Flexible Services and Manufacturing Journal (2020) 32:523-560
https://doi.org/10.1007/510696-019-09360-9

®

Check for
updates

Evolving ant colony system for large-sized integrated
process planning and scheduling problem considering
sequence-dependent setup times

Chunghun Ha'

Published online: 31 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

This paper proposes a new ant colony optimization (ACO) algorithm suitable for
integrated process planning and scheduling (IPPS) that optimizes both process plan-
ning and scheduling simultaneously. The IPPS covered in this study, when com-
pared to the conventional IPPS, is more flexible and complicated because sequence-
dependent setups and tool-related capacity constraints are additionally considered.
Traditional ACOs have limitations in improving the solution quality and computa-
tion time for IPPS. The high flexibility and complexity of IPPS requires a large size
of repository for pheromone trails and it causes the long computation time for updat-
ing them, excessive evaporation of pheromones, and unbalancing between phero-
mones and desirability. In the proposed ACO, each ant agent improves their own
incumbent solution or finds a new solution using the pheromone trails that is com-
posed of the experience information of the colony. Therefore, the proposed ACO
conducts individual and cooperative evolving at the same time. Furthermore, we
propose a simplified updating rule for pheromone trails and standardization of the
transition probability to increase efficiency of the algorithm. Experimental results
show that the proposed ACO is superior to recently proposed meta-heuristics for
benchmark problems of different sizes in terms of both solution quality and compu-
tation time.

Keywords Integrated process planning and scheduling problem - Ant colony
optimization - Sequence-dependent setup

P4 Chunghun Ha
chunghun.ha@hongik.ac.kr

Department of Industrial Engineering, Hongik University, 94 Wausan-Ro, Mapo-Gu,
Seoul 04066, Korea

@ Springer

http://orcid.org/0000-0002-4222-2555
http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-019-09360-9&domain=pdf

524 C.Ha

1 Introduction

Process planning and scheduling are two key activities in manufacturing plan-
ning. Process planning or computer aided process planning (CAPP) is the activ-
ity of determining the appropriate process, tool, sequence, and processing con-
ditions to transform raw materials into a designed shape. CAPP plays a central
role in building computer integrated manufacturing (CIM) systems by connecting
computer aided design (CAD) and computer aided manufacturing (CAM) (Reddy
1999; Tan and Khoshnevis 2000). Scheduling is an activity that determines the
starting times and the completion times of the operations to be processed. Optimi-
zation of these two activities has traditionally been carried out independently and
sequentially, that is, the scheduling is conducted with the predetermined process
plan. Shao et al. (2009), however, argued that the sequential approach involves
four vulnerabilities. First, the optimal plan can be often infeasible according to
the status of the shop floor at the time of execution. Second, even though the plan
is optimized by reflecting the real-time status, it also may become infeasible due
to the time delay between planning and execution. Third, the optimal schedule
based on the optimal process plan can lead to shortages of certain resources and
bottlenecks in certain machines. Fourth, optimization for a single-objective may
be inappropriate for multi-objective practical manufacturing.

To overcome those shortcomings, integrated process planning and scheduling
(IPPS) that optimizes the two distinct activities simultaneously has been consid-
ered. It is known that IPPS can improve facility efficiency, mean flow time, work-
in-process, machine utilization, and robustness of the shop floor (Rachamadugu
and Stecke 1994; Shao et al. 2009). Over the past two decades, research on IPPS
has grown. In previous studies, various flexibilities and constraints were covered
to reflect an actual manufacturing environment. Flexibilities include process flex-
ibility for alternative process routings, sequence flexibility for alternative opera-
tion orders, machine and tool flexibility for alternative facilities, and TAD flex-
ibility for alternative tool access directions (TADs) (Kim et al. 2007; Petrovic¢
et al. 2016; Dou et al. 2018). As constraints, precedence relations between opera-
tions are essential. Capacity constraints such as tool capacity and tool magazine
capacity and sequence-dependent setups have been rarely dealt with in a few
studies (Kim et al. 2007; Srinivas et al. 2012).

Although various flexibilities and constraints have been handled in IPPS, no
study has covered all of the flexibilities and constraints, i.e., each individual study
has only considered some of them by adopting impractical assumptions. A typi-
cal example is setups. Setups include handling tools, setting the jigs and fixtures,
loading and unloading workpieces, and inspecting the material. There are two
types of setups: sequence-independent setups and sequence-dependent setups. If
the setups of the current operation are dependent on the preceding operations,
they are sequence-dependent; otherwise, they are sequence-independent. Most
existing studies assume sequence-independent setups and merge the constant
setup times into the processing time. However, in flexible manufacturing system
(FMS), where IPPS is primarily applied, the sequence-dependent setups make

@ Springer

Evolving ant colony system for large-sized integrated process... 525

up a majority of setups, because multi-purpose machines are the main facilities
(Eren 2010). In this case, separate consideration of the sequence-dependent setup
times can draw a better schedule (Srinivas et al. 2012).

Both process planning and scheduling belong to the NP-hard class, and therefore
so does IPPS. This implies IPPS has a high complexity and huge solution space.
Hence, most researchers have preferred meta-heuristics as an optimization approach
for IPPS, which include genetic algorithm (GA), ant colony optimization (ACO),
and particle swam optimization (PSO). Among them, ACO is an optimization
method that utilizes the stigmergic behavior of multi-agents represented by an ant
colony. For each iteration, all ant agents seek a route, i.e., a solution for the problem,
and the information of the best route in the colony is accumulated in the pheromone
trails. It is combined with the preferred node selection rule, so called heuristic desir-
ability, and is used by an ant agent to search for a new route. This procedure is a kind
of collective intelligence. ACO has been successfully applied to the optimization of
NP-Hard problems, such as the traveling salesman problem (TSP), scheduling, rout-
ing, and digital image processing (Chandra and Baskaran 2012). ACO, however, is
often vulnerable to very complicated problems like IPPS. As IPPS considers various
flexibilities, the number of nodes and edges are large, and subsequently the reposi-
tory size of the pheromone trails is large. To maintain and update the pheromone
trails, a considerable amount of computation is required for deposition and evapora-
tion procedures. Moreover, as the information belonging to the best route is only a
small fraction of the information in all the pheromone trails, the amount of evapo-
rated pheromone is larger than the amount of deposited pheromone. As the iteration
is progressed, the influence of the pheromone trails weakens, and the influence of
the heuristic desirability increases relatively. Therefore, the stigmergic property of
ACO does not operate properly.

The goal of this study is to develop an efficient ACO for IPPS considering
almost all the flexibilities and constraints previously dealt with. Covered flexibili-
ties include process, sequence, machine, tool, and TAD flexibility. Considered con-
straints include precedence relationship, tool capacity, tool magazine capacity, and
sequence-dependent setup times. Transportation time, which is essential for the dis-
tributed manufacturing, is also considered. This comprehensive IPPS problem has
not been considered yet within the IPPS field. This IPPS is much more complex than
the existing one, so the solution space is larger, implementation is hard, and com-
putation time is longer. We overcome the obstacles by proposing an evolving-based
ACO, which we call the evolving ant colony system (EACS). The main procedure
of EACS is similar to that of conventional ACO. However, as with conventional
ACOs, not every ant agent is replaced on every iteration. In EACS, some ant agents
improve their solution route using the proposed greedy heuristics and the rest search
for a new route according to the route construction rule using pheromone trail and
desirability. For the next generation, some of superior ant agents are replaced by the
current ant agents with low performance. The routes of the iteration best solution in
the colony and the general best solution are accumulated in the pheromone reposi-
tory at every iteration in different amounts. Through these individual and coopera-
tive evolving procedures, high quality solutions can be efficiently found for the com-
prehensive IPPS.

@ Springer

526 C.Ha

This paper is organized as follows. Section 2 defines the comprehensive IPPS
problem we are dealing with, shows how to calculate sequence-dependent setup
times, and describes a conventional ant colony system (ACS) for IPPS. Section 3
intensively investigates previous studies focusing on sequence-dependent setups
and ACO in IPPS. Section 4 details the procedures of EACS proposed in this
study. Section 5 summarizes the benchmark problems and the experimental envi-
ronment to verify the performance of EACS. In Sect. 6, we analyze the influence
of sequence-dependent setup times and verify the superiority of EACS by com-
paring its performance with that of recently developed meta-heuristics. Finally,
Sect. 7 states the conclusions of this study and suggests directions for future
research.

2 Background knowledge for IPPS and ACO

Notations
j index of job, j € {1,2,3,...,n/°8}, n/%8 is the total number of jobs
index of operation of the job j, 0 € { 1,2,3,... ,nJ.OP }, n/.OP is the total
number of operations of the job j
m index of machine, m € { 1,2,3,...,n1 }, nM is the total number of
machines
t index of tool, t € { 1,2,3,... ,nT}, n! is the total number of tool types
k index of TAD, k € {—x,x,—y,y,— 2,2}, —x,Xx,—,y, — 2,7 are direc-
tions of tool access
i o the operation o of the job j not yet assigned m, ¢, and k
;t’o’”]‘ the O, , assigned m, ¢, and k
CA a set of ant agents
O] a set of pheromone trails
c the current node (operation) where the ant agent is staying or the most

recently assigned operation, ¢ = uorv
A a set of nodes where the ant agent can move from ¢
d the destination node, d € A
u the most recently assigned operation with the same job index with d
v the most recently assigned operation in the same machine with d

sct(d) the setup change time of the d

tet(d) the tool change time of the d

pt(d) the processing time of the d

ult(c) the unload time of the ¢

tre(c) the transportation time of the ¢

ect(d) the expected completion time of the d

7(c,d) the pheromone trail on the edge (c, d), 7(c,d) € ®
n(d) the desirability of the d

Cp»Cps Vps ¥y @djusting parameters for calculating penalty.

@ Springer

Evolving ant colony system for large-sized integrated process... 527

2.1 IPPS representation

There are three types of representations used to describe IPPS: mathematical pro-
gramming (Li et al. 2010; Nourali et al. 2012; Shen and Yao 2015), disjunctive
graph (Leung et al. 2010), and network representation (Kim et al. 2007; Petrovic¢
et al. 2016). Among them, network representation is the most preferred in IPPS
studies. It is easy to understand intuitively and has the advantage of representing
various flexibilities in a graph. It, however, is lacking in describing the mechanism
of ACO because it has only conjunctive edges. Thus, we use a combination of the
network representation and the disjunctive graph.

An IPPS can be expressed as a graph as shown in Fig. 1a, i.e., IPPS = (O, C U D),
where O refers to the set of nodes, and C and D denote the sets of conjunctive and
disjunctive edges, respectively. A node represents an operation to be executed at a
machine, and an edge represents the relationship between operations. For example,
Fig. 1a shows a network representation of an IPPS consisting of two jobs (or parts).

Nodes O consists of a starting node SN, an ending node EN, and several interme-
diate nodes. A solution of an IPPS is a sequence of the intermediate nodes from SN

One of alternative operations

Q Dummy operations
O Operations to be processed

— Conjunctive edges

- - - - Disjunctive edges

~——" An IPPS solution

sct | tet trt

pt ‘ ult

(a) A network representation example

o makéspan

— 1,1,—.
el o [e [[

w sl o [0 |

tirpe
(b) Gannt chart of a schedule for (a)

Fig. 1 Simple IPPS example composed of two jobs

@ Springer

528 C.Ha

to EN. Every intermediate node 0}7;”k has attributes of job and operation indices
(j,0), machine, tool, and TAD indices (m,t,k) and operation times
(sct, tet, pt, ult, trt). An operation O; , can be performed in the same way by alterna-
tive machines (machine flexibility) with alternative types of tools (tool flexibility)
under alternative TADs (TAD flexibility). The operation times (sct,tct, pt, ult)
depend on the combination of (m, t, tad).

