
Vol.:(0123456789)

Flexible Services and Manufacturing Journal (2023) 35:509–547
https://doi.org/10.1007/s10696-021-09433-8

1 3

Order and rack sequencing in a robotic mobile fulfillment
system with multiple picking stations

Bingqian WANG1 · Xiuqing YANG2 · Mingyao QI3

Accepted: 29 October 2021 / Published online: 17 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
The robotic mobile fulfillment system, where mobile robots carry racks to stationary
stations for human pickers, is widely used in e-commerce warehouses. The opera-
tional efficiency of the system is largely affected by the organization of the order
picking process. In this paper, we investigate an order picking tactic in a robotic
mobile fulfillment system that allows racks moving between multiple picking sta-
tions in order to feed more orders during one visit and therefore save the overall
throughput time. To evaluate this operational tactic’s effectiveness, we propose
a mathematical model to jointly optimize the order assignment, order sequencing,
rack selection, and rack sequencing. A two-stage hybrid heuristic algorithm frame-
work is then presented, including order assignment in the first stage and order and
rack sequencing in the second stage. We conduct numerical experiments to validate
the proposed algorithms’ performance under different strategies and find out that
the inter-station operation can significantly save order throughput time on the test-
ing cases. We also investigate the effects of several factors, including the number of
picking stations, their capacities, the stock keeping unit diversity, and queue length.
Furthermore, a solid simulation is carried out to show the rationale of using rack
moves as the objective rather than the completion time.

Keywords Logistics · Material handling · Order picking · Robotic · Heuristics ·
Simulation

1 Introduction

In order fulfillment warehouses, about 55% of the operating costs are due to the
order picking process (De Koster et al. 2007; Jaghbeer et al. 2020). To improve
operational efficiency and save costs, automated and robotic handling systems are

 * Mingyao QI
 qimy@sz.tsinghua.edu.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0002-3678-6522
http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-021-09433-8&domain=pdf

510 B. WANG et al.

1 3

increasingly applied in warehouses (Azadeh et al. 2019). Among them, Robotic
Mobile Fulfillment System (RMFS), pioneered by the Kiva system (Wurman et al.
2008), now rebranded as Amazon Robotics, has been applied in e-commerce dis-
tribution centers in recent years. Compared to traditional picker-to-parts warehouse
systems, RMFS facilitates a parts-to-picker order picking mode. Robotic devices
bring items from a storage area to a picking station, where human pickers complete
the order picking and possible packing (Huang et al. 2015). Therefore, it can save
the picker’s travel time along aisles and can even double the warehouse productivity
(Wurman et al. 2008). Meanwhile, compared to the miniload system, another auto-
mated parts-to-picker system facilitated by aisle-captive Storage/Retrieval machines
(such as DEMATIC), RMFS has the virtue of incremental scalability, (ease of) par-
allel processing, and built-in redundency (Bozer and Aldarondo 2018). In the indus-
try, E-commerce companies, such as Amazon.com, JD.com, Tmall.com, and so on,
have reported their RMFS applications. Meanwhile, following Amazon Robotics,
many device and solution providers in this industry emerge, including Swisslog,
Grey-Orange, Hitachi, and QuickTron, among others.

In practice, one RMFS is often equipped with multiple picking stations (PS),
each one of them is in charge of processing a group of orders typically done by
one picker (Merschformann et al. 2019). To avoid pickers waiting for the arrival
of movable racks, a queue of racks with given length is often arranged to line in
front of a picking station (PS) so that a finished rack can be replenished instantly.
To illustrate, the layout of a warehouse with four PS is presented in Fig. 1 in
which the length of the waiting queue is 3. The PS are located on the left side of
the warehouse (called picking area), and the movable racks containing specific
SKUs (stock keeping units) are placed on the right part (called the storage area).
An SKU can be stored in multiple racks and a rack can also contain multiple
types of SKUs. Once a set of orders arrives at the system and is to be retrieved,
the first decision to be made is the order assignment determining which orders
should be assigned to which PS. Subsequently, the processing sequence of the

Fig. 1 A typical warehouse layout of an RMFS

511

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

orders in each PS should be specified. For each PS, processing a given batch of
orders requires a set of racks which contains the necessary SKUs that the orders
require. Since an SKU can be stored in multiple racks (for example, in a random
way), racks that can satisfy the orders need to be selected, as well as the visiting
sequence of these racks. As Boysen et al. (2017a) and Valle and Beasley (2021)
indicate, both the order sequence and the rack sequence significantly affect the
efficiency of the system. However, they only handled order picking issues with
only one PS, and we will extend it to adapt to multiple-PS scenarios in this study.

There are a bunch of studies addressing order picking problems in traditional
manual warehouses and just a few for parts-to-picker systems; however, as far as
we know, existing research does not consider the scenario that a rack serves two
or more PS during its single PS-visiting tour (hereafter referred as inter-PS ser-
vice). Intuitively, this would be very helpful if the SKUs contained in a visiting
rack can satisfy the in-process orders of multiple PS. Imagine that two adjacent
PS are handling orders with similar contents, if a rack consecutively service these
two PS, rather than visiting them separately, a rack trip from the storage area to
the picking area would be saved. Actually, this operation mode has been practiced
by Quicktron, a robotic fulfillment solution company headquarted in Shanghai,
China that offers intelligent warehousing solutions (QuickTron 2020). With this
idea in mind, we investigate the order processing in a parts-to-picker system with
multiple PS, which involves multiple decisions, such as order assignment, order
sequencing, rack selection, and rack sequencing. The total time of completing
all given orders is usually used to measure the efficiency of a traditional order
processing system. However, setting the completion time as the objective would
dramatically increase the scale of decision variables (for example, variables to
represent the exact rack moving routes), and would make the mathematical model
computationally intractable. Moreover, it is also hard to measure some factors
in RMFSs that affect the completion time, for example, the route conflicts that
occur during the moving of racks. In this paper, we adopt a surrogate objective,
which is the number of rack moves necessary to complete all orders (Boysen et al.
2017a; Valle and Beasley 2021). Furthermore, we reveal in this study by a simu-
lation that the number of rack moves between PS and the storage area (excluding
inter-PS rack moves) is linearly related to the order completion time.

The contributions of this paper are as follows: 1) Enlightened by the practice
of the industry, this work for the first time considers the inter-PS operation during
the order picking process in an RMFS; 2) Enabling such inter-PS operations, we
propose an integrated mixed-integer linear programming model to jointly opti-
mize the order assignment, order sequencing, rack selection, and rack sequenc-
ing of the RMFS, which can be used as a benchmark for the evaluation of heu-
ristic algorithms; and 3) Based on the proposed two-stage hybrid algorithm, we
observe that enabling inter-PS operation can substantially improve order picking
efficiency.

The remainder of this paper is organized as follows. Section 2 reviews the related
literature. Section 3 describes the problem in detail and formulates an integer pro-
gramming model. Section 4 proposes a two-stage algorithm framework and show
the implementation of each stage. Computational experiments and the results are

512 B. WANG et al.

1 3

presented in Sect. 5. Then, Section 6 elaborates the simulation work to prove the
rationale of using rack moves as the objective rather than the completion time.
Finally, Section 7 draws the conclusion and points out future research suggestions.

2 Literature review

Order picking and the associated warehouse design problems have long attracted
intensive research interest for decades. Gu et al. (2007) and De Koster et al. (2007)
provided comprehensive reviews on layout design, storage assignment, order pick-
ing and routing. In the up-to-date review works, Azadeh et al. (2019); Jaghbeer et al.
(2020) focus on the topic of robotics in order picking. This work falls in the category
of “human picker” and “parts-to-picker” in Jaghbeer et al. (2020), and the category
of Robotic Mobile Fulfillment System in Azadeh et al. (2019). As one of the direc-
tions for future research pointed out in Azadeh et al. (2019), an integrated model is
also pursued in this study; that is, we propose a model that jointly optimize the order
assignment (to picker), order sequencing, rack selection, and sequencing. The objec-
tive is to optimize the overall performance over multiple PS.

The related research on order picking problems are mostly dedicated for picker-
to-parts systems, for example, see Öncan (2015),MenÉndez et al. (2016),Scholz
et al. (2017), among others. We also refer to a review-based study (Grosse et al.
2015) which investigates the human factor aspects involved in order picking pro-
cesses, particularly for manual systems. However, we make our focus on the order
picking problems in Robotic Mobile Fulfillment Systems. We summarize related lit-
erature in Table 1, and a survey paper by Boysen et al. (2019) is also consulted.

