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Abstract

We compare the optimal buffer allocation of a manufacturing flow line operating
under three different production control policies: installation buffer (IB), echelon
buffer (EB), and CONWIP (CW). IB is the conventional policy where each machine
may store the parts that it produces only in its immediate downstream buffer if the
next machine is occupied. EB is a more flexible policy where each machine may
store the parts that it produces in any of its downstream buffers. CW is a special case
of EB where the capacities of all buffers, except the last one, are zero. The optimiza-
tion problem that we consider is to maximize the average gross profit (AGP) minus
the average cost (AC), subject to a minimum average throughput constraint. AGP is
defined as the average throughput of the line weighted by the gross marginal profit
(selling price minus production cost per part), and AC is the sum of the average WIP
plus total buffer capacity plus transfer rate of parts to remote buffers, weighted by
the inventory holding cost rate, the cost of storage space, and the marginal cost of
transferring parts to remote buffers, respectively. Numerical results show that the
optimal EB policy generally outperforms the optimal IB and CW policies. They also
show that as the production rates of the machines decrease, the relative advantage in
performance of the EB policy over the other two policies increases. When the cost of
transferring parts to remote buffers increases, the dominance of the EB policy over
the IB policy decreases while the dominance of the EB policy over CW increases.
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1 Introduction

The most common type of manufacturing system used in mass-production is the
flow line. A flow line consists of machines in series that are visited sequentially
by all parts. Often, the unpredictable variation in the processing times of the parts
causes congestion and adversely affects the efficiency of the line. One of the ways
of improving efficiency is to provide buffer space between the machines. With such
space, if a machine stops, then the other machines can continue working undis-
turbed; without buffers, every machine is forced to work at the rate of the slowest
machine.

Because buffers are expensive and occupy valuable space, it is important to use
them as efficiently as possible. Recently, Liberopoulos (2018) considered a produc-
tion control policy aimed at increasing the utilization of buffers by allowing each
machine to store the parts that it produces in any of its downstream buffers, if the
next machine is occupied. He referred to the ensemble of all the downstream buffers
and the next machine as echelon buffer and to the resulting policy as echelon buffer
(EB) policy. Under the EB policy, the buffers can contain parts that are in differ-
ent stages of completion. In this case, it is not possible to evaluate the total buffer
inventory in common units and to have a single unit cost for each buffer. Moreover,
a machine is blocked from processing a part if the number of parts that have been
processed by it but have not yet departed from the line is equal to the capacity of the
echelon buffer following the machine. This means that the release of parts in each
production stage is based on global information. If the capacity of each buffer except
possibly the last one is zero, the EB policy is equivalent to CONWIP (henceforth,
CW), as is explained in Liberopoulos (2018).

Liberopoulos (2018) juxtaposed the EB policy with the conventional production
control policy in which each machine may store the parts that it produces only in
its immediate downstream buffer if the next machine is unavailable. He referred to
the ensemble of that buffer and the space in the next machine as installation buffer,
and to the resulting policy as installation buffer (IB) policy. Under the IB policy, a
machine is blocked from processing a part if the installation buffer downstream of it
is full. In this case, the release of parts in each stage is based on local information.

Clearly, the utilization of buffer space under the EB policy is higher than it is
under the IB policy. Consequently, the EB policy is expected to yield higher aver-
age throughput—at the cost of higher average WIP—than the IB policy. Moreover,
the EB policy is expected to incur an additional transfer cost for storing parts to
remote downstream buffers. Numerical results in Liberopoulos (2018) confirm these
expectations. The question that we address in this paper is whether the benefit of
the throughput increase under the EB policy outweighs the disadvantage of the WIP
increase and transfer cost, also considering that a smaller total buffer space is needed
under EB than under IB to achieve the same throughput level.

To answer this question, we consider a constrained optimization problem whose
objective is to determine the optimal buffer sizes to maximize the average net profit
(ANP) of the line subject to a minimum average throughput constraint, under any
production control policy. ANP is defined as the average gross profit (AGP) minus
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the average cost (AC), where AGP is the average throughput of the line weighted
by the gross marginal profit (selling price minus production cost per part), and AC
is the sum of the average WIP plus total buffer capacity plus transfer rate of parts
to remote buffers, weighted by the inventory holding cost rate, the cost of storage
space, and the marginal cost of transferring parts to remote buffers, respectively.

We numerically solve the constrained optimization problem for numerous
instances of a 20-machine and an 8-machine line operating under the IB, EB, and
CW policies. In all instances, we adopt the Bernoulli reliability model for the
machines, i.e., we assume that the machines have geometrically distributed process-
ing times. The Bernoulli reliability model leads to a simpler mathematical descrip-
tion than other models and is adequate for production systems where the downtime
is short and comparable with the cycle time. The Bernoulli machine model has
been successfully applied in many manufacturing system studies (e.g., Diamantidis
and Papadopoulos 2004; Li and Meerkov 2000; Meerkov and Zhang 2008, 2011;
Biller et al. 2009). The instances that we investigate differ in the production rates of
the machines and the parameters of the constrained optimization problem. For the
20-machine line, these parameters are chosen randomly within a reasonable range.
For the 8-machine line, they are chosen in a systematic way for sensitivity analysis.

To find the optimal buffer allocation for each instance under each policy, we
use a two-phase optimization algorithm. Phase 1 is an adaptation of the two-step
Lagrangean relaxation-type gradient algorithm presented in Shi and Gershwin
(2009). Phase 2 is a simple neighborhood search that aims to improve the allocation
obtained in phase 1 by adding, subtracting, or transferring a unit of storage capac-
ity to one buffer at a time, on a trial basis. It only applies to the IB and EB poli-
cies where multiple buffer capacities must be optimized. Recall that in CW, only the
capacity of the last buffer is optimized.

For each of the considered policies, the performance of the line for given buffer
sizes is evaluated using an approximation method that is based on decomposing the
original multiple-machine line into many 2-machine 1-buffer elementary lines that
can be analyzed in isolation. The buffer in each elementary line represents one of
the buffers in the original line, and the upstream and downstream machines repre-
sent in an aggregate way the segments of the original line that are upstream and
downstream of that buffer. The parameters of these two machines are determined by
relationships among the flows of parts through the buffers in the original line. The
idea is to set these parameters so that the behavior of the buffer in each elementary
line mimics as closely as possible the behavior of the buffer that it represents in the
original line.

For the IB policy, we use a decomposition-based approximation method that is
conceptually similar to the algorithm developed in Li and Meerkov (2009) for the
Bernoulli machine case but is more elaborate than that algorithm as far as the mod-
eling of the machines of the elementary lines is concerned. For the EB and CW
policies, we employ the decomposition-based approximation method developed and
specialized for the Bernoulli reliability model in Liberopoulos (2018). Using these
methods, various performance measures of the line can be evaluated. The measures
that are of interest for the purposes of the optimization are the average throughput,
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the average WIP levels at each processing stage, and the average transfer rate of
parts to remote buffers.

The main question that we try to answer in this paper is not whether the perfor-
mance evaluation and optimization algorithms that we used are good or better than
other algorithms, but whether the optimal EB policy outperforms the optimal IB
and CW policies under different problem scenarios. The contribution of this paper,
therefore, lies mainly in setting up the numerical study for the comparison of the
three policies, carrying it out and obtaining and discussing the results, and to a much
lesser extent in assessing the efficiency of the algorithms used to obtain the results.

The remainder of this paper is organized as follows. In Sect. 2, we review the
related literature on the buffer allocation problem and on the comparison of differ-
ent production policies. In Sect. 3, we describe the IB, EB, and CW policies. In
Sect. 4, we give the formulation of the constrained optimization problem under con-
sideration, and in Sect. 5, we present the algorithm that we use to solve it. In Sect. 6,
we present the numerical results. First, we describe the setup of the numerical
experiments that we run to compare the optimal IB, EB, and CW policies. Then, in
Sect. 6.1, we present the results on the comparison of the optimal IB, EB, and CW
policies, for a 20-machine line with randomly chosen input parameters. In Sect. 6.2,
we present more results on the comparison of the optimal IB, EB, and CW policies,
for an 8-machine line with systematically chosen input parameters for sensitivity
analysis. Finally, we conclude in Sect. 7.