There are two types of edges: conjunctive (solid line with an arrowhead) and
disjunctive (dashed line without an arrowhead) edges. Two distinct nodes are con-
nected by a conjunctive edge if there is a precedence relationship between them;
otherwise, they are connected by a disjunctive edge. As disjunctive edges are non-
directional, various sequences of operations can be constructed as a solution route
(sequence flexibility). Every diverging conjunctive sub-route is in an OR or AND
relation. The relationship ends at the rejoining node. The OR relation is marked by
“OR” at the bottom of the first node, otherwise, it implies an AND relation. The OR
relation implies that there are alternative processing routes for processing the same
feature (process flexibility). If several sub-routes are in an OR relation, only one of
them must be selected and processed. Otherwise (AND relation), all of them must
be processed. SN, EN, and all nodes belonging to the unselected sub-routes by the
OR relations, are dummy nodes (gray-colored) that are not actually performed. All
other nodes (white-colored) should be performed.

IPPS is generally defined under the following assumptions: (1) jobs to be pro-
duced are determined prior to optimization, that is, no job is inserted or removed
until completion of the predetermined jobs; (2) all machines are ready to work at the
starting time of the schedule, i.e., available starting times of all machines are zero;
(3) all raw materials are always available; (4) no interruption is allowable during an
operation; (5) assigned machine, tool, and TAD do not change during an operation;
(6) there is no breakdown on machines or tools; (7) the number of slots in the tool
magazine of a machine is fixed; and (8) the number of each type of tool is fixed.

Network representation is easy to understand IPPS, but rigorous description of
problems and constraints is impossible. To overcome this, we have presented a math-
ematical programming model for IPPS in Appendix 1. The proposed IPPS cannot
maintain linearity due to sequence-dependent setup times and transportation times
of the next subsection, so it is mixed integer nonlinear programming (MINLP).

2.2 Setup and transportation times

Setups are non-value added activities that prepare related workers, machines, tools, and
drawings to facilitate the operation (Allahverdi 2015). Setups can be classified as fol-
lows: sequence-dependent and sequence-independent. If a setup is sequence-depend-
ent, the setup times or costs depends on the machines, tools, and TADs of the preceding
operation and the current operation. If a setup is sequence-independent, the setup times
or costs are considered as constants. According to the literature surveys by Allahverdi
et al. (2008) and Allahverdi (2015), in about 90% of scheduling studies, setups were
ignored or were assumed to be sequence-independent. Moreover, they argued that this

@ Springer

Evolving ant colony system for large-sized integrated process... 529

situation paradoxically means that separate consideration of sequence-dependent setups
can lead to further improvement of solution quality in scheduling.

In most IPPS studies, the setups have also been assumed as sequence-independent
and have been ignored in optimization. However, in IPPS, consideration of sequence-
dependent setups is important, as such setups are common in FMS (Eren 2010) which
is a major application of IPPS. Three types of sequence-dependent setup times have
been considered in IPPS (Azab et al. 2009): (1) the setup change time for positioning a
workpiece on a machine; (2) the tool change time for changing tool; and (3) the unload-
ing time for removing a workpiece from a machine.

Transportation time is the time taken to move a machined workpiece to another
machine for subsequent operation. The amount of the time is determined by the attrib-
utes of the workpiece such as weight and volume, the ability of the transport such as
speed and capacity, and the distance between the machines. In IPPS, transportation
time has also been frequently ignored. However, if the times are large enough or a dis-
tributed manufacturing environment is considered, those are not negligible.

In this study, setup times and transportation times are determined through the fol-
lowing procedure. Let d be the current operation to be processed, u be the last operation
assigned that belongs to the same job as d, and v be the last operation performed on the
machine where d should be performed. Suppose that the amounts of setup change time,
tool change time, and unloading time are determined by only the type of machine, i.e.,
SCT(m), TCT(m), and ULT (m), respectively. In fact, those sequence-dependent setup
times are functions of (m, t, tad) of d, u, and v. However, we adopt the simplified func-
tions in this study because the complicated functions only change the amounts of times.
From an optimization approach point of view, it is not significant. The actual sequence-
dependent setup times can easily be obtained at the shop floor during execution. In
addition, let the amount of transportation time depend on only the distance between
two machines and its size as TRT (m,, m,).

Under these assumptions, setup times and transportation times are calculated
by Egs. (1)—(4), where ‘A’ and ‘V’ are logical operators representing ‘and’ and ‘or’,
respectively.

SCt(d) — { SCT(md>v lf (mu 7é md) Vv (jv #Jd) \ ((mu = md) A (jv =jd) A (tadv :I'é tadd))
0,

ey

= { gCT([d)’ T @)

ult(u) = { (I){LT(mu)’ Z::Zu * my , Mlt(v) — { (Z)J’LT(mv)’ i)f{/‘;’#-}d)
tri(u) = { gRT(mumd) ZV’Zu # my @

Setup change time sct(d) occurs when the machines of two consecutive operations
in a job differ or the jobs or TAD of two consecutive operations in a machine differ.

@ Springer

530 C.Ha

Tool change time #ct(d) occurs when the types of tools of two consecutive operations
in a machine differ. Unloading time ulf(u) occurs when the machines of two con-
secutive operations in a job differ and ult(v) occurs when the jobs of two consecutive
operations in a machine differ. Transportation time #r¢(x) occurs when the machines
of two consecutive operations in the same job change.

2.3 Conventional ant colony system for IPPS

ACO introduced by Dorigo and Gambardella (1997) is a population-based algo-
rithm that accumulates information about excellent routes searched by a group of
ant agents (an ant colony) and reuses the experience for searching new routes. ACO
has been evolved into a variety of variants. Those includes the ant system (AS), the
ant colony system (ACS), the MAX—MZIN ant system (MMAS), and the rank-
based version of the ant system (Stiitzle and Dorigo 1999). This section describes
the mechanism of ACO for IPPS based on ACS, the most popular ACO.

Figure 2 shows the typical procedure of conventional ACS used to minimize the

makespan for IPPS, where s = {O;t’o’”k} is a sequence of operations (solution); f(s)

is the objective function; and 7, is an initial pheromone level. At the start of the
algorithm, all the pheromone trails are initialized with z,. For every iteration, each
ant agent in the colony finds a solution route from SN to EN using the route con-
struction rule described below. During the route search, whenever an ant agent
determines the next visiting node, the pheromone trails @ for the edge is locally
updated to increase the diversification. If a solution route is constructed, the general
best solution is updated depending on the objective value. Once all ant agents com-
plete their route searches, the pheromone trails © for the general best solution are
updated to increase intensification. These processes are repeated until the termina-
tion condition is reached. Then, the general best solution becomes the final solution
and the algorithm is stopped.

Algorithm 1 ACS: Main procedure of ACS
Require: (O,C U D): IPPS problem;
Ensure: s%: the general best solution;

1: initialize pheromone trails ® as 7¢;

2: Sgb — @:

3: while termination condition not met do

4 for i € CA do

5 construct a solution s; including local-update of ®;
6 if f(s;) < f(s9) then

7 s s

8 end if

9 end for

10: global-update of ® for s9°;

11: end while

Fig.2 Main procedure of typical ACS for IPPS

@ Springer

Evolving ant colony system for large-sized integrated process... 531

In the ACS procedure, design factors are a route construction rule and pheromone
updating rules. They differ between AS, ACS, and MMSS. The route construction
rule is a selection rule for an ant agent to select the next visiting node among the
candidates. Suppose that c is a current node (operation), d is a candidate node, and A
is a set of candidate nodes that satisfy precedence constraints from c. Let 7(c,d) € ®
denote a magnitude of pheromone deposited on the edge (c, d), and #(c, d) denote a
magnitude of heuristic desirability for the edge. The destination node d* is selected
by Eq. (5). If a generated random number rand(-) is less than the parameter
Pus (0 < ppg < 1), then arg max ¢, {7(c, d)*n(c,d)” } becomes d*, where a and p are
design parameters for adjusting the contribution of = and #, respectively. Otherwise
d* is selected by roulette wheel selection (roulette,.;(.)) With the state transition

- 4 p . . .
probability %. A large value of p, enhances intensification and a small

value enhances diversification.

argmax {z(c,d)"n(c,d)"}, if rand(+) < p,
deA

w(e.d)n(c,d) } o (5)

d" =
roulette
deAWheel { Y ien () n(c.d)?

The heuristic desirability n(c, d) is an indicator of the degree of preference of the ant
agent to the destination node. If the objective is to minimize makespan, the inverse
of the processing time of Eq. (6) is generally applied, where Q, is an operating
parameter of the ACS.

0
n(d) = —~ (©6)

The pheromone updating rule determines how to manage pheromones in pheromone
trails. There are two updating rules in ACS: the global update and local update rules.
The global update is performed on the general best solution of the ith iteration sfb as
shown in Eq. (7), where 7,(c, d) denotes the amount of pheromone on the edge (c, d)
at the ith iteration. First, the increment in the pheromone, Arigb, is calculated by

0./Cuyax <sfb), where Q. is a design parameter for adjusting the amount of phero-

mone deposition and Cy,x (sfb> denotes the makespan of the solution s‘fb. Second,

the amount of pheromone of all edges in CU D is reduced by 1 — p,, times, where
PO < p,, < 1) is the evaporation rate. Finally, for only edges belonging to sfb,
Affb is added.

(1= pg)7imy (. d), ymmgf%mm@eCuD(”

b b
qmm:{u—%ﬁHmm+mﬁymmef
The local update adjusts pheromone as shown in Eq. (8). It is controlled by the evap-
oration rate p;, (0 < p;, < 1) for the local update. The local update increases diver-
sification by reducing the pheromone of the visited edges, while the global update
increases intensification.

@ Springer

532 C.Ha

7i(c,d) = (1 - p,u)'ri(c, d) (8)
Let us explain the above ACS procedure in detail using the network representation
in Fig. 1a and the Gantt chart in Fig. 1b. Suppose that an ant agent is trying to find
a solution route from SN to EN. Due to precedence constraints, the ant agent at SN
can only move to nodes {A, F, G}. Assume that the ant agent selects node A accord-
ing to the route construction rule in Eq. (5). Node A, O:ﬁ’“, must be machined by
machine M1 with tool 1 in the 4z direction. Since M1 is currently empty and the
operation does not have any preceding operations, a setup change time, a tool change
time, and a processing time is scheduled to M1 as shown in Fig. 1b. Now, as node A
is already scheduled, it is dropped from the candidate set. In Fig. 1a, node A is con-
nected to nodes B and D by conjunctive edges and to nodes F and G by disjunctive
edges. Note that Fig. 1a only shows the edges associated with the route search of the
ant agent among all disjunctive edges for the sake of simplicity. Hence, nodes B, D,
F, and G become candidates for the next visiting nodes and those are merged into
the current candidate set {F, G}. Finally, the candidate set becomes {F, G, B, D}.
Assume that the ant agent selects node D from {F, G, B, D} as the next node
according to the route construction rule. Node D is in an OR relationship with route
B-C, so nodes B and C are deactivated as dummy nodes. Node D, O:’i’_z, must be
processed on the same machine as the previous operation 0}‘?‘“, but the TAD and
tool are changed. Therefore, the workpiece does not need to be unloaded after O:f’“
is completed, but the operation can only start after exhausting the setup change time
and tool change time. After scheduling of node D, it is dropped from the candi-
dates and new candidate nodes are searched by precedence relations. As a result,
the candidate set becomes {F, G, E} by insertion of node E. Assume that the ant
agent has finally arrived at node E. Node E, 0?:?”, must be machined by M2. The
operation can start when the workpiece of jobl arrives at M2 after completion of
O:j’_z in M1. In this case, the setup change time schedule of Oii‘ﬂ overlaps with
the transportation time schedule of the workgiece of job2 (shaded area). However,
it does not affect to the starting time of Ois*y because M2 is empty. Finally, the
ant agent arrives at EN. Then, the final solution route (red lines) is determined as
A-D-G-H-F-E and the makespan of the solution is determined as the latest com-

pletion time of all operations.