As shown in Table 1, most studies address only one or two isolated steps of
the whole order picking process, which we summarize as order assignment, order

Table 1 Summarization of relevant literature

Reference Order
assign-
ment

Robot
assign-
ment

Rack selection Rack
sequenc-
ing

Order
sequenc-
ing

Solution methods

Zou et al. (2017) ✓ Heuristic
Li et al. (2017) ✓ Heuristic
Boysen et al. (2017a) ✓ ✓ ✓ DP
Boysen et al. (2017b) ✓ Heuristic
Boysen et al. (2018) ✓ DP
Xi et al. (2018) ✓ Heuristic
Zhang et al. (2019) ✓ Heuristic
Füßler and Boysen

(2019)
✓ ✓ Heuristic

Merschformann et al.
(2019)

✓ ✓ Rules-based

Valle and Beasley (2021) ✓ ✓ ✓ ✓ Heuristic
This paper ✓ ✓ ✓ ✓ Heuristic

513

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

sequencing, rack selection, rack sequencing, and robot assignment. Zou et al. (2017)
study the rules of assigning PS to robots according to PS’s handling speed. A
neighborhood search algorithm is designed to find a near-optimal assignment rule,
and semi-open queueing networks are built to estimate the system performance.
This study considers only single-line orders. Xi et al. (2018) focus on the storage
assignment and order batching problem in a Kiva mobile fulfillment system based
on product similarity, aiming to minimize the number of visits of racks. They also
determine the assignment of racks to a given batch. However, their study doesn’t
consider the sequence that racks visit a PS. Füßler and Boysen (2019) treat the
processing sequence of orders in a single picking station to reduce the number of
storage bins transferred from the storage system to fulfill orders. This problem is
relatively less complicated than ours since each storage bin contains a single SKU.
Zhang et al. (2019) tackle The robot allocation problem under a determined rack
sequence in each PS. They propose a model based on the resource-constrained pro-
ject scheduling problem with transfer times to minimize the system’s makespan and
use a designated genetic algorithm to solve the problem. Li et al. (2017) determine
the optimal rack selection for a given batch of orders under parts-to-picker mode.
Aiming to minimize the total time of moving the selected racks to finish orders,
they propose a three-stage hybrid heuristic algorithm. However, the racks’ arrival
sequence has not been optimized, and only one batch of orders is considered. Simi-
larly, Boysen et al. (2018) focus on the release sequence of bins from the automated
storage/retrieval system (AS/RS) to minimize the spread of orders so that orders can
be quickly assembled at their packing stations. Boysen et al. (2017b) consider the
order sequencing in mobile rack warehouses, in which there are only a few aisles
open for rack moves at a time. Therefore, aisle relocation is also subject to opti-
mization. Finally, Merschformann et al. (2019) evaluate multiple decision rules for
several problems in RMFSs by simulation: the order assignment, rack selection, and
rack storage assignment. The pick order assignment rules are based on the slot of the
just-completed order at a station, which means orders are assigned to a PS from the
backlog and only one is assigned at a time, except for the rare case in which multiple
orders are completed at the same time. The simulation approach is rule-based and
myopic in nature.

We highlight two pieces of research which we think are mostly close to ours. Boy-
sen et al. (2017a) for the first time point out that both the order processing sequence
and the rack arrival sequence at the PS notably affect the order picking efficiency in
a robotic parts-to-picker system. They provide a mathematical formulation of the
joint problem and propose a decomposition-based solution approach that incorpo-
rates two dynamic programming (DP) algorithms. It is worth noting that, though
their study can theoretically find an optimal solution, the computational time to get
the optimal solution can easily go beyond the limit that people can wait. This is also
the reason why they compromise to use a beam search heuristic. Valle and Beas-
ley (2021) extend the work of Boysen et al. (2017a) by additionally considering the
order and rack allocation to PS (or, pickers as in the paper). The (first-stage) order
and rack allocation solution is then submitted to a (second-stage) rack sequencing
problem for each picker where the order sequence is also determined. This study for-
mulates and solves the two subproblems separately: for the order and rack allocation

514 B. WANG et al.

1 3

problem, two heuristics are proposed; while for the rack sequencing problem, the
proposed formulation explicitly considers the rack inventory positions which are
ignored in Boysen et al. (2017a), and the CPLEX solver is used to generate a feasi-
ble (not optimal) solution. However, both the above studies don’t assume that a rack
can visit two or more PS before it returns to the storage area. Therefore, our research
aims to investigate how this consideration will benefit operational efficiency.

Beyond the problems described above, there are a few studies optimizing other
procedures in a parts-to-picker system. Weidinger et al. (2018) consider the problem
of assigning racks to storage positions when a rack returns from a PS to the stor-
age area. The objective of the problem is to minimize the total travel distance of
the mobile robots to complete all the tasks. Similarly, Yuan et al. (2019) also focus
on the storage assignment problem in a parts-to-picker system where the velocity-
based storage policies are analyzed. Using multi-class closed queueing network
models, Roy et al. (2019) analyze both order picking and replenishment processes in
a mobile fulfillment system.

To summarize, various studies have been devoted to one or several order picking
subproblems in both traditional picker-to-parts systems and newly-emerging parts-
to-picker systems. However, to the best of our knowledge, there is rarely any study
addressing the optimization in an RMFS with multiple PS, which has been prac-
ticed. To bridge this gap, we explicitly consider inter-PS service aiming to save pro-
cessing time.

3 Problem description

In a robotic mobile fulfillment system, we consider the processing of a set of given
orders in multiple PS. First of all, customer orders are assigned to different PS based
on some strategies (introduced later). Each PS has a limit on the number of orders
that are assigned to it and can only process a certain number of orders in parallel,
denoted by w and C, respectively. At a PS, the picking sequence for each batch of
orders needs to be decided, besides, the sequence of racks arriving at each PS is also
to be decided. When an order is completely fulfilled at a PS, it will be replaced by
another new order immediately. A movable rack, which is carried by a robot from
the storage area, can visit multiple PS if required. Hence, two processing sequences
are necessary when picking orders at each PS, which are the order sequence and the
rack sequence, both are crucial to the system performance as shown by the following
example. Throughout this paper, a round rack move refers to the process of carry-
ing a rack from the storage area to the picking area and then returning the rack to
the storage area. We differentiate inter-PS rack move as moving a rack from one PS
to another during an inter-PS service. Note that a round rack move may or may not
contain inter-PS rack moves depending on the picking schedule. Hereafter, round
rack move is referred to as rack move for simplicity unless otherwise specified.

515

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

3.1 Assumptions and an example

In order to support our research, the following assumptions are made.

– Assume that the shared storage policy (Bartholdi and Hackman 2008) is
adopted, that is, an SKU is not completely stored on a single rack, but rather
on multiple racks. According to Lamballais et al. (2019), this would incur less
order completion time in a parts-to-picker system.

– Presuppose that there are enough units for each SKU on the rack. Based on
this assumption, we can just focus on whether a rack contains an SKU, while
the number of units is not critical (Boysen et al. 2017a). This assumption is
particularly rational when we consider the e-commerce warehouses where the
number of units for each SKU in an order is usually small, and an appropriate
replenishment strategy can also reduce the probability of out of stock.

– During a rack visit at a PS, the order that has been fulfilled by this rack can
be replaced by a new order immediately, and SKUs required by the new order
can be retrieved from the current rack if they are present. A rack leaves the PS
only when no SKUs on current picking orders are available on the rack.

– We assume the length of a time slot in different PS is the same, at least sta-
tistically. The violation of this assumption may incur asynchronism among
PS and postpone the finish time of all the orders. We argue that this can be
adjusted on a real-time scheme based on the solution deduced from our pro-
posed model. To validate the effectiveness of this assumption, a simulation is
also conducted as elaborated in Sect. 6.

– We assume that there is a buffer in front of each PS so that any pod that arrives
earlier than scheduled can stay waiting.

– We focus on a warehouse layout where the PS are located on one side of the
area. Thus, the transport distance between the PS is shorter than that between
the storage area and PS in general.

Example Consider S = 2 PS and N = 8 customer orders in total. There are 4 orders
to be picked at each station with the capacity of C = 3 . We have K = 4 SKUs known
as {a, b, c, d} . The set of orders for PS S1 contains SKUs as follows: O11 = {a, b, c} ,
O12 = {c, d} , O13 = {b, c, d} , O14 = {a, b, c, d} , and orders for PS S2 contains the fol-
lowing SKUs: O21 = {a, c} , O22 = {a, b} , O23 = {a, c, d} , O24 = {b, c, d} . In addi-
tion, we define M = 3 racks: R1 = {a, c} , R2 = {b, d} , R3 = {c, d} . Two alterna-
tive solutions are proposed to process the orders in Fig. 2. In solution 1, the order
sequence and rack arrival sequence at PS S1 are ⟨O12,O13,O14,O11

�
 and ⟨R3,R1,R2

�

respectively, and ⟨O21,O22,O23,O24

�
 and ⟨R1,R2

�
 respectively at PS S2 . In solution

2, the order sequence and rack arrival sequence at PS S1 are ⟨O11,O12,O13,O14

�
 and

⟨R1,R3,R2,R1

�
 respectively, and ⟨O22,O24,O21,O23

�
 and ⟨R2,R1,R3

�
 respectively at

PS S2.

516 B. WANG et al.

1 3

As we can see from Fig. 2, five rack visits are required to complete all cus-
tomer orders with solution 1 (R3 , R1 and R2 visit S1 , and R1 and R2 visit S2),
while seven visits are needed in solution 2 (R1 , R3 , R2 and R1 visit S1 , and R2 , R1
and R3 visit S2). Adopted from Boysen et al. (2017a), the concept of time slot is
used to track the process of the order picking and rack moving. In a time slot,
for each PS, there is a certain number of orders in picking and only one rack is
visiting. For each PS, when one or more orders are fulfilled during a rack visit,
or, when there is a rack change, the time slot moves to the following. Therefore,
4 slots involve in solution 1 and 5 in solution 2. Clearly, if inter-PS service is not
allowed, then in solution 1, the number of rack moves is 5 (3 for S1 and 2 for
S2) and in solution 2, is 7 (4 for S1 and 3 for S2). However, if inter-PS service
is allowed and we suppose a rack can be handled immediately when it is trans-
ferred to another PS (that is, the queue length is 1), then both solution 1 and 2
contain two inter-PS rack moves. As a result, the number of rack moves becomes
3 for solution 1 and 5 for solution 2. Considering that travel distance between PS

Fig. 2 An example of two order picking solutions with different order and rack sequences

517

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

is much shorter than that from the storage area to PS, the total travel distance or
time can be remarkably saved by allowing inter-PS service. This small example
also reflects that order sequence and rack sequence have a great influence on
order picking performance.

