
Vol.:(0123456789)

https://doi.org/10.1007/s10696-020-09391-7

1 3

Optimizing construction schedules and material deliveries 
in city logistics: a case study from the building industry

Pamela C. Nolz1 

 
© The Author(s) 2020

Abstract
We consider the problem of designing a logistics system to assure efficient urban 
construction processes for an innovative urban building area in the city of Vienna. 
We address the challenges of coordinating workers and the timely delivery and stor-
age of material with the objective of optimizing resource-efficiency as well as reduc-
ing traffic related to construction tasks. The problem is formulated as a hierarchical 
optimization problem, incorporating tactical construction logistics planning as well 
as operational construction logistics planning. On the tactical level a time schedule 
of tasks for different construction phases and the corresponding material transports 
and storage decisions are optimized on a weekly basis, while on the operational 
level the daily optimization of material transports, modeled as an inventory routing 
problem, is addressed. A mixed-integer programming formulation of the problem on 
each planning level is provided and solved using CPLEX. The suggested approach is 
tested on realistic data from the city of Vienna. The results associated with different 
scenarios are analyzed to illustrate the value of the proposed approach for the design 
of construction logistics processes.
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1  Introduction

Cities all over the world are attracting more and more inhabitants leading to the 
development of novel as well as reconstructed urban areas. Providing liveable 
zones in major cities is an important issue, since approximately 70% of the peo-
ple on the global scale will be living in urban areas by 2050  (Magistrat 2014). 
This trend can also be observed in Vienna, where a population growth of 22% 
to more than 2 million people is expected by 2050. Establishing more attractive, 
sustainable and economically viable urban areas for a growing amount of resi-
dents thus becomes a key point high on the agenda of decision makers. Taking 
into account the aim of providing high and socially balanced quality of living and 
preserving resources is essential when building and refurbishing residential and 
working areas, public utilities and infrastructure.

To achieve these aims, the city of Vienna established so-called Smart City 
objectives, which comprise three pillars: resources, innovation and quality of 
life (Smart City Wien 2018). Resources focuses on issues such as intelligent con-
struction sites, energy, building standards, and mobility concepts. While green 
field projects enable the adoption and implementation of novel concepts for more 
sustainable living through all implementation phases, existing infrastructure and 
traffic in urban areas limit the extent of refurbishment and construction tasks, 
such as establishing new residential buildings, expanding train and metro sta-
tions, or renovating and reconstructing buildings to improve their functionality 
and sustainability. These construction projects contribute to more attractive, sus-
tainable and economically viable urban areas once they are finished by improving 
accessibility, functionality and energy efficiency. However, construction tasks can 
cause severe negative impact on the surrounding community, to a large extent due 
to transport activities (Gilchrist and Allouche 2005).

In this work, we aim at optimizing construction logistics operations encoun-
tered in the development process of newly built areas, comprising multiple con-
struction sites. More specifically, we present the case study of the new develop-
ment area Seestadt Aspern in Vienna. Seestadt Aspern is one of Austria’s largest 
construction areas, where a new city quarter is being constructed in several phases 
until 2030 on an area of 2.4 million m2 . This area will provide accommodation 
for about 20,000 people and about 20,000 workplaces (Wien 3420 Aspern Devel-
opment AG 2016). All construction tasks in Seestadt Aspern are managed by 
the consortium ‘Baulogistik & Umweltmanagement Seestadt Aspern’ (BLUM), 
a construction logistics and environmental management agency. Together with 
BLUM, the assumptions and input for the case study were derived from their 
experiences in site logistics.

To avoid negative impacts of construction tasks on the environment, a so-
called Environmental Impact Assessment (EIA) of Seestadt Aspern has been 
performed. As introduced by the European Commission (2017), Environmental 
assessment is a procedure that ensures that the environmental implications of 
decisions are taken into account before the decisions are made. Environmental 
assessment can be undertaken for individual projects, such as a dam, motorway, 
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airport or factory, on the basis of Directive 2011/92/EU (known as EIA Direc-
tive)  (EIA 2007). The principle is to ensure that plans, programs and projects 
likely to have significant effects on the environment are made subject to an envi-
ronmental assessment, prior to their approval or authorization. As a limiting fac-
tor for negative environmental effects of construction logistics operations, the 
EIA of Seestadt Aspern states that a specific number of transport trips per day 
must not be exceeded.

Besides the reduction of traffic related to construction tasks, we aim at optimiz-
ing resource-efficiency, referring to human resources as well as time. According 
to Ekeskär (2016), in the construction industry, a large part of construction work-
ers’ workdays is spent on non-value adding tasks, such as material handling and 
waiting (for material to be delivered, for other tasks to be finished, etc.). Less than 
half of the deliveries in the construction industry are delivered damage free and in 
the right amount, to the right location and on time  (Ekeskär 2016). Coordination 
helps to free time of construction workers for value adding tasks, otherwise spent on 
material handling or waiting. Coordination of construction logistics operations leads 
to improvements in terms of cost reduction, improved quality, reduced lead times, 
increased productivity and increased sustainability (Ekeskär 2016).

The limited number of transports that are allowed in the construction area, the 
problem of unproductive time of construction workers due to organizational defi-
ciencies, and the lack of storage facilities on site are main challenges in construc-
tion logistics. While the latter two issues might provoke a higher number of trans-
ports, these are to be minimized for economic, environmental and societal issues. 
The number of deliveries to a construction area and disruptions due to material han-
dling on site can be reduced by consolidating material. Deliveries of material can 
be bundled at a construction consolidation center (CCC) and delivered to multiple 
construction sites. Figure 1 shows the principles of a CCC. By minimizing transport, 
residents and businesses already present in the surroundings of the construction area 
can be protected from nuisance, emissions and shortage of space.

The contributions of this work are threefold: (1) We introduce a Construction 
Logistics Optimization Problem (CLOP), which contains characteristics of project 
scheduling and construction scheduling problems, as well as inventory routing prob-
lems (IRPs). To the best of our knowledge, the combination of these issues has not 
yet been investigated. The present paper aims at filling this gap by considering the 
interdependence of multi-project scheduling and the related material delivery and 

Fig. 1   Principles of a construction consolidation center (CCC), adapted from Lundesjo (2015)
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storage decisions. By simultaneously optimizing construction schedules and trans-
ports, efficiencies in terms of time and cost, as well as related issues such as quality 
and environmental considerations are addressed. (2) We present a hierarchical mod-
eling approach, which decomposes the CLOP addressed in the present paper into a 
tactical and an operational planning level. A time schedule of construction tasks for 
multiple construction sites is determined on the tactical planning level, considering 
material transports and storage decisions on a weekly basis. Based on this sched-
ule, the daily material transports and storage decisions, modeled as an IRP, are opti-
mized on the operational planning level. We provide a mixed-integer programming 
formulation of the problem at each level and solve it with CPLEX. (3) The suggested 
approach is tested on realistic data from the city of Vienna and the results associated 
with different scenarios are analyzed to illustrate the value of the proposed approach 
for the design of construction logistics processes.

The remainder of the article is organized as follows. Section 2 reviews relevant 
literature related to the tactical and the operational planning levels. In Sect. 3 the 
problem is described in detail and mathematical formulations are provided. Experi-
mental results for a real-world case study are presented in Sect. 4 to show the effec-
tiveness of construction logistics planning. Concluding remarks and managerial 
implications are provided in Sect. 5.

2 � Related literature

This section presents a review of construction optimization, starting with project 
scheduling in general, followed by construction scheduling problems, and then 
exploring inventory routing problems for construction-related transport. Finally, the 
contribution of the present paper beyond the state-of-the-art is presented.

