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Abstract
The robotic mobile fulfillment system, where mobile robots carry racks to stationary 
stations for human pickers, is widely used in e-commerce warehouses. The opera-
tional efficiency of the system is largely affected by the organization of the order 
picking process. In this paper, we investigate an order picking tactic in a robotic 
mobile fulfillment system that allows racks moving between multiple picking sta-
tions in order to feed more orders during one visit and therefore save the overall 
throughput time. To evaluate this operational tactic’s effectiveness, we propose 
a mathematical model to jointly optimize the order assignment, order sequencing, 
rack selection, and rack sequencing. A two-stage hybrid heuristic algorithm frame-
work is then presented, including order assignment in the first stage and order and 
rack sequencing in the second stage. We conduct numerical experiments to validate 
the proposed algorithms’ performance under different strategies and find out that 
the inter-station operation can significantly save order throughput time on the test-
ing cases. We also investigate the effects of several factors, including the number of 
picking stations, their capacities, the stock keeping unit diversity, and queue length. 
Furthermore, a solid simulation is carried out to show the rationale of using rack 
moves as the objective rather than the completion time.

Keywords Logistics · Material handling · Order picking · Robotic · Heuristics · 
Simulation

1 Introduction

In order fulfillment warehouses, about 55% of the operating costs are due to the 
order picking process (De  Koster et  al. 2007; Jaghbeer et  al. 2020). To improve 
operational efficiency and save costs, automated and robotic handling systems are 
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increasingly applied in warehouses (Azadeh et  al. 2019). Among them, Robotic 
Mobile Fulfillment System (RMFS), pioneered by the Kiva system (Wurman et al. 
2008), now rebranded as Amazon Robotics, has been applied in e-commerce dis-
tribution centers in recent years. Compared to traditional picker-to-parts warehouse 
systems, RMFS facilitates a parts-to-picker order picking mode. Robotic devices 
bring items from a storage area to a picking station, where human pickers complete 
the order picking and possible packing (Huang et al. 2015). Therefore, it can save 
the picker’s travel time along aisles and can even double the warehouse productivity 
(Wurman et al. 2008). Meanwhile, compared to the miniload system, another auto-
mated parts-to-picker system facilitated by aisle-captive Storage/Retrieval machines 
(such as DEMATIC), RMFS has the virtue of incremental scalability, (ease of) par-
allel processing, and built-in redundency (Bozer and Aldarondo 2018). In the indus-
try, E-commerce companies, such as Amazon.com, JD.com, Tmall.com, and so on, 
have reported their RMFS applications. Meanwhile, following Amazon Robotics, 
many device and solution providers in this industry emerge, including Swisslog, 
Grey-Orange, Hitachi, and QuickTron, among others.

In practice, one RMFS is often equipped with multiple picking stations (PS), 
each one of them is in charge of processing a group of orders typically done by 
one picker (Merschformann et al. 2019). To avoid pickers waiting for the arrival 
of movable racks, a queue of racks with given length is often arranged to line in 
front of a picking station (PS) so that a finished rack can be replenished instantly. 
To illustrate, the layout of a warehouse with four PS is presented in Fig.  1 in 
which the length of the waiting queue is 3. The PS are located on the left side of 
the warehouse (called picking area), and the movable racks containing specific 
SKUs (stock keeping units) are placed on the right part (called the storage area). 
An SKU can be stored in multiple racks and a rack can also contain multiple 
types of SKUs. Once a set of orders arrives at the system and is to be retrieved, 
the first decision to be made is the order assignment determining which orders 
should be assigned to which PS. Subsequently, the processing sequence of the 

Fig. 1  A typical warehouse layout of an RMFS
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orders in each PS should be specified. For each PS, processing a given batch of 
orders requires a set of racks which contains the necessary SKUs that the orders 
require. Since an SKU can be stored in multiple racks (for example, in a random 
way), racks that can satisfy the orders need to be selected, as well as the visiting 
sequence of these racks. As Boysen et al. (2017a) and Valle and Beasley (2021) 
indicate, both the order sequence and the rack sequence significantly affect the 
efficiency of the system. However, they only handled order picking issues with 
only one PS, and we will extend it to adapt to multiple-PS scenarios in this study.

There are a bunch of studies addressing order picking problems in traditional 
manual warehouses and just a few for parts-to-picker systems; however, as far as 
we know, existing research does not consider the scenario that a rack serves two 
or more PS during its single PS-visiting tour (hereafter referred as inter-PS ser-
vice). Intuitively, this would be very helpful if the SKUs contained in a visiting 
rack can satisfy the in-process orders of multiple PS. Imagine that two adjacent 
PS are handling orders with similar contents, if a rack consecutively service these 
two PS, rather than visiting them separately, a rack trip from the storage area to 
the picking area would be saved. Actually, this operation mode has been practiced 
by Quicktron, a robotic fulfillment solution company headquarted in Shanghai, 
China that offers intelligent warehousing solutions (QuickTron 2020). With this 
idea in mind, we investigate the order processing in a parts-to-picker system with 
multiple PS, which involves multiple decisions, such as order assignment, order 
sequencing, rack selection, and rack sequencing. The total time of completing 
all given orders is usually used to measure the efficiency of a traditional order 
processing system. However, setting the completion time as the objective would 
dramatically increase the scale of decision variables (for example, variables to 
represent the exact rack moving routes), and would make the mathematical model 
computationally intractable. Moreover, it is also hard to measure some factors 
in RMFSs that affect the completion time, for example, the route conflicts that 
occur during the moving of racks. In this paper, we adopt a surrogate objective, 
which is the number of rack moves necessary to complete all orders (Boysen et al. 
2017a; Valle and Beasley 2021). Furthermore, we reveal in this study by a simu-
lation that the number of rack moves between PS and the storage area (excluding 
inter-PS rack moves) is linearly related to the order completion time.

The contributions of this paper are as follows: 1) Enlightened by the practice 
of the industry, this work for the first time considers the inter-PS operation during 
the order picking process in an RMFS; 2) Enabling such inter-PS operations, we 
propose an integrated mixed-integer linear programming model to jointly opti-
mize the order assignment, order sequencing, rack selection, and rack sequenc-
ing of the RMFS, which can be used as a benchmark for the evaluation of heu-
ristic algorithms; and 3) Based on the proposed two-stage hybrid algorithm, we 
observe that enabling inter-PS operation can substantially improve order picking 
efficiency.

The remainder of this paper is organized as follows. Section 2 reviews the related 
literature. Section 3 describes the problem in detail and formulates an integer pro-
gramming model. Section 4 proposes a two-stage algorithm framework and show 
the implementation of each stage. Computational experiments and the results are 
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presented in Sect.  5. Then, Section 6 elaborates the simulation work to prove the 
rationale of using rack moves as the objective rather than the completion time. 
Finally, Section 7 draws the conclusion and points out future research suggestions.

2  Literature review

Order picking and the associated warehouse design problems have long attracted 
intensive research interest for decades. Gu et al. (2007) and De Koster et al. (2007) 
provided comprehensive reviews on layout design, storage assignment, order pick-
ing and routing. In the up-to-date review works, Azadeh et al. (2019); Jaghbeer et al. 
(2020) focus on the topic of robotics in order picking. This work falls in the category 
of “human picker” and “parts-to-picker” in Jaghbeer et al. (2020), and the category 
of Robotic Mobile Fulfillment System in Azadeh et al. (2019). As one of the direc-
tions for future research pointed out in Azadeh et al. (2019), an integrated model is 
also pursued in this study; that is, we propose a model that jointly optimize the order 
assignment (to picker), order sequencing, rack selection, and sequencing. The objec-
tive is to optimize the overall performance over multiple PS.

The related research on order picking problems are mostly dedicated for picker-
to-parts systems, for example, see Öncan (2015),MenÉndez et  al. (2016),Scholz 
et  al. (2017), among others. We also refer to a review-based study (Grosse et  al. 
2015) which investigates the human factor aspects involved in order picking pro-
cesses, particularly for manual systems. However, we make our focus on the order 
picking problems in Robotic Mobile Fulfillment Systems. We summarize related lit-
erature in Table 1, and a survey paper by Boysen et al. (2019) is also consulted.