3.2 Mathematical model

Based on the above setting and assumptions, we build an integer programming
model for this problem which consists of the objective function (1) and constraints
(2) to (20). Before explaining the model, Table 2 shows the constant parameters and
Table 3 shows the decision variables applied in the model.

(1)Minimize

T∑

t=1

S∑

s=1

rst −

T−Q∑

t=2

M∑

j=1

S∑

s=1

S∑

s�=1,s�≠s

zjss�(t+Q)

(2)s.t.

S∑

s=1

yis = 1,∀i = 1, ...,N,

Table 2 Constant parameters

Symbol Explanation

N Number of customer orders to be retrieved
M Number of racks
S Number of PS
K Number of SKU types
w Maximum number of orders assigned to each PS
C Capacity of each PS
Q Length of queue at each PS
T Maximum number of time slots
Osetik 1, if order i contains SKU k, ∀i = 1, ...,N,∀k = 1, ...,K ; 0 otherwise
Rsetjk 1, if rack j contains SKU k, ∀j = 1, ...,M,∀k = 1, ...,K ; 0 otherwise

Table 3 Decision variables

Decision variables Explanation

yis Binary variables: 1, if order i is assigned to PS s; 0 otherwise
xjst Binary variables: 1, if rack j is visiting PS s in slot t; 0 otherwise
oist Binary variables: 1, if order i is processed at PS s in slot t; 0 otherwise
zjss′ t Binary variables: 1, if rack j is moving from PS s to PS s′ in slot t; 0 otherwise
Lkist Binary variables: 1, if SKU k is delivered for order i at PS s in slot t; 0 otherwise
rst Binary variables: 1, if the racks visiting at PS s in t − 1 and t differ; 0 otherwise

518 B. WANG et al.

1 3

(3)
N∑

i=1

yis ≤ w,∀s = 1, ..., S,

(4)
M∑

j=1

xjst ≤ 1,∀s = 1, ..., S,∀t = 1, ..., T ,

(5)
S∑

s=1

xjst ≤ 1,∀j = 1, ...,M,∀t = 1, ..., T ,

(6)

1 − (xjstxjs�t� − |
t∑

t1=1

rst1 −

t�∑

t2=1

rs�t2 − Q|) −M(1 − zjs�st) ≤ 0,

∀j = 1, ...,M,∀s = 1, ..., S,∀s� = 1, ..., S, s� ≠ s,∀t = 1, ..., T ,∀t� = 1, ..., T , t� ≠ t,

(7)

Q − |
t∑

t1=1

rst1 −

t�∑

t2=1

rs�t2 | −M(1 − xjstxjs�t�) ≤ 0,

∀j = 1, ...,M,∀s = 1, ..., S,∀s� = 1, ..., S, s� ≠ s,∀t = 1, ..., T ,∀t� = 1, ..., T , t� ≠ t,

(8)
N∑

i=1

oist ≤ C,∀s = 1, ..., S,∀t = 1, ..., T ,

(9)
S∑

s=1

oist ≤ 1,∀i = 1, ...,N,∀t = 1, ..., T ,

(10)
oist + ois(t+d) ≤ 1 + ois(t+1),∀i = 1, ...,N,

∀s = 1, ..., S,∀d = 2, ..., T − t,∀t = 1, ..., T − 1,

(11)yis −

T∑

t=1

oist ≤ 0,∀i = 1, ...,N,∀s = 1, ..., S,

(12)
T∑

t=1

oist −Myis ≤ 0,∀i = 1, ...,N,∀s = 1, ..., S,

(13)
T∑

t=1

Lkist ≥ Osetikyis,∀i = 1, ...,N,∀k = 1, ...,K,∀s = 1, ..., S,

519

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

Objective (1) minimizes the number of rack moves between the storage area and
PS for all orders. The total number of rack changes among all PS is presented in the
first term, and the second term denotes the number of rack moves between PS. As
we will reveal in Sect. 6, the inter-PS rack move has very limited effect on the com-
pletion time. Constraints (2) ensure each order is only assigned to exactly one PS.
Constraints (3) restrict the number of orders assigned to a PS that cannot exceed w.
Constraints (4) and (5) assure for one slot that no more than one rack is visiting at a
PS and that a rack is allowed to visit at most one PS.

Constraints (6) state the relationship between variables x and z when a rack
moves from one PS to another. They state that if a rack consecutively visits two
PS, then its positions in the rack sequences of the two PS have a difference of
Q. If the difference is greater than Q, we believe that the rack should return to
the storage area rather than waiting for another PS. Note that Constraints (6) are
nonlinear but can be directly processed by solvers like CPLEX due to the binary
natures.

Constraints (7) assure one rack cannot visit another PS within Q slots to avoid
the rack sharing conflicts, since one rack is not allowed to cut in the line even
though the rack is just released from the previous PS. Note that the second term
indicates the difference of positions when a rack j vistis two racks s and s′.

(14)
2Lkist ≤ oistOsetik +

M∑

j=1

xjstRsetjk,∀i = 1, ...,N,

∀k = 1, ...,K,∀s = 1, ..., S,∀t = 1, ..., T ,

(15)rst =
1

2

M∑

j=1

|xjst − xjs(t−1)|,∀s = 1, ..., S,∀t = 2, ...T ,

(16)rs1 = 1,∀s = 1, ..., S,

(17)rst ≥ 0,∀s = 1, ..., S,∀t = 1, ..., T ,

(18)yis ∈ {0, 1},∀i = 1, ...,N,∀s = 1, ..., S,

(19)xjst ∈ {0, 1},∀j = 1, ...,M,∀s = 1, ..., S,∀t = 1, ..., T ,

(20)
zjss�t ∈ {0, 1},∀j = 1, ...,M,∀s = 1, ..., S,

∀s� = 1, ..., S, s� ≠ s,∀t = 2, ..., T ,

(21)Lkist ∈ {0, 1},∀i = 1, ...,N,∀k = 1, ...,K,∀s = 1, ..., S,∀t = 1, ..., T ,

(22)oist ∈ {0, 1},∀i = 1, ...,N,∀s = 1, ..., S,∀t = 1, ..., T .

520 B. WANG et al.

1 3

Constraints (8) limit the capacity of PS, that is, the maximum number of orders
processed at one PS in a slot. Constraints (9) and (10) ensure each order can only
be processed at one PS and each order is satisfied during a set of consecutive slots.
Constraints (11) and (12) state the relationship between order assignment and pick-
ing, that is, the PS processes an order that is assigned to it, and the order must be ful-
filled within T. Constraints (13) assure that each SKU k required by order i assigned
to station s must be delivered. Constraints (14) indicates that if an SKU is to be
retrieved to satisfy an order, then that SKU must be contained by the visiting rack.
Finally, Equations (15) and (16) measure the number of rack changes at each PS in a
slot. Constraints (17-22) define the decision variables of the problem.

The parts-to-picker based order picking problem has been proved an NP-hard
problem, even for one PS (Boysen et al. 2017a). In addition, the problem in this
paper considers extra decisions like order assignment to PS and inter-PS rack moves.
To solve the problem, we design a two-stage hybrid heuristic algorithm as elabo-
rated in the following section.

521

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

4 The two‑stage heuristic algorithm

In this section, we propose a two-stage hybrid heuristic algorithm to solve the prob-
lem. In the first stage of the algorithm, an order assignment problem is solved to
assign orders to PS (Sect. 4.1). Subsequently, in the second stage, for each PS, orders
and racks are sequenced with considering the inter-PS service (Sect. 4.2). We realize
that this two-stage approach is essentially sequencial and therefore no guarantee of
global optimal; however, since the number of orders is often large, if we otherwise
allow perturbation of orders from different PS, it would incur much computational
burden. We also note that the main purpose of this study is to identify the benefits of
enabling inter-PS service, therefore, we just feed the results of the first stage to the
second and then observe the performance improvement comparing to individual-PS
mode.

4.1 Order assignment

As we consider multiple PS in the order picking system, given a set of customer
orders for processing, the first decision is to group the orders and assign them to dif-
ferent PS. We investigate two strategies of order assignment, i.e., Random strategy
and Order Similarity strategy.

1. Random strategy

According to this simple rule, the customer orders are assigned to PS randomly. Note
that orders are evenly assigned to PS so that the workload of each PS is balanced.

2. Order Similarity strategy

We define the similarity of two orders as the proportion of the number of common
SKUs to the number of all SKUs that the two orders contain. According to the Order
Similarity strategy, orders sharing more common SKUs tend to be assigned to the
same PS. In this way, each rack visit will potentially fulfill more orders and there-
fore the rack moves needed to complete all orders will be reduced. Denote vector
Oi =

(
Oseti1,Oseti2, ...,OsetiK

)T , then the order similarity �ii′ of order i and order i′
can be measured by Tanimoto coefficient (Tanimoto 1957):

In fact, the numerator denotes the number of common item types of the two orders,
and the denominator is the total number of item types in both orders. With the defi-
nition of order similarity, the order assignment subproblem is to find the maximum

(23)�ii� =
OT

i
Oi�

OT
i
Oi + OT

i�
Oi� − OT

i
Oi�

.