2.1 � Project scheduling problems

A project can be defined as a series of tasks, whose executions take time, require 
resources, and incur costs. Precedence relations may exist between tasks referring to 
technical or organizational requirements with respect to the order or the timing of the 
tasks relative to each other. The resources allocated to a project are generally scarce and 
the time for completion of a project is limited, i.e. has a deadline. Project scheduling 
means the selection of execution modes and determination of execution time intervals 
for the tasks of a project. According to the type of constraints taken into account when 
scheduling a project, time-constrained and resource-constrained project scheduling 
problems can be distinguished. In time-constrained problems tasks are to be scheduled 
subject to precedence relations, where the required resources can be provided in the 
required amount, possibly with higher execution cost. In resource-constrained prob-
lems, limited resources have to be taken into account. Time-constrained problems may 
also include a resource allocation problem, where resources have to be assigned to tasks 
over time (Demeulemeester and Herroelen 2002; Schwindt and Zimmermann 2015).
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Artigues et al. (2015) present (mixed-)integer linear programming formulations 
for the resource-constrained project scheduling problem. The different formula-
tions are divided into three categories: (i) time-indexed formulations, in which time-
indexed binary variables encode the status of a task at the respective point in time 
(e.g. Kolisch 2000a, b; Kolisch and Hess 2000; Pritsker et al. 1969), (ii) sequencing 
formulations including two types of variables, continuous natural-date variables rep-
resenting the start time of the tasks and binary sequencing variables used to model 
decisions with respect to the ordering of tasks that compete for the same resources 
(e.g. Olaguibel and Goerlich 1993), (iii) event-based formulations, containing binary 
assignment and continuous positional-date variables (e.g. Koné et al. 2011).

Decision makers regularly face a time-cost problem (Doerner et  al. 2008): car-
rying out a project on time necessitates crashing certain tasks by exploiting extra 
resources, which increases the cost of a project. Doerner et al. (2008) develop and 
evaluate three metaheuristic solution procedures for multi-objective activity crash-
ing. These procedures provide decision support for the selection of appropriate 
tasks and crashing measures under time and cost considerations. Dodin and Elimam 
(2001) focus on integrated project scheduling and material ordering. They allow job 
crashing by treating the task duration as a decision variable and consider rewards 
(penalties) for project termination ahead of (after) the due date. The authors show 
that an optimal schedule either starts as early as possible or completes as late as pos-
sible and that in case of no rewards (penalties), an optimal solution is obtained by 
scheduling every job at its latest start time.

Zhang et al. (2006) propose a heuristic algorithm investigating possible combi-
nations of tasks, simultaneously scheduling all tasks in the selected combination 
to minimize project duration. Kolisch and Padman (2001) investigate the literature 
focusing on project scheduling problems considering models, data, as well as opti-
mal and heuristic algorithms.

2.2 � Construction scheduling problems

Construction scheduling problems are concerned with optimally scheduling tasks 
over time and allocating resources accordingly for successful completion of con-
struction projects. Construction scheduling problems have been investigated includ-
ing various features over the last 20 years. Given precedence and/or resource con-
straints, the aim of construction scheduling optimization is to find a feasible schedule 
of tasks (with respect to the constraints) with minimum or maximum objective func-
tion value, e.g. shortest project duration or lowest cost (Zhou et al. 2013). In con-
struction scheduling problems a trade-off between cost and time exists. The duration 
of a construction project can be crashed by allocating additional resources, which 
leads to an increase in direct cost (e.g. material and labor), but a reduction in indi-
rect cost (e.g. project overhead) (Ng and Zhang 2008). Yang (2005) present a piece-
wise linear time-cost tradeoff analysis under budget uncertainty. The authors show 
that the time-cost tradeoff problem is of practical interest when a planner has to 
crash tasks to meet a predefined deadline. A time-cost tradeoff can be beneficial in 
order to evaluate whether a crash is worth an additional cost or whether some tasks 
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should be lengthened, whereas the extended project duration is still acceptable and 
the project cost is reduced.

Several articles address the coordination of assembly planning and manufacturing 
planning, with relevance for construction scheduling. Kolisch (2000a) consider the 
problem of scheduling multiple, large scale, make-to-order assemblies. In this paper, 
spatial resource and part availability constraints are taken into account in addition 
to classical precedence and resource constraints. The objective of the assembly 
scheduling problem is to place orders on assembly areas, assign parts to operations 
and schedule operations. The authors do not explicitly assign resources, parts and 
assembly areas, but they schedule operations subject to aggregated availabilities of 
resources, assembly area and parts. They present a model with two types of decision 
variables (indicating when an operation is started and the time span of tardiness of 
an order, respectively). The authors show how their assembly scheduling problem 
can be transformed into the resource allocation problem, the assembly area loca-
tion problem, and the part allocation problem. A list scheduling heuristic is devel-
oped to solve the problem and several priority rules are evaluated. Based on that 
paper, Kolisch and Hess (2000) introduce three efficient heuristic solution methods, 
a biased random sampling method and two tabu search-based optimization meth-
ods with different neighborhoods. Kolisch (2000b) considers make-to-order produc-
tion in a multi-project environment, where an order consists of jobs interrelated by 
precedence constraints. Assembly jobs are scheduled and fabrication lotsizes are 
determined with the objective of providing a production plan which is feasible with 
respect to time and resources, while minimizing holding and setup cost.

Schultmann and Rentz (2001, 2002) use project scheduling methods for decon-
struction projects under resource constraints. Material-flow management for closed-
loop recycling of construction materials is addressed and a multi-mode resource-
constrained project scheduling model is optimized. The authors investigate different 
dismantling strategies and evaluate three scenarios compared to the present situ-
ation in practice. In addition the effects of a limited net site area for storage and 
machines in urban dismantling projects are illustrated. Li and Love (1997) focus on 
the minimization of project cost and duration in a single-objective problem formu-
lation. Said and El-Rayes (2014) provide an optimization framework for material 
supply and storage management at construction sites. The authors focus on a multi-
objective construction logistics optimization problem, minimizing logistics cost and 
schedule criticality. Caron et  al. (1998) develop a stochastic model to plan mate-
rial delivery to a construction site, enabling a continuous construction process. Zhou 
et al. (2013) present a recent review of methods and algorithms for optimizing con-
struction scheduling.

2.3 � Inventory routing problems

The inventory routing problem (IRP), first addressed by Bell et  al. (1983) is a 
variation of the classical vehicle routing problem (VRP) since it integrates inven-
tory management, vehicle routing and delivery-scheduling decisions (Coelho 
et al. 2013). Federgruen and Zipkin (1984) show the positive economic effects of 
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the coordination of distribution and inventory decisions. As opposed to individual 
orders of material in VRPs, the quantity and timing of deliveries are coordinated 
and determined by the supplier in IRPs (Moin and Salhi 2007). The supplier has 
to manage product inventory at customers to ensure that customers do not experi-
ence a stock-out, while minimizing costs for the distance traveled and inventory 
holding costs, and respecting limited inventory holding capacity.

Bertazzi et al. (2008) present an overview of IRPs, regarding different formu-
lations and several extensions. IRPs can differ with respect to the planning hori-
zon, which can be finite or infinite. Another characteristic of IRPs are production 
and consumption rates, which can either be modeled in a deterministic or a sto-
chastic way, can be constant over time or vary over time and can take place at dis-
crete time periods or constantly. Further, inventory holding costs can be incorpo-
rated at the supplier or at the customer, apply to both actors or to none. Another 
characteristic of IRPs concerns the vehicle fleet, which can be homogeneous or 
heterogeneous and the fleet size can be one, many or unconstrained. Finally, dif-
ferent inventory replenishment policies can be specified (Bertazzi et  al. 2008). 
Under a maximum level policy, for example, the replenishment level is flexible 
but restricted by the maximum capacity available at each customer, while under 
an order-up-to-level policy, a customer is delivered up to the maximum inventory 
capacity whenever visited (Coelho et al. 2013).