2 Literature review

The role of intermediate storage buffers in mitigating the adverse effect of process
time variability on the efficiency of manufacturing flow lines has been researched
for over five decades. Most of the issues that have been studied throughout these
years fall into one of three areas: (1) modeling, (2) performance evaluation, and (3)
optimization. A review of the first two areas can be found in Liberopoulos (2018)
and references therein. Below, we briefly review the area of optimization.

One of the most widely researched problems in flow line optimization is the
buffer allocation problem (BAP). BAP deals with allocating storage capacity to
intermediate storage buffers to meet a given criterion under given constraints. In a
recent survey on this topic, Demir et al. (2014) identified three main BAP variants.
In one variant, which is often referred to as primal BAP in the literature, the goal
is to minimize the total buffer size to achieve a given desired average throughput.
In another variant, which is often referred to as dual BAP, the goal is to maximize
the average system throughput for a given fixed total buffer size. In the third vari-
ant, the goal is to minimize the average system WIP subject to total buffer size and
average throughput constraints. A more recent review of the BAP can be found in
Weiss et al. (2018). According to Tempelmeier (2003), who raised important practi-
cal considerations in the optimization of flow production systems, planners normally
treat average throughput as a datum and therefore usually consider the primal BAP
variant.
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Relatively recently, Shi and Gershwin (2009) considered an extension of the pri-
mal BAP whose objective is to maximize the average profit of the line subject to a
given minimum average throughput constraint. The average profit is defined as the
weighted average throughput of the system minus the sum of the weighted average
WIP plus total buffer capacity. In this paper, we consider this variant except that we
also include the weighted average transfer rate of parts to remote buffers as an addi-
tional cost term in the objective function. The resulting constrained problem is quite
general and includes as special cases the unconstrained problem, when the mini-
mum average throughput is zero, and the primal BAP, when the weights of the aver-
age throughput and the total buffer capacity in the objective function are zero. Note
that the unconstrained problem has been studied for over 30 years (e.g., Kramer and
Love 1970; Smith and Daskalaki 1988; Altiok 1997).

Demir et al. (2014) and Shi and Gershwin (2014) also categorized the BAP lit-
erature based on the search and performance evaluation techniques used. The search
techniques include analytical methods (e.g., Enginarlar et al. 2005), DP (e.g., Dia-
mantidis and Papadopoulos 2004), heuristics (e.g., Tempelmeier 2003) and meta-
heuristics (e.g., Spinellis et al. 2000), among others. In this paper, we employ an
adaptation of the NLP gradient search technique that was used in Shi and Gershwin
(2009). Previous works that also use gradient search for optimization and decom-
position for performance evaluation include Gershwin and Schor (2000), Levantesi
et al. (2001), and Helber (2001).

To date, performance evaluation and parameter optimization have been studied
as separate problems for the most part. One exception is a recent stream of research
that uses mathematical programming approaches for the simultaneous simulation
and optimization of discrete event dynamic systems, based on the seminal work of
Chan and Schruben (2008) (e.g., Helber et al. 2011; Alfieri and Matta 2012, 2013;
Weiss and Stolletz 2015; Tan 2015).

As we wrote in the introduction, this paper is about comparing the optimal per-
formance of three policies for operating flow lines. Most of the literature on the
comparison of different production control policies has focused on systems where
production is driven by demand for finished goods. Such systems are often referred
to as pull systems. The two pull control policies that have appeared most frequently
in such comparisons are kanban and CW. A kanban-controlled line is often viewed
as being equivalent to a flow line with finite buffers, i.e., to the IB policy. There are
also many researchers that view kanban as being equivalent to the minimal blocking
(MB) policy (Mitra and Mitrani 1989), where each machine or workstation has an
input buffer in addition to its output buffer (see Liberopoulos and Dallery 2000).

Framinan et al. (2003) presented a summary of papers addressing the comparison
of CW with other policies and noted that the vast majority of papers concluded on
the superiority of CW over kanban in both performance and robustness. The only
authors that concluded differently were Gstettner and Kuhn (1996) who found that
kanban achieves a given throughput with less WIP that CW.

Bonvik et al. (1997) compared five pull control policies for a 4-machine line with
constant and time-varying deterministic demand rate. They considered the problem
of minimizing total average inventory subject to a minimum service-level constraint.
To evaluate the performance of each policy they used simulation. The policies that
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they compared are kanban, MB, basestock, CW and a kanban/CW hybrid control
policy introduced in Van Ryzin et al. (1993). They found that the kanban/CW hybrid
policy had superior performance, closely followed by CW and basestock. It is worth
noting that their definitions of the kanban and basestock coincide with the defini-
tions of the IB and EB policies, respectively. The kanban/CW hybrid is essentially
an IB policy where the release of parts in the line is controlled with a CW loop.

Gaury et al. (2000) designed a generic control system that combines the features
of kanban, CW and hybrid kanban/CW, and proposed a simulation-based evolution-
ary algorithm for selecting the best combined policy. Their numerical results on
three examples with 6, 8, and 10 machines showed that for the problem of minimiz-
ing average WIP subject to a minimum service-level constraint, the best policy is a
simplified kanban/CW policy.

Koukoumialos and Liberopoulos (2005) developed an analytical approximation
method for the performance evaluation of a multi-stage production inventory system
operated under an echelon kanban (EK) policy, which, as explained in Liberopoulos
(2018), is similar to but not identical to the EB policy. The main difference between
the two policies is that EK considers a system of manufacturing stages instead of
machines, where each stage may be a single machine or a network of machines and
has an input buffer in addition to its output buffer. They used their method to opti-
mize the EK policy and compare it against CW, which is a special case of the EK
policy. They considered a constrained optimization problem whose objective is to
minimize the WIP plus finished goods inventory holding cost subject to a service
level constraint (they considered two different service level definitions), where the
inventory holding costs are increasing in the stages. Their numerical results for a
5-machine line showed that the superiority in performance of the EK policy over the
CW policy can be quite significant, particularly when the relative increase in inven-
tory holding costs from one stage to the next downstream stage is high and/or the
quality of service is low.

Finally, Lavoie et al. (2010) optimized and compared kanban, CW, and hybrid
kanban/CW policies for lines with 4 to 7 machines, using simulation, design of
experiments, and response surface methodology. The performance measure that they
used for the optimization was the weighted average inventory, backlog, and stor-
age space cost. They found that the hybrid policy always outperforms CW and kan-
ban when storage space and inventory costs are considered explicitly. However, the
hybrid policy turns out to be equivalent to CW when storage space costs are not con-
sidered explicitly but are aggregated with the inventory costs in the holding costs.
Furthermore, with the increase of storage space cost and the number of machines,
kanban outperforms CW.

From the above analysis, to the best of our knowledge, the only papers that
compare the EB policy against other policies are Bonvik et al. (1997) and Kouk-
oumialos and Liberopoulos (2005). The latter paper compares the EK policy
(which is similar to EB) against CW but not against the kanban policy, which is
identical or similar to IB, depending on its definition. Both papers solve a simple
optimization problem whose objective is to minimize the inventory holding costs
subject to a minimum service-level constraint for demand-driven production lines
with up to 5 machines. Both papers investigate a limited number of scenarios
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concerning the values of the problem parameters. In our numerical study, we con-
sider a different optimization problem whose objective is to maximize the ANP
subject to a minimum average throughput constraint. In addition to the inventory
holdings costs, which are generally assumed to be increasing in the stages, we
also consider the cost of buffer space and the cost of transferring parts to remote
buffers. Our study is performed on larger lines with 8 machines and 20 machines
and for a very large number of problem instances. For the 20-machine line with
randomly chosen input parameters, we report results for 80 instances. For the
8-machine line with systematically chosen input parameters for sensitivity analy-
sis, we report results for 396 parameter scenarios.