3 Literature review
3.1 Setup consideration on IPPS

Although numerous studies have been conducted for IPPS over the past two decades,
few have explored the consideration of setups. Moon et al. (2002) proposed a GA for
IPPS with sequence-dependent setup times and transportation times on a multi-plant
supply chain environment. However, they did not handle the setup change time, tool
change time, and unloading time separately. Li and McMahon (2007) proposed a
simulated annealing approach to optimize makespan, utilization, tardiness, and

@ Springer

Evolving ant colony system for large-sized integrated process... 533

cost for multi-objective IPPS, in which the sequence-dependent setup change time
and tool change time are considered. Guo et al. (2009) proposed a PSO to re-plan
multi-objective IPPS for occurrence of machine breakdown and new order arrival,
in which a united sequence-dependent setup time is considered. Wan et al. (2011)
proposed an ACO for IPPS. They argued that the sequence-dependent setup times
should be handled separately to obtain an efficient schedule because the setup times
cannot be ignored if two immediately preceding jobs are sequence-dependent. They
considered the tool change time, loading (setup change) time, and unloading time
separately. Furthermore, they verified that separate consideration of the sequence-
dependent setup times can improve the makespan using an example proposed by
Li et al. (2002) and Li and McMahon (2007). However, their research lacks math-
ematical descriptions of applying the sequence-dependent setup times and extensive
experiments for various problems. Nourali et al. (2012) proposed a mixed integer
linear programming model for IPPS considering a unified sequence-dependent setup
time. Srinivas et al. (2012) proposed an approach combining ACO and PSO to mini-
mize total manufacturing cost for IPPS, in which a sequence-dependent tool change
cost and a setup change cost is considered. Recently, three hybrid PSOs (Petrovié¢
et al. 2016; Miljkovi¢ and Petrovi¢ 2017; Dou et al. 2018) were proposed to mini-
mize total manufacturing cost and total weighted production time for IPPS with
sequence-dependent setups, in which a tool change time/cost, setup change time/
cost, and transportation time/cost are dealt with. However, unloading time/cost is
not considered. PSO combined with chaos theory (Petrovi¢ et al. 2016), PSO com-
bined with GA (Miljkovi¢ and Petrovi¢ 2017), and discrete PSO combined with GA
(Dou et al. 2018) are proposed to overcome premature convergence of PSO.

All the above studies deal with sequence-dependent setup times and/or trans-
portation time in IPPS. However, most of them do not handle various sequence-
dependent setup times separately. In addition, most of the studies ignore some of the
various sequence-dependent setup times, do not provide clear mathematical descrip-
tions, or lack experiments. In this study, we have considered all existing sequence-
dependent setup times and transportation time separately.

3.2 Ant colony optimization for IPPS

ACO focused studies in IPPS are as follows. Leung et al. (2010) proposed ACS with
an elite strategy, but did not consider TAD flexibility, setups, and tool capacity. Srin-
ivas et al. (2012) argued that the two planning activities conflict with objectives;
process planning is meant to satisfy technological requirements and scheduling is
meant to optimize timing aspects. As an approach to solve the conflict, they pro-
posed a sequential hybrid algorithm in which ACO finds an optimal process plan-
ning and PSO finds an optimal schedule under the optimal process plan. However,
they did not provide sufficient experimental results except only a few selected small-
sized examples. Wang et al. (2014) proposed an improved AS for IPPS. To over-
come the weakness of ACO of the local convergence, they proposed a method to
reduce extraordinary accumulation of pheromones and a local pheromone updating
rule that allows repeated accumulation of pheromones to avoid stagnation. Zhang

@ Springer

534 C.Ha

and Wong (2014) proposed an ACO approach to retain two distinct pheromone trails
on nodes and edges, respectively. To improve the performance of their approach,
they also adopted the elitist strategy, the MAX—MZIN strategy, and the desirabil-
ity function as the inverse of the increment of make span. Liu et al. (2016) intro-
duced a mathematical programming model for IPPS and proposed a typical ACO to
solve the problem. Zhang and Wong (2016) proposed a constructive meta-heuristic
based on ACO for IPPS. To improve the solution quality, during operation selec-
tion, they adopted the earliest finishing time rule and time-window based mapping
to reduce idling time. However, all three studies (Liu and MacCarthy 1997; Zhang
and Wong 2014, 2016) did not consider TAD flexibility, sequence-dependent setups,
and tool capacity constraints.

Most existing IPPS studies applying ACO as a main solver have omitted to consider
sequence-dependent setups, TAD flexibility, and tool capacity constraints. The tool
capacity constraints were discussed only by Kim et al. (2007). They, however, applied
an asymmetric multileveled symbiotic evolutionary algorithm rather than ACO as an
optimization algorithm, and ignored sequence-dependent setups and TAD flexibility.
Srinivas et al. (2012) considered TAD flexibility and sequence-dependent setups, but
they also ignored tool capacity constraints and provided experimental results for only a
small-sized problem example. We believe that typical ACOs are limited in their ability
to cover the various flexibilities and high complexity that IPPS has, and as an alterna-
tive to this, we suggest the evolving ant colony system in Sect. 4.2.

4 Proposed evolving ant colony system (EACS)
4.1 Issues of the conventional ant colony system

The stigmergic property of ACO is useful for improving solution quality, but it also
causes a local convergence and/or a stagnation (Wang et al. 2014). Zhang and Wong
(2013, 2014) pointed out three drawbacks in applying typical ACO to IPPS: (1) high
likelihood of local convergence owing to a greedy strategy based on the shortest
processing time when selecting the next node, (2) frequent reset of the algorithm
and premature convergence due to excessive evaporation of pheromone trails, and
(3) inefficient improvement of solution quality by adopting the makespan that is
indistinct in value as an objective function. We fully agree with their claims; in par-
ticular, the evaporation issue is the most serious for IPPS.

Due to various flexibilities of IPPS, an operation can have many alternative oper-
ations depending on the machine, tool, or TAD to be processed. Since each alterna-
tive operation generates a distinct schedule, it is regarded as an independent opera-
tion in IPPS. Thus, as IPPS allows more flexibility, the number of nodes and edges
increases sharply, and consequently, the size of the pheromone repository increases.
For example, suppose that there are 20 jobs (parts) to be processed in total, each
job consists of 20 operations, and the number of alternatives for machine, tool,
and TAD for each operation is 3, 3, and 3, respectively. Then, the total number of
independent operations is 10,800 (=20x20x3x 3 X 3); therefore, the total number
of edges or the size of pheromone repository becomes 10,800 % 10,799. When the

@ Springer

Evolving ant colony system for large-sized integrated process... 535

pheromone trails are updated globally, the evaporation process should be performed
at every edge. The update requires a large calculation, which slows down the algo-
rithm. However, the deposit process is performed only on the edges belonging to the
general best solution at every iteration. It is only quite a small fraction of the total
number of edges in pheromone trails. If the evaporation rate is not large enough,
it implies that the total amount of deposited pheromone is smaller than the total
amount of evaporated pheromone in the trails. As the iteration runs, the total amount
of pheromone in trails decreases, and the pheromone trails become disabled. If the
evaporation rate is set too large to avoid the disability, the relatively large phero-
mone on some edges causes a premature convergence. The magnitude of the effect
depends on the number of edges in IPPS and the objective values of intermediate
solutions. It implies that ACO is too sensitive to problems. Zhang and Wong (2013,
2014) attempted to solve these drawbacks of ACO for IPPS by various add-ons and
a complicated procedure. We will tackle these using a simpler approach.

4.2 Overall procedure of EACS

In IPPS, all alternatives of an operation should be handled as independent nodes.
Nevertheless, only a node among the alternative nodes is selected in a final solution
route. In other words, almost all nodes in the IPPS network are redundant. Com-
pared to the TSP where all nodes (cities) are included in the route, this situation
leads to ineffective maintenance of pheromone trails. To overcome it, Zhang and
Wong (2014) managed the pheromone trails for only operation O; , and the alterna-
tive machines of the operation were determined by the dispatching rule during ACO
execution. Since this approach does not generate redundant nodes, the size of phero-
mone trails can be kept constant number regardless of the number of alternative
machines. This approach, however, does not retain all information for the best solu-
tion completely because the pheromone trails only accumulate experience for O;

J,0
other than 0]'.":’k. To compensate for the lack of information, they operated two dis-

tinct pheromone trails: edge-based trails for determining a sequence of operations
and node-based trails for determining the resources (m, t, k) of an operation. How-
ever, the performance of their approach is doubtful because the effect of the
resources on the schedule of an operation highly depends on the sequence of
operations.

We, therefore, suggest an approach that accumulates the experience of sequences
in the pheromone trails while the experience for resources stores in each ant agent.
This approach not only allows efficient management of pheromone trails by disre-
garding redundant nodes, but also improves the solution quality by utilizing the
experience for resources. In addition, it has the advantage of saving computation
time by recycling the resource information included in the excellent solution routes.
We will call the proposed approach the evolving ant colony system (EACS). A typi-
cal ACS, for each iteration, regenerates a certain number of ant agents, searches for
new solution routes, stores information of the general best solution in the phero-
mone trails, and then destroys the ant agents. On the other hand, the proposed EACS
conserves some ant agents that provide excellent solution for every iteration as

@ Springer

536 C.Ha

Algorithm 2 EACS: Main procedure of EACS
Require: (O,C U D): IPPS problem;

Ensure: s%: the general best solution;
1: initialize pheromone trails ® as 79;

2: construct {s;,Vi € CA} with randomly assigned m, t, and k;

3: s9% ¢ arg max,, ;ecal{f(si1)};

4: for n =1 : njter do

5: for i € CA do

6: construct §; by route construction rule or improve s; by tuning;
7: end for

8: replace pps X nca inferior solutions in {s;} as the superior solutions in {3;};
o: s« argmax, ;coa{f(s:)}:

10: local-update of ® for s%;

11: if f(s) > f(s%) then

12: 590 sib:

13: end if

14: global-update of ® for s9°;

15: end for

Fig. 3 Pseudo-code for the main procedure of EACS

Algorithm 3 CONSTRUCT: Solution construction procedure of EACS

Require: s = {O;’;L’k}: a sequence of operations;
Ensure: $: a solution induced by s;
1: if rand(-) < prune then
2: S 4 s;
3 run OC for §
4: run MTTC for s
5: run TUNING for §
6
7
8

: else
construct a new solution § using the route construction rule;
: end if

Fig. 4 Pseudo-code for the solution construction procedure of EACS

shown in Fig. 3, where s = {0;’0’”’(} is a sequence of operations (solution); f(s) is
the objective function; 7 is an initial value of a pheromone tail; n,,,, is the number of
iteration, and n., is the size of CA. Then, it improves the current solutions or
searches for new solutions as shown in Fig. 4. Finally, it replaces a number of ant
agents according to their performance and stores information of the iteration best
and the general best solution in the pheromone trails.

4.3 Route construction rule of EACS
The route construction rule of EACS is similar to that of ACS but differs from
the heuristic desirability function and standardization of pheromone and desir-

ability. Zhang and Wong (2014) demonstrated that applying the earliest com-
pletion time rule rather than the typical shortest processing time rule to the

@ Springer

Evolving ant colony system for large-sized integrated process... 537

desirability function was more superior for improving the solution quality. After
performing the preliminary experiments, we also reached the same conclusion.
EACS applies the desirability function #(d) of Eq. (9) that is the difference of
the expected completion time ect(d) from the maximum among the candidates,
i.e., max ey {ect(d)}. In the equation, one is applied to avoid zero division error.
The ect(d) can be calculated using Egs. (1)—(4) and (10), where notation u and
v are the same as described above. Transportation time should be applied with
caution. If a workpiece on the move is out of machine, so it only affects the
starting time of subsequent operations belonging to the same job, the first term
of Eq. (10) represents the earliest starting time of d. Unlike ACS, EACS does
not use correction parameters such as 0, in Eq. (6) in the desirability calculation
because the magnitude of # is adjusted by the standardization described below.

n(c,d) = max {ect(d)} —ect(d) + 1 9)

ect(d) = max{ult(u) + trt(u), ult(v)} + sct(d) + tct(d) + pt(d) (10)

For all candidate nodes d € A, one of them is selected as the next node d* to move.
The node selection procedure of EACS is the same as Eq. (5) of ACS as shown in
Egq. (11). For a gqr_lio_rp number rand(-), if rand(-) < p,,,, the node with the maximum
value of 7(c,d) n(c,d) among d € Ais selected as the next node to increase intensi-
fication; otherwise, a node is determined by the roulette wheel selection to increase
the diversity.

argmax { e(c.d) n(e.d) |, if rand() < p,,
df = deA ,_75&77,; an
roulette ;... { —ed ned) }, ow.
JeA aea T(e,d) nlc,d)
The difference between this approach and ACS is that z(c, d) and n(c, d) are not used
directly but are standardized as z(c,d) = —ed _ and n(c, d) —fed) respec-
Yaea v(cd) Yiea ne.d)’

tively. In fact, z(c, d) and #5(c, d) depend on the solution route until node c, the order
of ¢ in the route, the processing times and setup times of operations, and the assigned
machines, tools, and TADs of ¢, d, u, and v. Conventional ACS compensates for the
variation by using the adjusting parameters Q, and Q,. However, the effect is ques-
tionable because there are no absolute criteria for the magnitudes of z(c,d) and
n(c,d). The unstable magnitudes of (¢, d) and 5(c,d) may also make it difficult to
determine the parameters a and f, which are the degrees of contribution of the pher-
omone trails and desirability, respectively. If the magnitudes of z(c,d) and #(c, d)
vary from IPPS to IPPS and from iteration to iteration, then determining the appro-
priate @ and § becomes another optimization problem. Our proposed standardization
approach can maintain z(c,d) and #5(c, d) within [0,1], so it is a good way to over-
come this issue.