Due to its complexity, only few exact algorithms have been developed for the 
IRP, among those the first branch-and-cut algorithm for a single-vehicle IRP by 
Archetti et al. (2007). The authors investigated three replenishment policies and 
used different inequalities to strengthen the formulation for each policy. A multi-
vehicle formulation was proposed and solved with branch-and-cut by Coelho 
et  al. (2013). The three-indexed model was compared to a two-index formula-
tion without vehicle index (Adulyasak et al. 2014). Since the number of variables 
grows with the number of vehicles, routing constraints were replaced by variables 
without a vehicle index. The authors propose several sets of valid inequalities 
to strengthen the proposed vehicle index and non-vehicle index formulations, as 
well as branch-and-cut approaches for subtour elimination.

Federgruen and Simchi-Levi (1995) provide a mathematical formulation of the 
single-depot single-period IRP. Campbell and Hardin (2005) consider the prob-
lem of minimizing the number of vehicles for periodic deliveries, which is moti-
vated by IRPs considering customer demands at a steady rate. Yu et  al. (2008) 
study an IRP with split deliveries, allowing the delivery to each customer in 
each period to be performed by multiple vehicles. Solyalı et al. (2012) present a 
robust IRP with uncertain demands. The authors determine the delivery quanti-
ties and delivery times, as well as the vehicle routes and they allow backlogging 
of demand at customers. Campbell et al. (1998) study the IRP as well as the sto-
chastic IRP, where the future demand of a customer is uncertain. The authors 
introduce a dynamic programming model, considering only transportation and 
stockout costs, neglecting inventory holding costs.

In many articles, metaheuristics such as adaptive large neighborhood search, vari-
able neighborhood search and genetic algorithms are applied to obtain potentially 
optimal solutions within reasonable time (Coelho et  al. 2012; Hemmelmayr et  al. 
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2010; Nolz et al. 2014). For a recent survey on 30 years of inventory routing, the 
interested reader is referred to Coelho et al. (2013).

2.4 � Contribution beyond state‑of‑the‑art

In the present paper, the following modeling concepts for construction project 
scheduling on the tactical planning level are applied. We consider (binary) on/off 
variables from time-indexed formulations, set to 1 if task i is in progress at time t, 
and 0 otherwise. In addition, we introduce variables indicating the start time of task 
i. Since the acceleration of a task requires additional resources and, hence, contrib-
utes to a higher cost, different decisions as to how the various tasks are performed 
result in different time-cost realizations for the overall project. In the present paper, 
a (piecewise) linear time-cost tradeoff is used to identify the sets of decisions that 
lead to desirable project duration and cost. In order to minimize construction-related 
transport, the delivery of material from a construction consolidation center to multi-
ple construction sites over a given time horizon, is modeled as an IRP on the opera-
tional planning level. We consider a maximum level inventory replenishment policy 
for deliveries performed with a homogeneous fleet of vehicles.

Table 1 gives an overview of the features provided in the literature as compared 
to the present paper. It can be seen in which aspects the present paper differs from 
and extends the literature. Articles are presented in the lines, while the features can 
be seen in the rows. The combination of project scheduling, inventory management 
and vehicle routing is treated for the first time in the present paper, which provides a 
valuable contribution beyond the state-of-the-art.

As Drexl and Kimms (1997) already stated more than twenty years ago, appar-
ently, lot sizing and scheduling interacts with other planning tasks in a firm, e.g. dis-
tribution planning, cutting and packing, and project scheduling. The authors claim 
the coordination of these planning tasks as essential to avoid high transaction costs 
in the presence of competition, and thus as the most crucial goal for future work. 

Table 1   Related literature

Project 
schedul.

Manufact. 
planning

Assembly 
planning

Material 
planning

Inventory 
managem.

Vehicle 
routing

Archetti et al. (2007) – – – – ✓ ✓

Dodin and Elimam (2001) ✓ – – ✓ ✓ –
Doerner et al. (2008) ✓ – – – – –
Federgruen and Zipkin (1984) – – – – ✓ ✓

Kolisch (2000a) – – ✓ – – –
Kolisch (2000b) – ✓ ✓ – ✓ –
Kolisch and Hess (2000) – – ✓ – – –
Schultmann and Rentz (2001) ✓ – – ✓ – –
Schultmann and Rentz (2002) ✓ – – ✓ – –
Solyalı et al. (2012) – – – – ✓ ✓

Zhang et al. (2006) ✓ – – – – –
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Consequently, in the present paper the hierarchical problem formulation of the tac-
tical and the operational planning problems, where project scheduling and coordi-
nated inventory and routing decisions are made, is addressed.

3 � Problem description

We present a hierarchical problem formulation for construction schedules and mate-
rial transports of multiple construction sites. The first level focuses on tactical con-
struction logistics planning, and the second level focuses on operational construction 
logistics planning. In order to enable flexibility and reactivity in decision-making, 
the two levels are solved consecutively, where decisions on the tactical level are 
taken as constraints for the operational level.

The tactical planning level addresses the entire construction project and focuses 
on optimizing construction logistics processes a priori. Operational planning is car-
ried out on a bi-weekly rolling horizon (cf. Baker 1997), which means that the oper-
ational planning problem is repeatedly solved in a cycle of two weeks. Therefore, the 
whole time horizon is divided into periods of one week and an iterative procedure 
is started. The operational planning problem for the coming two weeks is solved but 
only the schedule for the first week is fixed. Information updates on material avail-
ability are incorporated and deliveries can be adapted within the operational plan-
ning horizon of 2 weeks. Unforeseen events might occur when construction works 
are already ongoing reflecting different sources of supply chain uncertainty (e.g. 
material which is not delivered in the right quantity, at the right time, or at the right 
place). Therefore, the operational level is dynamically adjusted to handle changes in 
the a priori plan given by the tactical planning. In this way, project risk and quality 
are considered, next to the minimization of project duration and cost.

The rolling horizon proceeds in this manner, as illustrated in Fig. 2. This on the 
one hand allows to incorporate accurate information available at the operational 
level each week. On the other hand it enables to look ahead and optimize transport 
and storage decisions. The hierarchical model represents a guideline for the opera-
tional planning given by the tactical planning.

Fig. 2   Rolling horizon planning procedure
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3.1 � Tactical planning level

The objective of the tactical Construction Logistics Optimization Problem (CLOP) 
is to determine a schedule for the construction tasks at each construction site within 
the time horizon and a schedule for transports of construction material to the con-
struction sites, while minimizing total cost. The cost include personnel cost com-
prising acceleration cost for deploying an additional number of workers to perform 
construction tasks, penalty cost associated with a milestone delay, and storage cost.

Four decisions have to be made: (1) when to start a construction task, (2) how fast 
to perform a construction task, (3) when to transport material to each construction 
site, (4) how much material to transport to each construction site, to minimize total 
cost. While (1) and (2) are standard decisions known from project scheduling, the 
planning of transports is a novel contribution of this work.

Table 2 introduces the notation for the tactical CLOP under investigation.
Each building (i.e. construction site) is constructed by performing a set of typi-

cal construction tasks, grouped in different construction phases. Let G = (V, E) be a 
complete graph, where V = {0,… ,N} is the vertex set and E is the edge set. Mate-
rial is located at a construction consolidation center (CCC) outside the construction 
area, from where it is transported to the different construction sites. Vertex 0 repre-
sents the CCC and vertices i = 1,… ,N represent the set of construction sites.

An earliest start date for constructing each building is specified, as well as a set 
of milestones indicating the completion time limit for each construction phase. We 
express by t = 1,… , T  the discrete time periods partitioning the time horizon, by 
u = 1,… ,U the construction phases, and by p = 1,… ,P the different construction 
tasks. We denote by ESip the earliest start time of task p at construction site i. The 
variable eipt is 1 if task p starts at time t at construction site i, 0 otherwise. Variable 
sip is the start time of task p at construction site i.