As shown in Table  1, most studies address only one or two isolated steps of 
the whole order picking process, which we summarize as order assignment, order 

Table 1  Summarization of relevant literature

Reference Order 
assign-
ment

Robot 
assign-
ment

Rack selection Rack 
sequenc-
ing

Order 
sequenc-
ing

Solution methods

Zou et al. (2017) ✓ Heuristic
Li et al. (2017) ✓ Heuristic
Boysen et al. (2017a) ✓ ✓ ✓ DP
Boysen et al. (2017b) ✓ Heuristic
Boysen et al. (2018) ✓ DP
Xi et al. (2018) ✓ Heuristic
Zhang et al. (2019) ✓ Heuristic
Füßler and Boysen 

(2019)
✓ ✓ Heuristic

Merschformann et al. 
(2019)

✓ ✓ Rules-based

Valle and Beasley (2021) ✓ ✓ ✓ ✓ Heuristic
This paper ✓ ✓ ✓ ✓ Heuristic
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sequencing, rack selection, rack sequencing, and robot assignment. Zou et al. (2017) 
study the rules of assigning PS to robots according to PS’s handling speed. A 
neighborhood search algorithm is designed to find a near-optimal assignment rule, 
and semi-open queueing networks are built to estimate the system performance. 
This study considers only single-line orders. Xi et  al. (2018) focus on the storage 
assignment and order batching problem in a Kiva mobile fulfillment system based 
on product similarity, aiming to minimize the number of visits of racks. They also 
determine the assignment of racks to a given batch. However, their study doesn’t 
consider the sequence that racks visit a PS. Füßler and Boysen (2019) treat the 
processing sequence of orders in a single picking station to reduce the number of 
storage bins transferred from the storage system to fulfill orders. This problem is 
relatively less complicated than ours since each storage bin contains a single SKU. 
Zhang et  al. (2019) tackle The robot allocation problem under a determined rack 
sequence in each PS. They propose a model based on the resource-constrained pro-
ject scheduling problem with transfer times to minimize the system’s makespan and 
use a designated genetic algorithm to solve the problem. Li et al. (2017) determine 
the optimal rack selection for a given batch of orders under parts-to-picker mode. 
Aiming to minimize the total time of moving the selected racks to finish orders, 
they propose a three-stage hybrid heuristic algorithm. However, the racks’ arrival 
sequence has not been optimized, and only one batch of orders is considered. Simi-
larly, Boysen et al. (2018) focus on the release sequence of bins from the automated 
storage/retrieval system (AS/RS) to minimize the spread of orders so that orders can 
be quickly assembled at their packing stations. Boysen et al. (2017b) consider the 
order sequencing in mobile rack warehouses, in which there are only a few aisles 
open for rack moves at a time. Therefore, aisle relocation is also subject to opti-
mization. Finally, Merschformann et al. (2019) evaluate multiple decision rules for 
several problems in RMFSs by simulation: the order assignment, rack selection, and 
rack storage assignment. The pick order assignment rules are based on the slot of the 
just-completed order at a station, which means orders are assigned to a PS from the 
backlog and only one is assigned at a time, except for the rare case in which multiple 
orders are completed at the same time. The simulation approach is rule-based and 
myopic in nature.

We highlight two pieces of research which we think are mostly close to ours. Boy-
sen et al. (2017a) for the first time point out that both the order processing sequence 
and the rack arrival sequence at the PS notably affect the order picking efficiency in 
a robotic parts-to-picker system. They provide a mathematical formulation of the 
joint problem and propose a decomposition-based solution approach that incorpo-
rates two dynamic programming (DP) algorithms. It is worth noting that, though 
their study can theoretically find an optimal solution, the computational time to get 
the optimal solution can easily go beyond the limit that people can wait. This is also 
the reason why they compromise to use a beam search heuristic. Valle and Beas-
ley (2021) extend the work of Boysen et al. (2017a) by additionally considering the 
order and rack allocation to PS (or, pickers as in the paper). The (first-stage) order 
and rack allocation solution is then submitted to a (second-stage) rack sequencing 
problem for each picker where the order sequence is also determined. This study for-
mulates and solves the two subproblems separately: for the order and rack allocation 
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problem, two heuristics are proposed; while for the rack sequencing problem, the 
proposed formulation explicitly considers the rack inventory positions which are 
ignored in Boysen et al. (2017a), and the CPLEX solver is used to generate a feasi-
ble (not optimal) solution. However, both the above studies don’t assume that a rack 
can visit two or more PS before it returns to the storage area. Therefore, our research 
aims to investigate how this consideration will benefit operational efficiency.

Beyond the problems described above, there are a few studies optimizing other 
procedures in a parts-to-picker system. Weidinger et al. (2018) consider the problem 
of assigning racks to storage positions when a rack returns from a PS to the stor-
age area. The objective of the problem is to minimize the total travel distance of 
the mobile robots to complete all the tasks. Similarly, Yuan et al. (2019) also focus 
on the storage assignment problem in a parts-to-picker system where the velocity-
based storage policies are analyzed. Using multi-class closed queueing network 
models, Roy et al. (2019) analyze both order picking and replenishment processes in 
a mobile fulfillment system.

To summarize, various studies have been devoted to one or several order picking 
subproblems in both traditional picker-to-parts systems and newly-emerging parts-
to-picker systems. However, to the best of our knowledge, there is rarely any study 
addressing the optimization in an RMFS with multiple PS, which has been prac-
ticed. To bridge this gap, we explicitly consider inter-PS service aiming to save pro-
cessing time.

3  Problem description

In a robotic mobile fulfillment system, we consider the processing of a set of given 
orders in multiple PS. First of all, customer orders are assigned to different PS based 
on some strategies (introduced later). Each PS has a limit on the number of orders 
that are assigned to it and can only process a certain number of orders in parallel, 
denoted by w and C, respectively. At a PS, the picking sequence for each batch of 
orders needs to be decided, besides, the sequence of racks arriving at each PS is also 
to be decided. When an order is completely fulfilled at a PS, it will be replaced by 
another new order immediately. A movable rack, which is carried by a robot from 
the storage area, can visit multiple PS if required. Hence, two processing sequences 
are necessary when picking orders at each PS, which are the order sequence and the 
rack sequence, both are crucial to the system performance as shown by the following 
example. Throughout this paper, a round rack move refers to the process of carry-
ing a rack from the storage area to the picking area and then returning the rack to 
the storage area. We differentiate inter-PS rack move as moving a rack from one PS 
to another during an inter-PS service. Note that a round rack move may or may not 
contain inter-PS rack moves depending on the picking schedule. Hereafter, round 
rack move is referred to as rack move for simplicity unless otherwise specified.
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3.1  Assumptions and an example

In order to support our research, the following assumptions are made.

– Assume that the shared storage policy (Bartholdi and Hackman 2008) is 
adopted, that is, an SKU is not completely stored on a single rack, but rather 
on multiple racks. According to Lamballais et al. (2019), this would incur less 
order completion time in a parts-to-picker system.

– Presuppose that there are enough units for each SKU on the rack. Based on 
this assumption, we can just focus on whether a rack contains an SKU, while 
the number of units is not critical (Boysen et  al. 2017a). This assumption is 
particularly rational when we consider the e-commerce warehouses where the 
number of units for each SKU in an order is usually small, and an appropriate 
replenishment strategy can also reduce the probability of out of stock.

– During a rack visit at a PS, the order that has been fulfilled by this rack can 
be replaced by a new order immediately, and SKUs required by the new order 
can be retrieved from the current rack if they are present. A rack leaves the PS 
only when no SKUs on current picking orders are available on the rack.