3 Description of IB, EB, and CW policies

We consider a flow line consisting of N machines in series denoted
by M,,n=1,...,N, with N —1 finite intermediate buffers denoted by
B,,n=1,...,N—1. Parts are processed sequentially by all the machines, start-
ing at M, and finishing at M. Time is broken in discrete periods. In each period,
machine M,,n =1, ..., N, produces a part with probability p, unless it is starved
or blocked; hence, the processing time of a part on machine M, is geometrically
distributed with mean 1/p,. Probability p, is referred to as the production prob-
ability or rate of machine M, in isolation. Every machine has unit capacity, while
the capacity of buffer B, is denoted by C,,n=1,... ,N— L

The union of B, and M, constitutes the installation buffer following M,,. Its
capacity is 1 + C,. The number of parts that have been processed by M, but have
not yet departed from the next machine, M, ,, is referred to as the installation
WIP following M,, and is denoted by i,. The union of B, ...,By_;, and M, con-
stitutes the echelon buffer following M,,. Its capacity is 1 + ZZ;:[ C,,. The number
of parts that have been processed by M, but have not yet departed from the last
machine, My, is referred to as the echelon WIP following M, and is denoted by
e,. With the above notation in mind, the IB, EB, and CW policies are defined as
follows (see also Liberopoulos 2018):

Definition 1 (/B policy) In a flow line with N machines and N — 1 intermedi-
ate buffers with capacities C,,n=1,...,N —1, under the IB policy, machine
M,,n=1,...,N —1, releases the parts that it produces to installation buffer
B, UM, ,,and is blocked from processing a partif i, =1+ C,.

Figure 1 shows a flow line with N = 4 machines operated under IB. The differ-
ent line-types of the arrows indicate the flow of parts between different machines.
For instance, the solid-line arrows indicate the flow of parts that have been pro-
cessed by machine M, but have not yet been processed by machine M. These
parts can be stored only in buffer B,.
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Fig. 1 Flow line operated under an IB policy

Definition 2 (EB policy) In a flow line with N machines and N — 1 intermedi-
ate buffers with capacities C,,n=1,...,N — 1, under the EB policy, machine
M,,n=1,...,N—1, releases the parts that it produces to echelon buffer
B,U--UBy_UM,,,, and is blocked from processing a partife, = 1 + ZZ;:I C,.

Figure 2 shows the 4-machine flow line of Fig. 1 operated under an EB policy.
Again, the different line-types of the arrows indicate the flow of parts between dif-
ferent machines. As in Fig. 1, the solid-line arrows indicate the flow of parts that
have been processed by machine M, but have not yet been processed by machine M.
These parts can be stored either in buffer B, or in buffer B;.

If the capacities of all intermediate buffers, except possibly the last one, are zero
(e.,ifC,=0,n=1,...,N—2,and Cy_; > 0), then under the EB policy, machine
M,,n=1,...,N — 1, can store the parts that it produces in the last and only buffer
By_;if M, is occupied. To simplify notation, we denote this buffer by B and its
capacity by C, i.e., B= By_; and C = Cy_,. It is easy to see that in this case, M| is
blocked from processing a part if ¢, = 1 + C and that no other machine can ever be
blocked. This way of operation is identical to the operation of CW where parts are
not allowed to be released into the system if the total WIP is at the WIP-cap (Spear-
man et al. 1990). For the purposes of this paper, we will henceforth use the follow-
ing definition for CW:

Definition 3 (CW policy) In a flow line with N machines and N — 1 intermediate
buffers with capacitiesC, =0,n=1,...,N —2,and C_;, = C > 0, the EB policy is
equivalent to a CW policy with a WIP-cap of 1 + C.

Figure 3 depicts the 4-machine flow line of Figs. 1 and 2 operated under CW,
where the last buffer is shown as a common storage area on the side of the machines.
To analyze the operation of a flow line under the EB policy, Liberopou-
los (2018) modelled it as a token-based queueing network and developed a

Fig.2 Flow line operated under an EB policy
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Fig. 3 Flow line operated under C
a CW policy

P3 P4

decomposition-based approximation method for evaluating its performance. This

network consists of the N machines of the line, M, ..., M,, separated by N — 1 infi-
nite capacity buffers, denoted by Y/, ...,Yy_;, as shown in Fig. 4, for N = 4. The
number of parts in buffer Y,,n =1, ...,N — 1, including the part in machine M, |,

is referred to as the stage WIP following M, and is denoted by y,; y, represents
the number of parts that have been produced by M, but have not yet departed from
M, ;. As was mentioned earlier, in the physical system shown in Fig. 2, these parts
may reside anywhere in echelon buffer B, U --- UBy_; UM, ;.

When a part flows from machine M, to buffer Y,, a token is generated and is
placed in an associated finite buffer denoted by E,,n=1,...,N — 1. The capac-
ity of E, is equal to 1 + ZZ;; C, 1.e., it is equal to the capacity of echelon buffer
B,U--UBy_UM,,, following M,,n=1,...,N — 1, in the physical line shown
in Fig. 2. The long vertical line at the end of the system in Fig. 4 represents a
synchronization station that synchronizes parts exiting the line with tokens
from buffers E,,n=1,...,N — 1. More specifically, when a part is produced by
machine M, it draws a token from each of buffers £, ..., Ey_,. The finished part
departs from the line, and the tokens are discarded. Clearly, the number of tokens

€
‘ . Y 14C, +Cy+Cs
E; >
€2
) _1+C,+C;
E, >
€3
E3 >
O
P1 P3 Pa
N Y2 V3

Fig.4 Queueing network model of a flow line operated under an EB policy
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in E, equals the echelon WIP downstream of M,,n =1,...,N — 1, in the physical
line shown in Fig. 2; it is therefore denoted by e,. The echelon WIP and the stage
WIP levels are related as follows:

To further clarify the difference between the EB and IB policies, Fig. 5 shows
a token-based queuing network model of a flow line operated under IB which
is analogous to the model of the EB policy in Fig. 4. In the IB model, when a
part flows from machine M, to buffer Y,, a token is generated and is placed in an
associated finite buffer denoted by /,,n =1,...,N — 1. When a part is produced
by machine M, , it draws a token from buffer /,. The capacity of I, is equal to
1+C,, ie., it is equal to the capacity of installation buffer B, UM, following
M,,n=1,...,N — 1, in the physical line shown in Fig. 1. The part moves further
downstream the line, and the token is discarded. Clearly, the number of tokens in
I, equals the installation WIP downstream of M,,n =1,...,N — 1, it is therefore
denoted by i,. Note that in the IB policy, the stage WIP levels are identical to the
installation WIP levels, i.e.,

Y =in,}’l= 1,...,N— 1.

To evaluate the performance of the EB policy, Liberopoulos (2018) developed
an approximation method that is based on: (1) decomposing the original queue-
ing network model of the line with N machines and N — 1 echelon buffers (see
Fig. 4) into N — 1 nested segments, and (2) approximating each segment with a
2-machine subsystem that can be analyzed in isolation. For the case where the
machines have geometrically distributed processing times, each subsystem is
modelled as a 2D Markov chain that is solved numerically. The parameters of the
2-machine subsystems are determined by relationships among the flows of parts
through the echelon buffers in the original system. These relationships are solved
using an iterative algorithm. Liberopoulos (2018) demonstrated that this method
is highly accurate and computationally efficient. In this paper, we use the same
method to evaluate the performance of the EB and CW policies.