Variable ript takes the value 1 if task p is active at construction site i at time t, 
0 otherwise. The variable gipt determines whether active task p is in process using 
resources at construction site i at time t. We denote by wip the passive processing 
time, if active task p is in process but not using resources, e.g. for material to dry 
out. Passive processing time therefore captures the time required to finish a task 
before the next task can be started, also known as minimal time lag (e.g. in Bartusch 
et al. 1988; Schwindt 1999).

The milestone of phase u at construction site i is expressed by Diu . We denote by 
Pu the set of construction tasks belonging to construction phase u and by Qp the set 
of predecessor tasks of task p. Precedence relations are specified for tasks, as shown 
in the activity-on-node network in Fig. 3.

The activity-on-node network indicates tasks which can be performed in paral-
lel. Tasks potentially concluding a construction phase coinciding with a milestone 
are marked in red / light. Please note, that dummy nodes indicating project start and 
project end have been omitted in this illustration.

For each task, the minimal, normal, and maximal duration are defined, reached 
by deploying the maximal, normal, and minimal number of workers, respectively. 
The normal duration of task p performed at construction site i is expressed by l̄ip , 
while lip gives the actual duration of task p at construction site i.
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The duration of a task can be reduced by allocating more resources (deploying an 
additional number of workers) at certain cost (also known as ‘crash cost: Doerner 
et al. 2008; Zhou et al. 2013). Not all tasks are eligible to be accelerated, therefore 
A defines the set of tasks which can be accelerated. cPers are the personnel cost per 
person for performing a task per time period. We denote by Fip the personnel factor 

Table 2   Notation for tactical CLOP

Parameters
T Number of discrete time periods
N Number of construction sites
U Number of construction phases
P Number of construction tasks
Pu Set of construction tasks belonging to construction phase u
Qp Set of predecessor tasks of task p
H Set of tasks during which storage is not possible
A Set of tasks which can be accelerated
cPers Personnel cost per person for performing a task per time period

cDel
iu

Penalty cost per time period of a milestone delay at construction site i

cStor Storage cost per unit stored per time period
mip Amount of material for task p performed at construction site i
wip Passive processing time of task p
l̄ip Normal duration of task p performed at construction site i
Fip Personnel factor for task p at construction site i per time period
ESip Earliest start time of task p at construction site i
Si Maximum storage capacity at construction site i
Rtact Maximum number of transports allowed per time period
Vp Maximum vehicle capacity per transport for task p
Diu Milestone of phase u at construction site i
M Sufficiently big number
Decision variables
sip Start time of task p at construction site i
aip Speed factor of task p at construction site i
fip Personnel cost factor for acceleration of task p at construction site i
lip Actual duration of task p at construction site i
kiu Delay of completion of phase u at construction site i
eipt 1 if task p starts at the beginning of time period t at construction site i, 0 otherwise
ript 1 if task p is active at construction site i at time t including passive processing time, 

0 otherwise
gipt 1 if active task p is in process using resources at construction site i at time t, 0 

otherwise
hit 1 if storage at construction site i is possible at time t, 0 otherwise
yipt Amount of material for task p delivered to construction site i at time t
qipt Amount of material for task p required at construction site i at time t
Iipt Inventory of material for task p at construction site i at time t
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Fig. 3   Activity-on-node network, showing precedence relations and parallel tasks

857



1 3

Optimizing construction schedules and material deliveries…

for task p at construction site i per time period. The personnel factor Fip equals the 
number of workers that are required during the execution of task p at site i when the 
task is performed with normal duration l̄ip , where l̄ip Fip is the regular workload of 
the task. Augmenting the duration of a task at no cost is also possible (e.g. in order 
to avoid exceeding the maximum number of allowed transports because of material 
requirements).

Deceleration does not imply any direct cost, but could lead to additional cost 
because of milestone delays or material storage. The delay of completion of phase u 
at construction site i is given by kiu , and the penalty cost per time period of a mile-
stone delay at construction site i are given by cDel

iu
.

The speed factor of task p at construction site i is expressed by aip and the person-
nel cost factor for acceleration of task p at construction site i is expressed by fip:

where the speed factor aip can take a continuous value between 0.5 and 2.
Based on discussions with practitioners, i.e. BLUM, we assume that a task cannot 

be performed twice as fast as normal, if twice the number of workers as normal are 
deployed. This is due to the fact that a larger number of workers are hindered from 
working efficiently, since space at the construction site is limited.

By deploying additional personnel, the duration of task p can be reduced, as illus-
trated in the following example. The normal duration of task p at construction site i 
is 4 weeks and the required number of workers is 10, requiring 40 person weeks in 
total. Then, if the duration is increased to 8 weeks with a speed factor aip of 2, the 
required number of workers is 5, again requiring 40 person weeks in total, since the 
personnel cost factor fip is 1. If the duration is decreased to 2 weeks with a speed 
factor aip of 0.5, the required number of workers is 30 (60 person weeks in total), 
since the personnel cost factor fip is 1.5.

The variable yipt gives the amount of material for task p delivered to construc-
tion site i at time t. We express the maximum vehicle capacity per transport for task 
p with Vp . For storage purposes, material might be stored in compliance with the 
construction phase directly inside the constructed buildings. However, for example 
during the flooring of floating screed, no material can be stored and therefore the 
storage capacity during the required time interval is set to zero. The set of tasks dur-
ing which storage is not possible is expressed by H . Variable hit indicates if storage 
at construction site i is possible at time t.

Variable qipt is the amount of material for task p required at construction site i at 
time t. The amount of material for task p at construction site i is given by mip . The 
inventory of material for task p at construction site i at time t is expressed by Iipt . The 
maximum storage capacity at construction site i is given by Si . Storing material inside 
the constructed buildings implies cost, since the material might cause inconvenience to 
the workers at the construction sites. Therefore, cStor are the storage cost per unit stored 
per time period. A maximal number of transports Rtact allowed to enter and leave the 
construction area is given for each time period. We therefore face a trade-off between 
the restriction of transports to be carried out, the amount of material to be stored at the 

fip =

{
1 if aip ≥ 1

2 − aip otherwise,
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construction sites and the number of workers deployed at the same time to perform a 
task.

In the following, we provide a mixed-integer programming formulation of the tacti-
cal CLOP.

subject to

(1)min

N∑

i=1

P∑

p=1

cPers l̄ip Fip fip +

N∑

i=1

U∑

u=1

cDel
iu

kiu +

N∑

i=1

P∑

p=1

T∑

t=1

cStor Iipt

(2)sip =

T∑

t=1

t eipt ∀ i = 1,… ,N, p = 1,… ,P

(3)lip = aip l̄ip ∀ i = 1,… ,N, p = 1,… ,P

(4)sij ≥ sip + lip + wip ∀ i = 1,… ,N, j = 1,… ,P, p ∈ Qj

(5)sip ≥ ESip ∀ i = 1,… ,N, p = 1,… ,P

(6)fip ≥ 2 − aip ∀ i = 1,… ,N, p ∈ A

(7)Iip0 = 0 ∀ i = 1,… ,N, p = 1,… ,P

(8)Iipt = Iip,t−1 + yipt − qipt ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(9)sip ≤ ript t +M (1 − ript) ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(10)ript t ≤ sip + lip + wip − 1 ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(11)
T∑

t=1

ript = lip + wip ∀ i = 1,… ,N, p = 1,… ,P

(12)hit ≤ 1 − ript ∀ i = 1,… ,N, p ∈ H, t = 1,… , T

(13)hit ≥ 1 −
∑

p∈H

ript ∀ i = 1,… ,N, t = 1,… , T

(14)
P∑

p=1

Iipt ≤ Si hit ∀ i = 1,… ,N, t = 1,… , T
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(15)sip ≤ gipt t +M (1 − gipt) ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(16)gipt t ≤ sip + lip − 1 ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(17)lip =