– We assume the length of a time slot in different PS is the same, at least sta-
tistically. The violation of this assumption may incur asynchronism among 
PS and postpone the finish time of all the orders. We argue that this can be 
adjusted on a real-time scheme based on the solution deduced from our pro-
posed model. To validate the effectiveness of this assumption, a simulation is 
also conducted as elaborated in Sect. 6.

– We assume that there is a buffer in front of each PS so that any pod that arrives 
earlier than scheduled can stay waiting.

– We focus on a warehouse layout where the PS are located on one side of the 
area. Thus, the transport distance between the PS is shorter than that between 
the storage area and PS in general.

Example Consider S = 2 PS and N = 8 customer orders in total. There are 4 orders 
to be picked at each station with the capacity of C = 3 . We have K = 4 SKUs known 
as {a, b, c, d} . The set of orders for PS S1 contains SKUs as follows: O11 = {a, b, c} , 
O12 = {c, d} , O13 = {b, c, d} , O14 = {a, b, c, d} , and orders for PS S2 contains the fol-
lowing SKUs: O21 = {a, c} , O22 = {a, b} , O23 = {a, c, d} , O24 = {b, c, d} . In addi-
tion, we define M = 3 racks: R1 = {a, c} , R2 = {b, d} , R3 = {c, d} . Two alterna-
tive solutions are proposed to process the orders in Fig. 2. In solution 1, the order 
sequence and rack arrival sequence at PS S1 are ⟨O12,O13,O14,O11

�
 and ⟨R3,R1,R2

�
 

respectively, and ⟨O21,O22,O23,O24

�
 and ⟨R1,R2

�
 respectively at PS S2 . In solution 

2, the order sequence and rack arrival sequence at PS S1 are ⟨O11,O12,O13,O14

�
 and 

⟨R1,R3,R2,R1

�
 respectively, and ⟨O22,O24,O21,O23

�
 and ⟨R2,R1,R3

�
 respectively at 

PS S2.
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As we can see from Fig. 2, five rack visits are required to complete all cus-
tomer orders with solution 1 ( R3 , R1 and R2 visit S1 , and R1 and R2 visit S2 ), 
while seven visits are needed in solution 2 ( R1 , R3 , R2 and R1 visit S1 , and R2 , R1 
and R3 visit S2 ). Adopted from Boysen et al. (2017a), the concept of time slot is 
used to track the process of the order picking and rack moving. In a time slot, 
for each PS, there is a certain number of orders in picking and only one rack is 
visiting. For each PS, when one or more orders are fulfilled during a rack visit, 
or, when there is a rack change, the time slot moves to the following. Therefore, 
4 slots involve in solution 1 and 5 in solution 2. Clearly, if inter-PS service is not 
allowed, then in solution 1, the number of rack moves is 5 (3 for S1 and 2 for 
S2) and in solution 2, is 7 (4 for S1 and 3 for S2). However, if inter-PS service 
is allowed and we suppose a rack can be handled immediately when it is trans-
ferred to another PS (that is, the queue length is 1), then both solution 1 and 2 
contain two inter-PS rack moves. As a result, the number of rack moves becomes 
3 for solution 1 and 5 for solution 2. Considering that travel distance between PS 

Fig. 2  An example of two order picking solutions with different order and rack sequences
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is much shorter than that from the storage area to PS, the total travel distance or 
time can be remarkably saved by allowing inter-PS service. This small example 
also reflects that order sequence and rack sequence have a great influence on 
order picking performance.

3.2  Mathematical model

Based on the above setting and assumptions, we build an integer programming 
model for this problem which consists of the objective function (1) and constraints 
(2) to (20). Before explaining the model, Table 2 shows the constant parameters and 
Table 3 shows the decision variables applied in the model.

(1)Minimize

T∑

t=1

S∑

s=1

rst −

T−Q∑

t=2

M∑

j=1

S∑

s=1

S∑

s�=1,s�≠s

zjss�(t+Q)

(2)s.t.

S∑

s=1

yis = 1,∀i = 1, ...,N,

Table 2  Constant parameters

Symbol Explanation

N Number of customer orders to be retrieved
M Number of racks
S Number of PS
K Number of SKU types
w Maximum number of orders assigned to each PS
C Capacity of each PS
Q Length of queue at each PS
T Maximum number of time slots
Osetik 1, if order i contains SKU k, ∀i = 1, ...,N,∀k = 1, ...,K ; 0 otherwise
Rsetjk 1, if rack j contains SKU k, ∀j = 1, ...,M,∀k = 1, ...,K ; 0 otherwise

Table 3  Decision variables

Decision variables Explanation

yis Binary variables: 1, if order i is assigned to PS s; 0 otherwise
xjst Binary variables: 1, if rack j is visiting PS s in slot t; 0 otherwise
oist Binary variables: 1, if order i is processed at PS s in slot t; 0 otherwise
zjss′ t Binary variables: 1, if rack j is moving from PS s to PS s′ in slot t; 0 otherwise
Lkist Binary variables: 1, if SKU k is delivered for order i at PS s in slot t; 0 otherwise
rst Binary variables: 1, if the racks visiting at PS s in t − 1 and t differ; 0 otherwise
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(3)
N∑

i=1

yis ≤ w,∀s = 1, ..., S,

(4)
M∑

j=1

xjst ≤ 1,∀s = 1, ..., S,∀t = 1, ..., T ,

(5)
S∑

s=1

xjst ≤ 1,∀j = 1, ...,M,∀t = 1, ..., T ,

(6)

1 − (xjstxjs�t� − |
t∑

t1=1

rst1 −

t�∑

t2=1

rs�t2 − Q|) −M(1 − zjs�st) ≤ 0,

∀j = 1, ...,M,∀s = 1, ..., S,∀s� = 1, ..., S, s� ≠ s,∀t = 1, ..., T ,∀t� = 1, ..., T , t� ≠ t,

(7)

Q − |
t∑

t1=1

rst1 −

t�∑

t2=1

rs�t2 | −M(1 − xjstxjs�t� ) ≤ 0,

∀j = 1, ...,M,∀s = 1, ..., S,∀s� = 1, ..., S, s� ≠ s,∀t = 1, ..., T ,∀t� = 1, ..., T , t� ≠ t,

(8)
N∑

i=1

oist ≤ C,∀s = 1, ..., S,∀t = 1, ..., T ,

(9)
S∑

s=1

oist ≤ 1,∀i = 1, ...,N,∀t = 1, ..., T ,

(10)
oist + ois(t+d) ≤ 1 + ois(t+1),∀i = 1, ...,N,

∀s = 1, ..., S,∀d = 2, ..., T − t,∀t = 1, ..., T − 1,

(11)yis −

T∑

t=1

oist ≤ 0,∀i = 1, ...,N,∀s = 1, ..., S,

(12)
T∑

t=1

oist −Myis ≤ 0,∀i = 1, ...,N,∀s = 1, ..., S,

(13)
T∑

t=1

Lkist ≥ Osetikyis,∀i = 1, ...,N,∀k = 1, ...,K,∀s = 1, ..., S,
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Objective (1) minimizes the number of rack moves between the storage area and 
PS for all orders. The total number of rack changes among all PS is presented in the 
first term, and the second term denotes the number of rack moves between PS. As 
we will reveal in Sect. 6, the inter-PS rack move has very limited effect on the com-
pletion time. Constraints (2) ensure each order is only assigned to exactly one PS. 
Constraints (3) restrict the number of orders assigned to a PS that cannot exceed w. 
Constraints (4) and (5) assure for one slot that no more than one rack is visiting at a 
PS and that a rack is allowed to visit at most one PS.

Constraints (6) state the relationship between variables x and z when a rack 
moves from one PS to another. They state that if a rack consecutively visits two 
PS, then its positions in the rack sequences of the two PS have a difference of 
Q. If the difference is greater than Q, we believe that the rack should return to 
the storage area rather than waiting for another PS. Note that Constraints (6) are 
nonlinear but can be directly processed by solvers like CPLEX due to the binary 
natures.

