
Flexible Services and Manufacturing Journal (2023) 35:1038–1075
https://doi.org/10.1007/s10696-023-09491-0

Assigning orders and pods to picking stations in a
multi-level robotic mobile fulfillment system

Giorgi Tadumadze1 · Julia Wenzel2 · Simon Emde3 ·
Felix Weidinger1 · Ralf Elbert2

Accepted: 26 February 2023 / Published online: 6 May 2023
© The Author(s) 2023

Abstract
This paper addresses the operational planning problem of assigning orders and pods
(i.e., mobile shelves) to picking stations in a multi-level robotic mobile fulfillment
system (RMFS), which deals with two issues: deciding on which picking station han-
dles which order, and from which pods to pick the ordered items, considering the
limited storage capacity of the pods. Due to the relatively poor space utilization of
single-level RMFS warehouses, such systems are often spread over multiple floors in
practice. Therefore, we explicitly considermulti-level warehouse layouts with isolated
levels (or zones) where a pod can only be brought to a station if both of them are on the
same level. We optimize the problem with regard to a multi-criteria objective function
that consists of three workload-oriented objectives: we aim to balance the total work-
load among all pickers, minimize the total order-consolidation effort for the packers,
and the pod movement effort for the mobile robots. After formalizing the planning
problem as a multi-objective optimization problem, we provide two mixed-integer
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linear programming models. Additionally, we propose a matheuristic that reduces the
model size to the desired granularity so that realistically sized problem instances can
be solved within less than four minutes of computation time. Moreover, we derive
some managerial insights, such as the impact of the number of warehouse levels and
picking waves on the objective values. We find evidence that running the RMFS ware-
house in a multi-level facility can substantially compromise the consolidation effort at
packing stations since it leads to a higher number of split orders. Furthermore, split-
ting the planning horizon into multiple short waves can lead to a higher number of
pod-to-station assignments and, thus, to a raised pod-movement workload for mobile
robots.

Keywords Robotic mobile fulfillment systems · Order assignment · Multi-level
warehouse · Multi-objective optimization · Lexicographic approach

1 Introduction

Warehouse operators traditionally face a trade-off. On the one hand, they aim for
short delivery times and high throughput. On the other hand, labor and investment
cost should not be excessive (Boysen et al. 2017). Order picking is one of the most
labor and capital intensive warehouse processes and is estimated to account for about
55 % of total warehouse operating expenses (De Koster et al. 2007). While fully or
partially automated picking systems promise to lower labor costs, they come at the
price of substantial investment and comparatively low flexibility (Boysen et al. 2017).
The usage of automated warehouse systems has nevertheless increased; however, it
is still relatively low (Azadeh et al. 2019; Jaghbeer et al. 2020). Interest in partially
automated robotic mobile fulfillment systems (RMFS) has substantially grown over
recent years, especially in the context of e-commerce (Lamballais et al. 2017; Jaghbeer
et al. 2020; Fragapane et al. 2021), which is characterized by small-size stock-keeping
units (SKUs) and a high volume of orders with few lines each (Azadeh et al. 2019).

In comparison to conventional order picking systems, in which order pickers move
to shelves in the warehouse to retrieve items, order picking in an RMFS increases
productivity, because human pickers waste less time on unproductive walking since
robots move the shelves containing the items to be picked while the human pickers are
stationary at a picking station. RMFS consist of the following basic components: the
pod locations on the warehouse floor (Fig. 1a), the mobile racks (pod) containing the
items and the mobile robots themselves (Fig. 1b), and the picking stations (Fig. 1c).
The rack locations indicate the inventory area where the pods are stored, typically in
a grid layout. Each robot navigates through the warehouse using QR codes and guide
strips. The mobile robots move both in the aisles and underneath the pods, allowing
them to ferry entire pods between the storage area and the picking stations.

This work is part of a research project in cooperation with different German logistic
providers and experts from the industry with the aim of identifying potential appli-
cations for RMFS instead of conventional manual, or fully automated order picking
systems. Our discussions with industry partners showed that compared with a typical
automated storage and retrieval system (AS/RS), a single-level RMFS suffers from
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poorer space utilization. This is because individual pods are not as tall as the high-bays
in typical AS/RS as a human picker must still be able to reach all items. To mitigate
this, RMFS can be operated in amulti-level facility, which enables to exploit the height
of the warehouse facility in a better way. On the downside, running RMFS on mul-
tiple levels can cause non-avoidable split orders, because some orders may contain a
set of SKUs, which is not stored on a single level. Split orders lead to an additional
consolidation effort, because partially picked orders must be consolidated later. For
more details on the effect of the split orders in RMFS, we refer to Xie et al. (2021),
while order consolidation is studied by Boysen et al. (2019b) among others.

A typical workflow of the order picking process in a multi-level RMFS can be char-
acterized as follows: The warehouse consists of multiple levels, which are connected
by conveyor systems. Each warehouse level is operated by a specific robot fleet and
consists of a pod storage area with multiple pods as well as stationary picking stations
(see Fig. 1a). Each pod consists of several shelves, where different SKUs are stored
(see Fig. 1b). Once a specific SKU is required at a picking station, a mobile robot
navigates to a pod hosting the ordered SKU, and brings it to the dedicated picking
station. Particularly, it moves underneath the pod, lifts it, and carries it to the desti-
nation. Each picking station is operated by a stationary human picker, who retrieves
the ordered SKUs from the pods and collects the picked items for each order into a
special tote (see Fig. 1c). Once all required SKUs are picked from a pod, the robot
transports the pod back to the storage area. After completing an order by picking all
SKUs, the picker places the completed tote onto a conveyor belt to be transported
towards the packing station, which is typically located on the first floor (see Fig. 1d).
At the packing stations, orders are taken from the totes, packed into cardboard boxes,
and transferred to the shipping area, where they are loaded into outgoing trucks.More-
over, packing stations are also used to consolidate split orders, which were picked at
multiple picking stations.

Typical objectives of automated warehousing systems are mainly throughput, lead
time, and operational efficiency (Jaghbeer et al. 2020). The continuous improvement of
these aspects is currently a significant field of interest for research. Several problems
resemble the planning steps in classic warehouses. The presence of mobile robots,
however, changes decision problems fundamentally, such that established procedures
are usually not applicable (Boysen et al. 2017). The essential operational problems to
be tackled are:

SKU storage assignment on podsWhich SKUs should be stored on which pod?
Order assignment Which picking station should handle which order?
Pod assignment From which pods should the SKUs be picked?
Order processing In what sequence should orders be processed at a station, and
when should the pods visit the stations?
Pod storage assignment Where should each pod be placed on the warehouse
floor?
Traffic management Which robot should perform which transport job at which
time? Which path should it take?

This paper deals with the second and the third item on this list: The order and pod
assignment problem, which we dub as OPAP. Given a set of orders to process, we
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Fig. 1 Schematic depiction of an RMFS warehouse

want to answer which of a given set of picking stations should handle which order and
from which pods the ordered articles must be picked.

In current practice, orders are typically assigned one after another using rules-
of-thumb, greedily comparing similarities of currently processed and newly arrived
orders (Wurman et al. 2008). Therefore, it stands to reason that a more holistic view
considering all open orders at once will yield better results. The OPAP aims to fulfill
all orders while balancing workload among all pickers and with as few resources (i.e.,
packers and robots) as possible. In contrast to the majority of the existing works, we
explicitly consider limited storage space of the pods as well as multi-level warehouse
layouts. We optimize towards three goals, which take workload-related aspects of the
warehouse workers and mobile robots into consideration.

Balancing the order-processing workload for pickers The OPAP cannot influ-
ence the total effort of picking SKUs from pods since all orders must be fulfilled
completely. Therefore, instead of minimizing the picking workload, our first goal
is to balance the total workload over all pickers. In other words, we aim to dis-
tribute the workload evenly among all picking stations and keep all pickers equally
busy, which implicitly also improves the cycle time.
Minimizing order-consolidation workload for packers In a multi-level ware-
house, some orders cannot be picked at a single picking station, but must be split
over multiple stations. Splitting an order is related to double-handling because par-
tially picked ordersmust be consolidated later at a packing station. Our second goal
is to minimize split orders to reduce order consolidation effort at packing stations.
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Note that minimizing split orders minimizes the workload of workers at the pack-
ing stations and increases the overall efficiency of pickers, since each partial order
entails some extra non-value-adding steps like preparing and dispatching a tote.
Minimizing workload for robots In RMFS, the order picking process generates
workload not only for human workers but also for robots, which move pods with
ordered SKUs between the storage area and picking stations. Therefore, our third
goal is to minimize the workload of robots by minimizing the total number of
pod movements. In other words, we want to assign orders and pods to stations in
such a way that the picker can pick as many items from each pod as possible. The
rationale is that the more SKUs can be picked per pod, the fewer pod moves are
necessary to fulfill the orders. This way, minimizing the number of podmovements
not only relieves the robots, but also increases the pickers’ efficiency by reducing
the inefficient setup times between pod switches at the stations, enabling pickers
to concentrate on more productive tasks.

The contribution of this paper is as follows: We present the order and pod assign-
ment problem in a multi-level RMFS warehouse. While order and pod assignment in
single-level RMFS has been addressed in the literature in the past, very little work
has been done on multi-level RMFS warehouses, despite their frequent use in prac-
tice. Moreover, our approach includes several realistic problem characteristics, such
as limited pod capacities, workload balancing, and split orders.We formalize the plan-
ning problem as a mathematical optimization problem and provide a mixed-integer
programming (MIP) model. Moreover, to solve large problem instances within an
acceptable amount of time, we propose a matheuristic. Particularly, we first represent
OPAP as a multicommodity flow network and propose an alternative path-based MIP
formulation to solve the resulting multicommodity flow problem. Then, based on this
formulation, we propose a heuristic path-reduction procedure, which offers additional
flexibility to users by allowing them to heuristically reduce the problem size to the
desired level and solve the reduced problemwithin a shorter computation time. Finally,
we explore the computational performance of the proposed solution procedures and
derive managerial insights, such as the impact of the number of warehouse levels and
the length of the planning horizon on the proposed objective values.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the
pertinent literature. Section3 formally defines the order and pod assignment prob-
lem, discusses the model assumptions, and provides the first MIP model. In Sect. 4,
we reformulate the problem as a multicommodity flow problem, propose an alterna-
tive MIP model formulation, and, based on this, develop a matheuristic procedure.
Section5 presents the results of computational experiments, exploring the algorithmic
performance of the proposed solution approaches, and gives somemanagerial insights.
Finally, Sect. 6 concludes the paper.