T∑

t=1

gipt ∀ i = 1,… ,N, p = 1,… ,P

(18)qipt ≤ gipt

2mip

l̄ip
∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(19)qipt ≥ gipt

mip

2 l̄ip
∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(20)
qip,t+1 ≥ qipt −M (1 − gip,t+1) ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T − 1

(21)
qipt ≥ qip,t+1 −M (1 − gipt) ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T − 1

(22)
T∑

t=1

qipt = mip ∀ i = 1,… ,N, p = 1,… ,P

(23)Rtact ≥

N∑

i=1

P∑

p=1

yipt

Vp

∀ t = 1,… ,T

(24)Diu + kiu ≥ sip + lip + wip ∀ i = 1,… ,N, u = 1,… ,U, p ∈ Pu

(25)kiu ≥ 0 ∀ i = 1,… ,N, u = 1,… ,U

(26)sip, lip ≥ 0 ∀ i = 1,… ,N, p = 1,… ,P

(27)0 ≤ Iipt, yipt, qipt ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(28)0.5 ≤ aip ≤ 2.0 ∀ i = 1,… ,N, p = 1,… ,P

(29)1.0 ≤ fip ≤ 1.5 ∀ i = 1,… ,N, p = 1,… ,P

(30)eipt, ript, gipt ∈ {0, 1} ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T
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The objective function of the tactical problem is given by Eq.  (1), representing the 
sum of personnel cost, penalty cost for milestone delays, and storage cost at con-
struction sites. Personnel cost are determined by the personnel factor under normal 
duration of a task adapted with the personnel cost factor for acceleration of that task. 
Penalty cost incur for every time period exceeding the due date of completion of a 
milestone (i.e. construction phase). Storage cost are calculated per time period of 
storage of a material at a construction site.

Constraints (2) to (6) are concerned with the schedule and duration of construc-
tion tasks. Constraints (2) define the start time of task p at construction site i. Con-
straints (3) determine the actual duration of task p as the normal duration altered by 
a speed factor. Constraints (4) guarantee the sequence and potentially necessary pas-
sive processing time between predecessor and successor tasks. Task p cannot start 
before its earliest start time, cf. Constraints (5). Constraints (6) determine the per-
sonnel cost factor of task p at construction site i.

Constraints (7) to (22) are concerned with the inventory and completion of con-
struction projects. The inventory level of material for task p at construction site i at 
the end of period t arises from all deliveries and requirements occurring by time t 
(Constraints 7 and 8).

Constraints (9) to (11) determine if task p is active at construction site i at time 
t including passive processing time wip . The inventory at construction site i must 
not exceed the maximum storage capacity, if storage is allowed, cf. Constraints (12) 
to (14). Constraints (15) to (17) determine if task p is in process using resources at 
construction site i at time t. Constraints (18) to (22) determine the amount of mate-
rial for task p required at construction site i at time t. Constraints (18) determine the 
maximal amount of material required for task p at construction site i at time t in case 
of acceleration. Since the duration of task p can maximally be shortened to half of 
the normal duration, in Constraints (18) twice the amount of material required for 
task p is split over the normal duration. For a deceleration of task p to maximally 
twice the normal duration, the amount of material is divided by twice the normal 
duration, cf. Constraints (19). Constraints (20) and (21) evenly distribute the amount 
of material required for task p at construction site i over the time horizon when task 
p is in process.

Constraints (23) restrict the maximum number of transports per time period. 
These constraints are inflicted by the EIA, as an obligatory measure against nega-
tive environmental impacts of construction tasks. The EIA is performed for large 
construction projects, such as Seestadt Aspern, and concerns the global construction 
processes, comprising several building sites. Because of this practically highly rel-
evant restriction, a decomposition of the global problem into several sub problems, 
addressing each construction site individually, is not possible.

Constraints (24) determine the completion time of phase u. Finally, Constraints 
(25) to (31) define the ranges of the variables of the problem.

On the tactical level, the model contains N(4P + U + 3PT) = O(NPT) 
continuous variables, N(3PT + T) = O(NPT) binary variables and 

(31)hit ∈ {0, 1} ∀ i = 1,… ,N, t = 1,… , T
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7NP + NP|Q| + N|A| + 9NPT + N|H|T + 2NT + T + NU|P| = O(NPT + NP2) 
constraints.

3.2 � Operational planning level

The operational CLOP can be described as follows. We aim at determining a set 
of vehicle routes for the distribution of construction material to construction sites, 
while minimizing total cost, including transportation cost and storage cost. Three 
decisions have to be made: (1) when to deliver to each construction site, (2) how 
much material to deliver to each construction site each time it is served, (3) how to 
route the vehicles, to minimize total cost.

Table 3 introduces the notation for the operational CLOP under investigation.
Let G = (V, E) be a complete graph, where V = {0,… ,N} is the vertex set and E 

is the edge set. A distance or travel time matrix satisfying the triangle inequality 
is defined on E . We denote by cTrans

ij
 the transportation cost between vertices i and 

j, based on distance or travel time.

Table 3   Notation for operational CLOP

Parameters
Ttact Number of discrete time periods t̃  from tactical level
T Number of discrete time periods t for operational level
N Number of construction sites
P Number of construction tasks
cTrans
ij

Transportation cost for going from construction site i to j

cStor Storage cost per unit stored per time period
yipt̃ Amount of material for task p delivered to construction site i at time t̃
qipt Amount of material for task p required at construction site i at time t
Sit Maximum storage capacity at construction site i at time t
hit 1 if storage at construction site i is possible at time t, 0 otherwise
Bp Vehicle capacity for task p
Kpt Amount of material for task p available at CCC at time t
Roper Maximum number of vehicle routes allowed at time t̃
Iip0 Initial inventory for task p at construction site i
M sufficiently big number
Decision variables
xijpt 1 if a vehicle goes from construction site i to j for task p at time t, 0 otherwise
zipt 1 if construction site i is visited for task p at time t, 0 otherwise
dipt Amount of material for task p delivered to construction site i at time t
bipt Amount of back and forth trips to construction site i at time t delivering material for 

task p
vipt Vehicle load of material for task p after leaving location i at time t
Iipt Inventory for task p at construction site i at time t
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We express by t = 1,… , T  the discrete time periods defining the rolling time 
horizon of the operational level and by t̃ = 1,… , Ttact the discrete time periods 
from the tactical level.

The following input is transferred from the tactical planning level (variables) 
to the operational planning level (parameters):

•	 yipt̃ is the amount of material for task p delivered to construction site i at time 
t̃ , as determined on the tactical level

•	 qipt specifies the amount of material for task p required at construction site i 
at time t, derived from the tactical level per discrete time period t̃ and equally 
apportioned among each operational time period t

•	 hit indicates whether storage at construction site i is possible at time t as part 
of the discrete time periods t̃ from the tactical level

Vertices i = 1,… ,N represent the set of construction sites, where material for 
construction processes is delivered. A set of vehicles is located at the CCC, rep-
resented by vertex 0. The vehicle capacity for task p is given by Bp and Kpt states 
the amount of material for task p available at the CCC at time t. The variable 
xijpt indicates whether a vehicle goes from construction site i to j for task p at 
time t. The variable zipt is 1 if construction site i is visited for task p at time t, 0 
otherwise. Variable dipt determines the amount of material for task p delivered to 
construction site i at time t on the operational level and bipt gives the number of 
back and forth trips to construction site i at time t delivering material for task p. 
Back and forth trips are performed if full truck loads of material are brought to a 
construction site. Less-than-truckload shipments are performed to bundle mate-
rial for different construction sites to reduce cost and optimally use capacities. 
The vehicle load of material for task p after leaving construction site i at time t is 
expressed by vipt.