Constraints (7) assure one rack cannot visit another PS within Q slots to avoid 
the rack sharing conflicts, since one rack is not allowed to cut in the line even 
though the rack is just released from the previous PS. Note that the second term 
indicates the difference of positions when a rack j vistis two racks s and s′.

(14)
2Lkist ≤ oistOsetik +

M∑

j=1

xjstRsetjk,∀i = 1, ...,N,

∀k = 1, ...,K,∀s = 1, ..., S,∀t = 1, ..., T ,

(15)rst =
1

2

M∑

j=1

|xjst − xjs(t−1)|,∀s = 1, ..., S,∀t = 2, ...T ,

(16)rs1 = 1,∀s = 1, ..., S,

(17)rst ≥ 0,∀s = 1, ..., S,∀t = 1, ..., T ,

(18)yis ∈ {0, 1},∀i = 1, ...,N,∀s = 1, ..., S,

(19)xjst ∈ {0, 1},∀j = 1, ...,M,∀s = 1, ..., S,∀t = 1, ..., T ,

(20)
zjss�t ∈ {0, 1},∀j = 1, ...,M,∀s = 1, ..., S,

∀s� = 1, ..., S, s� ≠ s,∀t = 2, ..., T ,

(21)Lkist ∈ {0, 1},∀i = 1, ...,N,∀k = 1, ...,K,∀s = 1, ..., S,∀t = 1, ..., T ,

(22)oist ∈ {0, 1},∀i = 1, ...,N,∀s = 1, ..., S,∀t = 1, ..., T .
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Constraints (8) limit the capacity of PS, that is, the maximum number of orders 
processed at one PS in a slot. Constraints (9) and (10) ensure each order can only 
be processed at one PS and each order is satisfied during a set of consecutive slots. 
Constraints (11) and (12) state the relationship between order assignment and pick-
ing, that is, the PS processes an order that is assigned to it, and the order must be ful-
filled within T. Constraints (13) assure that each SKU k required by order i assigned 
to station s must be delivered. Constraints (14) indicates that if an SKU is to be 
retrieved to satisfy an order, then that SKU must be contained by the visiting rack. 
Finally, Equations (15) and (16) measure the number of rack changes at each PS in a 
slot. Constraints (17-22) define the decision variables of the problem.

The parts-to-picker based order picking problem has been proved an NP-hard 
problem, even for one PS (Boysen et  al. 2017a). In addition, the problem in this 
paper considers extra decisions like order assignment to PS and inter-PS rack moves. 
To solve the problem, we design a two-stage hybrid heuristic algorithm as elabo-
rated in the following section.
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4  The two‑stage heuristic algorithm

In this section, we propose a two-stage hybrid heuristic algorithm to solve the prob-
lem. In the first stage of the algorithm, an order assignment problem is solved to 
assign orders to PS (Sect. 4.1). Subsequently, in the second stage, for each PS, orders 
and racks are sequenced with considering the inter-PS service (Sect. 4.2). We realize 
that this two-stage approach is essentially sequencial and therefore no guarantee of 
global optimal; however, since the number of orders is often large, if we otherwise 
allow perturbation of orders from different PS, it would incur much computational 
burden. We also note that the main purpose of this study is to identify the benefits of 
enabling inter-PS service, therefore, we just feed the results of the first stage to the 
second and then observe the performance improvement comparing to individual-PS 
mode.

4.1  Order assignment

As we consider multiple PS in the order picking system, given a set of customer 
orders for processing, the first decision is to group the orders and assign them to dif-
ferent PS. We investigate two strategies of order assignment, i.e., Random strategy 
and Order Similarity strategy. 

1. Random strategy

According to this simple rule, the customer orders are assigned to PS randomly. Note 
that orders are evenly assigned to PS so that the workload of each PS is balanced. 

2. Order Similarity strategy

We define the similarity of two orders as the proportion of the number of common 
SKUs to the number of all SKUs that the two orders contain. According to the Order 
Similarity strategy, orders sharing more common SKUs tend to be assigned to the 
same PS. In this way, each rack visit will potentially fulfill more orders and there-
fore the rack moves needed to complete all orders will be reduced. Denote vector 
Oi =

(
Oseti1,Oseti2, ...,OsetiK

)T , then the order similarity �ii′ of order i and order i′ 
can be measured by Tanimoto coefficient (Tanimoto 1957):

In fact, the numerator denotes the number of common item types of the two orders, 
and the denominator is the total number of item types in both orders. With the defi-
nition of order similarity, the order assignment subproblem is to find the maximum 

(23)�ii� =
OT

i
Oi�

OT
i
Oi + OT

i�
Oi� − OT

i
Oi�

.
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order similarity assignment of orders to PS, so that each order is exactly assigned to 
one PS, and the maximum number of orders each PS can handle is respected. This 
problem falls into the category of a clustering problem. We implement a heuristic 
similar to Li and Li (2015), the procedure of which can be summarized as: 

Step 1 Calculate the similarity between any two orders based on Equation (23), and 
then use the results as the weights of edges to construct a weighted graph with N 
vertices, each standing for an order.

Step 2 Sort by ascending the edge weights (similarity between orders).
Step 3 Delete the edge with the smallest edge weight in the weighted graph.
Step 4 Use the depth-first search algorithm to calculate the number of connected 

branches of the graph after an edge is deleted. If the number of connected 
branches is equal to the number of picking stations, go to Step 5; otherwise, go 
to Step 3.

Step 5 Adjust the branches so that the number of vertices in each connected branch 
does not exceed w to ensure the balance of the workload between the PSs. For 
the connected branches with more than w vertices, select the vertex connected 
with the smallest number of edges, and delete the edges connected with it. Then 
the average weight between the vertex and the vertices in each connected branch 
whose number of vertices is less than w is calculated. Find a connected branch 
corresponding to the maximum average weight , and add the edge between this 
vertex and the connected branch.

Step 6 Assign the vertices contained in each connected branch, that is, the orders, 
to each picking station.

Step 7 Output the orders assigned to each picking station.

Example Consider 2 PS and 5 orders which are O1 = {a, b, c},O2 = {d, e, f , g},

O3 = {a, b, e, h, i},O4 = {d, f , h},O5 = {f , g, i} . Following the above steps, we can 
assign the 5 orders into 2 groups, one for orders 1 and 3, the other for orders 2, 4 and 
5 (let w = 3 ), as shown in Fig. 3. The number in the circle is the order index, and the 
text along arc is the similarity of two orders.

Fig. 3  An example to the order 
assignment algorithm according 
to similarity
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4.2  Order and rack sequencing

In this second stage, we are going to find an optimal or “good” order sequence as 
well as a rack sequence for each PS. Unfortunately, the two sequences have mutual 
affects and can’t be solved seperately. To address this problem, following the mecha-
nism from Boysen et  al. (2017a), we decompose the the order and rack sequenc-
ing problems into two interlaced subproblems: the order sequencing problem (OS) 
for a given rack sequence, and the rack sequencing problem (RS) for a given order 
sequence. Therefore, the order and rack sequences can be obtained from either per-
spective: explore the space of order sequences embedded with RS-solving steps, or 
vice versa. The two approaches are introduced in Sects. 4.2.2 and 4.2.3, respectively, 
and a comprarison is conducted in Sect. 5.

When we consider a system with inter-PS service, we are facing the risk of rack 
conflicts between multiple PS. For example, a rack may be needed by two PS at the 
same time. It is worth noting that in practice, there are multiple racks queueing at 
each PS, since a lot of time would be wasted waiting for arrival of a new rack if not. 
Considering the queue length further complicates this problem as the possibility of 
rack conflict rises accordingly. Therefore, before getting into the details of the OS 
and RS algorithms, we introduce the rack conflict and its resolution in Sect. 4.2.1.