522 B. WANG et al.

1 3

order similarity assignment of orders to PS, so that each order is exactly assigned to
one PS, and the maximum number of orders each PS can handle is respected. This
problem falls into the category of a clustering problem. We implement a heuristic
similar to Li and Li (2015), the procedure of which can be summarized as:

Step 1 Calculate the similarity between any two orders based on Equation (23), and
then use the results as the weights of edges to construct a weighted graph with N
vertices, each standing for an order.

Step 2 Sort by ascending the edge weights (similarity between orders).
Step 3 Delete the edge with the smallest edge weight in the weighted graph.
Step 4 Use the depth-first search algorithm to calculate the number of connected

branches of the graph after an edge is deleted. If the number of connected
branches is equal to the number of picking stations, go to Step 5; otherwise, go
to Step 3.

Step 5 Adjust the branches so that the number of vertices in each connected branch
does not exceed w to ensure the balance of the workload between the PSs. For
the connected branches with more than w vertices, select the vertex connected
with the smallest number of edges, and delete the edges connected with it. Then
the average weight between the vertex and the vertices in each connected branch
whose number of vertices is less than w is calculated. Find a connected branch
corresponding to the maximum average weight , and add the edge between this
vertex and the connected branch.

Step 6 Assign the vertices contained in each connected branch, that is, the orders,
to each picking station.

Step 7 Output the orders assigned to each picking station.

Example Consider 2 PS and 5 orders which are O1 = {a, b, c},O2 = {d, e, f , g},

O3 = {a, b, e, h, i},O4 = {d, f , h},O5 = {f , g, i} . Following the above steps, we can
assign the 5 orders into 2 groups, one for orders 1 and 3, the other for orders 2, 4 and
5 (let w = 3), as shown in Fig. 3. The number in the circle is the order index, and the
text along arc is the similarity of two orders.

Fig. 3 An example to the order
assignment algorithm according
to similarity

523

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

4.2 Order and rack sequencing

In this second stage, we are going to find an optimal or “good” order sequence as
well as a rack sequence for each PS. Unfortunately, the two sequences have mutual
affects and can’t be solved seperately. To address this problem, following the mecha-
nism from Boysen et al. (2017a), we decompose the the order and rack sequenc-
ing problems into two interlaced subproblems: the order sequencing problem (OS)
for a given rack sequence, and the rack sequencing problem (RS) for a given order
sequence. Therefore, the order and rack sequences can be obtained from either per-
spective: explore the space of order sequences embedded with RS-solving steps, or
vice versa. The two approaches are introduced in Sects. 4.2.2 and 4.2.3, respectively,
and a comprarison is conducted in Sect. 5.

When we consider a system with inter-PS service, we are facing the risk of rack
conflicts between multiple PS. For example, a rack may be needed by two PS at the
same time. It is worth noting that in practice, there are multiple racks queueing at
each PS, since a lot of time would be wasted waiting for arrival of a new rack if not.
Considering the queue length further complicates this problem as the possibility of
rack conflict rises accordingly. Therefore, before getting into the details of the OS
and RS algorithms, we introduce the rack conflict and its resolution in Sect. 4.2.1.

4.2.1 Rack conflict and its resolution

Suppose rack r is both in two sequences of PS a and PS b. Given rack sequence Sa
at PS a and rack sequence Sb at PS b, with rack r at position pr

a
 in Sa and position pr

b

in Sb , pra ≤ pr
b
 , the distance between two positions associated with the same rack r,

denoted as Dr
ab

= pr
b
− pr

a
 , has three conditions:

– Dr
ab

= Q . Under this condition, the rack can exactly join the tail of the queue of
PS b after servicing PS a, therefore, an inter-PS service will be taken.

– Dr
ab

> Q . The rack will return to the storage area without servicing PS b since it
otherwise must wait for other racks that in ahead of it according to Sb.

– Dr
ab

< Q . This is the rack sharing conflict that we should avoid as the rack cannot
cut in the line of PS b.

Therefore, the main idea of tackling the rack sharing conflicts is to ensure that for each
rack that needed by multiple PS, its positions in different sequences must be not within
distance of Q.

To resolve rack conflicts, we generate rack sequences in a sequential way for each
PS, and each time a new rack sequence is built, it is checked with all previously gen-
erated rack sequences. If any conflict is detected, the following conflict elimination
steps are taken on the current rack sequence only:

Step 1 For each conflict position of the sequence, swap it with another position so
that conflicts with any previous sequences can be eliminated.

524 B. WANG et al.

1 3

Step 2 If there is no such position to swap, let this conflict position be empty which
means no rack (or a virtual rack) will come at this time slot, and then append the
associated rack at the end of the sequence. Add more virtual racks before the rack
if necessary.

Step 3 Repeat steps 1 and 2 on all other conflict positions.

4.2.2 The order sequencing algorithms

First, we introduce a greedy algorithm, called OS-Greedy, to deduce an order
sequence under a known rack sequence, then we propose a Variable Neighborhood
Search (VNS) based metaheuristic algorithm, named OS-VNS, to generate the order
sequence with the rack sequence as a byproduct.

1. OS-Greedy

The OS-Greedy algorithm is to generate appropriate order picking sequences for
each PS one by one when their rack sequences are fixed. As a pre-processing step,
each rack sequence is checked with accomodated rack sequences and is adjusted if
there is any rack conflict among them (see Sect. 4.2.1).

The basic idea of the greedy algorithm is to gradually add in unprocessed orders
such that the current visiting rack can provide as many SKUs as possible. If some
of the in-process orders are completed, new orders will be added in to replace the
finished ones. When no more items can be retrieved from the visiting rack, the next
rack in the given sequence comes. This process repeats until all orders are fulfilled.
Specifically, given the current visiting rack r, the selection of an order to be added in
can be expressed as the following order selection problem

For the convenience of calculation, the number of common SKUs shared by an order
and a rack can be reflected by the difference between them. In other words, problem
(24) can be recast as

where

dir measures the number of different SKUs which are contained in order i while not
in rack r. The pseudocode of the OS-Greedy algorithm is shown in Algorithm 1,
in which RemainingOrderSet is the set of orders not completed and not in picking,
PickingOrderSet is the set of in-process orders, “DiffMatrix(i, TimeSlot)” represents

(24)argmax
i=1,...,N

K∑

k=1

({
1, Osetik > 0 ∧ Rsetrk > 0

0, otherwise

)
.

(25)argmin
i=1,...,N

dir

(26)dir =
∑

k=1,...,K,Osetik=1

(1 − Rsetrk).

525

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

the matrix of order i = 1,… ,N and rack TimeSlot = 1,… ,M . Note that each time
slot represents the incumbent working rack.

2. OS-VNS

Variable Neighborhood Search (VNS) (Mladenović and Hansen 1997) as a
metaheuristic algorithm has been widely used to solve combinatorial optimization
problems. VNS can systematically explore the solution space by changing the way
of generating neighborhood solutions (called shaking), and making efforts to further
improve the current neighborhood (called local search). If the shaking and local search
update the best-known solution, the current neighborhood operators will be retained;
otherwise, the next neighborhood operator is recruited. If the current operator is the
last one, then we activate the first operator again; so on so forth. The more effective
the neighborhood operator is, the more frequent it is applied. As reviewed above, the
VNS algorithm framework has also been used for solving order picking problems by
a few researchers, see, for example, MenÉndez et al. (2016) and Scholz et al. (2017).

526 B. WANG et al.

1 3

The pseudocode of the proposed OS-VNS algorithm is presented in Algo-
rithm 2 where Shake(rseq, k) means generating a neighborhood of rack sequence
rseq with kth operator (elaborated later), and LS(rseq′ , k1) means taking local search
on rseq′ with operator k1 . The local search consists of taking IterationLS times of

Fig. 4 An example of the
2-Exchange operator

Fig. 5 An example of the
Segment-Relocate operator

527

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

neighborhood operator k1 on rseq′ and selecting the optimal one. Note that in our
implementation of the local search, we use the first operator k1 only due to its good
performance in the experiments. The total number of neighborhood operators is
denoted as kmax , and the stopping criterion is due to the maximum number of itera-
tions Iterationmax.

According to the algorithmic procedure, a random rack sequence rseq for each
PS is generated at first. Through the shaking procedure, a new rack sequence rseq′
is found by the current neighborhood operator k. Then, in the local search stage, an
improved rack sequence rseq′′ for PS b is firstly deduced by applying the local search
function, then an order sequence oseq can be obtained by using OS-Greedy on the

Fig. 6 An example of the
Hybrid-Relocate operator

528 B. WANG et al.

1 3

improved rack sequence rseq′′ . The next step is to evaluate whether the new solution
updates the best-known solution: if yes, update the best-known solution as this new
solution, let rseq′′ be the incumbent rack sequence rseq, and resume the neighbor-
hood structure to 1; otherwise, switch to the next neighborhood operator. Solutions
are evaluated by counting the rack moves to complete all orders. The shaking, local
search and “move or not” steps are repeated until the number of iterations reaches
Iterationmax and then the algorithm terminates. Note that the solution is immune to
inter-PS rack conflict since we have called OS-Greedy (Line 11). The designated
neighborhood structures are illustrated as follows.

Neighborhood operators: The purpose of neighborhood operators of the OS-
VNS is to slightly change the current rack sequence. Three neighborhood struc-
tures 2-Exchange, Segment-Relocate and Hybrid-Relocate are designed, which are
illustrated with examples as follows. For each PS, it should be noted that the new
rack sequence obtained by a neighborhood operator may contain duplicate racks at
adjacent positions which should be avoided. Therefore, if this happens, we revise
the sequence by just removing the duplications. In addition, any new generated rack
sequence has to be submitted to a conflict elimination procedure. Also, for ease of
description, when we randomly select two racks from a rack sequence, they are
expressed by a and b respectively.