— 1+ 14, T 14 G

L I I3 »

Y; YZ Y3 —>

L L ——— s — T Ps
B! Y2 Y3

Fig.5 Queueing network model of a flow line operated under an IB policy
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4 Formulation of the buffer allocation problem

We consider an optimization problem similar to that presented in Shi and Gershwin
(2009). The objective is to determine the buffer sizes of a flow line to maximize the
average net profit of the line subject to a minimum throughput constraint, for the
three considered policies, namely, IB, EB, and CW. The average net profit is defined
as the weighted average throughput of the line minus the average cost. The latter is
defined as the sum of the weighted average WIP plus total buffer capacity plus trans-
fer rate of parts to remote downstream buffers. The mathematical formulation of the
problem is as follows:

max P(Cy,...,Cy_;) =rv(Cy,...,Cy_y)

CprooiCyoy
N-1
—<Zhn5),,( .Cy_1) +bZC +120n - Cyey >
n=1
ey

subject to v(Cp oo s Cyly) 2 Vi )

where we have used the following notation:

P(Cy, ..., Cy_,):average net profit of the line as a function of C|, ..., Cy_, ($ per
unit time);

v(Cy,...,Cy_,) average throughput of the line as a function of Cy,...,Cy_,
(parts per unit time);

¥.(Cy. ..., Cy_y) : average value of stage WIP y,,n=1,...,N — 1, as a function
of Cy, ..., Cy_; (parts);

0,(Cy,...,Cy_y): overflow rate of stage WIP buffer Y,, as a function of
C,,...,Cy_;; (parts per unit time)—to be defined shortly;

r: gross profit rate per final part produced by the line ($ per part);

h,,: inventory holding cost rate of parts comprising stage WIP y,,n=1,...,N -1
($ per part per unit time);

b: cost rate of storage space ($ per storage space for one part per unit time);

t: cost rate of transferring parts to remote buffers ($ per part transferred to a
remote buffer);

V,.in - Minimum required average throughput (parts per unit time).

The overflow rate 6, is defined as the joint probability that machine M, produces a
part and y, > C, + 1. It represents the flow rate of parts that are produced by M, and
are transferred for storage to a remote downstream buffer, i.e., a buffer which is dif-
ferent from B,, because B, is full (hence the term “overflow”). Recall that under the
IB policy, parts are never transferred for storage to remote downstream buffers but are
stored locally. In this case, 8, =0,n =1, ..., N — 1. Under the EB and CW policies,
on the other hand, the overflow rates of all stage WIP buffers except Y),_, are positive,
ie,0,>0,n=1,...,N—2,and 8y_; = 0. The overflow rate of Y,_, is zero, because
the parts in it represent parts that have been produced by machine M),_, but have not
yet departed from machine M), in the physical system. These parts can only be stored
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locally in the immediate downstream buffer B,,_; and not in any other remote buffer in
the physical system.

5 Optimization algorithm for solving the buffer allocation problem

Problem (1)—(2) is a constrained non-linear integer optimization problem. To solve it,
we use the following two-phase optimization algorithm.

Phase 1 Phase 1 is an adaptation of the two-step gradient algorithm presented in Shi
and Gershwin (2009). That algorithm is basically an implementation of the Lagrange
multiplier method for solving non-linear constrained optimization problems.

Step 1 of phase 1 In step 1, we solve problem (1)—(2) without taking into account
constraint (2). This problem is referred to as the unconstrained problem. To solve this
problem, we use the following iterative “gradient-like” technique.

We start with an initial design where all buffer capacities are zero, i.e.,
C,=0,n=1,...,N — 1. In each iteration, given the current design C, ..., Cy_, and
the corresponding average net profit P(C 1 Cyoy ) we compute the increase in the
average net profit that would result if we incremented the value of C, by one unit to
C,+ 1 foreachn=1,...,N—1

If the increase in the average net profit is negative for all n =1, ... ,N — 1, then
there are no more gains to make by incrementing the buffer capacities one at a time;
therefore, we stop and keep the current design as the final one for the unconstrained
problem.

Otherwise, we update the current design to a new design in which the capacity of
the intermediate buffer that yielded the largest increase in the average net profit is incre-
mented by one unit and all other capacities remain the same, and we move on to the
next iteration.

If the final solution of the unconstrained problem solved in step 1 satisfies constraint
(2), then it is also the final solution of the constrained problem (1)—(2); hence, we keep
it as the final design of phase 1 and move on to phase 2. Otherwise, we proceed to step
2.

Step 2 of phase 1 Step 2 is implemented if the final solution of the unconstrained
problem solved in step 1 violates constraint (2). In this case, if the decision variables

C,n=1,...,N—1, were continuous, making v(Cl, - CN_I) continuous too, the
constraint would be binding at the optimal solution. Because the buffer capacities are
discrete, v(C 15 C N—l) increases in jumps, and it is unlikely that any of its values

exactly equal v,,;,. In this case, the optimal buffer capacities are the smallest values of

C,n=1,...,N—1,such that v(Cl, e CN_l) > v .. To find them, we introduce a

min
Lagrange multiplier 4 and try to solve the following modified unconstrained problem:

max JP(CI’ ,CNfl,A) = rv(Cl, '“’CN—I)

CpoeosChoy
N-1 N-1 N-2
_ <Z h3,(Creio s Cyoy) 5 ) Cut 2 Y 0,(Cs ,CN1)>
n=1 n=1 n=1

+ A(V(Cl, ees CNfl) - Vmin)’
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which is equivalent to:

max P(Cp,...,Cy_1,4) =r'v(Cy,....,Cy_y)

CponCryopoh
N-1 N-1 N-2
_ <2 h3n(Croo s Cyt) +b Y, Gkt D 0,(Cy . ,CN_1)>,

n=1 n=1 n=1
3)
where 7’ is a modified gross profit rate, given by:

F=r+a 4)

To solve problem (3) in step 2, we use the following iterative technique.

We start with the initial design where all buffer capacities are set equal to the
values of the final design of phase 1 and ¥’ = r, which from (4) implies that A = 0.

In each iteration, we slightly increment the value of the gross profit rate ' and
resolve the modified unconstrained problem (3) with the incremented value of 7.
Essentially, by increasing r’, we are increasing the Lagrange multiplier 4 intro-
duced in (3), since A = ¥/ — r from (4).

If the final solution of the modified unconstrained problem (3) with the new
value of 7/ satisfies constraint (2), then it is also the solution of the original con-
strained problem (1)-(2); hence, we keep it as the final design of phase 1 and
move on to phase 2. Otherwise, we increment the value of ' again and repeat
the process until the solution of problem (3) with the updated value of 7 satisfies
constraint (2). The resulting design solves the constrained problem too, and so we
keep it as the final design of phase 1. To evaluate the average net profit that this
design yields we use the original value of 7 in (1). We then move on to phase 2.

A block diagram of phase 1 is shown in Fig. 6, where we have used the follow-
ing notation:

C=(C,....Cy_1): (N — 1)-element vector of current buffer capacities;

Cc=(0,..,0)
r'=r

'

n* = arg n=r1n.§)151—1{P(C + 1,7}

A 4

A

Step 1

Step2
P | P(C+ 1,57 > P(C1) |E>| C=C+1,

rraio

Yes

Cphase1 = C
Vphase1 = V(C)
Pphase1 = P(G;1)

Fig. 6 Block diagram of phase 1 of the optimization algorithm
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1, =(,..., 1 ,...,0): (N —1)-element vector with 1 in position n and

nth position
zeros elsewhere, n=1,...,.N—1
P(C;r’ ) : Average net profit as a function of buffer capacity vector C for given
modified gross profit rate ’;
v(C): Average throughput as a function of buffer capacity vector C;
£ A very small positive number, e.g., ¢ = 0.0L

Phase 2 Phase 2 is a simple iterative neighborhood search that tries to improve the
solution obtained in phase 1. Throughout phase 2, we use the original gross profit
rate 7 in (1). In each iteration, given the current design C|, ..., Cy_; and the cor-
responding average net profit P(C 1o Cnoy ) we compute the increase in the aver-
age net profit that would result if we made the following perturbations to the buffer
capacities: (1) decrement the value of C, by one unit to C, — l,n=1,...,N -1,
(2) increment the value of C, by one unit to C,+1,n=1,...,N—1, and (3)
transfer one unit of capacity from buffer C, to buffer C,,n=1,...,N -1,
m=1,....N=1,m#n.