4.2.1  Rack conflict and its resolution

Suppose rack r is both in two sequences of PS a and PS b. Given rack sequence Sa 
at PS a and rack sequence Sb at PS b, with rack r at position pr

a
 in Sa and position pr

b
 

in Sb , pra ≤ pr
b
 , the distance between two positions associated with the same rack r, 

denoted as Dr
ab

= pr
b
− pr

a
 , has three conditions:

– Dr
ab

= Q . Under this condition, the rack can exactly join the tail of the queue of 
PS b after servicing PS a, therefore, an inter-PS service will be taken.

– Dr
ab

> Q . The rack will return to the storage area without servicing PS b since it 
otherwise must wait for other racks that in ahead of it according to Sb.

– Dr
ab

< Q . This is the rack sharing conflict that we should avoid as the rack cannot 
cut in the line of PS b.

Therefore, the main idea of tackling the rack sharing conflicts is to ensure that for each 
rack that needed by multiple PS, its positions in different sequences must be not within 
distance of Q.

To resolve rack conflicts, we generate rack sequences in a sequential way for each 
PS, and each time a new rack sequence is built, it is checked with all previously gen-
erated rack sequences. If any conflict is detected, the following conflict elimination 
steps are taken on the current rack sequence only: 

Step 1 For each conflict position of the sequence, swap it with another position so 
that conflicts with any previous sequences can be eliminated.
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Step 2 If there is no such position to swap, let this conflict position be empty which 
means no rack (or a virtual rack) will come at this time slot, and then append the 
associated rack at the end of the sequence. Add more virtual racks before the rack 
if necessary.

Step 3 Repeat steps 1 and 2 on all other conflict positions.

4.2.2  The order sequencing algorithms

First, we introduce a greedy algorithm, called OS-Greedy, to deduce an order 
sequence under a known rack sequence, then we propose a Variable Neighborhood 
Search (VNS) based metaheuristic algorithm, named OS-VNS, to generate the order 
sequence with the rack sequence as a byproduct. 

1. OS-Greedy

The OS-Greedy algorithm is to generate appropriate order picking sequences for 
each PS one by one when their rack sequences are fixed. As a pre-processing step, 
each rack sequence is checked with accomodated rack sequences and is adjusted if 
there is any rack conflict among them (see Sect. 4.2.1).

The basic idea of the greedy algorithm is to gradually add in unprocessed orders 
such that the current visiting rack can provide as many SKUs as possible. If some 
of the in-process orders are completed, new orders will be added in to replace the 
finished ones. When no more items can be retrieved from the visiting rack, the next 
rack in the given sequence comes. This process repeats until all orders are fulfilled. 
Specifically, given the current visiting rack r, the selection of an order to be added in 
can be expressed as the following order selection problem

For the convenience of calculation, the number of common SKUs shared by an order 
and a rack can be reflected by the difference between them. In other words, problem 
(24) can be recast as

where

dir measures the number of different SKUs which are contained in order i while not 
in rack r. The pseudocode of the OS-Greedy algorithm is shown in Algorithm 1, 
in which RemainingOrderSet is the set of orders not completed and not in picking, 
PickingOrderSet is the set of in-process orders, “DiffMatrix(i, TimeSlot)” represents 

(24)argmax
i=1,...,N

K∑

k=1

({
1, Osetik > 0 ∧ Rsetrk > 0

0, otherwise

)
.

(25)argmin
i=1,...,N

dir

(26)dir =
∑

k=1,...,K,Osetik=1

(1 − Rsetrk).
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the matrix of order i = 1,… ,N and rack TimeSlot = 1,… ,M . Note that each time 
slot represents the incumbent working rack.

 

2. OS-VNS

Variable Neighborhood Search (VNS) (Mladenović and Hansen 1997) as a 
metaheuristic algorithm has been widely used to solve combinatorial optimization 
problems. VNS can systematically explore the solution space by changing the way 
of generating neighborhood solutions (called shaking), and making efforts to further 
improve the current neighborhood (called local search). If the shaking and local search 
update the best-known solution, the current neighborhood operators will be retained; 
otherwise, the next neighborhood operator is recruited. If the current operator is the 
last one, then we activate the first operator again; so on so forth. The more effective 
the neighborhood operator is, the more frequent it is applied. As reviewed above, the 
VNS algorithm framework has also been used for solving order picking problems by 
a few researchers, see, for example, MenÉndez et al. (2016) and Scholz et al. (2017).
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The pseudocode of the proposed OS-VNS algorithm is presented in Algo-
rithm  2 where Shake(rseq, k) means generating a neighborhood of rack sequence 
rseq with kth operator (elaborated later), and LS(rseq′ , k1 ) means taking local search 
on rseq′ with operator k1 . The local search consists of taking IterationLS times of 

Fig. 4  An example of the 
2-Exchange operator

Fig. 5  An example of the 
Segment-Relocate operator
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neighborhood operator k1 on rseq′ and selecting the optimal one. Note that in our 
implementation of the local search, we use the first operator k1 only due to its good 
performance in the experiments. The total number of neighborhood operators is 
denoted as kmax , and the stopping criterion is due to the maximum number of itera-
tions Iterationmax.

According to the algorithmic procedure, a random rack sequence rseq for each 
PS is generated at first. Through the shaking procedure, a new rack sequence rseq′ 
is found by the current neighborhood operator k. Then, in the local search stage, an 
improved rack sequence rseq′′ for PS b is firstly deduced by applying the local search 
function, then an order sequence oseq can be obtained by using OS-Greedy on the 

Fig. 6  An example of the 
Hybrid-Relocate operator
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improved rack sequence rseq′′ . The next step is to evaluate whether the new solution 
updates the best-known solution: if yes, update the best-known solution as this new 
solution, let rseq′′ be the incumbent rack sequence rseq, and resume the neighbor-
hood structure to 1; otherwise, switch to the next neighborhood operator. Solutions 
are evaluated by counting the rack moves to complete all orders. The shaking, local 
search and “move or not” steps are repeated until the number of iterations reaches 
Iterationmax and then the algorithm terminates. Note that the solution is immune to 
inter-PS rack conflict since we have called OS-Greedy (Line 11). The designated 
neighborhood structures are illustrated as follows.

Neighborhood operators: The purpose of neighborhood operators of the OS-
VNS is to slightly change the current rack sequence. Three neighborhood struc-
tures 2-Exchange, Segment-Relocate and Hybrid-Relocate are designed, which are 
illustrated with examples as follows. For each PS, it should be noted that the new 
rack sequence obtained by a neighborhood operator may contain duplicate racks at 
adjacent positions which should be avoided. Therefore, if this happens, we revise 
the sequence by just removing the duplications. In addition, any new generated rack 
sequence has to be submitted to a conflict elimination procedure. Also, for ease of 
description, when we randomly select two racks from a rack sequence, they are 
expressed by a and b respectively.

– 2-Exchange As is illustrated in Fig.4, the positions of two selected racks (4 and 
2) are exchanged, and the rack sequence between them (1 5) are reversed to (5 1). 
At the same time, it can be noticed that the length of the new rack sequence is 
reduced by 1 as a duplicate rack (4) is removed from it.

– Segment-Relocate As is depicted in Fig.5, racks 3 and 2 are randomly selected, 
then, the sub-sequence behind rack 2, which contains racks 4 and 1, is inserted 
into the position between racks 3 and 2.

– Hybrid Relocate Considering the example in Fig.6, the two selected racks (4 and 
2) are placed at the head of the new rack sequence, while racks 3, 4, and 1 which 
are originally behind rack 4 are inserted behind rack 2.

Local Search The local search adopts the first operator.

4.2.3  The rack sequencing algorithms

Similar to OS-Greedy, a greedy algorithm RS-Greedy is also designed to obtain a 
rack sequence aiming to minimize the number of rack moves under a given order 
sequence. Again, a metaheuristc algorithm RS-VNS is designed to generate a rack 
sequence and an order sequence simultaneously. 