– 2-Exchange As is illustrated in Fig.4, the positions of two selected racks (4 and
2) are exchanged, and the rack sequence between them (1 5) are reversed to (5 1).
At the same time, it can be noticed that the length of the new rack sequence is
reduced by 1 as a duplicate rack (4) is removed from it.

– Segment-Relocate As is depicted in Fig.5, racks 3 and 2 are randomly selected,
then, the sub-sequence behind rack 2, which contains racks 4 and 1, is inserted
into the position between racks 3 and 2.

– Hybrid Relocate Considering the example in Fig.6, the two selected racks (4 and
2) are placed at the head of the new rack sequence, while racks 3, 4, and 1 which
are originally behind rack 4 are inserted behind rack 2.

Local Search The local search adopts the first operator.

4.2.3 The rack sequencing algorithms

Similar to OS-Greedy, a greedy algorithm RS-Greedy is also designed to obtain a
rack sequence aiming to minimize the number of rack moves under a given order
sequence. Again, a metaheuristc algorithm RS-VNS is designed to generate a rack
sequence and an order sequence simultaneously.

1. RS-Greedy

RS-Greedy provides a quick approach to generate an appropriate rack visiting
sequence at each PS according to a given order sequence. The basic idea is consist-
ent with OS-Greedy: given maximum C parallel orders in each PS, a rack is selected

529

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

to visit which has the most common SKUs with all these orders. Here, the rack con-
flict can be avoided on-the-fly: determine whether there are conflicts between the
selected rack and the previously determined rack sequences in other PS; if yes, just
choose the next best rack. In this way, we can directly obtain the conflict-free rack
sequences. To make it concise, we present the details of RS-Greedy in the Appendix
A.

2. RS-VNS

RS-VNS algorithm is to find a rack sequence and an order sequence from the per-
spective of shuffling the order sequence, aiming to minimize of total rack moves
to complete all the orders. RS-VNS is quite similar to OS-RNS, therefore we give
very brief introduction here. The pseudocode of RS-VNS is shown in Algorithm 4 in
Appendix B. At the beginning of the algorithm, an order sequence oseq is generated
randomly for each PS. Then we shuffle the order sequence by shaking procedure to
have a new order sequence oseq′ . After that, in the local search stage, an improved
order sequence oseq′′ is firstly generated by the a local search with opertor k1 , and
then a rack sequence rseq is obtained by applying the RS-Greedy on oseq′′ . The
next step is to evaluate whether the new solution is updated: if yes, update the best-
known solution as this new solution, move incumbent order sequence to oseq′′ , and
resume the neighborhood operator to 1; otherwise, switch to the next neighborhood
operator. The shaking, local search and “move or not” steps are repeated until the
number of iterations reaches Iterationmax and then the algorithm terminates. Note
also that there is no worry about rack conflict in RS-VNS since the embedded RS-
Greedy has already handled this issue. The neighborhood operators are inherited
from OS-VNS, that is, 2-Exchange, Segment-Relocate, and Hybrid-Relocate, with
exceptions that we change the concept rack to order.

Table 4 Parameters for instance generation

Parameter Description Small instance Large instance Sensi-
tivity
analysis

N Number of orders 10,20 50,100 100
M Number of racks 5,10 50,100 100
K Number of SKU types 5 10 6-12
S Number of PS 2,3 2,3,4 1-8
C Capacity of each PS 3 3 2-18
Q Queue length 1,2 3 1-5
� Maximum number of differ-

ent SKUs in a rack
4 5 3-5

530 B. WANG et al.

1 3

Ta
bl

e
5

 R
es

ul
ts

 o
f C

PL
EX

 a
nd

 fo
ur

 h
eu

ris
tic

s o
n

sm
al

l s
ca

le
 in

st
an

ce
s

S
Q

N
M

C
PL

EX
O

S-
G

re
ed

y
O

S-
V

N
S

R
S-

G
re

ed
y

R
S-

V
N

S

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

O
bj

.
Ti

m
e

2
1

20
10

2
33

7.
79

5.
7

0.
14

2.
9

5.
98

6
0.

14
2

4.
75

10
5

2
0.

48
3.

3
0.

10
2

2.
37

2
0.

10
2

1.
98

2
20

10
3

55
1.

27
5.

2
0.

14
4

5.
86

4
0.

14
3

4.
67

10
5

3
0.

46
3.

9
0.

13
3

2.
44

3
0.

10
3

1.
91

3
1

20
10

3
16

61
.7

0
4.

6
0.

14
3

5.
57

3
0.

14
3

5.
49

10
5

3
1.

76
5.

2
0.

14
3

2.
85

3
0.

11
3

2.
17

2
20

10
3

20
8.

45
6.

2
0.

14
3.

2
7.

32
3

0.
14

3
5.

20
10

5
4

1.
20

4.
7

0.
12

4
2.

89
5

0.
10

4
2.

47
A

ve
ra

ge
3.

1
71

2.
08

4.
85

0.
13

3.
14

4.
41

3.
62

0.
12

3.
1

3.
58

531

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

Ta
bl

e
6

 R
es

ul
ts

 o
f t

he
 fi

ve
 h

eu
ris

tic
s o

n
la

rg
e

in
st

an
ce

s

N
M

O
S-

G
re

ed
y

O
S-

V
N

S
R

S-
G

re
ed

y
R

S-
V

N
S

A
H

O
bj

.
Ti

m
e

O
bj

.
%

Im
pr

.
Ti

m
e

O
bj

.
Ti

m
e

O
bj

.
%

Im
pr

.
Ti

m
e

O
bj

.
Ti

m
e

10
0

10
0

91
.1

0.
29

75
.6

20
.5

64
.6

2
40

.0
0.

17
28

.9
38

.4
23

.9
9

29
.9

10
.1

9
50

10
0

53
.3

0.
24

40
.6

31
.3

62
.2

2
21

.0
0.

13
15

.6
34

.6
16

.4
3

18
.3

1.
66

50
50

56
.3

0.
72

47
.4

18
.8

45
.1

6
25

.0
0.

12
15

.8
58

.2
14

.1
7

19
.6

6.
77

A
ve

ra
ge

66
.9

0.
42

54
.5

23
.5

57
.3

3
28

.7
0.

14
20

.1
43

.7
18

.2
0

22
.6

6.
21

532 B. WANG et al.

1 3

5 Numerical experiments

In this section, we design experiments to evaluate the performance of the proposed
algorithms and study the influence of different strategies. We implement the algo-
rithms in Java 8 and run the experiments on a 64-bit win10 system using an Intel
Core i5 2.4G CPU and 4G of RAM. To provide a benchmark for the results of the
algorithms, CPLEX 12.6 is also used to solve the model built in Sect. 3.

5.1 Instances generation

We design two sets of instances, a small instance set for model and algorithm verifi-
cation and a large instance set for realistic considerations. Though a big distribution
center may need to handle hundreds of thousands of orders per day, we can often
handle a small group of orders on a planning horizon. For example, batching orders
(according to discretized time) is one such means, and splitting a large order group
into small ones according to storage zones can be another means. Therefore, as in
Boysen et al. (2017a), we set both orders and racks size as 50 or 100 in our large
scale instances. A shared storage policy is applied so that K SKUs randomly scat-
ter on M racks. The number of SKU types in each rack is generated uniformly in [1,
�], where 𝜃 < K reflects the degree of dispersion of SKUs on racks. The number of
SKU types contained on each order follows a Poisson distribution with a mean of
�i , i ∈ {1, 2, ...,K} , where �i corresponding to each SKU i is independent of each
other. To accommodate diversity of orders, �i is set to obey the uniform distribution
of [0.2K, 0.8K] . Table 4 presents the parameters in the experiments. We generate ten
instances for each combination of parameters and take the average results.

5.2 Algorithmic performance

In the proposed two-stage hybrid heuristic algorithm, we have adopted two order
assignment strategies in the first stage: Random strategy and Order Similarity
strategy. Also, in the second stage, we propose two metaheuristics OS-VNS and
RS-VNS from two perspectives, both of which are capable of generating an order
sequence and a rack sequence simultaneously. Furthermore, the proposed two
greedy algorithms OS-Greedy and RS-Greedy can also act as a solution approach
to the Secondhandshop-stage problem if they are fed with a randomly-generated
rack sequence or order sequence. Therefore, we implement four heuristics OS-
Greedy, OS-VNS, RS-Greedy and RS-VNS on small and large instances. Mean-
while, we solve small-scale instances with CPLEX to optimal, the results of
which are used as a reference to evaluate the proposed algorithms. Throughout
the experiments, all heuristic and metaheuristic algorithms are run 10 times and
the averages are reported as the final results. For OS-VNS and RS-VNS, param-
eter Iterationmax takes value 100.