The storage cost at construction site i per unit of material stored per time 
period are given by cStor . The maximum storage capacity at construction site i at 
time t is expressed by Sit . The initial inventory for task p at construction site i is 
given by Iip0 and Iipt determines the inventory for task p at construction site i at 
time t on the operational level.

With Roper , we denote the maximum number of vehicle routes allowed per time 
period.

In the following, we provide a mixed-integer programming formulation of the 
operational CLOP.

subject to
(32)

min

N∑

i=0

N∑

j=0

P∑

p=1

T∑

t=1

cTrans
ij

xijpt +

N∑

i=1

P∑

p=1

T∑

t=1

(cTrans
0i

+ cTrans
i0

)bipt +

N∑

i=1

P∑

p=1

T∑

t=1

cStorIipt
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(33)Roper ≥

N∑

j=1

P∑

p=1

x0jpt +

N∑

i=1

P∑

p=1

bipt ∀ t = 1,… , T

(34)
N∑

i=0, i≠j

xijpt ≤ 1 ∀j = 1,… ,N, p = 1,… ,P, t = 1,… , T

(35)
N∑

j=0, i≠j

xijpt ≤ 1 ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(36)
N∑

i=0, i≠j

xijpt =

N∑

i=0, i≠j

xjipt ∀ j = 0,… ,N, p = 1,… ,P, t = 1,… , T

(37)zjpt ≤

N∑

i=0, i≠j

xijpt + bjpt ∀j = 1,… ,N, p = 1,… ,P, t = 1,… ,T

(38)dipt ≤ M zipt ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(39)dipt ≥ Bp bipt ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(40)dipt ≤ Bp

(
N∑

j=0

xjipt + bipt

)
∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(41)
vjpt ≤ vipt − djpt + Bp bjpt + (1 − xijpt)M

∀ i = 0,… ,N, j = 1,… ,N, p = 1,… ,P, t = 1,… ,T

(42)vipt ≤ Bp ∀ i = 0,… ,N, p = 1,… ,P

(43)Iipt = Iip0 +

t∑

s=1

dips −

t∑

s=1

qips ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(44)qipt ≤ Iip0 +

t∑

s=1

dips −

t−1∑

s=1

qips ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… ,T

(45)
P∑

p=1

Iipt ≤ Sihit ∀ i = 1,… ,N, t = 1,… ,T
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The objective function of the operational problem is given by Eq. (32), representing 
the sum of transportation cost for delivery tours as well as back and forth trips, and 
storage cost at construction sites.

Constraints (33) state that no more than the maximum number of vehicle 
routes allowed per time period can be performed by delivery tours and back and 
forth trips. Constraints (34) and (35) make sure that each construction site is only 
supplied once per task per time period. Constraints (37) determine whether a con-
struction site is visited to deliver material for task p at time t. Constraints (36) 
guarantee flow conservation. Material for task p can only be delivered to con-
struction site i, when i is visited at time t, cf. Constraints (38). Constraints (39) 
and (40) define the amount of material for task p delivered to construction site i 
at time t. While Constraints (39) determine the lower bound of material deliver-
ies by the number of back and forth trips, Constraints (40) determine the upper 
bound by the sum of back and forth trips plus delivery tours. Constraints (41) 
balance the continuous decrease of the load of each vehicle along a delivery tour. 
Through these constraints, subtours are eliminated as well. Constraints (42) are 
vehicle capacity restrictions. Constraints (43) define the level of inventory at con-
struction site i at time t. Constraints (44) determine the amount of material for 
task p delivered to construction site i at time t. The inventory at construction site i 
at time t must never exceed the maximum storable inventory, cf. Constraints (45). 
If ht

i
 is 0, storage is not allowed. Constraints (46) transfer the amount of material 

delivered for task p at construction site i at time t from the tactical to the opera-
tional planning phase. Constraints (47) state that the amount of material delivered 
for task p to construction site i at time t is limited by the amount of material for 
task p available at the CCC at time t. Finally, Constraints (48) to (52) define the 
variables of the problem.

(46)
T∑

t=1

dipt =

Ttact∑

t̃=1

yipt̃ ∀ i = 1,… ,N, p = 1,… ,P

(47)
N∑

i=1

dipt ≤ Kpt ∀ p = 1,… ,P, t = 1,… , T

(48)xijpt ∈ {0, 1} ∀ i, j = 0,… ,N, p = 1,… ,P, t = 1,… , T

(49)zipt ∈ {0, 1} ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(50)vipt ≥ 0 ∀ i = 0,… ,N, p = 1,… ,P, t = 1,… , T

(51)dipt, Iipt ≥ 0 ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T

(52)bipt ∈ ℕ ∀ i = 1,… ,N, p = 1,… ,P, t = 1,… , T
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On the operational level, the model contains 3NPT = O(NPT) continuous vari-
ables, NPT = O(NPT) integer variables, PT(N2 + N) = O(N2PT) binary variables 
and T + 9NPT + N2PT + 2NP + NT + PT = O(N2PT) constraints.

4 � Case study

We focus on the development phase of 2017 to 2023 in the northern area of Seestadt 
Aspern. All assumptions are based on data gathered for the first development phase 
in the southern area of Seestadt Aspern, investigative interviews and consultation 
with BLUM, and extensive literature research.

4.1 � Test scenarios

The hierarchical Construction Logistics Optimization Problem (CLOP) requires 
data-intensive input with respect to the envisaged construction projects. This data 
is usually derived via Building Information Modeling (BIM). BIM simulates the 
construction project in a virtual environment. A building information model char-
acterizes the geometry, spatial relationships, geographic information, quantities and 
properties of building elements, cost estimates, material inventories, and project 
schedules Azhar (2011).

We created realistic test scenarios from Seestadt Aspern, comprising 5 construc-
tion projects of different sizes (between 4000 and 18,000 m2 gross floor space), as 
indicated in Fig. 4. Buildings 1 and 2 are residential houses with a gross floor area of 
8000 m2, buildings 3 and 4 are commercial types and offices with a gross floor area 
of 18,000 m2, and building 5 is residential with a gross floor area of 4000 m2. The 
base setting serves as a starting point for 8 further scenarios, which are described in 
Table 4. 

An earliest start date and a latest completion date for each building are specified, 
as well as a set of milestones indicating the completion time limit for a construction 
phase. Each building is constructed by performing a set of 10 typical construction 
tasks, grouped in different construction phases. Personnel cost specify the cost of a 
worker with average skills per week. Storage cost indicate the inconvenience cost to 
store an item for a specific task at a construction site per week. Penalty cost incur for 
each week exceeding a milestone.

Material is located at a construction consolidation center (CCC) outside the con-
struction area. For storage purposes, a very limited area of each building can be used 
if adequate in the current construction phase. For example during the flooring of 
floating screed, all storage material has to be removed and the storage capacity dur-
ing the required time intervals is set to zero. We do not consider any storage capacity 
during preliminary building works, since in this phase we only start constructing the 
buildings, so no storage area is available. Vehicles transport material from the CCC 
to construction sites, where a maximum number of 700 transports entering and leav-
ing the construction area is specified for each week. The number of planning periods 
in the tactical planning level are 71 weeks.
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Fig. 4   Test instance representing 5 construction sites in Seestadt Aspern, adapted from Wien 3420 
(2016)

Table 4   Scenario description

Scen. Person. c. (€) Storage c. (€) Penalty c. (€) Additional feature

Base 550 5 500,000 Basic settings
CS1 250 50 1,000,000 Basic settings
CS2 700 5 250,000 Basic settings
MS1 550 5 500,000 Restrictive milestones
MS2 550 5 500,000 Loose milestones
MU 550 5 500,000 Material unavailable
NoS 550 5 500,000 No storage
NoA 550 5 500,000 No acceleration
NoC 550 5 500,000 No coordination
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Table  5 indicates the number of binary (bin.), integer (int.), continuous (cont.) 
variables (v.) and the number of constraints of each of the scenarios, resulting from 
the tactical and the operational model.