@ Springer

538 C.Ha

Algorithm 4 OC: Order change procedure of EACS
Require: (O,C U D): IPPS problem;
m,t.k . .
s ={0;,;""}: a sequence of operations;

1: select an operation Ojfz;t’k € s arbitrarily ;

2: find O;»'_lp't ¢ s that must precede O;’L’t’k immediately in (O, C U D);

3 find O™ " ** € s that must succeed O™F immediately in (O,C U D);
s J0

PP e,
t.k Wtk 2tk . .
4: move OT"" between O™ and O ** % arbitrarily;
j.0 3P s .

Fig.5 Pseudo-code for the order change heuristic of EACS

Algorithm 5 MTTC: Machine, tool, and TAD change procedure of EACS
Require: s = {Of&L’k}: a sequence of operations;
1: for O;’L‘t‘k €sdo
if rand(-) < pmue then
find (m ,t, k) that induces the minimum processing time of O, ,

[4

among alternatives;
5 OT.t,k O'To‘t &k .
6: end if
7. end for

Fig.6 Pseudo-code for the machine, tool, and TAD change heuristic of EACS

4.4 Solution improving heuristics

Through preliminary tests, we found that the following three factors reduce the per-
formance of ACO for IPPS; (1) premature convergence due to lack of diversifica-
tion, (2) slow improvement of solution quality due to various flexibilities, and (3)
infeasibility of solutions due to capacity constraints in large sized problems. To
overcome those, we introduce three greedy heuristics: OC, MTTC, and TUNING.
The detailed procedures are expressed as pseudo code in Figs. 5, 6 and 7, respec-

tively, where n; is the size of solution s; O; is the ith operation of solutlon s; Om“ ks

is the operation that precede Om”‘ immediately in the job j; and O "k is the opera—
tion that precede 0”” 1mmed1ately on the machine m.

In ACO, ant agents tend to follow the most popular solution route due to pher-
omone trails. OC increases the diversity of the solution route by artificially alter-
ing the sequence while maintaining precedence relations between operations.
MTTC is a heuristic that randomly selects some operations, and then changes
the machine, tool, and TAD of minimal processing time among alternatives. It is
effective in improving the solution quality by allowing ant agents to retain excel-
lent combinations of resources. TUNING coincides resources of successor to
ones of predecessor. This procedure not only increases the feasibility of the solu-
tion by increasing reuse of resources, but also reduces sequence-dependent setup
times.

@ Springer

Evolving ant colony system for large-sized integrated process... 539

Algorithm 6 TUNING: Machine, tool, and TAD tuning procedure of EACS
Require: s = {Oﬁ;t’k}: a sequence of operations;
1: select two integers f and ! (f <) arbitrarily in [1, n]
bk
2: for O;"" € {Oy,---,01} do
3 find OT:;L“’k" € s and O;fi”vk” €s
if O;,, can be performed on machine m,, then

»

m,t.k Mtk

5 0757 « 07577

6 end if

7 if O;, can be performed on machine m using t,, then
m,t.k mty,k,

8 0557 « 0757

9 end if

10: if O;, can be performed on machine m using t on TAD £k, then
m,t.k m,t.k, .

11: O_j,o — O

12: end if

13: end for

Fig. 7 Pseudo-code for the machine, tool, and TAD tuning heuristic of EACS

4.5 Pheromone update rule of EACS

As discussed in Sect. 4.1, the biggest issue in applying ACO to IPPS is excessive evap-
oration of pheromone and the computation time required for pheromone update. To
overcome it, we propose a simple approach that increases the pheromone by a constant
without allowing evaporation. As the proposed updating rule only increases a fixed
amount of pheromone, it may cause performance degradation of the algorithm due to
unbalance in the magnitudes of z(c, d) and 5(c, d) when applying the route construction
rule. However, the standardization approach avoids such an imbalance.

The pheromone updating function of EACS is presented in Eq. (12), where the
constant parameter At is a constant incremental amount of the pheromone. The local
update (A7) and global update (Az,,,,,) are the same except for the amount of Az.
This simple updating function saves much computational effort because it updates only
a few edges belonging to one solution route, rather than entire pheromone trails.

7i(c,d) = max{'rmax, Ty (c,d) + AT}, if(c,d) € s. (12)

4.6 Objective function

It is reasonable to use the reciprocal of makespan C,,,x(s) as an objective function if
the objective of IPPS is to minimize makespan. However, the IPPS under consideration
in this study has several constraints such as magazine capacity and tool capacity, so
it is appropriate to add penalties for infeasible solution as in Kim et al. (2007). Equa-
tion (13) represents the penalty imposed on the objective function.

100,000

f) = Cpran(8) + ¢, 2, NST@)" + ¢, Dy, NSS(m)m

13)

Here, C,,,.(s) represents the makespan for a solution route s, NST(f) denotes the
number of shortage of tools for the tool 7, i.e., NST(1) = max{nT0%L — CTOOL 0},

@ Springer

540 C.Ha

where n/?% is the number of the tool 7 used and CT?" is the capacity of the tool ¢,
and NSS(m) is the number of shortage of slots in the tool magazine of the machine
m, i.e., NSS(m) = max{nzLOT - lefOT,O}, where #5297 is the number of slots to
equip tools on the machine m and Cfé"’ is the capacity of tool slots on the machine
m. ¢, ¢, v, and y,, are the adjusting parameters that determine the influence of the
penalty on the objective function.

5 Experiment environment
5.1 Benchmark problem sets

There is no exact existing benchmark problem for the IPPS considered in this study,
so we constructed 31 benchmark problems by modifying those of Kim et al. (2007),
who used an IPPS that is most similar to our IPPS. Table 1 summarizes the identi-
fication of each problem, the list of jobs involved, and the total number of opera-
tions involved in the problem. The problem set is divided into small-sized problems
(P1-P12), medium-sized problems (P13-P20), large-sized problems (P21-P28) and
very-large-sized problems (P29-P31) depending on the number of jobs involved.
For a detailed network representation, see Kim et al. (2007).

Table 2 summarizes the information related to each job, machine, and tool. The
job column provides information on the number of operations (#0O) and the number
of OR relations (#OR) included in each job. The machine column summarizes the
capacity of slots on each machine. The tool column lists the capacity of each tool
and the number of required slots for the tool ¢, i.e., #°7. The sequence-dependent
setup times SCT (m), ULT (m), and TCT (¢) and transportation time TRT(m 15 mz) used
in the experiments are also summarized in Table 3.

5.2 Meta-heuristics and experiment environment for comparative study

We compare the performance of the proposed EACS with the three different meta-
heuristics proposed for IPPS: the modified PSO (mPSO) by Miljkovi¢ and Petrovié
(2017), the feasible sequence oriented discrete PSO (FSDPSO) by Dou et al. (2018),
and enhanced ACO (E-ACO) by Zhang and Wong (2014). Since all three meta-heu-
ristics have been proposed recently and the operating mechanisms are different, we
believe that reasonable comparisons are possible. Among those, the most recently
proposed FSDPSO was developed to overcome the difficulty of applying conven-
tional continuous PSOs such as mPSO to discrete combinatorial problems such as
IPPS. FSDPSO supports to discrete problems by updating particles using crossover
and mutation operators of GA while maintaining the basic mechanism of PSO which
improves particle swarm by correlation of current solution, iteration best solution
and global best solution. Since the IPPSs applied by the methods are not the same as
the IPPS we considered, we have slightly modified those to handle our problem. The
algorithms of EACSNS and EACS are the same. The difference is that EACSNS

@ Springer

Evolving ant colony system for large-sized integrated process... 541

Table 1 Basic information on benchmark problems

Problem Jobs Total number
of operations

P1 1,2,3,10, 11,12 89
P2 4,5,6,13,14,15 100
P3 7,8,9,16,17, 18 121
P4 1,4,7,10,13,16 99
P5 2,5,8,11, 14,17 102
P6 3,6,9,12, 15,18 109
P7 1,4,8,12,15,17 103
P8 2,6,7,10, 14, 18 96
P9 3,5,9,11,13,16 111
P10 4,5,6,10,11, 12 105
P11 7,8,9,13,14,15 76
P12 1,2,3,16,17, 18 105
P13 1,2,3,5,6,10,11, 12,15 142
P14 4,7,8,9,13,14,16,17, 18 168
P15 1,4,5,7,8,10, 13, 14, 16 150
P16 2,3,6,9,11,12,15,17,18 160
P17 1,2,4,7,8,12,15,17,18 155
P18 3,5,6,9,10,11, 13, 14, 16 155
P19 4,5,6,7,8,9,10, 11, 12 159
P20 1,2,3,13,14, 15,16, 17, 18 151
P21 1,2,3,4,5,6,10, 11, 12, 13, 14, 15 189
P22 4,5,6,7,8,9,13,14,15,16,17, 18 221
P23 1,2,4,5,7,8,10, 11, 13, 14, 16, 17 201
P24 2,3,5,6,8,9,11,12,14,15,17, 18 211
P25 1,2,4,6,7,8,10, 12, 14, 15,17, 18 199
P26 2,3,5,6,7,9,10, 11, 13, 14, 16, 18 207
P27 4,5,6,7,8,9,10,11,12,13, 14,15 205
P28 1,2,3,7,8,9,13, 14, 15, 16, 17, 18 212
P29 2,3,4,5,6,8,9,10,11, 12,13, 14,16, 17, 18 262
P30 1,4,5,6,7,8,9,11, 12,13, 14, 15, 16, 17, 18 266
P31 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18 310

treats all setup times as sequence-independent, so sct(-), fct(:), and ult(-) are always
applied. Transportation time is applied to all algorithms in common.

