Int J Min Mineral Eng 8(1):56–69. <https://doi.org/10.1504/IJMME.2017.082693>
- Seyedhoseini SM, Rashid R, Teimoury E (2015) Developing a cross-docking network design model under uncertain environment. J Ind Eng Int 11(2):225–236.<https://doi.org/10.1007/s40092-014-0088-0>
- Shen Y, Xu X, Zou B, Wang H (2021) Operating policies in multi-warehouse drone delivery systems. Int J Prod Res 59(7):2140–2156
- Smith J (2016) Joint optimisation of buffers and network population for closed finite queueing systems. Int J Prod Res 54(17):5111–5135.<https://doi.org/10.1080/00207543.2016.1154213>
- Smith JMG, Barnes R (2015) Optimal server allocation in closed fnite queueing networks. Flex Serv Manuf J 27(1):58–85. <https://doi.org/10.1007/s10696-014-9202-2>
- Smith JM, Kerbache L (2012) State-dependent models of material handling systems in closed queueing networks. Int J Prod Res 50(2):461–484.<https://doi.org/10.1080/00207543.2010.535041>
- Smith JMG (2013) Queueing network models of material handling and transportation systems. In: Handbook of Stochastic Models and Analysis of Manufacturing System Operations (pp 249–285). Springer
- Smith JMG (2018) Transportation and loss queues G(E). In: Springer Series in Operations Research and Financial Engineering (pp 133–180). Springer Nature. https://doi.org/10.1007/978-3-319-78822-7_4
- Smith JM, Cruz FRB and van Woensel T (2008) Optimal server allocation in general, fnite, multi-server queueing networks, manuscript. Ftp://Ftp.Est.Ufmg.Br/Pub/Fcruz/PubliCs/Cap.Pdf
- Souf Z, David P, Yahouni Z (2021) A methodology for the selection of Material Handling Equipment in manufacturing systems. IFAC-PapersOnLine 54(1):122–127. [https://doi.org/10.1016/j.ifacol.2021.](https://doi.org/10.1016/j.ifacol.2021.08.193) [08.193](https://doi.org/10.1016/j.ifacol.2021.08.193)
- Stephens MP (2020) Material handling equipment. Manufacturing facilities design and material handling, 229–302.<https://doi.org/10.2307/j.ctv15wxptd.14>
- Sukhotu V, Peters BA (2012) Modelling of material handling systems for facility design in manufacturing environments with job-specifc routing. Int J Prod Res 50(24):7285–7302. [https://doi.org/10.1080/](https://doi.org/10.1080/00207543.2011.645512) [00207543.2011.645512](https://doi.org/10.1080/00207543.2011.645512)
- Tappia E, Roy D, De Koster R, Melacini M (2017) Modeling, analysis, and design insights for shuttlebased compact storage systems. Transp Sci 51(1):269–295.<https://doi.org/10.1287/trsc.2016.0699>
- Tappia E, Roy D, Melacini M, De Koster R (2019) Integrated storage-order picking systems: technology, performance models, and design insights. Eur J Oper Res 274(3):947–965. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.ejor.2018.10.048) [ejor.2018.10.048](https://doi.org/10.1016/j.ejor.2018.10.048)
- Tompkins JA, White JA, Bozer YA, Tanchoco JMA (2010) Facilities planning. John Wiley and Sons
- Tu Y-M, Chang C-H (2014) Giga-fab scale determination model for wafer fabrication based on production performances. World Congress Eng 2:1040–1044
- Tu Y-M, Lu C-W, Lee AHI (2013) AMHS capacity determination model for wafer fabrication based on production performance optimization. Int J Prod Res 51(18):5520–5535. [https://doi.org/10.1080/](https://doi.org/10.1080/00207543.2013.784416) [00207543.2013.784416](https://doi.org/10.1080/00207543.2013.784416)
- Wang W, Wu Y, Qi J and Wang Y (2020) Design and performance analysis of robot shuttle system. In: 2020 International Conference on Artifcial Intelligence and Electromechanical Automation, AIEA 2020, 255–259.<https://doi.org/10.1109/AIEA51086.2020.00061>
- Xi S, Chen Q, Mao N, Li X, Yu A (2017a) Buffer allocation problem of assembly manufacturing system with bulk storage and transportation. Jisuanji Jicheng Zhizao Xitong 23(12):2657–2664. [https://doi.](https://doi.org/10.13196/j.cims.2017.12.011) [org/10.13196/j.cims.2017.12.011](https://doi.org/10.13196/j.cims.2017.12.011)
- Xi S, Chen Q, Mao N, Yu A (2017b) Modeling and analysis of assembly manufacturing system with bulk storage and transportation. Jisuanji Jicheng Zhizao Xitong 23(1):32–43. [https://doi.org/10.13196/j.](https://doi.org/10.13196/j.cims.2017.01.005) [cims.2017.01.005](https://doi.org/10.13196/j.cims.2017.01.005)
- Xu Y, Chen Q, Mao N (2016) System performance analysis of fexible fow shop with material handling unit. Jisuanji Jicheng Zhizao Xitong 22(3):764–773. <https://doi.org/10.13196/j.cims.2016.03.020>
- Yang P, Jin G, Duan G (2021) Modelling and analysis for multi-deep compact robotic mobile fulflment system. Int J Prod Res. <https://doi.org/10.1080/00207543.2021.1936264>
- Yuan Z, Gong Y (2016) Improving the speed delivery for robotic warehouses. IFAC-PapersOnLine 49(12):1164–1168. <https://doi.org/10.1016/j.ifacol.2016.07.661>
- Zeng Q-C, Zhang X-J, Zhang Q (2016) Optimization model of terminal container truck appointment based on coordinated service of inner and outer container trucks. Jiaotong Yunshu Gongcheng Xuebao 16(1):115–122
- Zhang X, Zeng Q, Wang Z (2019) Modeling the closed queueing network of truck allocation optimization in container terminals. Xitong Gongcheng Lilun Yu Shijian 39(2):409–417. [https://doi.org/10.](https://doi.org/10.12011/1000-6788-2017-1163-09) [12011/1000-6788-2017-1163-09](https://doi.org/10.12011/1000-6788-2017-1163-09)
- Zhang H-Y, Xi S-H, Chen Q-X, Smith JM, Mao N, Li X (2021) Performance analysis of a fexible fow shop with random and state-dependent batch transport. Int J Prod Res 59(4):982–1002. [https://doi.](https://doi.org/10.1080/00207543.2020.1712488) [org/10.1080/00207543.2020.1712488](https://doi.org/10.1080/00207543.2020.1712488)
- Zhou B-H, Chen J-X (2013) Queuing-based performance analytical model for continuous fow transporters of AMHS. J Donghua Univ (English Edition) 30(2):90–95
- Zhou B-H, Chen J-X, Zhao M (2015) Performance analysis for continuous fow transporters of Interbay AMHS with priority rules. Zhejiang Daxue Xuebao (gongxue Ban) 49(2):296–302. [https://doi.org/](https://doi.org/10.3785/j.issn.1008-973X.2015.02.015) [10.3785/j.issn.1008-973X.2015.02.015](https://doi.org/10.3785/j.issn.1008-973X.2015.02.015). (**314**)
- Zhou B-H, Chen J-X, Lu Z-Q (2016) An analytical model for continuous fow transporters of AMHSs with multi-loop conveyors and priority rules. Int J Comput Integr Manuf 29(5):489–503. [https://doi.](https://doi.org/10.1080/0951192X.2015.1070204) [org/10.1080/0951192X.2015.1070204](https://doi.org/10.1080/0951192X.2015.1070204)
- Zhu D-J, Wu L-H (2014) Queueing network-based performance model for wafer fabrication automated material handling system. Jisuanji Jicheng Zhizao Xitong 20(9):2267–2274. [https://doi.org/10.](https://doi.org/10.13196/j.cims.2014.09.023) [13196/j.cims.2014.09.023](https://doi.org/10.13196/j.cims.2014.09.023)
- Zou B, Xu X, Gong YY, De Koster R (2018) Evaluating battery charging and swapping strategies in a robotic mobile fulfllment system. Eur J Oper Res 267(2):733–753. [https://doi.org/10.1016/j.ejor.](https://doi.org/10.1016/j.ejor.2017.12.008) [2017.12.008](https://doi.org/10.1016/j.ejor.2017.12.008)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mohamed Amjath is a recent recipient of a Doctor of Philosophy (Ph.D.) degree in Logistics and Supply Chain Management from Hamad Bin Khalifa University in Doha, Qatar. He holds an M.Sc. degree in Maritime Afairs (Shipping Management & Logistics) from World Maritime University, Malmo (Sweden) and a B.Sc. degree in Transport & Logistics Management from the University of Moratuwa (with a frst-class). Currently, he is working on queueing network applications in material handling system optimisation.