We perform sensitivity analysis on parameters influencing the cost and charac-
teristics of the computed solutions with an important impact on decision making. 
Table 4 depicts the variations on these parameters in different scenarios. The Base 
scenario contains the basic setting of cost without specific features. The variation in 
cost factors (personnel cost, storage cost, penalty cost) reflects the trade-off between 
time and cost in construction logistics planning and is investigated in scenarios CS1 
and CS2. The impact of restrictive and loose milestones for completing a construc-
tion phase compared to the base setting is investigated in scenarios MS1 and MS2. 
In order to cope with supply chain uncertainty, we generate a scenario defining the 
availability of material in the CCC (scenario MU), where material for a specific task 
is not available in a specific time period (week). The material unavailability is con-
sidered at the operational planning level on a bi-weekly rolling horizon and is hence 
unknown at the tactical planning level. If necessary, delivery dates at the operational 
planning level have to be adapted dynamically (within the rolling horizon of two 
weeks), influencing the cost of the solution. Two policies with respect to ‘crashing’, 
i.e. reduction of the duration of construction tasks, and storage are examined. We 
compare the effects of the base scenario, where acceleration is possible to a scenario 
where acceleration is not possible due to limited work force availability (scenario 
NoA). Next, we investigate a scenario where storage on site is not possible due to 
limited working space (scenario NoS), as opposed to the base scenario where storage 
on site is partially permitted.

Finally, in order to show the applicability and the benefits of the IRP, we analyze 
a scenario where no coordination of deliveries from different suppliers via bundling 
of materials at the CCC is performed. As distinct from the Retailer Managed Inven-
tory (RMI) system, in which each customer (e.g. retailer, construction site) manages 
its own inventory, a Vendor Managed Inventory (VMI) system assigns the inventory 
control at customers to the vendor. This VMI system is the basis of the IRP, where 

Table 5   Number of variables and constraints

Scen. Tactical Operational

Bin.v. Int.v. Cont.v. Constraints Bin.v. Int.v. Cont.v. Constraints

Base 12,555 0 12,360 43,761 4100 500 1600 8820
CS1 12,555 0 12,360 43,761 4100 500 1600 8820
CS2 12,555 0 12,360 43,761 4100 500 1600 8820
MS1 8060 0 8010 28,217 4100 500 1600 8820
MS2 23,250 0 22,710 80,745 4100 500 1600 8820
MU 12,555 0 12,360 43,761 4100 500 1600 8820
NoS 12,555 0 12,360 45,786 4100 500 1600 8820
NoA 13,950 0 13,710 48,585 4100 500 1600 8820
NoC 12,555 0 12,360 43,761 4100 500 1600 8820
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the cooperation between vendor and customer aims to ensure a winwin situation for 
both parties. Scenario NoC presents a RMI system without coordination of material 
supplies, considering only direct deliveries from suppliers to individual construction 
sites.

4.2 � Computational results

All experiments are conducted on a PC equipped with an Intel Core i7-4600 proces-
sor paced at 2.7 GHz and with 16 GB of RAM. The mixed-integer linear programs 
are solved using IBM ILOG CPLEX 12.6 and Concert Technology.

We first solve the tactical model. The solution of the tactical model then serves 
as parameters for the operational model. Conceptually, the two planning phases 
could be combined to a global model, solving the problem at once. This would allow 
to immediately implement the tactical decisions and solve the global model on a 
rolling-horizon of two weeks, respecting updated parameters and fixed known vari-
ables. However, practically the computational effort of this solution approach is not 
feasible with the current technical equipment.

Table 6 presents the computation time of each of the planning levels for the 
different scenarios. In addition, it reports the percentage of optimally solved oper-
ational problems (optimally solved), as well as the average relative gap of the 
feasible but not optimally solved operational solutions (average gap). The MIP 
on the tactical planning level is always solved to optimality. For the operational 
planning level, a time limit of 600 s is given to each iteration of the rolling hori-
zon procedure. It can be observed that the computation time of the tactical level 
varies between 17 and 106 min for most of the scenarios. As can be seen from 
computation times, the tactical problem is more difficult to solve if milestones 
are restrictive. Scenario MS1, containing restrictive milestones, needs a computa-
tion time of 510 minutes to be solved to optimality. The percentage of optimally 
solved solutions and the average gap of the feasible solutions give an indication 

Table 6   Computation time and performance

Scen. Tactical Operational

Runtime (min.) Runtime (min.) Optimally solved 
(%)

Average gap (%)

Base 34 112 87 0.75
CS1 20 108 86 1.76
CS2 17 277 62 3.34
MS1 510 160 61 4.09
MS2 106 171 86 3.89
MU 34 87 87 0.57
NoS 20 1 100 –
NoA 101 136 83 3.69
NoC 34 1 100 –
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that Scenario MS1 is also hard to solve on the operational level with 61% of opti-
mal solutions and an average gap of 4.09% for feasible solutions. The elapsed 
time of the operational level (which is limited for each iteration) varies in general 
between 87 and 277  min. Scenario NoS can be solved efficiently within 1  min, 
since no storage decisions have to be made. Scenario NoC, where only direct 
deliveries from suppliers to individual construction sites are considered, can as 
well be solved to optimality within 1 min.

The investigated scenarios are evaluated by means of two groups of perfor-
mance indicators. The first group refers to solution cost, while the second group 
elaborates on solution characteristics. Personnel cost, penalty cost, storage cost, 
transport cost, and total cost represent the cost structure of the different scenarios. 
Maximum and average number of trips per day, number of accelerated construc-
tion tasks, average acceleration of accelerated construction tasks, average speed 
of execution of construction tasks and average storage duration of material repre-
sent the characteristics of the solutions.

Table  7 shows the cost that incur for each of the scenarios, as illustrated in 
Fig. 5. While personnel and penalty cost are derived from the tactical model, the 

Table 7   Experimental results (cost analysis: cost in Euro)

Scen. Person. c. Penalty c. Storage c. Transport c. Total cost (€)

Base 8,691,716 0 4024 1,950,473 10,646,213
CS1 3,950,780 0 27,456 1,955,295 5,933,531
CS2 11,062,184 0 4884 1,947,211 13,014,279
MS1 9,876,460 0 4228 1,940,752 11,821,440
MS2 8,609,920 0 5210 1,965,580 10,580,710
MU 8,691,716 0 4118 1,950,425 10,646,259
NoS 8,750,093 0 0 1,985,898 10,735,991
NoA 8,608,820 7,000,000 4,031 1,953,858 17,566,708
NoC 8,691,716 0 4490 1,977,952 10,674,158

Fig. 5   Total cost of construction tasks for different scenarios
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operational model determines detailed storage and transport cost. Personnel cost 
are lowest for scenario CS1 and highest for scenario CS2, which is obviously due 
to the underlying cost distribution. Instead, personnel cost are only slightly differ-
ent for scenarios Base, MU and NoS, but rather high for scenario MS1. This is due 
to the restrictive milestones of this scenario, which force the acceleration of con-
struction tasks in order to avoid penalty cost. The acceleration of tasks requires 
additional personnel, resulting in higher cost. When acceleration is not possible 
(scenario NoA) or not necessary due to loose milestones (scenario MS2), person-
nel cost are thus lower. For most of the scenarios, milestones are respected and 
penalty cost are saved. When acceleration of construction tasks is not possible 
(scenario NoA), milestones have to be exceeded and high penalty cost incur. Stor-
age cost of the different scenarios vary only slightly, with two exceptions. Storage 
cost of scenario CS1 are elevated due to the underlying cost structure, while obvi-
ously no storage cost incur for scenario NoS, where storage at the construction 
site is not permitted. Storage cost are slightly higher when material is unavailable 
at the CCC (scenario MU) as opposed to the scenario Base, while transport cost 
are slightly lower. This is due to the fact, that the material which is unavailable in 
a specific time period, is then scheduled to be transported earlier and stored at the 
construction site. Transport cost are lowest for scenario MS1, since the restrictive 
milestones lead to a denser construction schedule, which enables the bundling 
of material on delivery tours. As a consequence fewer trips are performed and 
transport cost can be saved. When storage is not possible or storage cost are high, 
material needs to be delivered just-in-time and more transports are performed to 
provide material when it is needed. Consequently, high transport cost incur for 
scenarios NoS, NoC and CS1.