1. RS-Greedy

RS-Greedy provides a quick approach to generate an appropriate rack visiting 
sequence at each PS according to a given order sequence. The basic idea is consist-
ent with OS-Greedy: given maximum C parallel orders in each PS, a rack is selected 
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to visit which has the most common SKUs with all these orders. Here, the rack con-
flict can be avoided on-the-fly: determine whether there are conflicts between the 
selected rack and the previously determined rack sequences in other PS; if yes, just 
choose the next best rack. In this way, we can directly obtain the conflict-free rack 
sequences. To make it concise, we present the details of RS-Greedy in the Appendix 
A. 

2. RS-VNS

RS-VNS algorithm is to find a rack sequence and an order sequence from the per-
spective of shuffling the order sequence, aiming to minimize of total rack moves 
to complete all the orders. RS-VNS is quite similar to OS-RNS, therefore we give 
very brief introduction here. The pseudocode of RS-VNS is shown in Algorithm 4 in 
Appendix B. At the beginning of the algorithm, an order sequence oseq is generated 
randomly for each PS. Then we shuffle the order sequence by shaking procedure to 
have a new order sequence oseq′ . After that, in the local search stage, an improved 
order sequence oseq′′ is firstly generated by the a local search with opertor k1 , and 
then a rack sequence rseq is obtained by applying the RS-Greedy on oseq′′ . The 
next step is to evaluate whether the new solution is updated: if yes, update the best-
known solution as this new solution, move incumbent order sequence to oseq′′ , and 
resume the neighborhood operator to 1; otherwise, switch to the next neighborhood 
operator. The shaking, local search and “move or not” steps are repeated until the 
number of iterations reaches Iterationmax and then the algorithm terminates. Note 
also that there is no worry about rack conflict in RS-VNS since the embedded RS-
Greedy has already handled this issue. The neighborhood operators are inherited 
from OS-VNS, that is, 2-Exchange, Segment-Relocate, and Hybrid-Relocate, with 
exceptions that we change the concept rack to order.

Table 4  Parameters for instance generation

Parameter Description Small instance Large instance Sensi-
tivity 
analysis

N Number of orders 10,20 50,100 100
M Number of racks 5,10 50,100 100
K Number of SKU types 5 10 6-12
S Number of PS 2,3 2,3,4 1-8
C Capacity of each PS 3 3 2-18
Q Queue length 1,2 3 1-5
� Maximum number of differ-

ent SKUs in a rack
4 5 3-5
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5  Numerical experiments

In this section, we design experiments to evaluate the performance of the proposed 
algorithms and study the influence of different strategies. We implement the algo-
rithms in Java 8 and run the experiments on a 64-bit win10 system using an Intel 
Core i5 2.4G CPU and 4G of RAM. To provide a benchmark for the results of the 
algorithms, CPLEX 12.6 is also used to solve the model built in Sect. 3.

5.1  Instances generation

We design two sets of instances, a small instance set for model and algorithm verifi-
cation and a large instance set for realistic considerations. Though a big distribution 
center may need to handle hundreds of thousands of orders per day, we can often 
handle a small group of orders on a planning horizon. For example, batching orders 
(according to discretized time) is one such means, and splitting a large order group 
into small ones according to storage zones can be another means. Therefore, as in 
Boysen et al. (2017a), we set both orders and racks size as 50 or 100 in our large 
scale instances. A shared storage policy is applied so that K SKUs randomly scat-
ter on M racks. The number of SKU types in each rack is generated uniformly in [1, 
� ], where 𝜃 < K reflects the degree of dispersion of SKUs on racks. The number of 
SKU types contained on each order follows a Poisson distribution with a mean of 
�i , i ∈ {1, 2, ...,K} , where �i corresponding to each SKU i is independent of each 
other. To accommodate diversity of orders, �i is set to obey the uniform distribution 
of [0.2K, 0.8K] . Table 4 presents the parameters in the experiments. We generate ten 
instances for each combination of parameters and take the average results.

5.2  Algorithmic performance

In the proposed two-stage hybrid heuristic algorithm, we have adopted two order 
assignment strategies in the first stage: Random strategy and Order Similarity 
strategy. Also, in the second stage, we propose two metaheuristics OS-VNS and 
RS-VNS from two perspectives, both of which are capable of generating an order 
sequence and a rack sequence simultaneously. Furthermore, the proposed two 
greedy algorithms OS-Greedy and RS-Greedy can also act as a solution approach 
to the Secondhandshop-stage problem if they are fed with a randomly-generated 
rack sequence or order sequence. Therefore, we implement four heuristics OS-
Greedy, OS-VNS, RS-Greedy and RS-VNS on small and large instances. Mean-
while, we solve small-scale instances with CPLEX to optimal, the results of 
which are used as a reference to evaluate the proposed algorithms. Throughout 
the experiments, all heuristic and metaheuristic algorithms are run 10 times and 
the averages are reported as the final results. For OS-VNS and RS-VNS, param-
eter Iterationmax takes value 100.

The results for small scale instances are listed in Table 5 in which the objec-
tive value (Obj. in the table) and CPU time (in second) are reported for 5 solu-
tion approaches: CPLEX, OS-Greedy, OS-VNS, RS-Greedy and RS-VNS. The 
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order assignment strategy used here is Order Similarity and queue length Q of 
1 and 2 are tested. When observing the objective value, it shows that RS-VNS 
can obtain optimal solutions in all cases which proves its effectiveness for small 
scale instances. RS-Greedy is also capable of obtaining optimal solution on 5 of 
the 8 instances. It seems OS-Greedy algorithm is too coarse and fails to provide 
promising solutions. OS-VNS performs slightly worse than RS-VNS and it takes 
more CPU time, however, it improves its initial solution, that is, OS-Greedy, to 
a large extent. Furthermore, when we compare the computational time of the 5 
solution approaches, we can easily find out the CPLEX is very time-consuming as 
the scale increases, while the proposed heuristics and metaheuristics show high 
computing efficiency.

Since CPLEX cannot solve larger problems, we use OS-Greedy, OS-VNS, RS-
Greedy, and RS-VNS to solve large-scale instances. To facilitate a comparison with 
the previous study, we also implement an Alternating Heuristic (AH) proposed in 
Boysen et al. (2017b). AH is invoked after the order assignment stage. It begins with 
an initial rack, chooses C orders from that PS according to their similarity, and picks 
all items these orders need from that rack. Then, for those remaining items, choose 
an appropriate rack based on the similarity again, and replenish orders if the number 
of in-process orders is less than C. The process repeats until all orders are fulfilled. 
The results of the five heuristics are shown in Table 6.

It shows that RS-Greedy and RS-VNS outperform the OS-Greedy and OS-VNS 
in all instances which is consistent with the results in small instances. It can be 
concluded that the algorithms based on rack sequence perform better than that 
based on order sequence in terms of both the number of rack moves and CPU 
time. Both RS-VNS and OS-VNS improve the results of their greedy counterparts 
significantly by 23.52% and 43.75% , respectively, proving the effectiveness of the 
proposed VNS-based procedures. It is interesting to see that the AH algorithm 
behaves much better than others but still worse than RS-VNS. The average objec-
tive value by AH is 22.6, 12% higher than RS-VNS. AH takes much less time 

Fig. 7  Convergence of the proposed VNS-based algorithms
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than RS-VNS since it does not need a neighborhood search. When it is a large 
scale problem, AH is also a good choice.

From Table 6 we also observe that, for the same number of orders, the more 
racks available for picking, the fewer the number of rack moves required to com-
plete the orders. As shown in Table 6, when the number of orders is 50, to com-
plete all the orders, the number of rack moves with 100 racks is less than that 
with 50 racks.