2 Literature review

RMFS has attracted considerable attention in recent years. Beginning with the work of
Wurman et al. (2008), several papers have been published that summarize and reflect
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the current state of the art of RMFS through literature reviews. In the beginning, RMFS
were considered as part-to-picker systems (Azadeh et al. 2019). Since the number of
such systems has increased, the classification has to be reconsidered. Jaghbeer et al.
(2020) classify RMFS as robot picker systems, which can be defined as a subcategory
of automated order picking systems. Besides, an increasing number of papers deal
with individual problems resulting from the use of RMFS, underlining the importance
of efficient solution methods in the RMFS planning process.

A substantial body of literature on different operational planning problems inRMFS
has been published lately. For works on SKU storage assignment on pods, we refer
to e.g., Guan and Li (2018), Kim et al. (2020), Lamballais Tessensohn et al. (2020).
The pod storage assignment problem during order processing is studied by Weidinger
et al. (2018). Li et al. (2020) study the SKU and pod storage assignment problems,
considering the energy consumption of the robots. Specifically, the authors solve the
SKU storage assignment problem via association analysis and a clustering approach,
propose a turnover-rate-based decentralized storage policy for pod storage assignment,
and develop a novel order picking evaluation scheme with consideration of the energy
consumption of the robots. The order processing problem at a single picking station
was introduced byBoysen et al. (2017), which is extended formultiple picking stations
by Wang et al. (2022). Regarding the traffic management of robots, Zou et al. (2017)
deal with the problem of assigning robot to picking stations, while path planning
algorithms for mobile robots are proposed by Merschformann et al. (2017). Note that
these are only some works on precedent and subsequent planning problems of OPAP.
We refer to Azadeh et al. (2019) and Boysen et al. (2019a) for an extensive literature
review on robotized and automatized warehouse systems.

In the following, we focus on the works similar to ours, which also deal with the
order assignment and pod assignment problems. To distinguish our approach from
the existing models and solution methods from the literature, we highlight the novel
features and characteristics of our model, which are not considered in existing works.
In particular, we consider the following features:

Consideration of amulti-level warehouse Pods and the items on them are spread
over multiple storeys. Not all picking stations are on the same level as all pods.
SKU capacity restrictions on pods Since pods have limited storage capacity, the
number of stored items on each pod is limited, i.e., just because an SKU is on a
specific pod, does not mean that an infinite number of items of the SKU can be
picked from that pod.
Balancing picking workload among all pickers The workload should be dis-
tributed among the picking stations as equally as possible.
Consideration of split orders If an order consists of multiple lines, items can be
picked at different stations; split orders are then consolidated at packing stations.

The results of our observation are summarized in Table 1. Concretely, it commences
with the work of Merschformann et al. (2019), who deal with multiple planning prob-
lems at the operational level. Specifically, they cover the following decision problems:
order assignment (including pick order assignment, replenishment order assignment),
task creation (including pick pod selection, replenishment pod selection, and pod
storage assignment), task allocation, and path planning. The authors propose several
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Table 1 Delimitation of our work from existing related works

Existing literature Multi-level SKU capacity Balancing Split orders Method
warehouse restrictions picking

on pods workload

Merschformann et al.
(2019)

◦ • SIM, HEU

Valle and Beasley
(2021)

• ◦ MIP, HEU

Wang et al. (2022) ◦ MIP, HEU, SIM

Xie et al. (2021) • • MIP, SIM

Our work • • • • MIP, SIM

Legend: ◦ Partial consideration, • Full consideration
HEU heuristics, MIP mixed-integer programming, SIM simulation

decision-rule-based heuristics for each planning problem and evaluate their perfor-
mance via a simulation model. The proposed planning problems also cover the order
assignment and pod assignment problems, and there are partial commonalities with
the OPAP. The simulation environment “RAWSim-O”, used by Merschformann et al.
(2019) and introduced by Merschformann et al. (2018), has an opportunity to model
a multi-level warehouse. However, the algorithms proposed by Merschformann et al.
(2019) do not seem to consider multi-level warehouse layouts. Similarly to OPAP, the
authors consider the limited number of stored SKUs on pods, however, they do not
aim at balancing the picking workload among all pickers and do not allow orders to
be split among multiple stations.

At the first glance, the works of Valle and Beasley (2021), Wang et al. (2022),
and Xie et al. (2021) seem to have the most things in common with ours. However,
after looking into the details, there are some important differences, which we describe
below.

Valle and Beasley (2021) solve three problems, order allocation, rack assignment,
and rack sequencing in an integrated manner. The authors formulate a MIP model
and propose two matheuristics. In particular, they decompose the problem into two
sub-problems, whereas the order and rack allocation problems are solved in the first
stage and the rack sequencing problem in the second stage. In contrast to our model,
their model does not consider multiple levels and split orders. Moreover, instead of
aiming at an equal distribution of the total picking workload among all pickers through
the objective function, their model ensures that the number of assigned orders to each
picker p ∈ P equals the predefined picker capacity Cp.

Wang et al. (2022) extend the work of Valle and Beasley (2021) by allowing pods
to visit more than one picking station before returning to the storage area. The authors
formulate an integer programmingmodel and propose a two-phase heuristic, where the
order assignment problem is solved in the first stage and the order and rack sequencing
problem in the second stage. Moreover, Wang et al. (2022) explore the impact of
different aspects such as the number and capacity of picking stations, SKU diversity,
and queue length on the system’s performance. Due to considering an additional
problem of rack sequencing, the resulting integrated problem is more complex than
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OPAP, which is why the proposed approaches can only solve small instances (with
up to 100 orders, 100 pods, 10 SKUs, and 4 picking stations). Moreover, in contrast
to our model, the model of Wang et al. (2022) does not consider a multi-level layout.
The authors also assume that if a pod contains a specific SKU, there is always enough
quantity of items to fulfill all orders. Regarding the picker workload, the proposed
model ensures that the number of assigned orders to each station does not exceed the
predefined constant capacity C . Finally, by ensuring that each order is assigned to
exactly one picking station, the authors do not allow split orders.

The problem formulated by Xie et al. (2021) is maybe the most similar to OPAP
in the published literature. The authors solve the order and pod assignment problem
and allow orders to be picked among several picking stations. Particularly, Xie et al.
(2021) propose MIP models for two types of split orders: split-among-stations, and
split-over-time, and explore their impact on the solution quality in a simulation study.
However, in contrast to our model, the model of Xie et al. (2021) do not consider a
multi-level warehouse layout and assume that the number of items of the same SKU
is not limited. Moreover, in contrast to Xie et al. (2021), apart from a standard MIP
model, we also develop a matheuristic, which allows us to solve larger instances.
Specifically, our approach can solve problem instances with up to 1200 orders, while
the largest instances of Xie et al. (2021) contain 250 orders.

To summarize, we distinguish our approach from the extant literature by consid-
ering the following points: The number of items on the pods is physically limited;
the warehouse has multiple levels; we deal with a multi-criteria objective function
with three workload-related objectives; and we develop a solution method beyond
the straightforward application of a default solver, allowing us to solve instances of
realistic size.

3 Order and pod assignment problem

The order and pod assignment problem (OPAP) is concerned with the following ques-
tion: given a set of orders to be filled during the planning horizon, which picking
station should handle which order, and which SKUs should be picked from which
pod? When selecting pods to pick ordered SKUs at a station, it must be ensured that
the total amount of picked items from each pod cannot exceed the number of stored
SKUs. Moreover, considering the multi-level warehouse layout, a pod can only be
assigned to a station if both of them are on the same level. Since orders can arrive at
any time of the day, the order and pod assignment might be re-planned multiple times
during the day. Therefore, at the beginning of the planning horizon, some stations may
already have some orders and pods assigned from the previous planning run.

Note that OPAP is only a sub-problem in the whole order fulfillment process. It is
outside the scope of OPAP to assign specific transport jobs to individual robots, or
to track the order consolidation process at the packing stations, which also depend
on factors other than order and pod assignment (e.g., the exact sequence of the pro-
cessed orders and pod visits at the stations, replenishment request processing, current
positions of the robots, etc.). Therefore, we achieve our workload-related goals by
introducing the following substitute objectives:
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• To balance the order-handling workload among all pickers, we aim to keep all
picking stations about equally busy by minimizing the maximum workload at
the busiest picking station. Note that processing of an order at a picking station
includes not only the picking of items from the pods but also order preparation
and follow-up tasks, like opening a new tote, packing, labeling, and placing it on
the conveyor belt, etc. Therefore, our first objective is to minimize the maximum
number of assigned orders over all stations.

• Our secondgoal is tominimize the order consolidation effort for packers,which can
be achieved by avoiding unnecessary split orders. Therefore, our second objective
aims to assign orders to as few stations as possible by minimizing the total number
of order-to-station assignments.

• Finally, our third goal is to minimize the workload for the robots, which can be
achieved by minimizing the total number of pod movements. The exact number
of pod movements depends on the schedule of pod visits at the stations and may
be influenced by many factors such as pod sequencing or routing policies (e.g.,
enabling pods to visit multiple stations one after each other or bringing pods to
storage area after each pick process, etc.), which are outside the scope of OPAP.
Therefore, our third substitute objective minimizes the total number of required
pod-to-station assignments, which is the lower bound on the total number of pod
movements.

3.1 Formal description

Let S = {1, . . . , |S|} denote the set of all SKUs stored in the warehouse (SKU index
s), and P = {1, . . . , |P|} a set of all picking stations (station index p). SKUs are
stored in a set of pods R = {1, . . . , |R|} (pod index r ), so that for each pod r ∈ R
and SKU s ∈ S, we have a parameter ars ∈ N0 denoting the number of stored items
of SKU s on pod r . Moreover, let L denote the set of warehouse levels (level index
l), where each level l ∈ L contains a subset of pods Rl ⊆ R and picking stations
Pl ⊆ P . We assume that the warehouse levels are isolated, meaning that robots are
incapable of carrying pods between levels. Further, let O = {1, . . . , |O|} be a set of
orders to be processed during the planning horizon (order index i), where each order
i ∈ O consists of several ordered items of different SKUs that have to be packed and
shipped to a customer together. Hereby, parameter ois ∈ N0, denotes the number of
ordered items of SKU s in order i . Finally, at the beginning of the planning horizon,
some stations p ∈ P may already have some fixedly assigned pods R̄p ⊆ R and (part
of) orders Ōp ⊆ O from a preceding planning run (or picking wave). This setting
enables planning on rolling horizons, allowing us to update order and pod assignments
multiple times throughout the day. The notation of all input parameters of OPAP is
summarized in Table 2.