Table 4 summarizes the parameters applied to the methods and EACS. Opera-
tional parameters of the comparative methods are assigned as the recommended
values in each paper (Zhang and Wong 2014; Miljkovi¢ and Petrovi¢ 2017; Dou
et al. 2018), where n,,, is the number of iterations; n., is the size of colony or
swarm; n is the number of repetitions of the experiments; W, . and W, . are

repeat min min
the initial and the final values of weighting parameters, respectively; C; and C,

@ Springer

542 C.Ha

Table 2 Information related to

each job, machine, and tool Job Machine Tool
J #0 #OR m cfnLOT t C{TOOL rfLor
1 12 2 1 28 1 6 1
2 14 1 2 31 2 7 2
3 19 2 3 38 3 6 2
4 16 2 4 28 4 6 2
5 18 2 5 36 5 10 1
6 20 2 6 37 6 6 2
7 21 4 7 29 7 10 3
8 20 4 8 28 8 2
9 20 3 9 29 9 1
10 11 1 10 26 10 2
11 15 2 11 1
12 18 2 12 10 2
13 18 3 13 3
14 13 2 14 2
15 15 2 15 6 2
16 21 3 16 10 2
17 22 4 17 9 1
18 17 3 18 6 2
19 8 2
20 7 3

Table 3 Information on setup times and transportation time

m m,

SCT(m) ~ULT(m) TCT(m) TRT(my,m,)

1 12 12 5 0 4 10 18 10 8§ 14 18 16 22
2 12 12 4 4 6 14 6 4 10 14 12 18
3 10 10 4 10 0 8 8 6 4 8§ 10 12
4 8 8 3 18 14 8 0 8§ 10 4 8 10 4
5 8 8 3 10 6 8 8 0 2 12 16 18 12
6 12 12 5 8 6 10 2 0 10 14 16 14
7 12 12 4 14 10 4 4 12 10 0 4 6 8
8 10 10 4 18 14 8 16 14 4 0 2 4
9 8 8 3 16 12 10 10 18 16 6 2 0 6
10 8 8 3 22 18 12 4 12 14 8 4 6 0

@ Springer

Evolving ant colony system for large-sized integrated process... 543

Table 4 Values of the parameters used in the meta-heuristics for comparative study

Common mPSO FSDPSO E-ACO EACSNS &
EACS

Param. Values Param. Values Param. Values Param. Values Param. Values

Miger 2000 W i 0.4 0} 1.0 0,.C 300, 150 At 0.005

Ny 30 W s 1.2 C, 2.0 D 15 ATy 0.01

[— 50 C, 2.0 C, 2.0 Tpins Tmax 1.0, 20.0 Tpnax 20.0

I 200 C, 2.0 ky 0.5 7 10 7 10

C 200 Perossover 0-0 ky 0.005 a, f 1,2 a,p 1,2

7, 2 Pration 0-1 P 0.1 Pous Piu 0.15,0.15 p, 0.8

Ym 2 P 0.1 Pus 0.9 Puune 0.8
Pote 0.1

are self-recognition and social component acceleration coefficients, respectively;
Perossovers Pmutation @04 Py are selection probabilities for GA operations adopted
at mPSO; w is an inertia weight for velocity control, p,, is fragment mutation prob-
ability; k, is scale factor for adjusting p,,; k, is the basic value of p,; Q and D are
scale factors for pheromone calculation; C is a scale factor for heuristic desirability
calculation; 7,,, and 7,,,, are the lower and the upper bound of pheromone level,
respectively; 7, is an initial value of pheromone level; @ and f§ are respective weights
of pheromone trail and heuristic desirability, respectively; p,, and p,, are evaporation
rates for the global update and the local update, respectively; and p, is node selec-
tion probability. The determination of parameters for EACS will be dealt with in
detail in the next subsection. All algorithms were implemented using the Julia lan-
guage Version 1.0 and the experiments were performed on an Intel® Core™ i7-6700
CPU @3.40 GHz with 16.0 GB.

6 Experimental results
6.1 Parameter determination

A full factorial experiment was performed to determine the optimal operating
parameters of EACS. We applied 33 factorial design with 27 treatments with 3 lev-
els for p,.es Ppues and p,,, respectively. Other parameters were determined by pre-
liminary tests. Observations were made on makespan C,,,, and computation time
Leomp for P1, P13, P21, P29, and P31, which are representative problems of each size
level. Table 5 summarizes the results of this experiment. The value of each cell rep-
resents an average value of C,,,, or z,,,,, by repeating 20 times. In the C,,,, column,
the sum of C,, s of all problems (sum) and the performance rank (rank) based on it
are added separately.

Table 6 shows the results of an analysis of variance (ANOVA) to test whether the
parameters and their interactions affect the sum of C,,, s. All three parameters were

@ Springer

544 C.Ha

Table5 C,,, and?,,,, according to p,,,., Py and p,, for the selected IPPS benchmark problems

Pune Pmiuc Pns C, Leomp

max

P1 P13 P21 P29 P31 Sum Rank P1 P13 P21 P29 P31

0.7 0.05 0.6 4757 5703 696.9 936.0 10929 3771.6 22 17.1 30.8 44.6 69.4 86.1

0.7 476.7 558.8 687.2 919.7 1100.6 37429 18 16.8 30.0 439 68.5 85.5

0.8 478.6 536.6 680.9 8989 1091.7 3686.6 10 16.6 29.8 434 67.8 839

0.1 0.6 480.7 551.4 688.8 920.8 1107.3 37489 19 17.2 31.0 452 70.1 87.6

0.7 4632 5404 6782 902.6 1092.7 36769 6 17.2 30.7 44.8 69.8 86.6

0.8 469.5 545.0 669.3 898.0 1077.8 3659.5 3 169 30.3 442 69.1 85.8

0.15 0.6 4739 554.1 677.7 913.1 1113.6 37322 16 17.7 31.6 459 71.2 88.0

0.7 465.0 5449 6704 900.0 1078.5 3658.7 2 174 31.0 453 70.2 87.0

0.8 475.6 5353 660.2 900.2 1089.6 3660.9 4 17.2 30.8 44.7 69.6 86.3

0.8 005 0.6 4727 565.1 6922 9244 1133.8 37882 25 129 21.8 319 50.1 62.6

0.7 480.6 5674 689.8 919.7 1122.6 3780.0 23 12.7 215 314 49.6 62.0

0.8 480.1 5545 666.1 9154 1066.2 3682.2 7 126 21.2 309 489 613

0.1 0.6 4788 5524 674.6 920.6 1091.1 37174 13 13.1 222 324 50.8 63.3

0.7 4745 551.6 676.5 913.8 1090.0 37064 12 129 21.8 31.8 504 62.8

0.8 471.7 540.5 667.4 899.3 1052.8 36315 1 12.8 21.5 31.6 49.7 62.0

0.15 0.6 477.6 5529 673.7 9182 11324 37547 21 133 22.6 329 513 64.1

0.7 477.0 5374 663.1 900.2 1083.4 3661.1 5 132 222 324 51.0 63.2

0.8 4745 5414 6609 908.3 1098.0 3683.1 8 13.0 219 31.8 50.5 62.8

09 005 06 4814 581.1 687.4 945.0 1111.5 3806.3 26 82 134 185 28.6 36.0

0.7 479.7 567.1 681.0 916.5 1108.5 3752.7 20 82 133 183 284 35.6

0.8 476.7 567.8 6762 903.2 1101.0 3724.8 15 8.1 132 18.1 282 353

0.1 0.6 4844 5649 679.1 917.3 1139.5 3785.0 24 8.5 13.8 19.0 29.3 36.5

0.7 4789 556.1 674.1 917.1 1097.1 37233 14 83 13.7 18.7 29.2 36.5

0.8 469.0 5489 671.0 909.9 1084.6 36833 9 83 13.5 18.5 28.7 36.1

0.15 0.6 4813 554.5 684.1 9453 1170.5 3835.7 27 8.8 142 195 30.0 37.8

0.7 4773 547.3 667.0 915.0 11304 37369 17 8.6 14.1 193 299 37.6

0.8 471.1 5454 661.5 905.3 1109.9 3693.2 11 8.6 139 19.1 29.6 37.1
Ave. 475.8 553.1 676.1 9142 1102.5 3721.6
SD 50 115 99 127 242 510

Bold text and italics cells: the best combination of the operating parameters

statistically significant at the 0.05 significance level, but the interactions of them were
not significant. The right-hand side of Table 7 is the ANOVA table after pooling the
non-significant interactions. The boxplot for each factor is shown in Fig. 8a—c to deter-
mine the optimal level of the parameters. EACS shows similar performance at 0.7 and
0.8 of p,,,... We assigned 0.8 to p,,,., to improve calculation time. p,,,. was determined
to be 0.1 which shows the most stable solution quality. p,, was determined to be 0.8
which shows the best solution quality. This combination of the parameters is consist-
ent with the result of the rank in Table 5. Although the summary is not presented,

ANOVA for the 7,,,,,, was also performed. All parameters and several interactions were

@ Springer

Evolving ant colony system for large-sized integrated process... 545

Table 6 ANOVA tables for the sum of C, . s

max

Source Before pooling After pooling

df MSS F-ratio p value df MSS F-ratio p value
Prune 2 5188 12.65 0.00 2 5188 9.82 0.00
Donite 2 5021 12.24 0.00 2 5021 9.50 0.00
Das 2 19,619 47.82 0.00 2 19,619 37.13 0.00
Puune X Ppite 4 657 1.60 0.26
Prune X Drs 4 329 0.80 0.56
DPontte X Prs 4 835 2.03 0.18
Residuals 8 410 20 528

df degree of freedom, MSS mean sum-of-square

statistically significant. However, as Fig. 8d shows, the computation time decreases
sharply as p,,,, increases. This is because the route improvement using the procedure
TUNNING is much faster than the search of the new route using the route construction
rule. However, the larger the p,,,., the worse the solution quality, so p,,,, is determined
as the arbitrated value.

6.2 Effect of sequence-dependent setups

To confirm the assertion of Wan et al. (2011) that the optimal schedule can be improved
by considering sequence-independent setups independently, an experiment was con-
ducted on the benchmark problems. The experimental environment was the same as
Table 4. Figures 9 and 10 show the best solution of EACSNS and EACS for P21 in a
Gantt chart. In the figure, the y-axis represents machine identification and the x-axis is
time. Each box represents schedules of an operation, where blue boxes are tool change
times, red boxes are setup change times, yellow boxes are unloading times, and gray
boxes are transportation time. The color of the texted boxes represents the job identi-
fication and the text in the box denotes (j, 0, m, t, k) of the operation. The thick lined
black rounded boxes in Fig. 6 show the examples for which the schedule was improved
by applying the sequence-dependent setup times, in other words, the sequence-depend-
ent setup times can be reduced by EACS.

The experimental results for C,,,, and 7, are summarized in Table 7. EACS
improves C,,,. up to 22% over EACSNS. The degree of improvement depends on the
problem settings and the algorithm such as the magnitude of the setup times, the per-
formance of the algorithm, the size of the ant colony, and the number of iterations.
Nevertheless, the improvement of the makespan is clear and it positively affects to
manufacturing cost.

@ Springer

546 C.Ha

Table7 Makespan improvement o4 EACSNS EACS Improvement

caused by considering the . rate (%)

sequence-dependent setup times

for the benchmark problems Prob. Crx Coue SD G, m SD C... Co.u
P1 583 593.8 5.7 442 4723 158 24.19 2046
P2 601 6119 52 460 480.1 12.6 2346 21.55
P3 527 561.0 14.0 423 4650 20.3 19.73 17.12
P4 527 5410 6.5 440 4763 15.1 16.51 11.96
P5 467 4914 95 395 4202 17.7 1542 14.50
P6 613 6293 9.0 470 5184 235 2333 17.62
P7 583 6034 7.6 462 5025 169 20.75 16.72
P8 593 6116 6.6 426 478.6 18.1 28.16 21.75
P9 516 5525 139 394 4523 260 23.64 18.14
P10 605 621.3 85 472 505.0 16.1 21.98 18.72
P11 537 5565 11.0 433 468.0 18.1 19.37 1590
P12 457 4825 10.6 349 3941 175 23.63 1832
P13 619 640.0 114 507 538.0 164 18.09 1593
P14 607 644.0 18.1 521 5755 239 14.17 10.64
P15 544 5733 13.8 463 5177 21.3 1489 9.69
P16 652 673.2 13.7 541 584.1 223 17.02 13.24
P17 625 664.1 204 537 584.6 23.6 14.08 11.97
P18 612 639.7 125 482 537.0 23.8 21.24 16.07
P19 637 6905 16.6 576 6203 19.6 9.58 10.16
P20 489 5234 17.8 388 4513 19.7 20.65 13.76
P21 701 7355 20.5 606 6614 21.7 13.55 10.07
P22 721 7694 224 659 709.2 234 8.60 7.82
P23 660 688.5 169 587 636.6 213 11.06 7.54
P24 755 7973 275 673 7264 24.1 1086 8.90
P25 762 796.5 204 682 7243 235 10.50 9.07
P26 695 7253 209 589 6562 258 1525 953
P27 762 8043 23.1 675 7356 27.1 11.42 855
P28 650 7004 23.6 588 6377 19.5 9.54 8.94
P29 882 9539 36.8 808 9045 40.1 839 5.18
P30 880 9499 37.3 816 900.1 40.2 727 525

P31 1038 1141.1 554 974 1086.1 555 6.17 4.82
Min 6.17 4.82
Max 28.16 21.75
Ave. 16.21 12.90

6.3 Performance comparison for other meta-heuristics
The final series of experiments were conducted to compare the performance with

existing meta-heuristics for IPPS. Four algorithms were used for the compara-
tive study. mPSO (Miljkovié¢ and Petrovi¢ 2017) and FSDPSO (Dou et al. 2018)

@ Springer

Evolving ant colony system for large-sized integrated process... 547

T T T =
1 1 1 -
8 | 1 Sl - | S &
A - S 1 ' & !
] - .
-
B : : : !
=) | =3 | =3 | 2
v _| I g | _ow ' o —
5§86 56 - §a F
k L . AN Y =
o ! o ' o -+ !
S | S | | S | =)
“ ! @ ! @ ! =
- -~
. . - |
=3 ! =3 ! =3 4
ag] v _| | v _| 1
©° ' o H o \ o
“@ . « . “ -+ =7 -
T T T T T T T T T T T T
0.7 08 09 0.05 0.1 0.15 06 07 08 07 08 09
pl“ﬂL’ pm"(‘ pVD plune
(a) (b) (© (d)

Fig.8 Boxplots for C,,,, and ¢, according to p,,... Pyuie> and P,

max comp

are based on PSO and E-ACO (Zhang and Wong 2014) and EACS are based on
ACO. The experiment was performed in the same way as the parameter setting
in Table 4. As an exception, we increased the swarm size ni of FSDPSO to 60
for a fair comparison, because its computation time per iteration is very short
compared to other meta-heuristics. The experimental results are summarized in
Table 8. In Table 8, makespan and computation time are averaged for fifty repeti-
tions, such as C,,,, and @, respectively. C; - is the best makespan and r;,, indi-
cates the percentage of infeasible solutions among 50 repetitions. The last two
columns compare C; =~ and C,,, of the current best algorithm FSDPSO versus
EACS.