If the increase in the average net profit is negative for all the above perturbations,
then there are no more gains to make by perturbing the buffer capacities; therefore,
we stop and keep the current design as the final one.

Otherwise, we update the current design to the perturbed design that yielded the
highest increase in average profit and we move on to the next iteration.

Although the optimization problem that we consider is similar to the problem
considered in Shi and Gershwin (2009), there are several differences between our
work and the work of Shi and Gershwin.

Firstly, in the line that we consider, the machines have geometrically distributed
processing times, whereas in the line that Shi and Gershwin consider, the machines
have unit production times and geometrically distributed up times and downtimes.

Moreover, Shi and Gershwin study only the traditional IB policy, whereas we
also consider the alternative EB policy and its special case, CW. Because the trans-
ferring of parts to remote buffers does not apply to the IB policy, Shi and Gershwin
do not include in the objective function the weighted average transfer rate of parts to

remote buffers, tzzlz_lz 0, (Cl, s Gyl ), whereas we consider it for the EB and CW
policies.

Finally, we treat the buffer capacities as integers. Throughout the optimization
method, we move in the direction the steepest ascent of the average net profit, by
making the smallest possible step, to be on the safe side, as the focus of our work is
not to assess the efficiency of the optimization algorithm but to compare the optimal
performance of the three considered policies. Namely, in each iteration of step 1
of phase 1, we increment the capacity of only one buffer (the buffer that yields the
highest increase in profit) by only one unit. Similarly, in each iteration of phase 2,
we decrement or increment the capacity of one buffer by one unit or we transfer one
unit of capacity from one buffer to another.
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Shi and Gershwin, on the other hand, employ an approximation method that
allows them to treat the buffer capacities as continuous variables. Hence, in the opti-
mization, they use a classical gradient method where in each iteration they mod-
ify the capacities of all buffers in the direction that yields the steepest ascent in the
objective function. The goal of their work is to demonstrate the accuracy and effi-
ciency of this method. Moreover, they do not have the equivalent of phase 2 for
improving the solution obtained in phase 1; at the end of the two-step method (phase
1) they simply round the final continuous buffer capacity solutions to the closest
integers.

Shi and Gershwin (2009) point out that the method that they use—as any gradient
method—is based on the assumption that the net average profit is concave and has
a single maximum. They cite several references that substantiate this assumption for
similar lines based on numerical evidence and intuition. In their conclusions, they
write that the rigorous proof of this assumption is an issue for future research.

In our work we also assume that the net average profit is concave and has a single
maximum, for the classical IB policy. For the EB policy, we run some additional
numerical tests that validate this assumption. More specifically, for a selected set
of the instances of problem (1)—(2) that we solved for the 8-machine line, we rerun
the iterative two-phase optimization algorithm, except that this time, for each design
that we evaluated, we also computed the Hessian matrix of partial derivatives of the
average net profit with respect to the buffer capacities. In all cases, all the eigenval-
ues of this matrix turned out to be negative. This indicates that the Hessian matrix
is negative definite, and therefore the net average profit is concave for all the design
points that we evaluated. The results of these tests are presented in “Appendix 1”.

6 Numerical results

We used the algorithm outlined in the previous section to solve problem (1)—(2) for
numerous instances of a 20-machine and an 8-machine flow line, operating under
the IB, EB, and CW policies. The instances differ in the production rates of the
machines, p,,n=1,...,N, and in the main parameters of optimization problem
(1)-(2), namely, r,b,t,h,,n=1,....,N, and v,,;,. These parameters depend on the
production costs of the line, the interest rate and profit margin used by the firm that
runs the line, and other problem parameters which we refer to as “basic”. To choose
realistic and reasonable values for the main optimization parameters we used the fol-

lowing basic parameters:

¢, : cost per raw-material part ($ per part).

¢, total cost per part produced by machine M,,n = 1,...,N — 1, ($ per part).

cy - total cost per finished part exiting the line ($ per part).

I.: value-added rate per production stage as a percentage of ¢, ($ per $). A value
of /, = 0.5 means that processing at machine M, adds a cost (value) equal to 50%
of ¢, to each part, i.e.,c, =c,_; +1I.c,n=1,...,N.

I, : interest rate of capital ($ per $ per unit time).
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I.: gross profit margin ($ per $) defined as follows: I, = (s - cN)/cN, where s is
the selling price per finished part ($ per part). A value of I, = 0.1 means that the
selling price of a finished part is 10% higher than the total cost of the part, cy.

I, : buffer capacity cost rate defined as a multiple of inventory holding cost rate
h, (parts per storage space). A value of I, = 2 means that the per period “rental”
cost of space for storing one part in an intermediate buffer is equal to the cost of
holding two parts in stage-1 WIP inventory for one period.

I, transfer cost rate as a multiple of raw material cost ¢;. A value of /, = 0.01
means that the cost of transferring a part to a remote installation buffer and back
is 1% of c,,.

I, : minimum required flow line efficiency. A value of I, = 0.8 means that v, is
80% of the production probability (rate) of the slowest machine in isolation.

Based on the above definitions, the total cost per part in stage n, c,(n = 1,...,N),
and parameters r, b,t,h,,n=1,....,N, and v,,;, in optimization problem (1)—(2) are
computed as follows:

Cp = Cp_j +Icco=co(1+nlc),n= 1,...,N, 5)
h, =lyc, =Ico(1+nl,),n=1,...,N-1, (6)
r=1I.cy =Irc0(1 +NIC), ©)

t=1co )

Vinin = ]v n=IE.i.I.1,N {pﬂ} (10)

In all instances of the 20-machine line that we investigated, we randomly chose
different values for the production rates of the machines and the basic variables
co-1..1,,1.,1,,1,, and I,. In the instances of the 8-machine line, these values were
chosen in a structured way because we wanted to perform a more systematic sensi-
tivity analysis. In both cases, the chosen production rates and basic variables were
then used to determine the values of the optimization parameters r,b,t,v,,,, and
h,,n=1,...,N—1, in problem (1)—~(2) from expressions (5)—(10). All instances
were run on a PC with an Intel(R) Core(TM) i3-7100U CPU @ 2.40 GHz with
4.00 GB RAM. The input parameters and the results for both the 20-machine and
the 8-machine line instances are presented in the next sections.

6.1 20-Machine line with randomly chosen input parameters

For the 20-machine line example, we considered 80 different instances. In each
instance, the values of the production rates of the machines, p,,n=1,...,N, and
the basic parameters I, I, I,, 1, I,, and I, were chosen randomly from a uniform dis-
tribution over a given interval. The value of ¢, was equal to 100 in all instances.
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Table 1 shows the range of values for each parameter, and Table 2 shows the ran-
domly generated parameter values for the first 40 instances. The parameter values
for the remaining 40 instances are shown in Table 23 in “Appendix 2”, for space
considerations.

Table 3 shows the optimization results for the first 40 instances. The optimiza-
tion results for instances 41-80 are shown in Table 24 in “Appendix 2”. Each row in
Table 3 (and Table 24) shows the instance number, the optimal buffer sizes (CT—CTQ
for the IB and EB policies and C* for the CW policy), the maximum profit P*, the
computational time in minutes (cpu), and the number of iterations of steps 1 and 2
of phase 1 and of phase 2 of the optimization algorithm, for each policy (iter). The
last two elements (%AP*) show the percent gain in the net average profit of the opti-
mal EB policy w.r.t. the optimal IB policy (E-I) and w.r.t. the optimal CW policy
(E—C). These gains are computed as follows:

%BAP*(E-I) = 2218 % 100, (11
Py
P* _P*
%BAP*(E-C) = 22— W % 100. (12)
Py

We should note that once we run all 80 instances, we renumbered them as fol-
lows. First, we sorted instances 1-80 in decreasing order of E-I values. We kept
the first 20 sorted instances and renumbered them as 1-20. Then, we resorted the
remaining instances 21-80 in decreasing order of E-C values. We kept the first
20 resorted instances and renumbered them as 21-40. Next, we resorted instances
41-80 in decreasing order of E-I values. Again, we kept the first 20 resorted
instances and renumbered them as 41-60. Finally, we resorted the last 20 remaining
instances in decreasing order of E-C values and renumbered them 61-80. Tables 2,
3, 23, and 24 show the input data and the results for the renumbered instances.