A solution � to the OPAP is defined by elements ωspri ∈ N0, denoting how many
items of SKU s ∈ S are picked at station p ∈ P from pod r ∈ R for order i ∈ O .
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Table 2 Input parameters for OPAP

S Set of SKUs (index s)

O Set of orders (index i)

L Set of warehouse levels (index l)

R Set of pods (index r )

P Set of picking stations (index p)

Ōp Set of fixedly assigned orders to station p (Ōp ⊆ O)

R̄p Set of fixedly assigned pods to station p (R̄p ⊆ R)

ois Number of ordered items of SKU s in order i

ars Number of stored items of SKU s on pod r

Rl Set of pods on level l (Rl ⊆ R)

Pl Set of stations on level l (Pl ⊆ P)

Moreover, for notational convenience, we formally define

η(i, p) =
{
1, if ∃s ∈ S, r ∈ R : ωspri > 0

0, otherwise

to indicate whether (part of) order i ∈ O is processed at station p ∈ P . Similarly, we
define

ρ(p, r) =
{
1, if ∃s ∈ S, i ∈ O : ωspri > 0

0, otherwise

to indicate whether pod r ∈ R is required at station p ∈ P .
We say that a solution is feasible, if and only if it satisfies the following conditions:

• Every order is fulfilled completely, i.e., for each order i ∈ O and SKU s ∈ S, it
must hold that

∑
p∈P

∑
r∈R ωspri = ois .

• No more items can be picked from a pod than are actually stored on it, i.e., for
each pod r ∈ R and SKU s ∈ S, it must hold that

∑
p∈P

∑
i∈O ωspri ≤ ars .

• A pod can only be assigned to a station if both of them are on the same level, i.e.,
for each pod r ∈ R and station p ∈ P , it can hold that ρ(p, r) = 1 if and only if
∃l ∈ L : r ∈ Rl , p ∈ Pl .

• The fixed pod-to-station and order-to-station assignments from the previous plan-
ning run must be considered in the current planning horizon, i.e., for each station
p ∈ P and order i ∈ O it must hold that η(i, p) = 1 if i ∈ Ōp. Similarly, for
each station p ∈ P and pod r ∈ R, it must hold that ρ(p, r) = 1 if r ∈ R̄p.

Amongall feasible solutions,we seek theoptimal solutions thatminimize the following
three objectives:

• Maximumnumberof assignedorders over all stations: f1=maxp∈P
{∑

i∈Oη(i, p)
}

• Total number of order-to-station assignments: f2 = ∑
i∈O

∑
p∈P η(i, p), and

• Total number of pod-to-station-assignments: f3 = ∑
r∈R

∑
p∈P ρ(p, r).
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At its core, OPAP is a multi-objective optimization problem (MOOP). In the past
forty years, there has been a vast amount of theoretical, methodological, and applied
works dealing withMOOPs (for somemethodological approaches see e.g., Zionts and
Wallenius (1976); Steuer (1976); Ecker and Kouada (1978); for examples of meta-
heuristic applications on MOOP problems see e.g., Hoseinpour et al. (2020, 2021)).
Most of the existing MOOP approaches find the set of all Pareto-optimal solutions,
from which decision-makers must choose the final solution based on their own prefer-
ences (Deb 2014; Cui et al. 2017; Gunantara 2018). This requires a careful judgement
of the tradeoff between solutions from decision-makers if multiple Pareto optimal
solutions are found. Our industry partners do not consider this desirable. Instead, we
only have apriori high-level information about the priority order of these objectives.
Therefore, we decided to deal with the multi-criteria objective function via the lexi-
cographic approach (Isermann 1982), which is a commonly used approach to tackle
multi-objective optimization problems (Al Chami et al. 2019). Particularly, we use
the lexicographic objective from the multi-objective optimization package of ILOG
CPLEX Optimization Solver, which receives a pre-defined order among the various
objective functions as input (IBM2021).Note that the lexicographic approach converts
a MOOP into a single objective optimization problem, and provides optimal solutions
only for the pre-defined lexicographic order, instead of finding a set of Pareto-optimal
solutions.

After discussions with several industry representatives, we use the lexicographic
order f1 � f2 � f3 of the three objectives. This implies that we first seek solutions
that minimize the primary objective f1, leading to the minimal number of assigned
orders to the busiest station, i.e., balancing the workload among the human pickers.
Subsequently, we optimize the secondary objective f2, i.e., among all solutions that
are optimal regarding f1, we look for the solutions which assign orders to as few
stations as possible, i.e., minimizing split orders. Finally, among all optimal solutions
with regard to the primary and the secondary objectives, we seek optimal solutions for
the tertiary objective, which assign orders and pods to stations in such a way that the
minimal number of pods is required over all stations, i.e., the workload for the robots
is minimized.

Regarding computational complexity, OPAP is NP-hard even if the warehouse has
only a single level, as we show in the following.

Theorem: OPAP is in the class of NP-hard optimization problems, even if only
|L| = 1 level with only |P| = 2 stations exists.

The reduction is from thepartition problem,which iswell-known tobeNP-complete
(Garey and Johnson 1979), and can be described as follows:

Partition: Given a set S and weights w(s) ∈ N0 for all elements of S. Is there a
subset S′ ⊂ S such that

∑
s∈S′ w(s) = ∑

s∈S\S′ w(s)?
Proof: For an arbitrary instance of partition, we create a set of SKUs corresponding

with set S, as well as one pod for each element s ∈ S, which solely and exclusively
provides the SKU representing s. Additionally, for each SKU (representing an element
s ∈ S), we create w(s) orders which have a demand of the respective SKU only.
Further, two picking stations are introduced to our problem instance. By searching for
an optimal solution of the resulting OPAP instance with maximal station workload of
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f1 =
∑

s∈S w(s)
2 , the total number of order-to-station-assignments of f2 = ∑

s∈S w(s),
and the total number of required pods f3 = |S|, we translate each problem instance
of partition into an instance of OPAP in polynomial time and NP-hardness of OPAP
is proven. 
�

3.2 Example OPAP and optimal schedules

Consider an example OPAP instance with |S| = 5 SKUs S = {A, B,C, D, E}, stored
on |R| = 4 pods, which are allocated on |L| = 2 warehouse floors. On the first
level, there are pods 1 and 2 (R1 = {1, 2}), where SKUs {A,C,C,C,C, D, D} and
{B, B, D, D, D, D, E, E, E, E} are stored, respectively. Pods 3 and 4 stand on the
second level (R2 = {3, 4}) and contain SKUs {A, A, A, A, A,C,C, E, E, E, E} and
{A, A, B, B, D, D, D}, respectively. In the planning horizon, there are |O| = 7 orders
with ordered SKUs {A, B, E}, {A, B, D, E}, {C, D, E}, {C, D}, {E, E, E}, {C,C},
and {A, A}. The orders can be picked at |P| = 4 picking stations, from which the
stations 1 and 2 are located on the first floor (P1 = {1, 2}), and the stations 3 and
4 on the second floor (P2 = {3, 4}). For the sake of simplicity, we do not consider
any fixed order-to-station and pod-to-station assignments from the previous planning
runs, i.e., R̄1 = R̄2 = R̄3 = Ō1 = Ō2 = Ō3 = {}. The example problem instance
with all the input parameters is depicted in Fig. 2a. To illustrate the importance of
our lexicographic order of the three objectives, we present optimal solutions for two
different objective priorities.

Figure 2b depicts an optimal solution for the lexicographic order f1 � f2 � f3
(used in this paper), i.e., minimizing the workload of the busiest picking station f1
is handled as a primary objective, the number of order-to-station-assignments f2 as a
secondary objective and the number of total required pods f3 as a tertiary objective.
In the illustration, the orders are placed next to the stations they are assigned to. In the
optimal solution for this particular lexicographic order, orders 1 and 5 are assigned
to station 1; orders 4 and 6, to station 2; order 7, to station 3; and orders 2 and 3, to
station 4. The pod-to-station assignments are marked via (green) arrows. Specifically,
station 1 must be visited by pods 1 and 2. Thereby, SKU {A} for order 1 is picked
from pod 1; SKUs {B, E} for order 1 and SKUs {E, E, E} for order 5, from pod 2.
Station 2 is visited by pod 1, station 3 by pod 3, both of which cover all SKUs picked
at those stations. Finally, pods 3 and 4 are required at station 4. SKUs {A, E} for order
2 and SKUs {E,C} for order 3 are picked from pod 3; SKUs {B, D} for order 2 and
{D} for order 3, from pod 4. Regarding the objective values, this solution leads to the
maximum number of assigned orders per station of f ∗

1 = 2, f ∗
2 = 7 order-to-station

assignments (i.e., 0 split orders), and f ∗
3 = 6 pod-to-station assignments.

To illustrate the importance of the lexicographic order, Fig. 2c depicts an optimal
solution for an alternative order f1  f2  f3 with minimizing the number of
pod-to-station-assignments f3 as the primaryobjective; the number of order-to-station-
assignments f2 as the secondary objective; and the maximum number of assigned
orders per station f1 as the tertiary objective. This sequence of objectives leads to a
different optimal solution. Namely, this time, orders 1, 3, and 4 are handled at station
1, and orders 2, 5, 6, and 7 at station 3, while stations 2 and 4 are idle without handling
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Fig. 2 Example OPAP instance with optimal solutions for two alternative objective priorities

any orders, and not being visited by any pod. Compared with the former solution,
this solution leads to an improvement in the total number of required pod-to-station
assignments f ∗

3 = 4 (handled as primary objective). However, it worsens theworkload
balance among the stations, leading to the maximal number of assigned orders at the
busiest station f ∗

1 = 4 (handled as a tertiary objective), while the number of order
assignments, handled as a secondary objective, remains at the same optimal value
f ∗
2 = 7.

3.3 Model assumptions

Like all other models, our model is based on some simplifying assumptions, which
we discuss below:

A1 : No consideration of the replenishment process In OPAP, we only focus on
picking operations and assume that no pod replenishment takes place during the
planning horizon of OPAP. Pod replenishment is outside the scope of OPAP and
is assumed to be planned separately. While simultaneous planning of picking
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and replenishment operations in an integrated manner could increase the total
efficiency of the system, the resulting integrated problemwould suffer from higher
computational complexity. Moreover, due to the typical arrival times of inbound
trucks at fulfillment centers, pods are usually batchwise refilled overnight, so that
time-critical picking operations are executed during the day. Note that if pods are
refilled during the day between the picking waves, this can be easily considered in
OPAP by adjusting the pod inventory parameters ars for the subsequent picking
wave. As the fill level parameters can be updated quite frequently, we believe that
our assumption seems pardonable, if individual picking waves are short, which
tends to be the case in many warehouses.