According to Table 8, with regards to solution quality, EACS presented the
smallest C» ~and C,,,, for all problems except P4. This is easily confirmed by
the boxplot in Fig. 11. Compared with the mPSO and E-ACO, EACS provides
better solutions for all benchmark problems with less computation times. Even
EACS is superior to the current best algorithm FSDPSO in solution quality. The
decreases in C; and C,,,, of EACS compared with those of FSDPSO are 22%
and 21%, respectively, and the increases in computation time is negligible. In
fact, if we adjust p,,, of EACS to 0.9, we can reduce 7, by about 40% while
slightly increasing C,,,, as shown in Table 5. Moreover, all solutions of the EACS
and FSDPSO were feasible, but mPSO and E-ACO frequently derived infeasible
solutions for large-sized problems. The effectiveness of OC, MTTC, and TUN-
ING, which are three greedy heuristics proposed in Sect. 4.4, are summarized
separately in Appendix 2.

Table 9 summarizes the results of hypothesis tests using a single-sided two sam-
ple t test for the experiment. Although the makespans of E-ACO for P31 did not
satisfy the normality, the test was performed because the difference is so clear in the
boxplot of Fig. 8. Some of test pairs do not satisfy the equality of variances, so all
the tests were performed assuming unequal variances. As a result of the hypothesis
test at a significance level 0.05, the solution quality of EACS was superior to that of
all existing meta-heuristics even including EACSNS.

@ Springer

C.Ha

548

12d 10§ SNSOVH JO Uonnjos e jo 11eyo puen 6 °6ig

swiy

295 y0L'€€=dwWIL "dwoD {[£ ‘PT ‘L ‘ZT ‘9T ‘9T 'S ‘6T ‘8T ‘Z]=Bululeway 10/S {[0 ‘T ‘0 ‘€90 ‘¥ ‘S ‘¥ 'S ‘0 ‘¥ ‘9 'S € ‘€ ‘0 ‘0 ‘Z ‘0]=buluteway |00 0" T0L=XCWD

(02 '0"T ‘1070 ‘S00°0 ‘0°0Z ‘0°T ‘8°0 ‘T°0 ‘8°0)(000Z ‘0€)SNSIV3 :1Zd 404 SINPaYdS 1se9

pringer

AQ's

549

Evolving ant colony system for large-sized integrated process...

12d 10§ SOV J0 Uonnjos e Jo 11eyo puen oL *bi4

swi

295 G'pe=awIL "dwod ‘[TT ‘6 ‘8 ‘'8 ‘0Z ‘8T 'S ‘9T ‘6T ‘TT]=BululeWaY 10|S {[T ‘T ‘09’90 ‘29 'S ‘€ ‘T 'V '9'S ‘29 ‘0 T ‘T ‘TI=Bulurewsay |00 :0'909=XxewW)
(0°2°0°T “10°0 ‘S00°0 ‘0°0Z “0°T “8°0 ‘T°0 ‘8°0)(000Z ‘0€)SIV3 :1Zd 404 3INP3YS 1538

pringer

Qs

C.Ha

550

LEr UL 0 09¢ 9959 /8 0 €91 §9T6 0.8 0 6T€ €LEL 9€9 9C T'LE €790l 1¥6 €ed
Lyl 86 0 81y T60L 659 0 $961 I'I¥0l ¥€6 0 I'Le STIE8 TIEL 79 80r 19611 LIOI zud
81 T9I 0 8€€ #1999 909 0 SI91 0086 €6 0 TOE TOI8 €IL 8 6F%E 6'€0Il 686 1zd
0T 1TT 0 S¥T £ISH 88¢ 0 61T 9TI¥L 989 0 THYZ 9L9S 86b 0 §8C TLE® 69L 0cd
TLL 091 0 T9T €029 9§ 0 €St §T6 6.8 0 €ST S6vL 989 0 L6T 9€I0l 86 61d
681 161 0 TST 0L65 z8F 0 0TTl 08 99L 0 TST €799 965 0 T6T I€l6 t¥8 81d
LSt 0Tl 0 8ST 98 LES 0 91Tl 918 0I8 0 T¥C S€69 019 0 T6T LSL6 698 L1d
L6l €Ll 0 TST I8 I#S 0 TI¥El 67706 88 0 ST SLIL ¥SY 0 10¢ 086 LT6 91d
9l 078 0 8€T LLIS £9F 0 TOIl +TLL ¥l 0 0¥C SS8 €0S 0 8T L9L8 96L Sid
I'vl 6€l 0 €8T §SL6 TS 0 STEl 6'8¥8 108 0 69T TO0L9 S09 0 LI€ L09 168 v1d
e el 0 €€ 08 L0S 0 TOIl 888 I8 0 7T TT89 8 0 69T 6056 TS8 €1d
LT TLI 0 TOT [#6E 6FE 0 TSL T999 019 0 0Ll SSLb T 0 0T 88EL 6.9 Zid
Lg LS 0 S91 089 £€F 0 6vL LSIL 1.9 0 €Ll 8TIS 6SY 0 90T 6¢€08 LTL 1d
§91 8Tl 0 €SI 0%0s ur 0 999 6T16L SSL 0 8SI 0§09 TbS 0 681 0698 66L ord
6Tl 0€l 0 TLL £t #6€ 0 TLL YYIL 699 0 €81 &6IS €S 0 ¥IT LT6L YOL 6d
el 8l 0 8%l 98t 9t 0 €S9 I'ThL 169 0 LSI €vps €8p 0 98 ¢8I8 €SL 8d
9Ir S¢S 0 091 <20s 29 0 0T7L 07°9L €0L 0 091 €895 68 0 861 608 T6L Ld
T T9l 0 €LL #8IS 0OLF 0 66L +'9t8 88L 0 LI 0979 19§ 0 01T ¥T68 S€8 9d
691 11 0 8S1 zozr S6¢ 0 60L +T99 ¥I9 0 €91 €50S 9 0 861 ¥8EL 99 sd
st ri- 0 8¥l £9%r Oy 0 O0v9 I'SLY 19 0 091 L88F StF 0 €61 ¥8EL 999 vd
8Tl TOoI 0 681 059 £eF 0 0.8 9TvL SOL 0 T6I €€€S ILY 0 € ¥978 8SL ed
ver TS 0 ¥ST 108 09 0 189 0T 689 0 091 S¥SS S8 0 S6I 88I8 TSL ed
0¥l 18 0 TYL fur ot 0 +8 69¢L 9.9 0 €%l TebS I8 0 SLI €808 9SL 1d
B I O Rire R B L e o B O i e B B O/ e o B B U2~
(%) (L10T
91BI Paseardn SOvVA (10T Suom pue Sueyz) ODV-d (810T ‘1812 no@) OSAASA ~ !A0ndd pue JIAON(IA) OSdW POYIIIN

SddI 103 sonsunay-ejouwr jo sadA} snorrea 10y uostredwod ooULWIONS] 8 3|qe]

pringer

As

551

Evolving ant colony system for large-sized integrated process...

SoNSLINAY-ejow paredwod [[e Y} J0J UONN[OS 53 [[BIIAO O} :[[39 SIT[eI]

SOISLINAY-BJOW [BUOT)USAUOD Iy} SUOWE UONN[OS }$3q) 11X} p[og

STHL 9911 Ny

T 60T Xe

vsT SIT- N
€T 0 969 19801 #L6 0S 68T€ €EPST LOEI 0 9LS 99KIT 9T0I 06 T9S TEWTT 00T Ied
$6 16 0 €95 1006 9I8 €€ 0'€9C I'PIEl 9811 0 S9% Tr66 106 ¥S €8y OTELT Y6l 0ed
96 €01 0 §SS Sr06 808 S S19T T60El €911 0 9Sr €000 106 vb o SLy 0TILL 0SII 6ed
pST L€l 0 €0v £L69 88§ 0 TSI 80L6 016 0 SS¢ OFSL 189 9 T6E SHEIT 196 8ed
9¥l 9Tl 0 I8¢ 95 SL9 0 LSLI 89501 It6 0 €€ 9T98 TLL %9 LLE 6SSIT 0£0I Led
SLT §91 0 068 7959 685 0 TWI 6166 V€6 0 6¥%€ 0S6L SOL 7€ €8¢ LETIT 966 9zd
8Tl L8 0 TLE €£riL 789 0 TILL 071901 8.6 0 0T€ LOE8 LbL 7§ L9E $'SETT 8901 sed
991 06l 0 Ulb #92L €19 0 6161 THOI 6001 0 6VvE LOL8 T6L TS 68 GVLIT LT01 ved
e T T (73 R B o Bo TN (79 R R o Mo BN (/) R B B e B o BN 73 R Bt SO S o S (L% |

(%) (L10t
o1e1 paseaIda(SOVA (¥10z Suom pue ueyz) OOV-4 (8107 ¢ 19 101) OSAASA PIAOIRF PUE JIAONIIA) OSdW POYIIN

(ponunuoo) g a|qey

pringer

As

552 C.Ha
o
1 mPSO
25001 @ FSDPSO T
Il E-ACO -
2000- [0 EACSNS : H
B EACS o
= o
N g8 U
O 1500 - e B
1 — Jl_o
| -+ <+ e ET
= a o +
1000 — = T o == ;_2_ 5 o
= - _%F == < -+
[~] s o
8 T W o= =
500 - = =
T 1rrr1r 171 17 1 17 17 17 17T 17T 7T 17T 17T T 7T T T T T T
EEELE OO CSEon0R 025 5.
SRRl R R VIRV VR VE M VR VESEVE VMV SR S
222223382822228238283322¢8
EOS0SEES e cELC 0 EL20 <
&Lﬂé Emm<m8mm<m8muﬁ<m8mm<m
= 5 2 25 ~ m = 84

Fig. 11 Boxplots of C

max

Table9 Hypothesis test for i _at a significance level of 0.05(**)

obtained by various methods for the selected IPPS problems

Hypothesis H,: uc,pacs < He,, method

‘max

‘max

HO: Hc,, . .EACS = M, method

max

» max

Method mPSO FSDPSO E-ACO EACSNS

Prob. pvalue Decision pvalue Decision pvalue Decision pvalue Decision
P1 0.0000*%* Accept H; 0.0000%* Accept H; 0.0000*%* Accept H, 0.0000%* Accept H,
P13 0.0000%* Accept H; 0.0000** Accept H; 0.0000*%* Accept H; 0.0000** Accept H,
P21 0.0000*%* Accept H; 0.0000%* Accept H; 0.0000*%* Accept H, 0.0000%* Accept H,
P29 0.0000%* Accept H; 0.0000%* Accept H; 0.0000%* Accept H; 0.0000%* Accept H,
P31 0.0000*%* Accept H; 0.0000%* Accept H; 0.0000%* Accept H, 0.0000%* Accept H,

Bold text: non-normal data by Shapiro—Wilk normality test at significance level of 0.01

7 Discussion and conclusion

The contributions of this study can be summarized in two ways. The first is that the
flexibilities, constraints, and setups considered in the IPPS to date have been aggre-
gated into a comprehensive IPPS problem. By doing so, the IPPS is closer to the real
manufacturing environment. Secondly, we proposed a new ACO approach to solve
the more complicated IPPS. Existing ACOs have limitations when they are applied
to large-sized problems. The newly proposed EACS can reduce the computational

@ Springer

Evolving ant colony system for large-sized integrated process... 553

effort required to maintain the pheromone trails. Furthermore, it can improve the
performance of the ACO by enhancing the capability of each ant agent. Neverthe-
less, there are some issues that need to be discussed.