As RS-VNS shows better performance, it is used for the next experiments in 
which two strategies are investigated: the order assignment strategy and the rack 
visiting strategy. In this paper, we assign orders to PS according to either Random 

Fig. 8  Effect of the number of PS on rack moves
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strategy (denoted as RANDOM) or Order Similarity strategy (denoted as SIMILAR-
ITY). Meanwhile, we allow a rack to serve another PS immediately after serving the 
current one when it is necessary, as opposed to the traditional way in which a rack 
visits just one PS each time. The two rack visiting strategies are denoted as MULTI-
PLE and SINGLE, respectively. This setting of experiments is based on large scale 
instances in which the number of PS varies from 2 to 4. Table 7 reports the results 
(objective values) where %Impr.1 and %Impr.2 are the improvements in percentage 
of the objective value (rack moves) deduced by the MULTIPLE policy to that by 
the SINGLE policy, while %Impr.3 and %Impr.4 represent the improvement by the 
SIMILARITY method to that by the RANDOM method, according to SINGLE and 
MULTIPLE policies respectively. Note that positive improvement percentage means 
reduction of rack moves.

By reviewing Table 7, we can find out the following facts. First, less rack moves 
are observed by strategy MULTIPLE than by SINGLE. For example, the average 
%Impr.1 (for RANDOM policy) is 32.58% and the average %Impr.2 (for SIMILAR-
ITY policy) is 31.06%, exhibiting a large reduction of rack moves. This validates 
the hypothesis that allowing movable racks to visit multiple PS in one trip can lead 
to noticeable savings in order processing. Second, it can be seen that assigning 
orders to PS according to the SIMILARITY strategy can reduce the number of rack 
moves compared to randomly assigning orders to PS. The improvement %Impr.3 by 
using SINGLE strategy is 2.30%, and %Impr.4 by MULTIPLE strategy is 1.78%. 
Although the advantage of similarity-based assignment is not significant, it is also 
not neglectable.

Finally in this section, we also dig into the calculation process to examine the 
convergence of the proposed VNS-based algorithms. Take N = 100,M = 100, S = 3 
and RS-VNS as an example, the evolution of the number of rack moves over iteration 

Fig. 9  Effect of the capacity of PS on rack moves
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times is shown in Fig. 7. It seems that the objective tends to be steady after 120 iter-
ations, therefore, we set Iterationmax = 120 . Likewise, we take IterationLS = 10 by 
experiments to achieve a balance between accuracy and computational time.

5.3  Sensitivity analysis

In this section, sensitivity analysis are conducted to study the effect of different 
parameters used in the proposed algorithms. We design the next experiments in 
which the number of orders is 100 and the number of racks is 100. In the experi-
ments, the customer orders are assigned to PS based on the Order Similarity strategy. 
The parameters that we focus on contain: (i) the number of PS (S); (ii) the capacity 
of each PS (C); (iii) the types of SKUs (K); (iv) the queue length (Q). Throughout 
all sensitivity analysis, RS-VNS is used due to its superior performance.

5.3.1  Effect of the number of PS

We investigate the impact of the number of PS by varying it from 1 to 8 while fix-
ing other parameters as N = 100 , M = 100 , K = 10 , C = 3 , Q = 3 and � = 6 . Mean-
while, both SINGLE and MULTIPLE rack visiting strategies are considered. The 
number of rack moves for different number of PS are presented in Fig. 8a in which 
the dashed line represents the SINGLE strategy while the solid line represents the 
MULTIPLE strategy. According to the strategy of MULTIPLE and the procedure of 
the sequence improvement in the proposed algorithm, the gap between MULTIPLE 
and SINGLE policies actually stands for the rack moves between PS. It shows that 
the gap increases as S increases which is reasonable since there would be more rack 
moves between PS replacing the rack transports between the storage area and the 

Fig. 10  Effect of the types of SKUs on rack moves
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picking area when more PS are available. It can also be found that the number of 
rack moves by both strategies tends to decrease first and then increase slightly as S 
increases. It shows that involving too many PS, for example, 7 or 8, will on the con-
trary increase the rack moves.

To better reflect the throughput time of the given orders, we present the aver-
age rack moves per PS in Fig.  8b in which a clear trend can be observed that 
the average number of rack moves decreases as S increases. However, the slope 
of the curves in Fig. 8b is very steep at first and turns very flat when the num-
ber of PS goes beyond 4. Since more PS incur more human labors, more space 
requirement and other potential costs, hence, the number of PS needs to be set 
up carefully. In the following sensitivity analysis experiments, the number of PS 
defaults to 3.

5.3.2  Effect of the capacity of each PS

The capacity of each PS C is supposed to affect the necessary rack moves of com-
pleting all orders: larger C means more SKUs could be retrieved by a single rack 
visit and therefore the total rack moves can be reduced. We take sensitivity analy-
sis by varying C from 2 to 18 while fixing other parameters, for example, N = 100 
and M = 100 . Both SIMPLE and MULTIPLE strategies are implemented. As can 
be seen from Fig.  9, both strategies exhibit the same varying trends with the PS 
capacity. The total number of rack moves required to complete all orders decreases 
as C increases, as expected. However, the trend shows that the decreasing rate is 
getting smaller and smaller in general, indicating that the marginal benefits brought 
by increased C is gradually fading. When C increases to a certain level, such as 10, 
the number of rack moves tends to stabilize. Actually, limited by the space of PS, 

Fig. 11  Effect of the queue length on rack moves
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C cannot be increased infinitely. Meanwhile, larger C also adds inconvenience to 
the human pickers as they need to take care of more units. Therefore, in reality, the 
capacity should be set as larger while considering the human factors.

5.3.3  Effect of the SKU diversity

We investigate the effect of the SKU diversity on the RMFS efficiency. Specifically, 
we consider both the total number of SKU types in the RMFS (K), and the num-
ber of SKU types in each rack which is uniformly distributed in [1, �] . Based on 
the large scale instance N = 100 , M = 100 and S = 3 , experiments are conducted by 
setting K ∈ {6, 7, ..., 12} and � ∈ {3, 4, 5} and the results are presented in Fig. 10. 
As K increases, the total number of rack moves increases in an approximately lin-
ear manner, regardless of the value of � . It indicates that the number of SKU types 
has a positive correlation with the order picking workload. On the other hand, when 
observing the performance of �=3, 4 and 5 presented in Fig. 10, it shows that the 
more types of SKUs each rack contains, the fewer rack moves required to complete 
the orders. Hence, increasing the SKU diversity of the racks can effectively reduce 
the number of rack moves. It should be mentioned also that the shared storage policy 
will incur more efforts in the replenishment process, therefore, an integrated study 
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covering complete order processing cycle is meaningful in the future, see for exam-
ple, Roy et al. (2019).

5.3.4  Effect of the queue length

Finally, we investigate the effect of the queue length Q, which restricts the positions 
of the same rack in different rack sequences. As we know, queue of racks before a PS 
helps save the picker’s waiting time for racks, however, will the queue help reduce 
the total rack moves? Our answer is no when inter-PS service is permitted, after we 
conduct the following experiments. We record the number of rack moves by varying 
Q from 1 to 5 based on large instance N = 100 , M = 100 and S = 3 ,as shown in 
Fig. 11. It reveals a fact that the total number of rack moves required to complete all 
orders is not sensitive to parameter Q under the SINGLE strategy. However, it tends 
to increase as Q increases under the MULTIPLE strategy. Another interesting fact 
can be observed from Fig. 11 that the gap between the two curves is getting smaller 
as Q increases, which means that the number of rack moves between PS decreases 
as Q rises. The phenomenon can be intuitively explained as: when Q rises, there are 
more racks queueing in the front of PS which are prohibited to serve other PS, there-
fore, less inter-PS rack moves can occur, as a result, the rack moves between the 
picking area and the storage area increases. Therefore, as a managerial insight, we 
are suggested to use shorter queue length in the RMFS as long as the queue of racks 
can supply the human picker in time.