A2 : Isolated warehouse levelsWe do not allow robots and pods to switch warehouse
levels, e.g., via an elevator. Such switchingwould undoubtedly add someflexibility
to the order picking process because each picking station would have access to
the whole warehouse, which would allow avoiding split orders. On the downside,
it would cause additional coordination effort like balancing the number of robots
and pods among different levels, scheduling elevators, etc. Moreover, although
transporting whole pods between different levels via elevator could avoid order
splitting, this would require additional space in the warehouse for elevators and
consumemore energy than sending smaller totes filled with partially picked orders
via existing material handling system (e.g., conveyor belts). Therefore, we assume
that all levels are isolated by restricting pod-to-station assignments if they are not
on the same level. Note that in this way, a level can also be interpreted as an
isolated picking zone, which is a common policy in the order-picking literature
and practice Roy et al. (2019).

A3 : Measuring picker workload as the number of processed orders We use the
number of assigned orders as a substitute measure of the picker workload. This is
clearly an imperfect reflection of the actualworkload.At first glance, the number of
picked articles may seem to reflect the picker’s workload in a better way. However,
the total processing time of an order for a picker depends not only on the number
of SKUs to be picked but also on other factors like the accessibility of individual
SKUs on a given pod, their size, and weight, or even the experience of the picker.
Moreover, processing an order includes not only the picking tasks themselves
but also pre-processing (e.g., preparing a new tote) and follow-up steps (e.g.,
labelling and dispatching the tote) with a fixed duration, which is not affected
by the number of picked SKUs. Therefore, after discussions with our industry
partners, we agreed that minimizing the number of processed orders in f1 is a
good stand-in for minimizing the pickers’ actual workload. This assumption is
pardonable, especially in the e-commerce context, where most customer orders
are quite small (mostly with only a single or a handful of items, Boysen et al.
(2019a)) and the number of ordered SKUs per order does not vary too much.

A4 :No consideration of the limited capacity of packing stations Scheduling pack-
ing and consolidation stations is outside the scope of OPAP. The exact capacity
limit of the packing stations at any given point in time is hard to keep track of,
since a fulfillment center typically consists of multiple such stations, which are
connected by conveyors. Therefore, we deal with this assumption by minimiz-
ing the total consolidation effort at packing in our secondary objective f2. One
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Table 3 Additional notation for the MIP-intuitive model

Parameters

hrp 1, if pod r and station p are on a same level; 0, otherwise

Variables

xip Binary variable: 1, if (part of) order i is picked at station p; 0, otherwise

X Set of x variables: X = {xip | i ∈ O, p ∈ P}
yrp Binary variable: 1, if pod r visits station p; 0, otherwise

Y Set of y variables: Y = {yrp | r ∈ R, p ∈ P}
zspri Continuous variable: number of items of SKU s picked at station p from pod r for order i

Z Set of z variables: Z = {zspri | s ∈ S, p ∈ P, r ∈ R, i ∈ O}

industry representative described to us an alternative workflow of their multi-level
warehouse, where partially picked orders are sequentially processed and consol-
idated at different levels (top-down) before being forwarded to packing stations.
Note that minimizing the number of split orders appears to be meaningful also in
such a case, since split orders are still associated with double-handling at different
warehouse levels.

A5 : No consideration of pod revisits at picking stations In order to minimize the
workload for robots, our tertiary objective f3 minimizes the total number of pod-
to-station assignments, which is only a lower bound on the actual number of pod
visits (i.e., if pod re-visits at stations are relaxed). After solving the order and
pod scheduling problem at picking stations in the following step, some pods may
need to visit the same stations more than once. Depending on the order capacity
at the picking stations, not every order can be processed simultaneously at the
picking stations. Although our model is undoubtedly a simplification of reality, we
believe that our assumption is pardonable because of the following reason:OPAP is
typically solved for relatively short picking waves and re-optimizedmultiple times
throughout the day. Therefore, the probability of such pod revisits is the lower, the
shorter the actual planning horizon is. However, note that the actual workload for
the robots and the energy consumption are influenced not only by OPAP, but also
by the other planning problems, such as SKU storage assignment on pods or pod
storage assignments (Li et al. 2020), or the traffic-management-related planning
problems for robots.

3.4 Intuitive model

In this section, we will introduce an intuitive MIP model (denoted as MIP-intuitive)
that can be applied to solve the OPAP via a default solver.

In the following, we will present the notation for the (additional) parameters and
variables of the MIP-intuitive model, which are summarized in Table 3. First, for each
pod r ∈ R and station p ∈ P , we compute a binary parameter hrp in the model
pre-processing step, which has a value 1, if pod r and station p are on the same level,
i.e., ∃l ∈ L : r ∈ Rl ∧ p ∈ Pl , 0 otherwise. Moreover, for each SKU s ∈ S, picking
station p ∈ P , pod r ∈ R, and order i ∈ O , we define a continuous variable zspri that
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indicates the number of picked items of SKU s at station p from pod r for order i .
Note that we do not explicitly define variables zspri as integer variables. However, in
optimal solutions, they will still always have integer values. Moreover, for each order
i ∈ O and station p ∈ P , we introduce a binary variable xip indicating whether (part)
of order i is processed at station p (xpi = 1) or not (xrp = 0). Similarly, for each pod
r ∈ R and station p ∈ P , we define a binary variable yrp which takes the value 1, if
pod r is required at station p, 0 otherwise.

MIP-intuitive consists of objective function (1) and Constraints (5)-(14).

Minimize F (X ,Y ,Z) = f1 and f2 and f3 (1)

f1 = max
p∈P

{∑
i∈O

xip

}
(2)

f2 =
∑
i∈O

∑
p∈P

xip (3)

f3 =
∑
r∈R

∑
p∈P

yrp (4)

subject to

∑
s∈S

∑
r∈R

zspri ≤ M · xip ∀i ∈ O, p ∈ P (5)

∑
s∈S

∑
i∈O

zspri ≤ M · yrp ∀r ∈ R, p ∈ P (6)

∑
r∈R

∑
p∈P

zspri = ois ∀i ∈ O, s ∈ S (7)

∑
i∈O

∑
p∈P

zspri ≤ ars ∀r ∈ R, s ∈ S (8)

yrp ≤ hrp ∀r ∈ R, p ∈ P (9)

xip = 1 ∀p ∈ P, i ∈ Op (10)

yrp = 1 ∀p ∈ P, r ∈ Rp (11)

xip ∈ {0; 1} ∀i ∈ O, p ∈ P (12)

yrp ∈ {0; 1} ∀r ∈ R, p ∈ P (13)

zspri ∈ R
+ ∀s ∈ S, r ∈ R, p ∈ P, i ∈ O (14)

Multi-objective function (1) minimizes three objectives (2), (3), and (4) in this
lexicographic order. The primary objective (2) minimizes the maximum number of
the assigned orders over all stations; the secondary objective (3), the total number of
the order-to-station assignments; the tertiary objective (4), the total number of required
pods over all stations. Constraints (5) force the binary variables xip to be set to the value
1, if at least one ordered SKU for order i is picked at station p. Similarly, constraints
(6) set binary variables yrp on the value 1, if pod r is required at station p, i.e., if at
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least one SKU is picked from pod r at station p. Equations (7) ensure that the orders
are fulfilled completely, i.e., each ordered SKU must be picked from any pod at any
station. Inequalities (8) guarantee that for each pod r ∈ R, the total number of picked
items of SKU s never exceeds the number of available SKUs s on pod r . Constraints
(9) ensure that pods r ∈ R can be assigned to stations p ∈ P only if they are on
the same level. Constraints (10) and (11) take care, that each station p ∈ P receives
all fixedly assigned orders and pods from the previous planning step in the current
planning. Finally, Constraints (12)–(14) define the domain of the variables.

4 Solution procedure

Our computational experiment reveals that the size of the MIP-intuitive model grows
fast so that a modern default solver cannot be applied even for medium-sized problem
instances. Keeping inmind that OPAP is an operational planning problem, which is re-
optimizedmultiple times throughout the day, it is very important to have a fast solution
approach that can handle realistically sized problem instances in short computational
time. Therefore, we develop a specialized solution procedure that can provide accept-
able solutions for large problem instances within short time. Particularly, our solution
procedure is based on a transformation of OPAP into a type of multicommodity flow
(MCF) problem. Therefore, in Sect. 4.1, we first show how OPAP can be represented
as an MCF network. Later, in Sect. 4.2, we propose a path-based MIP model for the
resulting MCF problem (denoted as MIP-MCFP). Finally, in Sect. 4.3, we propose
a heuristic path-reduction scheme that pre-selects a subset of promising paths using
decomposition of OPAP into two handier sub-problems, which enables users to apply
the MIP-MCFP model as a heuristic.

4.1 Multicommodity flow network representation

In this section, we show how OPAP can be represented as an MCF network, which
serves as a foundation for our second MIP model and the heuristic procedure.

In a classical multicommodity flow problem (MCFP), we are given a network,
represented as a graph G(V , E) with V as a set of vertices (or nodes), and E as a set
of directed edges. Moreover, there is a set of commodities K , and each commodity
k ∈ K features an origin Ok ⊂ V and a destination node Dk ⊂ V , as well as the
demand quantity dk ∈ N0. An edge (i, j) ∈ E represents the freight asset from node
i ∈ V to node j ∈ V and is associated with the capacity of the flow κ(i, j), fix-charge
costs c(i, j), which occur when the edge is used, as well as variable costs φ(i, j) per unit
of flow. A feasible solution ofMCFP consists of such a subset of edges and the amount
of flow on these edges that all commodities k ∈ K are shipped completely from the
origin nodes Ok to the destination nodes Dk , and the amount of flow on each edge
(i, j) ∈ E does not exceed the edge capacity κ(i, j). Among all feasible solutions, we
seek the optimal solution that minimizes the total costs (Barnhart et al. 2000).

In our case, theMCF network, representing OPAP, has a specific structure. First, the
network consists of five layers, i.e., vertex set V is divided into five disjoint subsets
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Fig. 3 Representation of OPAP as MCF network

V1, . . . , V5 (V = ∪5
i=1Vi ), and edge set E into four disjoint subsets E1, . . . , E4

(E = ∪4
i=1Ei , where an edge from each subset E j connects a node from Vj to a node

in Vj+1. Second, some edges (i, j) ∈ E have no capacity restrictions κ(i, j), while
others have upper bounds κ(i, j) or lower bounds κ(i, j) on flows. Finally, the fixed
charge costs for adding edges may have only values 0 or 1, and there are no variable
flow costs, i.e., c(i, j) ∈ {0, 1}, φ(i, j) = 0,∀(i, j) ∈ E . Figure3 schematically depicts
an OPAP-related MCF network.

In the following, we describe how OPAP can be represented as an MCF network:

• EachSKU s ∈ S inOPAPcorresponds to a commodity k inMCFPand is associated
with a source node s ∈ V1 and a destination node s ∈ V5. Thus, each of the subsets
V1 and V5 contain |S| vertices.