Laoucine Kerbache is currently serving as a Full Professor and a founding faculty member of the Engineering Management and Decision Sciences Division at Hamad Bin Khalifa University in Doha, Qatar. Further, he has been Full Professor of Operations and Supply Chain Management at HEC Paris in France for the last twenty-two years. During this tenure period, beside managing many international academic programs, he has also served as Associate Dean of the HEC Paris Ph.D. Program (5 years) and then as Dean and CEO at HEC Paris Qatar (4 years). For over thirty years of academic, research, and consulting activities, he has been very active in his areas of expertise, Operations and Supply Chain Management. He has published over 120 papers in international journals and has been guest speakers at numerous international events. He holds a Ph.D., an M.Sc., and a B.Sc. in Industrial Engineering and Operations Research (IEOR) from the Mechanical and Industrial Engineering Department, University of Massachusetts, Amherst, USA. Further, he has an "Habilitation to Direct Research (HDR)" from the University of Nantes (France) and a certifcation from the "International Teachers Program" from IMD Lausanne (Switzerland).

Adel Elomri is an Assistant Professor of Logistics and Supply Chain Management in the division of Engineering Management and Decision Sciences at the College of Science and Engineering at Hamad Bin Khalifa University (CSE-HBKU). He holds Ph.D. and M.Sc. degrees in Operations Management (with Highest Honors) from CentraleSupélec Paris (France) and a B.Sc. degree in Industrial Engineering from the National Engineering School of Tunisia (with distinction). He has more than 15 years of international experience as lecturer and researcher in Supply Chain and Operations Management with research interests lying at the interface of operations research, economics, and engineering, with a special focus in modeling and analyzing supply chain networks. Currently he has projects underway in the areas of healthcare operations management, sustainable supply chain management, smart logistics, and production and operations management.

James MacGregor Smith graduated with a B.Arch. and M. Arch. from the University of California at Berkeley and a Ph.D. in Operations Research from the University of Illinois in Champaign–Urbana. He conducts research on topological network design, stochastic network design and analysis, and facility layout and location problems. In particular, he is doing research on Steiner minimal trees in 3D applications of Steiner Trees to Minimum Energy Confgurations) and protein modeling. He is also working on statedependent queueing network analysis and finite buffer queueing network models, quadratic assignment, and set packing problems. Applications include the design and layout of manufacturing plants, health care facilities, and many other systems. He has published in many of the industrial engineering and operations research journals concerned with optimization and stochastic processes.