First, although EACS improves the efficiency of ACO, it continues to require a large
amount of computational effort. Various flexibilities considered in IPPS generate many
alternative operations. Every ant agent in ACO should determine the next visiting node
among those alternatives on every node in all iterations, which results in a large com-
putation time. If the sequence-dependent setups are considered, it is even worse. We
expect that development of a greedy heuristic such as Lin—Kernighan in the symmetric
traveling salesman problem will help this obstacle. Second, a new design of pheromone
trails is necessary. The key factors for determining the schedule in IPPS are job, opera-
tion, and machine. Thus, the pheromone trails should have three-dimensional structures
that can handle these three factors simultaneously. However, both the existing ACO and
our EACS run with two-dimensional pheromone trails based on job and operation. This
is only because the repository size of the pheromone trails due to many alternatives.
Parallel computing or distributed repository might be a solution for this problem.

Acknowledgements This research was funded by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(2015R1D1A1A01060391).

Appendix 1: Mathematical programming model of IPPS

The mathematical programming model for IPPS has been developed by Li et al. (2010)
and Nourali et al. (2012). Nourali et al. (2012) proposed a mixed integer linear pro-
gramming for assembly jobshop considering sequence-dependent setup times. How-
ever, the assembly jobshop problem is different from IPPS, but it does not consider
loading and unloading, tool change, TAD change, and transportation time. On the
other hand, Li et al. (2010) deals with IPPS but does not consider sequence-dependent
setup times. Therefore, we present a new mixed integer nonlinear programming model
for the proposed IPPS through the improvement of these two MILPs.

Sets and indices

job identification (ID) (j € J)

operation ID of job j (0 € 0))

machine ID (m € M)

toolID (r € T)

TAD ID (k € K)

process route ID of job j (p; € P)

set of jobs; J = {1, 2.3, ... ,nJOB}, n’8 is the total number of jobs

set of operations of job j (Oj C 0); Oj = {1, 2,3,..., niOP } n}QP is the total

Q<3 =~ 3~

number of operations of the job j
set of machines; M = {1, 2.3,...,nM }, nM is the total number of machines

<

@ Springer

554 C.Ha

T set of tools; T = {1, 2.3, ... ,nT}, n! is the total number of tool types

K set of TADs; K = {—x,x,—y,y,— 2,2}, =X, X, =V, Y, —Z, Z are directions of
tool access

set of alternative process routes of job j

ordered set of operation IDs in the process route p; of job j

(O/ = UijPj OIP/VJ < J)
o, the operation o of job j
O™ the 0, , that is assigned the machine m, the tool 7, and the TAD k

J.0
ij_l- the ith operation ID of OJp ; 0 o is the first and 0 il is the last element of
J
ij,
Ojp imi Operation O;, ; that is assigned machine m, tool 7, and TAD k
J
Mjpj,- set of alternatlve machines for the operation 0”, i M”” cM
ijj,-m set of alternative tools for the operation OJp, at the machine m; ij m CT
K, .n setof alternative TADs for the operation O ; at the machine m; K, ipjim S K.
J
Parameters
ijjii, 1, if the operation OJP ; must precede the operation O, i, 0, otherwise

CSEOT the number (capacity) of tool slots of the machine m
CTOOL the available number (capacity) of the tool ¢

rSLOT the number of required slots for the tool ¢

L a very large number.

Decision variables

Xipy imik 1, if machine m, tool ¢, and TAD &k are selected for the Ojp,i3 05 otherwise
7
z, 1, if process route p; of job j is selected; 0, otherwise
J
Y, iip,im 1. 1f operation OJp i precedes operation O; i immediately on machine m;
J J
0, otherwise
U,, 1, if tool ¢ is installed on machine m; 0, otherwise
St imik starting time of ijjim,k
Clip,imtk earliest completion time of O, i, imtk
SClip imi SELUP change time of O, ipimik
1ty imik tool change time of O itk
Plip imik processing time of O, pjimt
ul[]pjzmtk unload time of ij/_imlk
1ty imik transportation time to the successive operation of O, ip,imik
Cux makespan.

@ Springer

Evolving ant colony system for large-sized integrated process... 555

MINLP for IPPS
Minimize C,,,, (14)
subject to
2 =1 YieJ 15)
2 Z Z ipyimke = Zjp, VJ € J,Vp; € P} Vi € Oy, (16)
meMm P tETp im keK,, im

Stjp-imtk + Ctjp.imtk < L(Xfp-i"ilk) VJ €J, Vp] < Pj’Vi € O./P/’ (17)

VmeMJp,,Vte ij,m,‘v’keij,m

]p imtk + SCtjp imtk + tcr]p imtk +pL Jpjimik + ult jp iimtk L<1 - ij»imtk) <c t] iimtk

Vj€J,Vp, e P,Vie O”, ,Vm € M”,,,Vt € T”,,m,‘v’k € K”,lm
(18)
Ctj’p/»/i’mr’k’ - L<Yjpjij’p/-/i’m) < Stjpjimtk
PR
vj.j’ € J,Vp; € P;,Yp; € P, VlEij,Vl €0y, (19)
/
Vm e M]p, nM, p,,Vt € Tp im> Vk € Kp o VI E Tj,pj,,-,m,Vk € I(j,pj,i,m
Ctjpjimﬂc — L(l - Yjpﬂ’j’P/i’Wl) < sr]’p/l mt'k!
vj.j' € J,Yp; € P;,Vp; € P, VlEOH,,Vl €0y, » (20)
/
Vm eM]pl nM]p,,Vt S T]plm,Vke Kﬂ,,m,Vt € T”,,,m,Vk EKH,,,m

p;(i—1)ymik +trjp (i—1)ymtk < Stjp im't'k’
Z (e)< ¥ ¥ ¥

’"EM/p (i~1) ZGTJ@(, Dm keK/p (i=Dm m GMH,, t eTm m K GK/p m
Vi€V e Pvie0, ~{0,}
21
z 2 2 (Jpjimtk + [rjp lmtk) <1 —Rp ll’) < 2 Z Z St]plm’t’k”
mEMp i 1€T i KEKjpim m' €My it €T 1, K €Ky ity
Vi<i,j € J,Vp; € P, Vi, i'e 0]],
(22)

@ Springer

556 C.Ha

ult; i, mik = ULT(m) Vje€J,Vp; € P,VmeM,, VtET, ,m,Vk €K pim (23)

ipil

Ctjp/-lmlk <C

max

Vj € J,Vp; € P,Vm € My, .Vt € Tj,,/_lm,Vk €EKpm (24)

Xppink 2 Uy Nj €J,Vp; € PNmE M, VL ET,, VK€K, (25

Y P % U, < CHOT Yme M

(26)
teT
Z U, < CZTOOL VieT 7)
meM

Stip imik 2 0 VjeJ Vp,eP,Vie ij ,Vm € Mp,,‘v’t € p,m,Vk € szm
(28)

SClip imik 2 0 VjeJ,Vp,eP,Vie ij ,Vm € Mjp,,Vt € ij im> Vk € ij im
29)

1ty imike 2 0 VjelJVp,eP,Vie 0],, ,Vm € M””,Vt € T”,lm,Vk € K][,,m
(30)

Plipimi 20 Yj € J,Yp; € PiVi € 0), ,Ym € My, ;,Vt € T, i Vk € K im
€2))

ultjpjimtk >0 VjeJ Vp,eP,Vie 0”, ,Vm € MJP,,Vt € TJp im> ¥k € ij im
(32)

Tty imik 2 0 VjeJ Vp,eP,Vie ij ,Vm € Mjp,,Vt € T]plm,Vk € K”,,m
(33)

ij]_[m,k €{0,1} VjeJ,Vp,eP,Vie OJP,Vm € Mjp,,Vt € ij,m,‘v’k € ij,m

(34)
ij/_E{O,l} Vj € J,Vp; € P, (35)

Yy ipyim € {0, 1} Vj.j € J,Vp; € P,Np; € P;Vi € 0y, Vil e 0y, - Ym € M, ;\ M,
(36)
o €10,1} VmeMVteT (37)

IPPS is a problem that minimizes makespan of the objective function (14). Con-
straints (15) allow only one process route to be selected in each job. Constraints
(16) make sure that each operation of a selected process route selects only a com-
bination of (m,t,k). Constraints (17) make time schedules of all dummy opera-
tions zero. Constraints (18) ensure that each operation is completed by consuming

@ Springer

Evolving ant colony system for large-sized integrated process... 557

relevant sequence-dependent setup times and processing time. Constraints (19) and
(20) ensure that two or more operations are not performed simultaneously on the
same machine. Constraints (21) consider transportation time for workpiece move-
ment in the same job. Constraints (22) ensure that all precedence relations between
operations are satisfied. Constraints (23) ensure that the completed workpiece is
unloaded at the last operation of each job. Constraints (24) determine makespan.
Constraints (25) prevent duplicate installation of the same tool on a machine. Con-
straints (26) and (27) are constraints on machine’s slot capacity and tool capacity,
respectively. Constraints (28)—(37) are the possible ranges of time schedules and
decision variables.

Appendix 2: Validation of effectiveness of OC, MTTC, and TUNING

Additional experiments were performed to verify the effectiveness of the three
greedy heuristics OC, MTTC, and TUNING proposed in Sect. 4.4. OC, MTTC,
and TUNING were inserted into the procedures of mPSO, FSDPSO, and E-ACO.
Then, the five representative problems P1, P13, P21, P29 and P31 were repeated
10 times for each algorithm. Table 10 summarizes the experimental results before
and after applying the three greedy heuristics. Three greedy heuristics reduced
C,.ux bY 4.5% and 0.8% on average for mPSO and FSDPSO, respectively. On the
other hand, for E-ACO, it resulted in a dramatic improvement by reducing C,,,, by
27.4% and t.,, by 75.4%. This phenomenon occurs because mPSO and FSDPSO

max
comp

contain procedures like OC, MTTC, and TUNING, but E-ACO does not. The
results of this comparative study demonstrate that these three greedy heuristics are
effective in improving the solution and reducing the computation time. Another
notable point is that the performance of our proposed EACS is still better than
others, although other meta-heuristics have been improved by OC, MTTC, and
TUNING.