• Source nodes s ∈ V1 are connected with pod nodes r ∈ V2 in the second layer.
Thereby, G contains an edge (s, r) ∈ E1 if SKU s is stored on pod r . Selecting an
edge (s, r) ∈ E1 in the solution represents picking SKU s from pod r . Each edge
(s, r) ∈ E1 has a flow capacity of κ(r ,s) = ars that cannot be exceeded, meaning
that we cannot pick more SKUs s from pod r than the number of stored items of
SKU s on pod r ars . Finally, there are no fixed-charge costs for adding edges, i.e.,
c(s,r) = 0, ∀(s, r) ∈ E1.

• Pod nodes from the second layer r ∈ V2 are connected with station nodes in the
third layer p ∈ V3. Selecting an edge (r , p) ∈ E2 in a solution corresponds to an
assignment of pod r to station p. Thereby,G contains an edge (r , p) ∈ E2 between
a pod node r ∈ V2 and a station node p ∈ V3, if and only if pod r can actually
serve station p (i.e., if they are on the same level). Adding an edge (r , p) ∈ E2 is
related to a fixed-charge cost of c(r ,p) = 1, and there is no capacity restriction of
the flow on these edges.

• Station nodes p ∈ V3 are connecting with order nodes i ∈ V4, and the edge
(p, i) ∈ E3 represents an assignment of order i to station p. There is an edge
(p, i) ∈ E3 between each station node p ∈ V3 and an order node i ∈ V4 with
fixed-charge cost of c(p,i) = 1 and no flow restrictions.

• Finally, each order node i ∈ V4 is connected with a sink node s ∈ V5, if in OPAP,
order i ∈ O contains SKU s ∈ S. Hereby, the flow on each edge (i, s) ∈ E4
cannot be lower than the number of items of SKUs s in order i , i.e., κ(i,s) = ois ,

123



1056 G. Tadumadze et al.

Fig. 4 MCF Network for example OPAP instance with selected paths in the heuristic solution

meaning that orders must be fulfilled completely. The edges from the last layer do
not have any fix-charge costs, i.e., c(i,s) = 0, ∀(i, s) ∈ E4.

In order to consider fixed pod-to-station and order-to-station assignments of OPAP
from the previous planning run, we fix the corresponding edges and force them to be
selected. Particularly, edges (r , p) ∈ E2 (or (p, i) ∈ E3) must be selected if r ∈ R̄p

(or i ∈ Ōp) holds.
Example (cont.): Fig. 4 visualizes the MCF network G and its optimal solution for

the example problem instance from Sect. 3.2. The edge (A, 1) ∈ E1 in G indicates
that in the corresponding OPAP instance, pod 1 contains SKUs A; Accordingly, there
is no link between vertices B ∈ V1, and 1 ∈ V2, i.e., (B, 1) /∈ E1, meaning that pod
1 does not contain SKU B. The presence of edge (1, 2) ∈ E2 in G indicates that pod
1 can be assigned to station 2, (i.e., they are on the same level), while the absence
of edge (1, 3) /∈ E2 in G points out that pod 1 and station 3 are located on different
levels. Since each order can be processed at any station, there is an edge in E3 between
each station node and order node. Finally, the edge (1, A) ∈ E4 indicates that SKU A
is ordered in order 1, and so on.

For this problem instance, the corresponding MCF Network consists of � = 72
paths in total, from which 15 are selected in the optimal solution. The optimal paths
are listed in the right-handed table of Fig. 4. The six selected (blue) edges in E2
corresponds to f ∗

3 = 6 pod-to-station assignments in the optimal solution, and seven
selected edges in E3, to f ∗

2 = 7 order-to-station assignments.

4.2 MCF basedMIPmodel

In this section, we propose the second MIP model (dubbed MIP-MCFP), which is
based on the above-describedMCFP representation ofOPAP. Particularly,MIP-MCFP
is based on the path-basedmodel to solve the transformedMCFP (Barnhart et al. 2000).

Let � denote a set of paths in G, whereas a path π ∈ � connects a source node
s ∈ V1 with a sink node s ∈ V5 and, thus, consists of one node from each of the
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Table 4 Additional notation for the MIP-MCFP model

Sets

G(V , E) Network, representing OPAP as MCFP, with V

sets of nodes and E sets of edges

V Set of nodes of network G

Vi Set of nodes from i-th layer, (Vi ⊆ V , ∀i = 1, . . . , 5)

E Set of edges of network G

E j Set of edges, connecting nodes from set Vj to nodes in set

Vj+1, (E j ⊆ E , ∀ j = 1, . . . , 4)

� set of paths in G (index π )

Parameters

kπ
sr 1, if path π , contains an edge (s, r) ∈ E1; 0, otherwise

lπrp 1, if path π contains an edge (r , p) ∈ E2; 0, otherwise

mπ
pi 1, if path π contains an edge (p, i) ∈ E3; 0, otherwise

nπ
is 1, if path π contains an edge (i, s) ∈ E4; 0, otherwise

Variables

urp Binary variable: 1, if edge (r , p) ∈ E2, connecting node

r ∈ V2 with node r ∈ V3, is used; 0, otherwise

U Set of u variables: U = {urp | (r , p) ∈ E2}
vpi Binary variable: 1, if edge (p, i) ∈ E3, connecting node

p ∈ V3 with node i ∈ V4, is used; 0, otherwise

V Set of v variables: V = {vi p | (i, p) ∈ E3}
wπ Continuous variable: flow on the path π

W Set of w variables: W = {wπ | π ∈ �}

five layers. A path π in G corresponds to a partial picking plan in OPAP and encodes
which SKU s ∈ S is picked from which pod r ∈ R at which station p ∈ P and
for which order i ∈ O . In the model pre-processing step, we compute the following
binary parameters for each path π ∈ �:

• kπ
sr 1, if path π , contains an edge (s, r) ∈ E1; 0, otherwise;

• lπrp 1, if path π contains an edge (r , p) ∈ E2; 0, otherwise;
• mπ

pi 1, if path π contains an edge (p, i) ∈ E3; 0, otherwise;
• nπ

is 1, if path π contains an edge (i, s) ∈ E4; 0, otherwise.

For each path π ∈ �, we define the amount of its flow as a continuous variable
wπ , which corresponds to the number of picked items in the associated partial picking
plan. Moreover, since we want to penalize adding edges from sets E2 and E3, we
define the binary variables urp and vpi to indicate whether an edge (r , p) ∈ E2 and
(p, i) ∈ E3 are added (urp = 1 and vpi = 1), or not (urp = 0 and vpi = 0).

Using additional notation, summarized in Table 4,MIP-MCFP consists of themulti-
objective function (15) subject to constraints (19) -(27).

Minimize G(U,V ,W ) = g1 and g2 and g3 (15)
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g1 = max
p∈V3

⎧⎨
⎩

∑
i∈V4:(p,i)∈E3

vpi

⎫⎬
⎭ (16)

g2 =
∑

(p,i)∈E3

vpi (17)

g3 =
∑

(r ,p)∈E2

urp (18)

subject to

∑
π∈�

kπ
sr · wπ ≤ ars ∀(s, r) ∈ E1 (19)

∑
π∈�

lπrp · wπ ≤ M · urp ∀(r , p) ∈ E2 (20)

∑
π∈�

mπ
pi · wπ ≤ M · vpi ∀(p, i) ∈ E3 (21)

∑
π∈�

nπ
is · wπ ≥ ois ∀(i, s) ∈ E4 (22)

urp = 1 ∀r ∈ V2, p ∈ V3 : r ∈ Rp (23)

vpi = 1 ∀p ∈ V3, i ∈ V4 : i ∈ Op (24)

urp ∈ {0; 1} ∀(r , p) ∈ E2 (25)

vpi ∈ {0; 1} ∀(p, i) ∈ E3 (26)

wπ ∈ R
+ ∀π ∈ � (27)

Multi-objective function (15)minimizes three objectives (16), (17), and (18), which
are ordered in a certain lexicographic order. Tominimize the number of assigned orders
at the busiest station in OPAP, the primary objective (16) minimizes the number of
selected edges in E3 originating from the busiest station-node p ∈ V3, i.e., where most
edges start at; secondary objective (17) minimizes the total number of active edges
in E3, i.e., the number of order-to-station assignment in OPAP; finally, the tertiary
objective (18) minimizes the used edges in E2, and thus, the total number of required
pod-to-station assignments in OPAP. Inequalities (19) guarantee that the flow capacity
restriction for each edge (s, r) ∈ E1 is not violated, meaning that the total number of
picked SKUs s from each pod r ∈ R can never exceed the number of stored SKUs s
on pod r . Constraints (20) ensure the edge (r , p) ∈ E2 is used, if at least one partial
schedule π ∈ �, containing the edge (r , p) ∈ E3, has a positive flow. Similarly,
constraints (21) force the edge (p, i) ∈ E3 to be added, if at least one partial schedule
π ∈ � with edge (p, i) ∈ E2 has a positive flow. Constraints (22) guarantee that the
flow on each edge (i, s) ∈ E4 is never less than osi , meaning that every order must
be fulfilled completely. Equations (23) take care that edges (r , p) ∈ E2 are used for
each fixedly assigned pod r ∈ Rp to each station p ∈ P . Similarly, constraints (24)
forces each edge (p, i) ∈ E3 to be added, if (part of) order i is fixedly assigned to
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station p from the previous wave. Finally, constraints (25)–(27) define the domains of
variables.

4.3 Heuristic path reduction

The number of paths in theMCF network grows exponentially with the size of the cor-
responding OPAP. However, the structure of the MIP-MCFP model offers a modeling
advantage that enables us to employ it as a heuristic. Specifically, we can heuristically
reduce � to a smaller subset of paths �′ ⊆ � in the pre-processing step. In other
words, instead of considering all partial picking plans, we can identify a subset of
promising partial picking plans in the pre-processing step, and then find the optimal
order and pod assignments for the reduced problem. As a result, the reduced MIP-
MCFP becomes handier and can be solved in a shorter computational time. Similar
approaches have proven to be very successful at finding near-to-optimal solutions for
large problem instances in an acceptable computational time (Tadumadze et al. 2019,
2020).

Our heuristic path reduction scheme is based on the idea of decomposing OPAP
into two handier sub-problems, selecting pods for orders, and selecting stations
for orders, which can be solved individually in a sequential manner. Based on this
decomposition, we can pre-select a sub-set of promising pods Rselected(i) ⊆ R and
stations Pselected(i) ⊆ P for each order i ∈ O , and generate a reduced subset of paths
�′ ⊆ � for the MIP-MCFP that contains only paths with the pre-selected subsets of
pods Rselected(i) and stations Pselected(i) for the orders i ∈ O .