Note that in a few instances the profit is negative for one or more policies,
because the gross profit margin is not high enough to cover the costs. Table 4

Table 1 Range of values of the

. Parameter Type Range of values
basic input parameters for the
20-machine line ppon=1,..,N Random (uniform) [0.2,0.8]
¢ Deterministic 100
I. Random (uniform) [0.1,2]
I, Random (uniform) [0.001, 0.005]
I, Random (uniform) [0.20, 5]
1, Random (uniform) [0.5,2]
I, Random (uniform) [0.6,0.9]
1, Random (uniform) [0.1,2]
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shows the average, minimum, and maximum values of the maximum profit, com-
putational time, and number of iterations for all instances in Tables 3 and 24.

Based on the results shown in Tables 3 and 4 as well as Table 24 in “Appendix 27,

we make the following observations regarding the optimal buffer allocation designs:

1.

In all instances, the maximum profit under the optimal EB policy is higher than
the respective profit under the optimal IB policy. From Table 4, the percent gain in
the net average profit of the optimal EB policy w.r.t. the optimal IB policy (“E-I")
ranges between 1.4 and 401.9% with an average of 15.9%. This implies that for
the range of parameters considered, the benefit of the throughput increase under
the EB policy significantly outweighs the disadvantage of the WIP increase and
transfer cost, also taking into account the fact that a smaller buffer space is needed
under the EB policy than under the IB policy to achieve the same throughput
level.

In all instances, the maximum profit under the optimal EB policy is higher than
the respective profit under the optimal CW policy. This is expected given that CW
is a special case of EB. From Table 4, the percent gain in the net average profit
of the optimal EB policy w.r.t. the optimal CW policy (“E-C”) ranges between
0.04 and 12.71% with an average of 1.23%.

In three out of four instances, the total buffer capacity of the optimal EB policy
is significantly smaller than that of the optimal IB policy (on average by 7 units).
This is expected given that the EB policy utilizes buffer space more efficiently
that the IB policy does.

In all instances, the total buffer capacity of the optimal EB policy is exactly equal
or almost equal (within a unit) to the total capacity of the optimal CW policy.
Based on this observation, one could use the following two-stage heuristic for
finding the optimal buffer allocation under the EB policy. Stage 1: Find the opti-
mal capacity of the last buffer for the CW policy. This is an easy problem, because
there is only one parameter to optimize. Stage 2: Reallocate this capacity to all
the buffers to increase the net average profit through an iterative algorithm that is
similar to phase 2.

Regarding the computational effort needed to get to the optimal buffer alloca-

tion, we make the following observations:

5.

The number of iterations of step 1 of phase 1 of the optimization algorithm is
generally higher for the IB policy than it is for the EB and CW policies. This is
because in each iteration of step 1, the capacity of a single buffer is incremented
by one unit until there are no more gains to make. Because the total optimal buffer
capacity is generally higher for the IB policy (recall that it is higher in three out of
four instances), more iterations of this step are performed for the IB policy than
for the other policies. More specifically, from Table 4, the number of iterations
of step 1 of phase 1 ranges from 3 to 57 with an average of 24 for the IB policy.
For the EB policy, it ranges from 7 to 31 with an average of 16, and for the CW
policy it is similar, ranging from 7 to 30 with an average of 16.
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6.

6.2

The number of iterations of step 2 of phase 1 of the optimization algorithm is
higher for the IB policy than it is for the EB and CW policies. This is because
each time the capacity of a buffer is incremented by one unit in step 1 of phase 1,
the resulting increase in throughput is much higher for the EB and CW policies
than it is for the IB policy. Therefore, the increase in the gross profit rate ' that
is necessary to satisfy the minimum throughput constraint (step 2 of phase 1) is
smaller in the EB and CW policies than it is in the IB policy. More specifically,
from Table 4, the number of iterations of step 2 of phase 1 of the optimization
algorithm ranges from 0 to 913 with an average of 101, for the IB policy. For the
EB and CW policies, it ranges from 0 to 412 with an average of 46.

The number of iterations of phase 2 of the optimization algorithm is higher for
the IB policy than it is for the EB policy (for the CW policy, it is always zero).
More specifically, from Table 4, the number of iterations of phase 2 ranges from
0 to 19 with an average of 4, for the IB policy. For the EB policy, it ranges from
0 to 5 with an average of 1. Still, for both policies this number is generally quite
low, indicating that phase 1 often leads to the optimal buffer allocation or close
to 1t.

The CPU time to reach the optimal solution is much higher for the IB policy than
it is for the EB and CW policies. This is because the IB policy requires more itera-
tions in all the steps of the optimization algorithm, as was mentioned earlier, but
also because the algorithm used for the performance evaluation of the IB policy
is more time consuming that the algorithm used for the performance evaluation
of the EB and CW policies.

8-Machine line with systematically chosen input parameters for sensitivity
analysis

For the 8-machine line example, we considered four scenarios, denoted L, ..., Ly,
regarding the production rates of the machines. These scenarios are shown in
Table 5. Scenario L, represents a totally balanced line where all the machines have
the same base production probability of 0.6. Scenarios L,—L, represent lines where
all the machines have the same base production probability of 0.6 except for one
machine which has a lower probability, making it the slowest machine. That machine
may be upstream, in the middle, or downstream the line. The production probability
of the slowest machine is shown in bold.

Table 5 Production rate
scenarios with base production

probability 0.6 for the L, 06 06 06 06 06 06 06 06
8-machine line

L, 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6
L, 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6
L, 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.6
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Table 6 Scenarios of basic # I :
parameter /, and resulting !
optimization problem parameter T, 0.00 0
t

T, 0.01

T, 0.02 2

Table 7 Scenarios of basic problem parameters c, /., 1,,1,,1,, I, and resulting optimization parameters
r,b,and hy, ..., h;

# Basic parameters Optimization parameters

o I, 1

c

o~
~

r b hy hy hy hy hs hg Iy

0, 100 05 0.001 0.10
0, 100 0.0 0.001 0.10
O; 100 1.0 0.001 0.10
o, 100 5.0 0.001 0.10
Os 100 10.0 0.001 0.10
Og 100 05 0.002 0.10
0, 100 0.5 0.001 0.20
Og 100 0.5 0.001 0.05
O, 100 05 0.001 0.10
0,y 100 0.5 0.001 0.10
0,, 100 05 0.001 0.10

08 50 030 015 02 025 03 035 04 045
08 10 020 0.10 0.1 0.10 0.1 0.10 0.1 0.10
0.8 90 040 020 03 040 05 0.60 0.7 0.80
0.8 410 120 060 1.1 1.60 21 260 3.1 3.60
0.8 810 220 1.10 2.1 3.10 41 5.10 6.1 7.10
0.8 50 060 030 04 050 06 070 0.8 0.90
0.8 100 030 0.15 02 025 03 035 04 045
08 25 030 015 02 025 03 035 04 045
0.8 50 000 015 02 025 03 035 04 045
0.8 50 015 015 02 025 03 035 04 045
00 50 030 015 02 025 03 035 04 045

NSRS 2 R SR SR SR ST (S RN S R )

We also considered three different scenarios, denoted T, T,, T, regarding basic
parameter /, which determines the cost rate of transferring parts to remote buffers, #,
via expression (9). These scenarios are shown in Table 6. Note that 7', represents the
scenario where /, = 0, meaning that r = 0.

Finally, we considered 11 different scenarios, denoted O, ... O,;, regarding basic
parameters ¢, I,,I;,,1,,1,, and I, which determine the main optimization parameters
r,b, and hy,...,h; in problem (1)—(2) according to expressions (5)—(8) and (10).
These scenarios are shown in Table 7.