Table 8 depicts the solution characteristics of the investigated scenarios. When 
acceleration of construction tasks is not possible (scenario NoA), the maximum 
number of transport trips (max. trips) per day is lower compared to the other sce-
narios, since transports are spread over the whole time horizon while peaks do not 
occur. The average number of trips (av. trips) per day is elevated for scenario MS1, 
where milestones are restrictive and hence more transports need to be performed 
in a shorter time period. The opposite becomes apparent for scenario MS2, where 

Table 8   Experimental results (solution characteristics for different scenarios)

Scen. Max. trips Av. trips Accel. Av. accel. Av. speed Av. storage

Base 138 52.40 12 1.23 0.99 14.02
CS1 137 52.53 12 1.23 0.90 11.72
CS2 140 53.83 12 1.23 0.85 19.26
MS1 140 88.44 26 1.41 1.00 16.40
MS2 135 30.38 1 2.00 0.83 17.38
MU 138 52.40 12 1.23 0.99 14.12
NoS 137 53.18 14 1.25 0.94 −
NoA 122 48.41 − − 0.80 18.00
NoC 139 53.01 12 1.23 0.99 13.52
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milestones are loose and hence transports are to be performed over a longer time 
period. In general, it can be observed, that construction projects start at the earliest 
possible time in order to respect milestones at the end of construction phases. When 
these milestones are set loosely (scenario MS2), however, the average start time of 
construction projects is 2.4 weeks after the earliest possible start time. The number 
of accelerated tasks (accel.), average acceleration of accelerated tasks (av. accel.) 
and average speed of execution of tasks (av. speed) provide information about the 
deviation of construction tasks from their normal duration. The average speed of 
execution is the average value of accelerations and decelerations applied to tasks. 
Restrictive milestones (scenario MS1) cause the highest number of accelerated 
tasks. In scenario MS1, 26 tasks out of 50 are accelerated with an average accelera-
tion value of 1.41, while 16 tasks are performed more slowly than normally, leading 
to an average speed of 1.00. Loose milestones (scenario MS2) lead to an average 
speed of construction tasks of 0.83, where only one task is accelerated to half of the 
normal duration. The average speed of execution of construction tasks is also com-
paratively slow, when personnel cost are high (scenario CS2), and obviously when 
no acceleration is allowed (scenario NoA). High storage cost account for a short 
average storage duration (av. storage) of material, as can be seen in scenario CS1 as 
opposed to the other scenarios. The average storage duration is slightly higher when 
material is unavailable at the CCC (scenario MU) as compared to the scenario Base, 
since delivery dates on the operational planning level have to be adapted to mate-
rial supply. In general, it can be observed that the supply chain uncertainty does not 
significantly impact on the construction schedule. When coordination of material 
supplies is not possible (scenario NoC), only direct deliveries from suppliers to indi-
vidual construction sites are considered. This leads to an increase in the maximum 
number of trips and the average number of trips.

Figures  6 and  7 present illustrative examples for construction schedules of the 
base scenario (Base) compared to the scenario where milestones are restrictive 
(MS1). The schedules show ten groups of construction tasks on the ordinate, per-
formed in 5 construction projects. The associated number of transports, as well as 
the maximum number of allowed transports are illustrated on top. The time horizon 
is depicted on the abscissa, where milestones of the construction phases are indi-
cated as well. The charts show the duration of construction tasks, where the color 
of the tasks represents the speed of execution ranging from green / light (prolonged) 
to red / dark (accelerated). The focus of the two figures is on the illustration of the 
number of transports associated to the different scenarios. It can be observed that the 
maximum number of transports is very restrictive, especially when milestones limit 
the construction phases to a short period of time (scenario MS1). The maximum 
number of allowed transports determines the amount of material that can be deliv-
ered to each of the construction sites, further influencing the construction sched-
ules including storage plans and personnel utilization. The illustrated construction 
schedules serve as decision support for companies involved in urban construction 
processes. They indicate when each of the construction projects should be started, 
how fast and with how much personnel construction tasks should be performed and 
how material transports should be organized to respect all restrictions at minimum 
cost. It can be observed that under scenario MS1, construction tasks are accelerated 
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Fig. 6   Schedule of construction tasks, illustrating the number of transports per week at construction sites 
1–5 for the base scenario (Base)
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Fig. 7   Schedule of construction tasks, illustrating the number of transports per week at construction sites 
1–5 for scenario MS1 (restrictive Milestones)
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in order to achieve the restrictive milestones. Thus, the number of transports carried 
out per week is comparatively high, but still below the maximal number.

5 � Conclusion and managerial implications

This work presents a case study from the building industry, focusing on the opti-
mization of construction schedules and material deliveries to reduce total cost and 
waste of resources. In particular, we investigated a hierarchical construction logistics 
optimization problem enabling efficient urban construction processes. We addressed 
the challenges of coordinating workers and the timely delivery and storage of mate-
rial with the objective of optimizing resource-efficiency as well as reducing traffic 
related to construction tasks. We formulated a mathematical model for each plan-
ning level and solved it with CPLEX. An iterative rolling-horizon procedure applied 
on the operational planning level allowed to incorporate dynamic information and 
cope with supply chain uncertainties. We tested the suggested approach on realistic 
data from Seestadt Aspern in the city of Vienna and analyzed the results associated 
with different scenarios.

Experimental results make the trade-offs obvious that need to be faced, when 
planning construction logistics. Tighter project due dates require more personnel 
to accelerate the completion time of construction phases, thus increasing personnel 
cost. When storage of material on site is not possible, transports cannot be organ-
ized efficiently, i.e. through the bundling of material delivered to several construc-
tion sites located close-by. Hence, transport cost increase since all material has to 
be delivered just-in-time. Distribution can be optimized by combining the deliveries 
to different construction sites which are located close-by on one route. The num-
ber of deliveries to the construction area is reduced by consolidating material and 
disruptions due to material handling on site are decreased. The results also show 
that re-planning during project execution might be necessary due to supply chain 
uncertainties, i.e. when material is known to be unavailable at the operational plan-
ning level. Using the proposed hierarchical model, delivery and storage decisions on 
the operational level can be revised to incorporate dynamic information on material 
availability, while still following the tactical construction schedule.

The proposed construction logistics planning approach serves as a valuable deci-
sion support for the design of construction logistics processes. It can be used as 
well by municipalities or other stakeholders interested in estimating the number of 
flows necessary to perform the required construction works for a specific develop-
ment area. Operations research techniques, such as problem structuring methods and 
mathematical modeling support practitioners and decision makers. Complex prob-
lems can be analyzed effectively and efficient decisions can be made to implement 
productive and sustainable systems.

On the basis of this study, future research could focus on the explicit minimiza-
tion of consumed energy and produced emissions. Further, multi-level residential or 
office buildings could have specific task networks, entailing identical sub-projects 
for each level which could be processed in a sequential way. The investigation of a 
scenario where different crafts could be working at different levels at the same time, 
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would be of great interest for future research. This would also allow to incorporate 
learning effects from one level to the next.
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