In the first sub-problem, we seek subsets of pods for orders from which the ordered
SKUs can be picked. In particular, for each ordered SKU, we pre-select the μR most
promising pods, with μR ∈ N being a predefined positive integer parameter. The
procedure of pre-selecting subsets of pods for the orders is outlined in Algorithm 1.
For each order i ∈ O , we first compute the maximal hit rate, i.e., the maximal number
of items that can be picked for order i from pod r as min

{∑
s∈S ois;

∑
s∈S ars

}
for

each pod r ∈ R (see line 4 of Algorithm 1). Then, for each order i ∈ O , we sort the
pods in a sorted list Rsorted(i) according to the descending hit rate value (i.e., pods
that contain more ordered items precede the pods with fewer ordered items). This
is done to select μR “promising” pods that match the orders best (see lines 11-13 of
Algorithm1). Besides, to ensure that�′ enables at least one feasible pod selection such
that the number of picked SKUs from each pod does not exceed the stored quantities,
we initially select one pod per ordered SKU while taking the pods’ limited stock into
account (see line 6 of Algorithm 1). The procedure of selecting one feasible pod per
ordered SKU is similar to Algorithm 1, with the exception that we select only one pod
per ordered SKU (i.e., μR = 1), and adjust the number of remaining SKUs on the
selected pod after each pod selection to dynamically compute the hit rate values with
the modified stocks of the pods.
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Once the potential pods are selected for the orders, we select the subset of potential
stations for each order in the second sub-problem. Similarly to the first sub-problem,
we seek μP stations for each order i ∈ O , with μP ∈ N as a predefined positive
integer parameter. The procedure of pre-selecting subsets of stations for the orders is
outlined in Algorithm 2. Here, for each order i ∈ O , we are already given a fixed
sub-set of the pre-selected pods Rselected(i), which are determined in the first sub-
problem. Depending on the distribution of the pre-selected pods Rselected(i) on the
warehouse levels, not every station might be a meaningful candidate for processing
order i ∈ O . Therefore, for each order i ∈ O , we first identify the set of potential
levels L potential(i) ⊆ L that contain at least one pre-selected pod r ∈ Rselected(i) (see
line 9 of Algorithm 2). Consequently, for each order i ∈ O , we derive a set of potential
stations P potential(i), which have access to at least one pre-selected pod r ∈ Rselected

of the order i (see line 10 of Algorithm 1). We aim to pre-select the stations for the
orders such that it is possible to evenly distribute the total workload among all stations.
Therefore, for each order i ∈ O , we iteratively select the next least busy station with
the least pre-assigned orders (see line 15 of Algorithm 2). Besides, for each order
i ∈ O , we initially select one station from each potential level L potential(i), enabling
every pre-selected pod r ∈ Rselected(i) of each order i ∈ O to be a candidate in the
MIP-MCFP (i.e., for �′ to contain at least one partial picking plan π where pod r
serves order i) (see line 15 of Algorithm 2).
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We will denote the whole procedure of selecting μR pods per ordered SKU, and μP

stations per order, generating the sub-set of the reduced paths �′, as well as building
and solving the corresponding reduced MIP-MCFP model as “MCFP-h”. An outline
of the MCFP-h approach is summarized in Fig. 5.

Example (cont.): In our example OPAP instance, using MCFP-h with the values
μR = 1 and μP = 1 reduces the total number of paths from |�| = 72 to |�′| = 22,
and leads to a solution with the objective values f1 = 3, f2 = 9, and f3 = 6.
Incrementing the values of μR and μP to 2 leads to |�′| = 30 paths, and a solution
with f1 = 2, f2 = 7, and f3 = 7. Moreover, for this example, MCFP-h with μR = 3

Fig. 5 Outline of the MCFP-h procedure
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and μP = 3 leads to |�′| = 53 paths, and finds the solution with f1 = 2, f2 = 7, and
f3 = 6.
It stands to reason that the sets Rselected(i) and Pselected(i) have a substantial effect

on the performance of the solution procedure. By varying the parameter values forμR

and μP , we can reduce the solution space: lower values of μR and μP will reduce the
number of paths |�′| so that the corresponding MIP-MCFP models become easier to
solve. On the other hand, fewer paths increase the risk that the optimal partial picking
plans are not in �′. We further investigate this trade-off while looking for the best
values for the parameters μR and μP in our computational study (Sect. 5.2.2).

5 Computational study

Toexplore the computational performance of the proposedMIPmodels and theMCFP-
h algorithm, we implemented them in C# 7.0, applying the commercial solver IBM
ILOG CPLEX Optimizer V12.9.0 to solve the MIP model instances and test them on
newly generated OPAP instances. Thereby, the time limit to generate and solve the
MIP models was set at 1800 CPU seconds. All tests were executed on an x64 PC
with an Intel Core i7-8700K 3.70 GHz CPU and 64 GB of RAM. In Sect. 5.1, we
describe how the new OPAP instances were generated. In Sect. 5.2, we examine the
computational performance of the proposed solution methods. Finally, in Sect. 5.3,
we derive some managerial insights, such as the impact of the number of warehouse
levels and the length of the planning horizons (or waves) on the objective values.

5.1 Instance generation

In this section, we describe how the newOPAP instanceswere generated, whichwe use
for our computational experiments. We generated two datasets of problem instances
(dubbed S and L) for the algorithmic performance tests (Sect. 5.2) and another two
datasets (dubbed M1 and M2) for the managerial study (Sect. 5.3). Particularly, to
explore the impact of instance size on the computational performance of the solution
approaches, datasetsS andL contain different-sizedOPAP instances. Thereby, the size
of an OPAP instance is defined by the number of the SKUs |S|, picking stations |P|,
pods |R|, and orders |O|, which our instance generator receives as input parameters.
Another important parameter, which defines the layout of thewarehouse, is the number
of levels |L|. Note that apart from the instances in dataset M1, all generated OPAP
instances have a constant number of |L| = 3 levels, while dataset M1 contains
OPAP instances with a varying value of |L|. In e-commerce fulfillment centers, orders
typically arrive progressively throughout the day, so that OPAP is typically solved
in small waves and is re-planned multiple times during the day. All generated OPAP
instances, apart from the ones in datasetM2, are solved in one single wave (|T | = 1).
In OPAP, the length of the planning horizon of a wave is reflected by the number
of orders |O| in the planning horizon. To observe the impact of the length of the
planning horizon on the problem complexity, in datasets S and L, the number of
orders |O| is varied in four different values |O| ∈ {50, 100, 150, 200} for dataset
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Table 5 Dimensions of the used OPAP instances

Algorithmic study (Sect. 5.2) Managerial study (Sect. 5.3)
Dataset S L M1 M2

|S| 200 500 200 200

|P| 9 90 36 18

|R| 90 300 300 300

|O| (100, 150, 200, 250) (600, 800, 1000, 1200) 360 600

|L| 3 3 (1, 2, 3, 4) 3

|T | 1 1 1 (1, 2, 3, 4, 5, 6)

S and |O| ∈ {600, 800, 1000, 1200} for dataset L, respectively. Note that in OPAP,
the set of SKUs S and pods R represent only sub-sets of all SKUs and pods of the
warehouse. This is because, for an OPAP instance, it is sufficient to consider only
ordered SKUs in the current wave, and only such pods, which contain at least one
item of ordered SKU type. Table 5 summarizes the parameters defining the size and
characteristics of the four datasets.

Note that our instance generator is a result of intensive discussions and consultations
with practitioners. We aimed to generate realistic OPAP instances, which represent a
typical mid-sized warehouse, in the best manner. Therefore, all the input parameters
(including probability distributions) used to generateOPAP instances are checkedwith
our industry partners.

We generate the orders similarly as proposed by Xie et al. (2021). Particularly, for
each order i ∈ O , we first randomly draw its size, i.e., the number of ordered items, and
then randomly select the SKU types for each ordered item. According to discussions
with our industry partners, a typical order size in an e-commerce warehouse contains
1.4 items on average. Moreover, orders with a few (or even single) items arrive more
frequently than larger orders. Therefore, for each order i ∈ O , we randomly draw its
size from a geometric distribution with parameter p = 1/1.4, leading to an expected
order size of 1.4 items per order. Regarding the selection of ordered SKU types,
according to our industry partners, a typical ABC curve in a warehouse reflects the
so-called 20/80 rule. In other words, about 20% of the most popular articles in the
warehouse are responsible for about 80% of the total inventory movements (Bender
1981). To reflect this, the SKU type for each ordered item is chosen by sampling from
the set S using the probability mass function of exponential distribution with such a
value for the parameter λ that leads to selecting the first 0.2 · |S| SKU types with a
probability rate of 0.8. Particularly, for instances with |S| = 200 SKU types, we use
λ = 0.04, and for instances with |S| = 500 SKU types, we use λ = 0.016. Finally,
for each order i ∈ O and SKU s ∈ S, we compute the number of ordered items ois of
SKU s in order i , which OPAP receives as an input parameter. Note that in contrast to
the instance generation scheme proposed by Xie et al. (2021), our instance generator
allows more than one item of the same SKU type to be ordered in the same order (i.e.,
ois > 1 may occur).

After generating the order-related parameters, we distribute the items of ordered
SKU types on the set of pods R. Specifically, we generate the pod-related parameters
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similarly, as proposed by Merschformann et al. (2019). First, for each SKU type
s ∈ S, the required space Sizes to store one item is drawn from a uniform distribution
between 2 and 8 slots, while the storage capacity of each pod r ∈ R is assumed to be
500 slots. Then, for each SKU s ∈ S, we compute the total number of ordered items as
#ordereds = ∑

i∈O ois . Assuming that the required space to store all ordered SKU
types on the given pods P is 30%, we derive the total number of stored items #storeds
for each SKU s ∈ S as:

#storeds = #ordereds ×
∑

s∈S #ordereds · Sizes
500 · |P| · 30% .

After determining the total number of stored items for each SKU s ∈ S, we distribute
them on the pods, by randomly selecting the next free pod from R, filling them with
rand(10; 20) items of SKU s, and adjusting the remaining storage capacity of the pod
accordingly. We repeat this step until all items are assigned to pods. Finally, we derive
the number of stored items ars of each SKU s ∈ S on each pod r ∈ R.