Scenario O is the base scenario. The optimization parameters for this scenario
are computed from expressions (6)—(8) as follows:

h, = Lo (1 + nl.) = (0.001)(100)(1 + 0.51)
= 0.1 + 0.05n $per part per unit time,n=1,...,N — 1,

r=1cy(1+NI) = (0.1)(100)(1 + (0.5)(8)) = 50 $ per part,

b= Ihlhco(l + IC) = (2)(0.001)(100)(1 + 0.5) = 0.3 $per storage space per unit time.

0,-0,, are scenarios in which we have changed one of the basic parameters of the
base scenario. The changed parameter is shown in bold. Note that O,, Oy, and O,
represent situations where /.,1,, and I, are zero, respectively. Consequently, under
O,, all WIP inventory holding cost rates 4, ..., h; are equal. Similarly, under Oy, the
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cost rate of storage space b is zero. Finally, under O, the minimum required aver-
age throughput v,;, is zero.

We solved problem (1)—(2) for all combinations of scenarios L,—L,, T\—T3,
and 0,-0,, i.e., for a total of 4 X3 X 11 = 132 instances. Tables 8, 9, 10 and 11
show the optimization results for all these instances. More specifically, each table
shows the results for a specific production rate scenario, L, ...,L,, and all com-
binations of scenarios 7,-T5, and O,—0,;. Each row in each table shows the sce-
nario combination, the optimal buffer sizes (C;‘—C;k for the IB and EB policies and
C* for the CW policy), the maximum profit P*, the computational time (cpu) in
minutes, and the number of iterations of steps 1 and 2 of phase 1 and of phase 2
of the optimization algorithm that were needed to get to the optimal solution, for
each policy (iter). The last two elements (“%AP*’) show the percent gain in the
net average profit of the optimal EB policy w.r.t. the optimal IB policy (“E-1")
and the optimal CW policy (“E—C”), computed from (11) and (12), respectively.

Based on the results, we make the following observations, some of which coin-
cide with observations 1—4 listed in Sect. 6.1:

1. Inalmost all instances, the maximum profit under the optimal EB policy is higher
than the respective profit under the optimal IB policy. The only instances where
the optimal IB policy outperforms the optimal EB policy are the instances where
I, = 0 (scenario Oy). Indeed, when the cost of buffer capacity is zero, the effi-
ciency in buffer space utilization under EB becomes irrelevant and does not bring
any advantage over IB.

2. In all instances, the maximum profit under the optimal EB policy is higher than
the respective profit under the optimal CW policy. When /,=0, meaning that
t=0 (scenario T)), the difference in maximum profit between the two policies
is negligible; however, as ¢ increases (scenarios T, and T3), the difference in the
maximum profit becomes quite significant. This is expected, because CW results
in a higher transfer rate of parts to remote buffers than EB does, since in CW,
there is only one buffer, and that buffer is remote for all machines except My_,.

3. In almost all instances, the total buffer capacity of the optimal EB policy is sig-
nificantly smaller than that of the optimal IB policy. The only cases where the
two capacities are equal are a few instances where /, = 0 (scenario O,,). In these
instances, v,,;, = 0, which means that constraint (2) is redundant.

4. In most instances, the total buffer capacity of the optimal EB policy is exactly
equal or almost equal (within a unit) to the total capacity of the optimal CW
policy.

5. Inall instances, as I, increases, implying that the cost rate of transferring parts to
remote buffers, ¢, increases, the dominance of the EB policy over the IB policy
fades. This is expected, because the cost of transferring parts to remote buffers
applies only to the EB policy.

6. Scenarios O,, O, and Oy result in the lowest net average profit under all policies.
The reason for this differs depending on the scenario. In the case of O, and Oy,
the reason is that the gross profit rate r is low compared to the cost rates. In the
case of O, the reason is that the inventory holding costrates i,,n =1,... ,N — 1,
are high. Given that in these three scenarios the profit is the lowest (and in some
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cases, even negative), it is not surprising that the noted increase in the net aver-
age profit of the optimal EB policy over the other two policies is the highest in
percentage terms.

7. A careful comparison among scenarios L,, L;, L,, which represent lines with a
slow machine, shows that the further downstream the slow machine, the lower the
optimal average net profit of the line and the lower the optimal total buffer capacity
under any policy. This is expected since a slow machine causes congestion upstream
the line; therefore, the further downstream the slow machine, the more extensive
the propagation of the congestion—and its adverse effect—upstream the line.

We also run two additional sets of scenarios for the production rates of the
8-machine line in which we used a base production probability of 0.4 and 0.8,
respectively, instead of 0.6, which was used in the set shown in Table 5. The input
parameters and results for these sets are shown in “Appendix 3”. Qualitatively, these
results are similar to the results that were obtained for the base production probabil-
ity of 0.6, discussed above. Quantitatively, they differ. By comparing the results for
the three scenario sets, we observe that as the base production probability decreases
from 0.8 to 0.6 to 0.4, the optimal buffer capacities and the maximum profit also
decrease for all policies. This is natural, because as the base production probability
decreases, the average throughput of the line drops and so do the profits.

At the same time, however, the percent gain in the net average profit of the opti-
mal EB policy w.r.t. the optimal IB policy (E-I) and w.r.t. the optimal CW policy
(E-C) increases (we only consider the instances where the profit is positive). This
can probably be explained by the fact that as the maximum profit decreases in abso-
lute terms for all policies, the relative differences in maximum profit between the
policies become more prominent.

A closer look at the results further reveals that in most instances as the base pro-
duction probability decreases, the relative gain of EB over IB rises more sharply
than does the relative gain of EB over CW. One possible explanation for this is that
as the base production probability decreases, the production times of the machines
have higher variability (the coefficient of variability of the production times of a
Bernoulli machine with production probability p, is 1 — p,); EB, being a policy that
releases parts based on global information, copes better with increased variability
than does IB, where the release of parts is based on local information.

7 Conclusions

We set up and carried out an extensive numerical study for the optimization and
comparison of the EB policy for operating flow lines with intermediate finite-capac-
ity buffers against two well-known and well-studied policies: IB and CW. Compared
to IB, EB aims to increase the utilization of the intermediate buffers by controlling
the release of parts in each stage based on the echelon WIP level associated with
that stage. CW, which is a special case of EB, also results in increasing the utiliza-
tion of the intermediate buffers but in a less regulated way, because it only controls
the release of parts at the beginning of the line.
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Our numerical results indicate that the optimal EB policy generally outper-
forms the optimal IB and CW policies, the difference in performance being strik-
ing in some cases. The results also show that as production probabilities of the
machines decrease, the relative advantage in performance of the EB policy over
the other two policies increases. When the cost of transferring parts to remote
buffers is negligible, the optimal EB policy slightly outperforms the optimal CW
policy but significantly outperforms the optimal IB policy. Therefore, in such
cases, CW is a good performer. Finally, when the cost of transferring parts to
remote buffers is noticeable, the dominance of EB over CW increases while the
dominance of EB over IB decreases.

While some of our results were expected, other results were less obvious at
the onset of this study. For example, the result that the EB policy outperforms
CW was expected, since CW is a special case of EB. However, the magnitude of
the difference in performance between the two policies was not obvious. Simi-
larly, the result that EB outperforms IB when the cost of transferring parts to
remote buffers is negligible was not apparent, because EB, besides incurring
additional costs for transferring parts to remote buffers, also results in higher
WIP levels than IB does.

We believe that the EB policy performs well primarily because it increases
the utilization of the existing buffers but can still block machines from produc-
ing if the number of parts that they have already produced but are still in the
system is large. An obvious advantage of the EB policy is that it uses global
information for releasing parts at any stage whereas IB uses local information.
It is likely for this reason that as the variability of the machine production times
increases, the relative advantage in performance of the EB policy over the IB
policy increases sharply.