The results for small scale instances are listed in Table 5 in which the objec-
tive value (Obj. in the table) and CPU time (in second) are reported for 5 solu-
tion approaches: CPLEX, OS-Greedy, OS-VNS, RS-Greedy and RS-VNS. The

533

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

Ta
bl

e
7

 C
om

pa
ris

on
 o

f d
iff

er
en

t s
tra

te
gi

es
 b

y
us

in
g

R
S-

V
N

S

S
N

M
R

A
N

D
O

M
SI

M
IL

A
R

IT
Y

%
Im

p
r.
3

%
Im

p
r.
4

SI
N

G
LE

M
U

LT
IP

LE
%
Im

p
r.
1

SI
N

G
LE

M
U

LT
IP

LE
%
Im

p
r.
2

2
10

0
10

0
36

.3
31

.8
14

.1
5

36
.2

31
16

.7
7

0.
28

2.
58

50
10

0
19

.6
14

.3
37

.0
6

19
14

.1
34

.7
5

3.
16

1.
42

50
50

21
.9

15
.6

40
.3

8
21

15
.1

39
.0

7
4.

29
3.

31
3

10
0

10
0

39
.1

31
.2

25
.3

2
37

.3
28

.9
29

.0
7

4.
83

7.
96

50
10

0
20

.2
14

.8
36

.4
9

20
.1

15
.7

28
.0

3
0.

50
-5

.7
3

50
50

22
.7

15
.5

46
.4

5
22

.9
16

.4
39

.6
3

-0
.8

7
-5

.4
9

4
10

0
10

0
39

.9
31

.7
25

.8
7

37
.6

30
.5

23
.2

8
6.

12
3.

93
50

10
0

20
.8

16
.6

25
.3

0
21

.1
16

.6
27

.1
1

-1
.4

2
0.

00
50

50
24

.6
17

.3
42

.2
0

24
.4

17
.2

41
.8

6
0.

82
0.

58
A

ve
ra

ge
27

.2
21

.0
32

.5
8

26
.6

20
.6

31
.0

6
2.

30
1.

78

534 B. WANG et al.

1 3

order assignment strategy used here is Order Similarity and queue length Q of
1 and 2 are tested. When observing the objective value, it shows that RS-VNS
can obtain optimal solutions in all cases which proves its effectiveness for small
scale instances. RS-Greedy is also capable of obtaining optimal solution on 5 of
the 8 instances. It seems OS-Greedy algorithm is too coarse and fails to provide
promising solutions. OS-VNS performs slightly worse than RS-VNS and it takes
more CPU time, however, it improves its initial solution, that is, OS-Greedy, to
a large extent. Furthermore, when we compare the computational time of the 5
solution approaches, we can easily find out the CPLEX is very time-consuming as
the scale increases, while the proposed heuristics and metaheuristics show high
computing efficiency.

Since CPLEX cannot solve larger problems, we use OS-Greedy, OS-VNS, RS-
Greedy, and RS-VNS to solve large-scale instances. To facilitate a comparison with
the previous study, we also implement an Alternating Heuristic (AH) proposed in
Boysen et al. (2017b). AH is invoked after the order assignment stage. It begins with
an initial rack, chooses C orders from that PS according to their similarity, and picks
all items these orders need from that rack. Then, for those remaining items, choose
an appropriate rack based on the similarity again, and replenish orders if the number
of in-process orders is less than C. The process repeats until all orders are fulfilled.
The results of the five heuristics are shown in Table 6.

It shows that RS-Greedy and RS-VNS outperform the OS-Greedy and OS-VNS
in all instances which is consistent with the results in small instances. It can be
concluded that the algorithms based on rack sequence perform better than that
based on order sequence in terms of both the number of rack moves and CPU
time. Both RS-VNS and OS-VNS improve the results of their greedy counterparts
significantly by 23.52% and 43.75% , respectively, proving the effectiveness of the
proposed VNS-based procedures. It is interesting to see that the AH algorithm
behaves much better than others but still worse than RS-VNS. The average objec-
tive value by AH is 22.6, 12% higher than RS-VNS. AH takes much less time

Fig. 7 Convergence of the proposed VNS-based algorithms

535

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

than RS-VNS since it does not need a neighborhood search. When it is a large
scale problem, AH is also a good choice.

From Table 6 we also observe that, for the same number of orders, the more
racks available for picking, the fewer the number of rack moves required to com-
plete the orders. As shown in Table 6, when the number of orders is 50, to com-
plete all the orders, the number of rack moves with 100 racks is less than that
with 50 racks.

As RS-VNS shows better performance, it is used for the next experiments in
which two strategies are investigated: the order assignment strategy and the rack
visiting strategy. In this paper, we assign orders to PS according to either Random

Fig. 8 Effect of the number of PS on rack moves

536 B. WANG et al.

1 3

strategy (denoted as RANDOM) or Order Similarity strategy (denoted as SIMILAR-
ITY). Meanwhile, we allow a rack to serve another PS immediately after serving the
current one when it is necessary, as opposed to the traditional way in which a rack
visits just one PS each time. The two rack visiting strategies are denoted as MULTI-
PLE and SINGLE, respectively. This setting of experiments is based on large scale
instances in which the number of PS varies from 2 to 4. Table 7 reports the results
(objective values) where %Impr.1 and %Impr.2 are the improvements in percentage
of the objective value (rack moves) deduced by the MULTIPLE policy to that by
the SINGLE policy, while %Impr.3 and %Impr.4 represent the improvement by the
SIMILARITY method to that by the RANDOM method, according to SINGLE and
MULTIPLE policies respectively. Note that positive improvement percentage means
reduction of rack moves.

By reviewing Table 7, we can find out the following facts. First, less rack moves
are observed by strategy MULTIPLE than by SINGLE. For example, the average
%Impr.1 (for RANDOM policy) is 32.58% and the average %Impr.2 (for SIMILAR-
ITY policy) is 31.06%, exhibiting a large reduction of rack moves. This validates
the hypothesis that allowing movable racks to visit multiple PS in one trip can lead
to noticeable savings in order processing. Second, it can be seen that assigning
orders to PS according to the SIMILARITY strategy can reduce the number of rack
moves compared to randomly assigning orders to PS. The improvement %Impr.3 by
using SINGLE strategy is 2.30%, and %Impr.4 by MULTIPLE strategy is 1.78%.
Although the advantage of similarity-based assignment is not significant, it is also
not neglectable.

Finally in this section, we also dig into the calculation process to examine the
convergence of the proposed VNS-based algorithms. Take N = 100,M = 100, S = 3
and RS-VNS as an example, the evolution of the number of rack moves over iteration

Fig. 9 Effect of the capacity of PS on rack moves

537

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

times is shown in Fig. 7. It seems that the objective tends to be steady after 120 iter-
ations, therefore, we set Iterationmax = 120 . Likewise, we take IterationLS = 10 by
experiments to achieve a balance between accuracy and computational time.

5.3 Sensitivity analysis

In this section, sensitivity analysis are conducted to study the effect of different
parameters used in the proposed algorithms. We design the next experiments in
which the number of orders is 100 and the number of racks is 100. In the experi-
ments, the customer orders are assigned to PS based on the Order Similarity strategy.
The parameters that we focus on contain: (i) the number of PS (S); (ii) the capacity
of each PS (C); (iii) the types of SKUs (K); (iv) the queue length (Q). Throughout
all sensitivity analysis, RS-VNS is used due to its superior performance.

5.3.1 Effect of the number of PS

We investigate the impact of the number of PS by varying it from 1 to 8 while fix-
ing other parameters as N = 100 , M = 100 , K = 10 , C = 3 , Q = 3 and � = 6 . Mean-
while, both SINGLE and MULTIPLE rack visiting strategies are considered. The
number of rack moves for different number of PS are presented in Fig. 8a in which
the dashed line represents the SINGLE strategy while the solid line represents the
MULTIPLE strategy. According to the strategy of MULTIPLE and the procedure of
the sequence improvement in the proposed algorithm, the gap between MULTIPLE
and SINGLE policies actually stands for the rack moves between PS. It shows that
the gap increases as S increases which is reasonable since there would be more rack
moves between PS replacing the rack transports between the storage area and the

Fig. 10 Effect of the types of SKUs on rack moves

538 B. WANG et al.

1 3

picking area when more PS are available. It can also be found that the number of
rack moves by both strategies tends to decrease first and then increase slightly as S
increases. It shows that involving too many PS, for example, 7 or 8, will on the con-
trary increase the rack moves.

To better reflect the throughput time of the given orders, we present the aver-
age rack moves per PS in Fig. 8b in which a clear trend can be observed that
the average number of rack moves decreases as S increases. However, the slope
of the curves in Fig. 8b is very steep at first and turns very flat when the num-
ber of PS goes beyond 4. Since more PS incur more human labors, more space
requirement and other potential costs, hence, the number of PS needs to be set
up carefully. In the following sensitivity analysis experiments, the number of PS
defaults to 3.

5.3.2 Effect of the capacity of each PS

The capacity of each PS C is supposed to affect the necessary rack moves of com-
pleting all orders: larger C means more SKUs could be retrieved by a single rack
visit and therefore the total rack moves can be reduced. We take sensitivity analy-
sis by varying C from 2 to 18 while fixing other parameters, for example, N = 100
and M = 100 . Both SIMPLE and MULTIPLE strategies are implemented. As can
be seen from Fig. 9, both strategies exhibit the same varying trends with the PS
capacity. The total number of rack moves required to complete all orders decreases
as C increases, as expected. However, the trend shows that the decreasing rate is
getting smaller and smaller in general, indicating that the marginal benefits brought
by increased C is gradually fading. When C increases to a certain level, such as 10,
the number of rack moves tends to stabilize. Actually, limited by the space of PS,

Fig. 11 Effect of the queue length on rack moves

539

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

C cannot be increased infinitely. Meanwhile, larger C also adds inconvenience to
the human pickers as they need to take care of more units. Therefore, in reality, the
capacity should be set as larger while considering the human factors.