Regarding the allocation of the pods and the picking stations on the different ware-
house levels, we assume that they are evenly distributed on the warehouse levels
(apart from the last level, which may receive fewer pods or stations if the total num-
ber of pods or stations are not divisible by the number of levels). Particularly, on the
first level l = 1, we allocate R1 = {1, . . . , � |R|

|L| �} pods and P1 = {1, . . . , � |P|
|L| �}

stations; on the second level l = 2, the next R2 = {� |R|
|L| � + 1, . . . , 2 · � |R|

|L| �}
pods and P2 = {� |P|

|L| � + 1, . . . , 2 · � |P|
|L| �}, and so on to the last level l = |L|,

which receives the last R|L| = {((|L| − 1) · � |R|
|L| �) + 1, . . . , |R|} pods and P|L| =

{((|L| − 1) · � |P|
|L| �) + 1, . . . , |P|} stations.

5.2 Algorithmic performance

In this section, we test the computational performance of both proposed models,
MIP-intuitive and MIP-MCFP, as well as heuristic MCFP-h at solving various OPAP
instances. Specifically, in Sect. 5.2.1, we compare the algorithmic performance of
proposed MIP formulations, i.e., MIP-intuitive and MIP-MCFP. Section5.2.2 deals
with the proposed heuristic MCFP-h. Specifically, we first tune the parameters for
MCFP-h identifying the best values for the parameters μR and μP . Thereafter, we
compare the performance of tuned MCFP-h with two extreme versions of MCFP-h:
i.e., μR = μP = +∞, when MCFP-h becomes an exact solution approach, and
μR = μP = 1, transformingMCFP-h to a simple constructive heuristic. For the algo-
rithmic experiments, we use the newly generated OPAP instances from the dataset S
and L, generated as described in Sect. 5.1.

5.2.1 Comparison of the MIP models

In this section, we compare the performance of the two proposed MIP formulations
solving small OPAP instances from dataset S. Unfortunately, CPLEX runs out of
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Table 6 MIP-intuitive vs MIP-MCFP

MIP-intuitive MIP-MCFP

Size Cols Rows Opt Time Gap f1 Gap f2 Gap f3 Cols Rows Opt Time Gap f1 Gap f2 Gap f3

9 × 90 × 100 4,610,611 13,340 10 121.1 0.0 0.0 0.0 3904.6 6980.6 9 529.8 0.0 0.0 0.6

9 × 90 × 150 8,069,761 18,915 10 187.3 0.0 0.0 0.0 5189.2 8352.5 5 1102.3 0.0 0.0 2.9

9 × 90 × 200 12,136,411 25,150 9 896.6 0.0 0.0 0.6 6401.8 9633.1 1 1735.6 0.0 0.0 7.6

9 × 90 × 250 16,122,061 30,943 5 1276.4 0.0 0.0 3.3 7726.9 10580.9 1 1743.7 0.0 0.0 8.8

Mean 10,234,711 22,087 8.5 620.3 0.0 0.0 1.0 5806.6 8886.8 4 1277.8 0.0 0.0 5.0

memory (or exceeds the array limits) even before generating the corresponding MIP-
intuitive models for large instances from datasetL. This is due to the abundant number
of variables zspri , stored in a sizable 4-dimensional matrix, whose size grows very fast
with the growth of the OPAP instance. Hence, for this comparison, we only use the
small OPAP instances from dataset S.

Table 6 summarizes the results of the comparison, where each cell represents the
aggregated computational results of the 10 OPAP instances of the same size. The first
column “Size” indicates the size of the OPAP instances, reflected by |P| × |R| × |O|.
To have a better idea of the size and the structure of the MIP models, in columns
“Cols” and “Rows”, we report the average number of columns and rows in each MIP
model. Further, for each MIP model, the column “Opt” summarizes the number of
instances solved to proven optimality within the given time limit, while the average
computational time (in CPU seconds) is reported in the column “Time”. Besides, we
report the average relative gaps between the best found upper bounds and the lower
bounds. Namely, if an instance is not solved to proven optimality within the time
limit, we store the upper bounds ( f 1, f 2, f 3) and the lower bounds ( f

1
, f

2
, f

3
)

of the objective values f1, f2 and f3, respectively. Consequently, for each objective
i ∈ {1, 2, 3}, we calculate the relative gap between the upper bound f i and lower

bound f
i
(in %) as Gap fi = f i− f

i
f
i

· 100, which are reported in columns “Gap f1”,

“Gap f2”, and “Gap f3”.
As can be seen from the results, MIP-intuitive performs quite well at solving small

OPAP instances from dataset S. Particularly, it solves 34 out of the small 40 OPAP
instances to proven optimality. However, the computational effort grows with rising
instance size, reflected by fewer optimally solved instances for the larger instances
with more orders. In comparison, the computational performance of MIP-MCFP lags
behind the performance of MIP-intuitive, being capable of finding a proven optimal
solution for 16 out of 40 small instances. In the remaining 24 cases, it finds an opti-
mal solution with regard to the primary and secondary objectives, but struggles with
the tertiary objective, leading to the average relative gap Gap f3 of 5%. An important
factor besides the relative gap is the computational time required to solve the OPAP
instances. The average computational time for the MIP-intuitive model over 40 small
OPAP instances is 620s, while MIP-MCFP requires approximately twice as much
(i.e., 1277s).
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Note that althoughMIP-intuitive shows better performance on small instances than
its competitor, suffering from the large number ofwspri variables, it scales rather poorly
as the model size increases very fast (see column “Cols”). As a result, it cannot handle
large OPAP instances from dataset L. Even for the smallest instances in the dataset
L (i.e., with |O| = 600 orders), the MIP-intuitive model instances become too large
and require high memory usage, leading to termination of the procedure in the model
generation phase. In contrast, MIP-MCFP tends to scale better, being able to generate
and solve (at least to feasibility) the correspondingMIPmodels for all OPAP instances
from both datasets (the detailed results on large instances are discussed in Sect. 5.2.2).

5.2.2 Evaluation of the heuristic procedure

Due to the operational character of OPAP, which must be solved multiple times during
the day for quite short planning horizons (e.g., every 10min in e-commerce ware-
houses), neither of the MIP models can be applied in practice, so that a fast heuristic
algorithm is needed. In this section, we evaluate the computational performance of the
proposed heuristic algorithmMCFP-h. First, wewill calibrate the values of parameters
μR and μP on small OPAP instances from dataset S. Consequently, we observe the
performance of the tuned MCFP-h on large instances from dataset L and compare it
with an exact solution approach and a greedy constructive heuristic.

The algorithmic performance of the MCFP-h strongly depends on the values of
the parameters μR and μP : low values of μR and μP lead to a low number of pre-
selected pods and stations in the model pre-processing step, i.e., fewer paths for the
correspondingMIP-MCFPmodel. This kind of reduction of theMIP-MCFPmodel can
be beneficial in terms of the required computational time to solve it. On the downside,
it can be counterproductive in terms of solution quality, since it enlarges the risk that
optimal (or promising) paths are not included in the resulting reduced MIP-MCFP.
The preliminary tests have shown that setting μR , and μP on the same values leads
to better solutions, rather than selecting only a few pods (i.e., low μR) and a lot of
stations (high μP ) or vice versa. Therefore, in parameter tuning tests, we observe the
behavior of MCFP-h when both parameters μR and μP have the same values, and
vary them in the range of five values μR, μP ∈ {1, 2, 3, 4, 5}.

Fig. 6 Parameter tuning of MCFP-h
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Table 7 Comparison of MCFP-h∞, MCFP-h∗ and MCFP-h1

MCFP-h∞ MCFP-h∗ MCFP-h1

Size Time f 1 f 2 f 3 Time Gap f 1 Gap f 2 Gap f 3 Time Gap f 1 Gap f 2 Gap f 3

90 × 300 × 600 1800.6 7 609 1145 57.8 1.4 2.8 −11.4 37.9 90.0 17.1 5.7

90 × 300 × 800 1800.4 10 817 1262 82.8 0.0 3.0 −12.2 56.5 80.0 18.3 9.4

90 × 300 × 1000 1800.7 12 1020 775 120.5 0.0 3.0 17.3 73.9 75.8 17.4 52.7

90 × 300 × 1200 1801.0 14 1227 3129 206.8 5.0 2.9 −19.9 95.4 71.4 17.4 8.2

Bold typesetting of some objective values indicates that for all 10 instances of this size the objective values
found are optimal

Figure 6 visualizes the aggregated computational results of MCFP-h for each
observed value of parameters μR and μP . Namely, each dot in graphics summa-
rizes the average results over 40 OPAP instances from dataset S. The left-handed
graphic Fig. 6a depicts the average computational time (in CPU seconds) and shows
an apparently exponential increase in computational time with rising values ofμR and
μP . Recall that rising the values of these parameters leads to an exponential rise in
the number of paths in MIP-MCFP, which requires longer solution times. The right-
hand Fig. 6b depicts the relative gaps between the objective values f1, f2 and f3 of
MCFP-h solutions, and the best known lower bounds on these objectives f

1
, f

2
and

f
3
, obtained by MIP-intuitive. It can be observed that higher values of μR and μP

lead to lower relative gaps for all objectives, i.e., an improvement of solution quality.
In other words, lower values of μR and μP , on the one hand, lead to shorter computa-
tional times (see Fig. 6a). On the other hand, it reduces the probability that the reduced
MIP-MCFP contains potentially good paths, which leads to higher optimality gaps of
the reduced problem’s solution (see Fig. 6b).

In practice, the exact choice of values for parameters μR and μP depends on
many factors, such as the size of the warehouse, the number of orders, the desired
level of the solution quality, the available time, and the hardware, etc. For our study,
μ∗R = μ∗P = 3 turns out to be the most promising compromise between solution
quality and computational time. Therefore, for the next computational experiments,
we set parameters μR and μP to the value 3 and refer to MCFP-h with this parameter
constellation as MCFP-h∗.

In the following, we observe the computational performance of tuned algorithm
MCFP-h∗ on large OPAP instances from dataset L and compare it with the following
two special cases:

MCFP-h∞ when parameters μR and μP are set to ∞;
MCFP-h1 when both parameters μR and μP have a value of 1.

Note that in MCFP-h∞, the resulting MCFP contains all paths (i.e., �′ = �), and
the solution approach becomes exact. MCFP-h1 contains only one pod per ordered
SKU and one station per order. As a result, the procedure becomes similar to a greedy
constructive heuristic, where both sub-problems are solved sequentially via simple
priority rule-based heuristics, e.g., like priority-rule-based decision rules, proposed by
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Merschformann et al. (2019). However, in MCFP-h1, the initial constructive-heuristic
solution can be improved after solving the resulting reduced MIP-MCFP instance.