6  Simulation study

Until now the objective of the proposed optimization problem and the proposed two-
stage hybrid algorithm is to minimize the total number of rack moves between the 
storage area and the PS, however, it seems more realistic and intuitive to consider 
the completion time of all orders as the measure of the RMFS performance. We 
also took a bold assumption that the length of a time slot in different PS is the same, 
however, the violation of this assumption may affect the throughtput time of the 
order picking process. In this study, we design an event-driven simulation system 
from scratch using Java (see also Duan et  al. (2021)), and find that the two goals 
behave consistently, proving that the assumption on the time slot length is accept-
able. The framework of the simulation is shown in Fig. 12, in which the following 
steps are followed:

Table 8  Regression coefficients Number 
of robots

a0 a1 a2 a′
1

a′
2

confidence level

3 34.3 30.5 22.5 0.9867 0.0412 0.99
6 32.7 15.8 10.3 0.9887 0.0369 0.99
9 41.52 10.73 2.75 0.9920 0.0143 0.99
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(1) Tasks and robots initialization. A task corresponds to an element in a rack 
sequence which is defined by a rack number and its corresponding PS number indi-
cating which rack should be carried to which PS. At the beginning of the experi-
ment, a list of tasks is initialized according to the rack sequences obtained by the 
proposed RS-VNS algorithm. The first tasks of all PS is firstly added to the task list, 
then followed by the second ones, and so on so forth. A fleet of robots is initially 
waiting at the parking area on an idle status.

(2) Task assignment. Whenever there are idle robots, tasks are extracted from the 
task list in order and assigned to a nearest idle robot. When a robot is associated 
with a task, it then moves to the origin of the task, that is, the storage location of 
the rack. The A* algorithm is used for the path planning of the robots to generate 
shortest routes. In a multiple-robot environment, collision between robots must be 
avoided and deadlocks should be avoided or resolved once happen. In this study, we 
adopt an authority-based mechanism to avoid collisions, and a deadlock detection 
and recovery method to handle the deadlocks.

(3) Set off the robots. When a robot is assigned a task and arrives at the objective 
rack, it may not set off immediately since it must not arrive at the PS earlier than the 
task before it. For a task i, denote its departure time from the objective rack as Tdep

i
 , 

and denote the shortest travel time from the rack to the PS as Ttravel
i

 , then the depar-
ture time of task i should be Tdep

i
= max

{
current time,T

dep

i−1
+ Ttravel

i−1
− Ttravel

i

}
 , 

where task i and task i − 1 belong to the same PS.
(4) Service at the PS. Considering that there may need extra time for collision 

avoidance and deadlock recovery in the process of robots moving toward the PS, 

Fig. 13  Correlation between the number of rack moves and the completion time



542 B. WANG et al.

1 3

some racks may not arrive at the corresponding PS in the planned order if no action 
is taken. We set buffers for each PS, and the rack which arrives earlier than origi-
nally planned can wait in the buffer until its previous rack arrives. In this way, the 
arrival sequence can be strictly guaranteed. When a rack is visiting the PS, orders 
extracted from the order sequence are fulfilled and finished orders are removed from 
the system.

(5) Inter-PS visit. Before completion of the current task, the robot will be assigned 
with another task if it is going to perform an inter-PS service in the next step.

(6) Return to the storage area. After servicing the PS, a rack will be return to a 
nearest empty storage area.

The warehouse layout in the simulation is similar to Fig. 1 which is about 1200 
m2 in size containing three PS (Q = 3). In the storage area, there are 360 rack 
locations in total, separated by 5 aisles and 1 cross aisle. Each rack location is 
1.2*1.2m2 . The average speed of the robots is 1m/s and we ignore the acceleration 
and deceleration. In the simulation experiments, we randomly-generated 5 
instances of scale ( N = 50,M = 50 ), ( N = 50,M = 100 ) and ( N = 100,M = 100 ), 
and solve them with algorithms OS-Greedy, OS-VNS, RS-Greedy, and RS-VNS, 
respectively. Therefore, we have 60 solutions (rack sequence and order sequence 
for each PS) which are fed into the simulation system as input. To accommodate 
different robot fleet size, we apply 3,6 and 9 robots to the simulation system, 
respectively, to deduce the total completion time which is measured by the time 
when the last order is fulfilled. Therefore, for each robot number, we can regress 
a function in which the number of rack moves ( x1 ) and number of inter-PS ser-
vices ( x2 ) are independent variables, and the total completion time (y) is the 
dependent variable. We take a linear regression function as yi = ai0 + ai1xi1 + ai2xi2 
where i ∈ {1, 2, 3} represents conditions when 3, 6, and 9 robots are used. After 
obtaining the regression coefficients aij, i ∈ {1, 2, 3}, j ∈ {0, 1, 2} , we further cal-
culate the standardized regression coefficients a�

ij
, i ∈ {1, 2, 3}, j ∈ {1, 2} since 

each of them refers to how many standard deviations the completion time will 
change, per standard deviation increase in the predictor variable. The results are 
shown in Table 8.

From Table 8 we can find out that the regression is in good quality as the con-
fidence level of the three groups of experiments is as high as 99%. It can also be 
noticed that the standardized regression coefficient of x1 is much larger than that 
of x2 . Therefore, the number of inter-PS rack moves has a very limited effect on 
the completion time, therefore can be ignored. To better reflect the relationship 
between the number of rack moves and the completion time, we generate the scat-
ter plots as shown in Fig.  13, which clearly suggests a linear function between 
them. Therefore, the simulation proves that to consider the number of rack moves 
as an objective is reasonable.



543

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

7  Conclusions

This paper studies the order picking problem in a robotic mobile fulfillment system 
with multiple picking stations, which jointly addresses the order assignment, order 
sequencing, rack selection, and rack sequencing subproblems. The inter-PS rack 
service and the queueing effect of each PS are specifically considered. We formu-
late this problem as an integer programming model to minimize the number of rack 
moves. Then, a two-stage hybrid heuristic algorithm framework is proposed to solve 
the problem. Specifically, we design algorithms OS-Greedy and OS-VNS from the 
perspective of order sequencing and algorithms RS-Greedy and RS-VNS from rack 
sequencing. Numeric experiments show that RS-VNS outperforms other algorithms. 
A significant finding is that allowing inter-PS service can improve the solution by 
31.06% on the testing cases. This finding encourages the industry to adapt to this 
picking mode rather than operating independent PS orders.

We also conduct a series of sensitivity analysis to draw managerial insights. For 
example, more PS tend to decrease the completion time, however, marginal ben-
efit decreases as the number of PS increases. Likewise, larger PS capacity can also 
help decrease the number of rack moves, however, human factors must be consid-
ered at the same time. The total number of SKU types K has been observed to have 
an approximately linear and positive effect on the number of rack moves, while the 
scattering of SKUs to more racks can effectively decrease the rack moves. An inter-
esting fact about queue length Q is that the objective is not sensitive to Q under the 
SINGLE strategy, while it tends to increase as Q increases under the MULTIPLE 
strategy. Therefore, we are suggested to use shorter queue length in the RMFS as 
long as the queue of racks can supply the human picker in time. Finally, the simula-
tion system verifies that the total completion time is linearly related to the number of 
rack moves.

In this study, also in Boysen et  al. (2017a) and Valle and Beasley (2021), the 
objective function is represented by the number of times that racks travel between 
PS and the storage area. In future work, one can consider how to formulate the prob-
lem to account for the actual transportation distance and time. Besides, research 
efforts can also be devoted to considering different storage policies, for example, the 
class-based storage policy and the dedicated storage policy.

Appendix A RS‑Greedy

We denote the difference between rack j and the current in-process orders as 
DiffVector(j), then the pseudocode of the RS-Greedy is depicted in Algorithm  3 
where PickingOrderSet, RemainingOrderSet and DiffMatrix have the same meaning 
as in OS-Greedy, and RackSet is the set of all racks. According to the algorithmic 
procedure, orders are extracted from the given OrderSequence successively, while 
the rack with the minimum difference with all the in-process orders (excluding those 
finished SKUs) and free of conflict is selected to visit the PS one by one. Completed 
orders will be removed and replaced by new orders. Until the SKUs contained on 
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the current picking orders cannot be fulfilled anymore by the current rack, a new 
rack will be selected, so on so forth.
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Appendix B Psudeocode of RS‑VNS
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