@ Springer

C.Ha

558

SONSLINAY-E)ow paredwod e Y} J0J UOHN[OS 53 [[BIIA0 dY) :[[2D SIT[BI]

SONSLINAY-BJOU [BUOT)USAUOD 3} SUOWE UOTN[OS)S3q) :1X3) pjog

70— 00 6€— vSL V¥LT €9¢C €Le— 80 Le— €91— S 9L— oAy
ST LO- r's— 96L L0T L0T 6'1E— L9- 901 — SLI- 6¢ 8LT— 1ed
61 ¥0 96— 6'SL 67T €'€C 6vE— €6— 88— CLI— €€l 09— 6cd
0e— LO- 4% 9L T8C 6'LT gLE— S0 81— SLI= 90 €1- 12d
97— 10 vT— L'SL 97T€ g reE— S re— 60I— 60— 6 — €1d
10 60 60— LeL 87TE ¥'8C STh— 66 011 €8I— L¢ 0¢ Id
(%) 1Rl paroxduy
0 6.9 T€60I #201 001 108 T¥Tel LEOI 0 09.L TEXL PLIl 001 199 ¥IIIT LI6I red
0 S¥S 8006 £68 0S 0€9 68001 68 0 919 FESOT 086 09 LSS 0S8FI 61CI 6¢d
0 8¥E 7999 6£9 0 98¢ 9°€0L €L9 0 LIv LSo8 9¢L 0C OI¥ 8L601 2001 red
0 6¢€T FLES 61¢ 0 L9 0TS 65S 0 TIE LbH9 209 0 66T 9656 768 ¢1d
0 TYL 619 9t 0 vST €s6h v8Y 0 v0T 9¥6¥ 8Tk 0 L0T €8LL 873 Id
(suonnedax 01) ONINAL Pue DLLIAN DO SuiA[dde sonstmoy
0 969 9801 #L6 0S 6'8T¢ €EPST LOET 0 9LS 99PIT 9101 06 T9S TEFCT 00ST Ted
0 SSS Sr06 808 ST SI19C 1601 €911 0 9y €000L 106 vr Sy OTILI 0ST1 6cd
0 8¢E 199 909 0 SI91 0086 €€6 0 TOE T0I8 €L 8 67 6°€011 686 Ied
0 €€ 08¢ 20§ 0 TOIT 8'8¥8 118 0 vt TT89 ¥8S 0 69T 60£6 758 €Id
0 TYL fur a4 0 78S 69¢L 9.9 0 €1 T'6bS 18 0 SLT €808 96L Id
(suonnedar 06) HONINAL PUt ‘DLLIA ‘D0 INOWIM SONSLINSH
(O R o B BN O3 R VA B o I W 73 R VA B o s BN O RV A B ve B to S
sovda ($10T Suopm pue Sueyz) OOV-4 (810T Te 12 nOo@) OSAASA (LT0T d1a0mdd pue JIAGY(IA) OSdW POYIRIA

SOV Jo sad4) snoLrea 10j sons1INaY ApaoId 991Y) JO SSAUSATIONR JO SIsATeuy | d|qel

pringer

As

Evolving ant colony system for large-sized integrated process... 559

References

Allahverdi A (2015) The third comprehensive survey on scheduling problems with setup times/costs. Eur
J Oper Res 246:345-378

Allahverdi A, Ng CT, Cheng TCE, Kovalyov MY (2008) A survey of scheduling problems with setup
times or costs. Eur J Oper Res 187:985-1032. https://doi.org/10.1016/j.ejor.2006.06.060

Azab A, ElMaraghy HA, Samy SN (2009) Reconfiguring process plans: a new approach to minimize
change. In: Changeable and reconfigurable manufacturing systems, pp 179-194

Chandra MB, Baskaran R (2012) A survey: ant colony optimization based recent research and implemen-
tation on several engineering domain. Expert Syst Appl 39:4618-4627. https://doi.org/10.1016/j.
eswa.2011.09.076

Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling
salesman problem. IEEE Trans Evol Comput 1:53-66. https://doi.org/10.1109/4235.585892

Dou J, LiJ, Su C (2018) A discrete particle swarm optimisation for operation sequencing in CAPP. Int J
Prod Res 56:3795-3814. https://doi.org/10.1080/00207543.2018.1425015

Eren T (2010) A bicriteria m-machine flowshop scheduling with sequence-dependent setup times. Appl
Math Model 34:284-293. https://doi.org/10.1016/J.APM.2009.04.005

Guo YW, Li WD, Mileham AR, Owen GW (2009) Optimisation of integrated process planning and
scheduling using a particle swarm optimisation approach. Int J Prod Res 4714:3775-3796. https://
doi.org/10.1080/00207540701827905

Kim YK, Kim JY, Shin KS (2007) An asymmetric multileveled symbiotic evolutionary algorithm for
integrated FMS scheduling. J Intell Manuf 18:631-645. https://doi.org/10.1007/s10845-007-0037-5

Leung CWW, Wong TNN, Mak KLL, Fung RYKYK (2010) Integrated process planning and scheduling
by an agent-based ant colony optimization. Comput Ind Eng 59:166-180. https://doi.org/10.1016/j.
¢ie.2009.09.003

Li WD, McMahon CA (2007) A simulated annealing-based optimization approach for integrated process
planning and scheduling. Int J Comput Integr Manuf 20:80-95. https://doi.org/10.1080/0951192060
0667366

Li WD, Ong SK, Nee AYC (2002) Hybrid genetic algorithm and simulated annealing approach for
the optimization of process plans for prismatic parts. Int J Prod Res 40:1899-1922. https://doi.
org/10.1080/00207540110119991

Li X, Gao L, Shao X et al (2010) Mathematical modeling and evolutionary algorithm-based approach for
integrated process planning and scheduling. Comput Oper Res 37:656-667. https://doi.org/10.1016/j.
c0r.2009.06.008

Liu J, MacCarthy BL (1997) A global MILP model for FMS scheduling. Eur J Oper Res 100:441-453. https
://doi.org/10.1016/S0377-2217(96)00055-0

Liu X, Ni Z, Qiu X (2016) Application of ant colony optimization algorithm in integrated process planning
and scheduling. Int J Adv Manuf Technol 84:1-13. https://doi.org/10.1007/s10845-010-0407-2

Miljkovi¢ Z, Petrovi¢ M (2017) Application of modified multi-objective particle swarm optimisation algo-
rithm for flexible process planning problem. Int J Comput Integr Manuf 30:271-291. https://doi.
org/10.1080/0951192X.2016.1145804

Moon C, Kim J, Hur S (2002) Integrated process planning and scheduling with minimizing total tardiness in
multi-plants supply chain. Comput Ind Eng 43:331-349. https://doi.org/10.1016/S0360-8352(02)00078
-5

Nourali S, Imanipour N, Shahriari MR (2012) A mathematical model for integrated process planning and
scheduling in flexible assembly job shop environment with sequence dependent setup times. Int J Math
Anal 6:2117-2132

Petrovi¢ M, Vukovi¢ N, Miti¢ M, Miljkovi¢ Z (2016) Integration of process planning and scheduling using
chaotic particle swarm optimization algorithm. Expert Syst Appl 64:569-588. https://doi.org/10.1016/j.
eswa.2016.08.019

Rachamadugu R, Stecke KE (1994) Classification and review of FMS scheduling procedures. Prod Plan
Control 5:2-20. https://doi.org/10.1080/09537289408919468

Reddy SVB (1999) Operation sequencing in CAPP using genetic algorithms. Int J Prod Res 37:1063-1074.
https://doi.org/10.1080/002075499191409

Shao X, Li X, Gao L, Zhang C (2009) Integration of process planning and scheduling—a modified genetic
algorithm-based approach. Comput Oper Res 36:2082-2096. https://doi.org/10.1016/j.cor.2008.07.006

@ Springer

https://doi.org/10.1016/j.ejor.2006.06.060
https://doi.org/10.1016/j.eswa.2011.09.076
https://doi.org/10.1016/j.eswa.2011.09.076
https://doi.org/10.1109/4235.585892
https://doi.org/10.1080/00207543.2018.1425015
https://doi.org/10.1016/J.APM.2009.04.005
https://doi.org/10.1080/00207540701827905
https://doi.org/10.1080/00207540701827905
https://doi.org/10.1007/s10845-007-0037-5
https://doi.org/10.1016/j.cie.2009.09.003
https://doi.org/10.1016/j.cie.2009.09.003
https://doi.org/10.1080/09511920600667366
https://doi.org/10.1080/09511920600667366
https://doi.org/10.1080/00207540110119991
https://doi.org/10.1080/00207540110119991
https://doi.org/10.1016/j.cor.2009.06.008
https://doi.org/10.1016/j.cor.2009.06.008
https://doi.org/10.1016/S0377-2217(96)00055-0
https://doi.org/10.1016/S0377-2217(96)00055-0
https://doi.org/10.1007/s10845-010-0407-2
https://doi.org/10.1080/0951192X.2016.1145804
https://doi.org/10.1080/0951192X.2016.1145804
https://doi.org/10.1016/S0360-8352(02)00078-5
https://doi.org/10.1016/S0360-8352(02)00078-5
https://doi.org/10.1016/j.eswa.2016.08.019
https://doi.org/10.1016/j.eswa.2016.08.019
https://doi.org/10.1080/09537289408919468
https://doi.org/10.1080/002075499191409
https://doi.org/10.1016/j.cor.2008.07.006

560 C.Ha

Shen X-N, Yao X (2015) Mathematical modeling and multi-objective evolutionary algorithms applied to
dynamic flexible job shop scheduling problems. Inf Sci (NY) 298:198-224. https://doi.org/10.1016/j.
ins.2014.11.036

Srinivas PS, Raju VR, Rao CSP (2012) Optimization of process planning and scheduling using ACO and
PSO algorithms. Int J Emerg Technol Adv Eng 2:343-354

Stiitzle T, Dorigo M (1999) ACO algorithms for the traveling salesman problem. In: Miettinen K, Makela M,
Neittaanmaki P, Periaux J (eds) Evolutionary algorithms in engineering and computer science: recent
advances in genetic algorithms, evolution strategies, evolutionary programming, genetic programming
and industrial applications. Wiley, New York, pp 1-23

Tan W, Khoshnevis B (2000) Integration of process planning and scheduling—a review. J Intell Manuf
11:51-63

Wan SY, Wong TN, Zhang S, Zhang L (2011) Integrated process planning and scheduling with setup time
consideration by ant colony optimization. In: Proceedings of the 41st International conference on com-
puters and industrial engineering, pp 998-1003

Wang J, Fan X, Zhang C, Wan S (2014) A graph-based ant colony optimization approach for integrated
process planning and scheduling. Chin J Chem Eng 22:748-753. https://doi.org/10.1016/j.cjche
.2014.05.011

Zhang SC, Wong TN (2013) An enhanced ant colony optimization approach for integrating process plan-
ning and scheduling based on multi-agent system. In: Proceedings of the 5th IESM conference. Rabat,
Morocco

Zhang S, Wong TN (2014) Integrated process planning and scheduling: an enhanced ant colony optimization
heuristic with parameter tuning. J Intell Manuf 29:1-17. https://doi.org/10.1007/s10845-014-1023-3

Zhang L, Wong TN (2016) Solving integrated process planning and scheduling problem with constructive
meta-heuristics. Inf Sci (NY) 340-341:1-16. https://doi.org/10.1016/j.ins.2016.01.001

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Chunghun Ha is currently an Associate Professor of Department of Industrial Engineering at Hongik
University. He received a B.S. in Electronics Engineering from Yonsei University and a master and doc-
toral degree in industrial engineering from Texas A & M University. He worked as an engineer at Sam-
sung Advanced Institute of Technology (SAIT) and Samsung Electronics. His research interests include
optimization, scheduling, reliability and yield modeling, and demand forecasting.

@ Springer

https://doi.org/10.1016/j.ins.2014.11.036
https://doi.org/10.1016/j.ins.2014.11.036
https://doi.org/10.1016/j.cjche.2014.05.011
https://doi.org/10.1016/j.cjche.2014.05.011
https://doi.org/10.1007/s10845-014-1023-3
https://doi.org/10.1016/j.ins.2016.01.001

	Evolving ant colony system for large-sized integrated process planning and scheduling problem considering sequence-dependent setup times
	Abstract
	1 Introduction
	2 Background knowledge for IPPS and ACO
	2.1 IPPS representation
	2.2 Setup and transportation times
	2.3 Conventional ant colony system for IPPS

	3 Literature review
	3.1 Setup consideration on IPPS
	3.2 Ant colony optimization for IPPS

	4 Proposed evolving ant colony system (EACS)
	4.1 Issues of the conventional ant colony system
	4.2 Overall procedure of EACS
	4.3 Route construction rule of EACS
	4.4 Solution improving heuristics
	4.5 Pheromone update rule of EACS
	4.6 Objective function

	5 Experiment environment
	5.1 Benchmark problem sets
	5.2 Meta-heuristics and experiment environment for comparative study

	6 Experimental results
	6.1 Parameter determination
	6.2 Effect of sequence-dependent setups
	6.3 Performance comparison for other meta-heuristics

	7 Discussion and conclusion
	Acknowledgements
	References