Table 7 summarizes the aggregated results of the comparison of the exact approach
MCFP-h∞ (used as a benchmark approach) with the two heuristics, MCFP-h∗ and
MCFP-h1. More specifically, for each approach, the column “Time” reports the
required average computational time. Besides, we report the upper bounds f 1, f 2, f 3
of optimal objective values f1, f2, and f3, obtained by the exact approach MCFP-h∞
within the time limit of 1800s, where the values that are proven to be optimal are
marked by bold typesetting. The average relative gaps (in %) of the MCFP-h∗ and
MCFP-h1-solutions to the upper bounds f 1, f 2, f 3 of the MCFP-h∞-solutions are
reported in columnsGap f 1 ,Gap f 2 andGap f 3 . Thereby, a negative value under these
columns indicates an improvement of MCFP-h∞-solutions, found within a given time
limit, by a heuristic approach.

As can be seen from the results, none of the large instances from dataset L can be
solved to proven optimality by the exact solution approach (i.e., MCFP-h∞) within
1800s. However, for all 40 large instances, the found solutions are optimal in terms
of the primary and the secondary objectives, and the solver struggles with the tertiary
objective,which inmost cases shows very poor lower bounds.As a result, CPLEXdoes
not terminate before reaching the given time limit of 1800s. In contrast, both heuristic
approaches (MCFP-h∗ and MCFP-h1) manage to terminate before reaching the time
limit and provide solutions in a reasonable runtime. The average computational time
over 40 large instances is 117s for the MCFP-h∗ and 66s for the MCFP-h1. Regarding
the solution quality, MCFP-h∗-solutions show a slight deterioration of the optimal
objective values for the primary and secondary objectives, with the average optimality
gaps of Gap f 1 = 1.6% and Gap f 2 = 2.9%, and the improvement of the MCFP-
h∞ upper bounds f 3 by 6.5% on average. In contrast, constructive heuristic solutions
(i.e., found byMCFP-h1) show deterioration of the benchmarkMCFP-h∞-solutions in
terms of all three objectives, with average relative gaps ofGap f 1 = 79.3%,Gap f 2 =
17.6% and Gap f 3 = 19.0%.

To conclude, MCFP-h∗ turns out to be superior among its competitors and the
tuned parameter values μR = μP = 3 seem to be a good compromise between the
computational time and the solution quality also for the large OPAP instances.

5.3 Managerial insights

In this section, we explore some practical insights, such as the impact of the warehouse
layout (i.e., the number of warehouse levels) and the number of waves (under usage
of the rolling planning environment) on our objective values. The results of the for-
mer observation can be helpful from a managerial viewpoint at the strategic planning
level when deciding on the facility layout of the warehouse. The latter results provide
insights for the proper design of the rolling planning environment and evaluate the
performance of the division of a planning horizon into smaller waves. For the experi-
ments of the managerial study, we use two datasetsM1 andM2. Each of the datasets
M1 and M2 contains 10 benchmark OPAP instances, which are then modified by
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changing solely one parameter (the number of Levels |L| or the number of waves |T |)
while the remaining parameters are the same in the benchmark instances.

5.3.1 Impact of the number of warehouse levels on the objective values

A decision on how many levels the warehouse facility must have is typically made
on the strategic level and has a crucial impact on the performance of the picking
process. Running a warehouse in a tight, but multi-level facility instead of in a wide
and few-level facility may save initial investment costs, especially in areas where land
is expensive, e.g, in (or next to) big cities. However, having multiple levels comes
at the cost of operational productivity of the warehouse, which in the long term may
counterbalance the investment savings.

To explore the impact of the number of warehouse levels |L| on our workload-
related objectives, we generate OPAP instances with varying warehouse levels. In
particular, we first generate 10 benchmark OPAP instances with |S| = 200 SKUs,
|P| = 36 stations, |R| = 300 pods, |O| = 360 orders and single warehouse level,
i.e., |L| = 1. Then, we modify each benchmark instance by resetting the number of
levels to |L| = {2, 3, 4} and evenly distributing the pods and stations on the resulting
|L| levels. This leads to changes in parameters Rl and Pl for l = 1, . . . , |L|, while the
remaining input parameters (SKUs, orders, and pods) are the same as in the benchmark
instances.We solve the resulting 40OPAP instances using our tuned algorithmMCFP-
h∗ and observe the maximal number of processed orders per station, the number of
split orders, and the total number of required pod-to-station assignments of the found
solutions.

Fig. 7 Impact of the warehouse levels on the objective values

123



1070 G. Tadumadze et al.

Figure 7 displays the aggregated results of our study. Each dot in the figure repre-
sents the average results of the 10 OPAP instances with the same number of levels.
The results of our study reveal that the number of levels has only a marginal impact
on the maximum number of handled orders per station (i.e., f1) and the number of
pod-to-station assignments (i.e., f3). However, the approximately linearly increasing
curve of the chart in the middle graphic indicates the raising number of split orders
when the number of warehouse levels grows. In other words, multi-level warehouse
layouts lead to a higher number of split orders, which comes with the cost of additional
consolidation effort for packers. As a result of our tests, we can conclude that ware-
house planners need to consider the operational costs for order consolidation when
reducing investment costs via a multi-level setup.

5.3.2 Impact of the number of waves on the objective values

In the previous sections, we assumed that each OPAP instance was solved in |T | = 1
wave. In practice, OPAP is solved in multiple waves using a rolling planning environ-
ment. Dividing a long planning horizon into smaller waves will lead to a loss of order
consolidation effects of OPAP, which can negatively affect the effectiveness of the
picking process. However, in practice, it is often impossible to plan for long planning
horizons due to a dynamically changing order information during the day as well as a
high complexity of the corresponding large OPAP problems, as shown in Sect. 5.2. In
this section, we want to observe how the division of the planning horizon into smaller
waves affects the objective functions.

For this observation, we generate another 10 benchmark instances with |S| = 200
SKUs, |P| = 18 stations, |R| = 300 pods, |O| = 600 orders, |L| = 3 levels and |T | =
1 wave. Consequently, we divide each benchmark instance into |T | = {2, 3, 4, 5, 6}
waves, whereas in each wave we consider only |O|

|T | orders (assuming that orders arrive
in a sequencewith increasing index). Finally,we solve the resultingOPAP instances via
MCFP-h∗ algorithm for each wave t = 1, . . . |T |, and adjust the inventory for the next
wave t+1 by subtracting from the pod stock the picked SKUs from the previous wave
t , i.e., a′

rs = ars − ∑
p∈P

∑
i∈O ωsrpi . Finally, we aggregate the maximal number

of assigned orders per station, the number of split orders, and the total number of
required pod-to-station assignments for the whole planning horizon by summing up
the corresponding values from each wave over the waves t = 1, . . . |T |.

The aggregated results of this study are depicted in Fig. 8. We would expect that
dividing a planning horizon into smaller waves would harm the picking operating
performance. And indeed, this is what the results indicate. However, here as well, the
number of waves does not affect all three objectives in the same manner. While |T |
turns out to have rather a smaller impact on the picker and packer workload, i.e., f1 and
the number of split orders f2, it seems to have a greater impact on the number of pod-
to-station assignments, which is reflected in the increasing curve with a higher slope
of the right-handed chart. This can be explained by the loss of consolidation effects
when OPAP is solved in multiple waves separately. Our results imply that terminal
managers should take care not to plan OPAP in extremely short waves, which would
weaken the consolidation effect of similar orders at stations by allowing pickers to
pick only a few SKUs per pod visit so that the mobile robots must transport more pods
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Fig. 8 Impact of the number of waves on the objective values

to the stations to cover all orders. The good news for practitioners is that the effects of
a shorter wave duration can be neglected if the size of the robot fleet is large enough.
On the other hand, obviously, robots, and therefore investment costs, can be reduced
if wave duration can be prolonged.

6 Conclusion

In this paper, we investigate the order and pod assignment problem (OPAP) in a
multi-level robotic mobile fulfillment system. The problem integrates the following
two interrelated decisions: which order must be handled at which picking station and
from which pods must the ordered items be picked, considering the limited stock
of SKUs of the pods as well as the warehouse levels where the pods and stations are
located? In termsof theoptimization criteria,we consider threeworkload-relatedgoals,
namely balancing the order handlingworkload among all pickers,minimizing the order
consolidation workload for packers, and minimizing the pod-movement workload
for robots. We formalize the problem as a multi-criteria optimization problem by
introducing a surrogate objective for each observed goal and design an intuitivemixed-
integer linear programming model. Moreover, we transform the problem as a type of
multicommodity flow problem (MCFP), develop a path-based mixed-integer linear
programming model, and propose a heuristic path reduction scheme that allows us
to use the latter model as a heuristic. We compare the computational performance of
the proposed models and the heuristic solution procedure. After reducing paths to the
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proper level, the proposed MCFP-h∗ manages to find reasonable solutions in a short
computational time.

In summary, we conduct a comparative study with all three approaches, namely
intuitive mixed-integer linear programming model (MIP-intuitive), multicommodity
flow problemMIP (MIP-MCFP), and reduced-path heuristic (MCFP-h∗). Our numer-
ical results show that the MIP-MCFP outperforms MIP-intuitive, but neither model
is suitable for realistic instances, using a state-of-the-art default solver. Consequently,
we develop the heuristic MCFP-h∗, which exhibits the fastest solution times (less than
five minutes even in the largest instances) while delivering acceptable solution quality
(at worst a 5% optimality gap for the large instances where the optimal objective value
is available). For practical application of RMFS in, e.g., e-commerce warehouses,
MCFP-h∗ is hence the most relevant solution method. Moreover, we derive the fol-
lowing practical insights, which might be interesting from a managerial perspective:

• While using a multi-level facility for an RMFS warehouse improves space utiliza-
tion, it comes at the cost of productivity of operative picking processes. Especially
the packers at consolidation stations will suffer from multiple levels since it
increases the consolidation effort of partially picked orders, which, in a multi-
level warehouse, are spread among different levels.

• Division of a planning horizon into smaller waves eases the forecasting and solving
of short-term planning problems. However, waves that are too short harm the
consolidation effect by not considering the similarities of all orders, so that a
higher number of pods are required to cover all orders. This could increase the
workload for the mobile robots, which are responsible to move the required pods
to the stations.

Due to the model assumptions listed in Sect. 3.3, our study and results consist of
some limitations, which can be further explored in future research. Future research
should focus on integrating OPAP with the related planning problems, like order
processing, SKU and pod storage assignment, or traffic management. Moreover, com-
bining OPAP with the pod replenishment problem seems a challenging task for future
research. Due to the high complexity of these operative processes, it is suggested to
integrate the planning problems into a simulation model, which would enable explor-
ing the impact of the proposed surrogate objectives on various practical KPIs, such
as cycle times, required resources, or energy consumption. On the algorithmic side,
solving OPAP with another multi-objective-approach, such as weighting objectives
(e.g., using the analytic hierarchy process) or combining objectives, could be another
interesting and challenging stream for future research as the proposed lexicographic
approach is only one of many possible ways to deal with multi-objective optimization
problems.
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