5.3.3 Effect of the SKU diversity

We investigate the effect of the SKU diversity on the RMFS efficiency. Specifically,
we consider both the total number of SKU types in the RMFS (K), and the num-
ber of SKU types in each rack which is uniformly distributed in [1, �] . Based on
the large scale instance N = 100 , M = 100 and S = 3 , experiments are conducted by
setting K ∈ {6, 7, ..., 12} and � ∈ {3, 4, 5} and the results are presented in Fig. 10.
As K increases, the total number of rack moves increases in an approximately lin-
ear manner, regardless of the value of � . It indicates that the number of SKU types
has a positive correlation with the order picking workload. On the other hand, when
observing the performance of �=3, 4 and 5 presented in Fig. 10, it shows that the
more types of SKUs each rack contains, the fewer rack moves required to complete
the orders. Hence, increasing the SKU diversity of the racks can effectively reduce
the number of rack moves. It should be mentioned also that the shared storage policy
will incur more efforts in the replenishment process, therefore, an integrated study

Start

Initialize:
Task list,

robot initial position

Is there any task in
the system?

Is there any idle
robot in the system?

Wait Assign the idle robot(s)
to tasks

End

Yes

No

Yes

No

Maneuver robots to
locations of their
objective racks

Is the starting time
satisfies the
condition?

Set off the robot

Yes

Collision avoidance
and deadlock

recovery

WaitNo

Is the rack arrives in
planned order?

Wait in the bufferNo

Yes

Pick orders at
current PS

Visit another PS if
necessary

Remove the task and
mark the robot as

idle

Fig. 12 The simulation framework

540 B. WANG et al.

1 3

covering complete order processing cycle is meaningful in the future, see for exam-
ple, Roy et al. (2019).

5.3.4 Effect of the queue length

Finally, we investigate the effect of the queue length Q, which restricts the positions
of the same rack in different rack sequences. As we know, queue of racks before a PS
helps save the picker’s waiting time for racks, however, will the queue help reduce
the total rack moves? Our answer is no when inter-PS service is permitted, after we
conduct the following experiments. We record the number of rack moves by varying
Q from 1 to 5 based on large instance N = 100 , M = 100 and S = 3 ,as shown in
Fig. 11. It reveals a fact that the total number of rack moves required to complete all
orders is not sensitive to parameter Q under the SINGLE strategy. However, it tends
to increase as Q increases under the MULTIPLE strategy. Another interesting fact
can be observed from Fig. 11 that the gap between the two curves is getting smaller
as Q increases, which means that the number of rack moves between PS decreases
as Q rises. The phenomenon can be intuitively explained as: when Q rises, there are
more racks queueing in the front of PS which are prohibited to serve other PS, there-
fore, less inter-PS rack moves can occur, as a result, the rack moves between the
picking area and the storage area increases. Therefore, as a managerial insight, we
are suggested to use shorter queue length in the RMFS as long as the queue of racks
can supply the human picker in time.

6 Simulation study

Until now the objective of the proposed optimization problem and the proposed two-
stage hybrid algorithm is to minimize the total number of rack moves between the
storage area and the PS, however, it seems more realistic and intuitive to consider
the completion time of all orders as the measure of the RMFS performance. We
also took a bold assumption that the length of a time slot in different PS is the same,
however, the violation of this assumption may affect the throughtput time of the
order picking process. In this study, we design an event-driven simulation system
from scratch using Java (see also Duan et al. (2021)), and find that the two goals
behave consistently, proving that the assumption on the time slot length is accept-
able. The framework of the simulation is shown in Fig. 12, in which the following
steps are followed:

Table 8 Regression coefficients Number
of robots

a0 a1 a2 a′
1

a′
2

confidence level

3 34.3 30.5 22.5 0.9867 0.0412 0.99
6 32.7 15.8 10.3 0.9887 0.0369 0.99
9 41.52 10.73 2.75 0.9920 0.0143 0.99

541

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

(1) Tasks and robots initialization. A task corresponds to an element in a rack
sequence which is defined by a rack number and its corresponding PS number indi-
cating which rack should be carried to which PS. At the beginning of the experi-
ment, a list of tasks is initialized according to the rack sequences obtained by the
proposed RS-VNS algorithm. The first tasks of all PS is firstly added to the task list,
then followed by the second ones, and so on so forth. A fleet of robots is initially
waiting at the parking area on an idle status.

(2) Task assignment. Whenever there are idle robots, tasks are extracted from the
task list in order and assigned to a nearest idle robot. When a robot is associated
with a task, it then moves to the origin of the task, that is, the storage location of
the rack. The A* algorithm is used for the path planning of the robots to generate
shortest routes. In a multiple-robot environment, collision between robots must be
avoided and deadlocks should be avoided or resolved once happen. In this study, we
adopt an authority-based mechanism to avoid collisions, and a deadlock detection
and recovery method to handle the deadlocks.

(3) Set off the robots. When a robot is assigned a task and arrives at the objective
rack, it may not set off immediately since it must not arrive at the PS earlier than the
task before it. For a task i, denote its departure time from the objective rack as Tdep

i
 ,

and denote the shortest travel time from the rack to the PS as Ttravel
i

 , then the depar-
ture time of task i should be Tdep

i
= max

{
current time,T

dep

i−1
+ Ttravel

i−1
− Ttravel

i

}
 ,

where task i and task i − 1 belong to the same PS.
(4) Service at the PS. Considering that there may need extra time for collision

avoidance and deadlock recovery in the process of robots moving toward the PS,

Fig. 13 Correlation between the number of rack moves and the completion time

542 B. WANG et al.

1 3

some racks may not arrive at the corresponding PS in the planned order if no action
is taken. We set buffers for each PS, and the rack which arrives earlier than origi-
nally planned can wait in the buffer until its previous rack arrives. In this way, the
arrival sequence can be strictly guaranteed. When a rack is visiting the PS, orders
extracted from the order sequence are fulfilled and finished orders are removed from
the system.

(5) Inter-PS visit. Before completion of the current task, the robot will be assigned
with another task if it is going to perform an inter-PS service in the next step.

(6) Return to the storage area. After servicing the PS, a rack will be return to a
nearest empty storage area.

The warehouse layout in the simulation is similar to Fig. 1 which is about 1200
m2 in size containing three PS (Q = 3). In the storage area, there are 360 rack
locations in total, separated by 5 aisles and 1 cross aisle. Each rack location is
1.2*1.2m2 . The average speed of the robots is 1m/s and we ignore the acceleration
and deceleration. In the simulation experiments, we randomly-generated 5
instances of scale (N = 50,M = 50), (N = 50,M = 100) and (N = 100,M = 100),
and solve them with algorithms OS-Greedy, OS-VNS, RS-Greedy, and RS-VNS,
respectively. Therefore, we have 60 solutions (rack sequence and order sequence
for each PS) which are fed into the simulation system as input. To accommodate
different robot fleet size, we apply 3,6 and 9 robots to the simulation system,
respectively, to deduce the total completion time which is measured by the time
when the last order is fulfilled. Therefore, for each robot number, we can regress
a function in which the number of rack moves (x1) and number of inter-PS ser-
vices (x2) are independent variables, and the total completion time (y) is the
dependent variable. We take a linear regression function as yi = ai0 + ai1xi1 + ai2xi2
where i ∈ {1, 2, 3} represents conditions when 3, 6, and 9 robots are used. After
obtaining the regression coefficients aij, i ∈ {1, 2, 3}, j ∈ {0, 1, 2} , we further cal-
culate the standardized regression coefficients a�

ij
, i ∈ {1, 2, 3}, j ∈ {1, 2} since

each of them refers to how many standard deviations the completion time will
change, per standard deviation increase in the predictor variable. The results are
shown in Table 8.

From Table 8 we can find out that the regression is in good quality as the con-
fidence level of the three groups of experiments is as high as 99%. It can also be
noticed that the standardized regression coefficient of x1 is much larger than that
of x2 . Therefore, the number of inter-PS rack moves has a very limited effect on
the completion time, therefore can be ignored. To better reflect the relationship
between the number of rack moves and the completion time, we generate the scat-
ter plots as shown in Fig. 13, which clearly suggests a linear function between
them. Therefore, the simulation proves that to consider the number of rack moves
as an objective is reasonable.

543

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

7 Conclusions

This paper studies the order picking problem in a robotic mobile fulfillment system
with multiple picking stations, which jointly addresses the order assignment, order
sequencing, rack selection, and rack sequencing subproblems. The inter-PS rack
service and the queueing effect of each PS are specifically considered. We formu-
late this problem as an integer programming model to minimize the number of rack
moves. Then, a two-stage hybrid heuristic algorithm framework is proposed to solve
the problem. Specifically, we design algorithms OS-Greedy and OS-VNS from the
perspective of order sequencing and algorithms RS-Greedy and RS-VNS from rack
sequencing. Numeric experiments show that RS-VNS outperforms other algorithms.
A significant finding is that allowing inter-PS service can improve the solution by
31.06% on the testing cases. This finding encourages the industry to adapt to this
picking mode rather than operating independent PS orders.

We also conduct a series of sensitivity analysis to draw managerial insights. For
example, more PS tend to decrease the completion time, however, marginal ben-
efit decreases as the number of PS increases. Likewise, larger PS capacity can also
help decrease the number of rack moves, however, human factors must be consid-
ered at the same time. The total number of SKU types K has been observed to have
an approximately linear and positive effect on the number of rack moves, while the
scattering of SKUs to more racks can effectively decrease the rack moves. An inter-
esting fact about queue length Q is that the objective is not sensitive to Q under the
SINGLE strategy, while it tends to increase as Q increases under the MULTIPLE
strategy. Therefore, we are suggested to use shorter queue length in the RMFS as
long as the queue of racks can supply the human picker in time. Finally, the simula-
tion system verifies that the total completion time is linearly related to the number of
rack moves.

In this study, also in Boysen et al. (2017a) and Valle and Beasley (2021), the
objective function is represented by the number of times that racks travel between
PS and the storage area. In future work, one can consider how to formulate the prob-
lem to account for the actual transportation distance and time. Besides, research
efforts can also be devoted to considering different storage policies, for example, the
class-based storage policy and the dedicated storage policy.

Appendix A RS‑Greedy

We denote the difference between rack j and the current in-process orders as
DiffVector(j), then the pseudocode of the RS-Greedy is depicted in Algorithm 3
where PickingOrderSet, RemainingOrderSet and DiffMatrix have the same meaning
as in OS-Greedy, and RackSet is the set of all racks. According to the algorithmic
procedure, orders are extracted from the given OrderSequence successively, while
the rack with the minimum difference with all the in-process orders (excluding those
finished SKUs) and free of conflict is selected to visit the PS one by one. Completed
orders will be removed and replaced by new orders. Until the SKUs contained on

544 B. WANG et al.

1 3

the current picking orders cannot be fulfilled anymore by the current rack, a new
rack will be selected, so on so forth.

545

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

Appendix B Psudeocode of RS‑VNS

Funding This work is supported by the National Key R&D Program of China under grant No.
2018AAA0101705, the National Natural Science Foundation of China under Grant No. 71772100, and
Shenzhen Science and Technology Project under Grant No. JCYJ20170412171044606, and Sichuan Sci-
ence and Technology Program under grant No. 2021JDRC0009.

References

Azadeh K, De Koster R, Roy D (2019) Robotized and automated warehouse systems: review and recent
developments. Transp Sci 53(4):917–945

546 B. WANG et al.

1 3

Bartholdi III JJ, Hackman ST (2008) Warehouse and distribution science. Supply Chain and Logistics Insti-
tute, School of Industrial and Systems Engineering, Georgia Institute of Technology. https:// www. scl.
gatech. edu/ sites/ defau lt/ files/ downl oads/ gtscl wareh ouse_ scien ce_ barth oldi. pdf

Boysen N, Briskorn D, Emde S (2017) Parts-to-picker based order processing in a rack-moving mobile robots
environment. Eur J Opera Res 262(2):550–562

Boysen N, Briskorn D, Emde S (2017) Sequencing of picking orders in mobile rack warehouses. Eur J Opera
Res 259(1):293–307

Boysen N, Fedtke S, Weidinger F (2018) Optimizing automated sorting in warehouses: the minimum order
spread sequencing problem. Eur J Opera Res 270(1):386–400

Boysen N, de Koster R, Weidinger F (2019) Warehousing in the e-commerce era: a survey. Eur J Opera Res
277(2):396–411

Bozer YA, Aldarondo FJ (2018) A simulation-based comparison of two goods-to-person order picking sys-
tems in an online retail setting. Int J Prod Res 56(11):3838–3858

De Koster R, Le-Duc T, Roodbergen KJ (2007) Design and control of warehouse order picking: a literature
review. Eur J Opera Res 182(2):481–501

Duan G, Zhang C, Gonzalez P, Qi M (2021) Performance evaluation for robotic mobile fulfillment systems
with time-varying arrivals. Comp Ind Eng 158:107365

Füßler D, Boysen N (2019) High-performance order processing in picking workstations. EURO J Transp Logist 8(1):65–90
Grosse EH, Glock CH, Jaber MY, Neumann WP (2015) Incorporating human factors in order picking plan-

ning models: framework and research opportunities. Int J Prod Res 53(3):695–717
Gu J, Goetschalckx M, McGinnis LF (2007) Research on warehouse operation: a comprehensive review. Eur

J Opera Res 177(1):1–21
Huang GQ, Chen MZ, Pan J (2015) Robotics in ecommerce logistics. HKIE. Transactions 22(2):68–77
Jaghbeer Y, Hanson R, Johansson MI (2020) Automated order picking systems and the links between design

and performance: a systematic literature review. Int J Prod Res 58(15):4489–4505
Lamballais T, Roy D, De Koster MBM (2019) Inventory allocation in robotic mobile fulfillment systems.

IISE Transactions pp 1–17
Li Z, Li W (2015) Mathematical model and algorithm for the task allocation problem of robots in the smart

warehouse. Am J Opera Res 5(06):493
Li ZP, Zhang JL, Zhang HJ, Hua GW (2017) Optimal selection of movable shelves under cargo-to-person

picking mode. Int J Simul Modell 16(1):145–156
Menéndez B, Pardo EG, Alonso-Ayuso A, Molina E, Duarte A (2016) Variable neighborhood search strate-

gies for the order batching problem. Comp Opera Res 78:500–512
Merschformann M, Lamballais T, Koster MBMD, Suhl L (2019) Decision rules for robotic mobile fulfill-

ment systems. Opera Res Perspect 6:100128
Mladenović N, Hansen P (1997) Variable neighborhood search. Comp Opera Res 24(11):1097–1100
Öncan T (2015) Milp formulations and an iterated local search algorithm with tabu thresholding for the order

batching problem. Euro J Opera Res 243(1):142–155
QuickTron (2020) Quicktron. http:// www. flash hold. com/ engli sh. php
Roy D, Nigam S, de Koster R, Adan I, Resing J (2019) Robot-storage zone assignment strategies in mobile

fulfillment systems. Transp Res Part E: Logist Transp Rev 122:119–142
Scholz A, Schubert D, Wäscher G (2017) Order picking with multiple pickers and due dates-simultaneous solution of

order batching, batch assignment and sequencing, and picker routing problems. Euro J Opera Res 263(2):461–478
Tanimoto TT (1957) Ibm internal report. Nov 17:1957
Valle CA, Beasley JE (2021) Order allocation, rack allocation and rack sequencing for pickers in a mobile

rack environment. Computers & Operations Research 125:105090
Weidinger F, Boysen N, Briskorn D (2018) Storage assignment with rack-moving mobile robots in kiva

warehouses. Transp Sci 52(6):1479–1495
Wurman PR, D’Andrea R, Mountz M (2008) Coordinating hundreds of cooperative, autonomous vehicles in

warehouses. AI Magaz 29(1):9–9
Xi X, Liu C, Miao L (2018) Storage assignment and order batching problem in kiva mobile fulfilment sys-

tem. Eng Optim 50(11):1941–1962
Yuan R, Graves SC, Cezik T (2019) Velocity-based storage assignment in semi-automated storage systems.

Prod Opera Manag 28(2):354–373
Zhang J, Yang F, Weng X (2019) A building-block-based genetic algorithm for solving the robots allocation

problem in a robotic mobile fulfilment system. Mathematical Problems in Engineering 2019
Zou B, Gong YY, Xu X, Yuan Z (2017) Assignment rules in robotic mobile fulfilment systems for online

retailers. Int J Prod Res 55(20):6175–6192

https://www.scl.gatech.edu/sites/default/files/downloads/gtsclwarehouse_science_bartholdi.pdf
https://www.scl.gatech.edu/sites/default/files/downloads/gtsclwarehouse_science_bartholdi.pdf
http://www.flashhold.com/english.php

547

1 3

Order and rack sequencing in a robotic mobile fulfillment system…

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Bingqian Wang is a master student at Tsinghua University, Shenzhen International Graduate School. Her
research interests focus on the optimization of logistics systems.

Xiuqing Yang is a researcher at the Civil Aviation Logistics Technology Co., Ltd. Her research interest is
technical innovation in aviation logistics.

Mingyqo Qi is currently an Associate Professor in Industrial Engineering with Tsinghua University,
Shenzhen International Graduate School (SIGS). His research interests include modeling, optimization,
and simulation of logistics systems.

Authors and Affiliations

Bingqian WANG1 · Xiuqing YANG2 · Mingyao QI3

 Bingqian WANG
 17888841403@163.com

 Xiuqing YANG
 yangxiuqing@caltco.com

1 Research Center on Modern Logistics, Shenzhen International Graduate School, Tsinghua
University, Shenzhen 518055, China

2 The Civil Aviation Logistics Technology Co., Ltd., The Second Research Institute of Civil
Aviation Administration of China, Chengdu 610041, China

3 Research Center on Modern Logistics, Shenzhen International Graduate School, Tsinghua
University, Shenzhen 518055, China

http://orcid.org/0000-0002-3678-6522

	Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 Assumptions and an example
	3.2 Mathematical model

	4 The two-stage heuristic algorithm
	4.1 Order assignment
	4.2 Order and rack sequencing
	4.2.1 Rack conflict and its resolution
	4.2.2 The order sequencing algorithms
	4.2.3 The rack sequencing algorithms

	5 Numerical experiments
	5.1 Instances generation
	5.2 Algorithmic performance
	5.3 Sensitivity analysis
	5.3.1 Effect of the number of PS
	5.3.2 Effect of the capacity of each PS
	5.3.3 Effect of the SKU diversity
	5.3.4 Effect of the queue length

	6 Simulation study
	7 Conclusions
	Appendix A RS-Greedy
	Appendix B Psudeocode of RS-VNS
	References