A shortcoming of the EB policy is that it has increased material handling
requirements compared to the IB policy. As is explained in Liberopoulos (2018),
technology can handle such increased requirements at affordable costs. Today,
there exist several modular reconfigurable material handling solutions that can
be assembled flexibly to transport parts in the manufacturing floor. Many of the
material handling ideas and equipment that are used in flow lines with reentrant
flows (e.g., in semiconductor manufacturing) can also be used to implement the
EB policy. The material handling technology for implementing the EB policy
can also be found in classical flexible manufacturing systems and their succes-
sors, reconfigurable manufacturing systems, where typically pallets are sent
back and forth to the work centers.

Having established that the EB has advantages over the IB and CW poli-
cies in serial flow lines, a future research direction would be to explore if these
advantages carry over to other system configurations, for example, assembly/
disassembly lines, lines with fork/join stations, reentrant flows, etc., as well as
lines producing multiple products. Another direction would be to consider more
general machine reliability models than the Bernoulli model.
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Appendix 1: Numerical tests for the 8-machine line verifying
the concavity of the net average profit under the EB policy

Tables 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22 present the buffer capac-
ity designs under the EB policy that resulted in each iteration of the two-phase
optimization algorithm, for scenarios L, 75, and O,—0;, of the 8-machine line.
Each row shows the iteration number, the buffer capacity design at that iteration,
and the eigenvalues corresponding to the Hessian matrix of partial derivatives
of the average net profit with respect to the buffer capacities at that design. The
buffer capacity design in the last row of each table is the optimal design shown
in Table 8. In all cases, all the eigenvalues of the Hessian matrix are negative,
indicating that the average net profit at the buffer capacity designs examined is
concave.

Table 12 Numerical results per iteration for scenario L,, T3, O, of the 8-machine line, under the EB pol-
icy

Iter. C-C; Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 —2.8455 —1.5827 —0.5384 —0.4419 -0.2953 -0.2339 -0.1034
1 0,0,0,0,0,0, —2.0650 —1.6925 —0.6068 —0.4437 —-0.3687 —0.1930 —0.0389
2 0,0,0,0,0,1,1 —2.0300 -—1.3452 -0.5486 —0.3975 -0.2136 -0.0795 -0.0332
3 0,0,0,0,1,1,1 —2.0348 —0.9739 —-04571 -0.2643 —0.1465 —0.0679 —0.0482
4 0,0,0,0,1,1,2 —1.7930 —0.7570 —-0.3656 —0.1769 —0.0887 —0.0404 —0.0229
5 0,0,0,1,1,1,2 —1.5854 —0.5634 —0.2615 -0.1457 -0.0701 -0.0502 —0.0328
6 0,0,1,1,1,1,2 —1.3159 —-04259 -0.2522 -0.1182 -0.0770 —0.0628 —0.0437
7 0,0,1,1,1,22 —1.0925 -0.3236 -0.1700 -0.0846 —0.0613 —0.0520 -0.0341
8 0,0,1,1,1,23 —-0.8903 —0.2610 —0.1237 -0.0622 -0.0470 -0.0378 —0.0199
9 0,1,1,1,1,23 —-0.6862 —0.2371 —0.1033 -0.0663 —0.0544 —0.0432 —0.0244

—_
S

0,1,1,1,22,3 —-0.5726 —0.1743 —-0.0834 —0.0578 -0.0470 —0.0324 —0.0282
0,1,1,1,224 -0.4785 —0.1387 -0.0653 —0.0461 -0.0399 -0.0264 —0.0170
12 0,1,1,2224 -03970 -0.1087 -0.0621 —0.0404 -0.0317 -0.0250 -0.0196
13 0,1,1,22,34 -0.3374 —0.0868 —0.0474 —0.0349 -0.0269 -0.0225 -0.0174
14 1,1,1,2234 -0.2478 -0.0749 -0.0477 -0.0372 -0.0290 -0.0234 —-0.0189
15 1,1,1,2,23,5 -0.2139 -0.0614 -0.0396 -0.0323 -0.0233 -0.0205 -0.0131
16 1,1,1,2225 -0.2467 -0.0771 -0.0488 —-0.0376 —-0.0288 —0.0236 —0.0138

—_
—_
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Table 13 Numerical results per iteration for scenario L,, T3, O, of the 8-machine line, under the EB pol-
icy

Iter. C-C; Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 —-0.5151 -0.3787 —0.1141 —-0.1099 -0.0810 —0.0524 —0.0468
1 0,0,0,0,0,0,1 -03707 -0.3479 -0.1331 -0.1041 —0.0895 —0.0712 —0.0223
2 0,0,0,0,0,1,1 -0.3451 -0.2659 —0.1289 —0.1075 —0.0849 —0.0452 —0.0114
3 0,0,0,0,1,1,1 -0.3297 -02130 -0.1228 -0.0961 —0.0654 —0.0238 —0.0182
4 0,0,0,1,1,1,1 -0.3107 -0.1705 -0.1064 —0.0824 —0.0384 —0.0297 —0.0262
5 0,0,1,1,1,1,1 —-0.2683 —-0.1367 —-0.0973 -0.0576 —0.0388 —0.0335 —0.0316
6 0,1,1,1,1,1,1 —0.1857 —0.1425 -0.0750 -0.0473 —-0.0397 -0.0368 —0.0277
7 0,1,1,1,1,1,2 -0.1643 -0.1011 -0.0600 —0.0414 -0.0368 —0.0314 —0.0190
8 0,1,1,1,1,22 -0.1474 -0.0785 —0.0488 —0.0361 —0.0323 —0.0287 —0.0148
9 0,1,1,1,222 -0.1310 -0.0625 -0.0410 -0.0325 -0.0316 —0.0189 —0.0167
10 01,1,1,22,3 -0.1144 -0.0530 -0.0369 —0.0315 —-0.0281 —-0.0196 —0.0097
11 01,122,223 -0.1022 -0.0442 -0.0314 -0.0287 —-0.0211 —0.0182 —0.0106
12 0112233 -0.0932 -0.0408 -0.0294 -0.0240 -0.0187 -0.0155 —0.0090

13 1,1,1,2,233 -0.0521 -0.0321 -0.0247 -0.0234 -0.0180 —-0.0156 —0.0096
14 1,1,1,2234 -0.0474 -0.0305 -0.0242 -0.0212 -0.0180 -0.0139 —0.0064
15 1,1,2,2234 -0.0407 -0.0239 -0.0211 -0.0182 -0.0159 -0.0137 —0.0068
16 0,1,22234 -0.0753 -0.0311 -0.0219 -0.0190 -0.0169 -0.0138 —0.0065

Table 14 Numerical results per iteration for scenario L;, 75, O of the 8-machine line, under the EB pol-
icy

Iter. C,-C; Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 -5.1781 —2.8043 —-0.9660 -0.7785 —-0.5082 -0.4151 —0.1338
1 0,0,0,0,0,0,1 —-3.7727 -3.0283 —-1.0802 -0.7842 —-0.6464 —0.3170 —0.0497
2 0,0,0,0,0,1,1 —=3.7209 -24212 -0.9692 -0.6876 —0.3453 —0.1131 —0.0492
3 0,0,0,0,1,1,1 —-3.7415 —-1.7353 -0.7921 -0.4371 -0.2378 -0.1038 —0.0685
4 0,0,0,0,1,1,2 -3.3142 -1.3389 -0.6207 -0.2703 -0.1145 -0.0514 -0.0316
5 0,0,0,1,1,1,2 —=2.9223 -0.9812 -0.4313 -0.2280 -0.0974 —0.0665 —0.0471
6 0,0,0,1,1,22 -24363 -0.7536 -0.3020 —0.1401 -0.0788 —0.0542 —0.0342
7 0,0,1,1,1,22 —2.0053 —0.5462 -0.2783 —0.1297 -0.0904 —0.0699 —0.0471
8 0,0,1,1,1,23 —1.6348 —0.4317 -0.1899 -0.0840 -0.0596 —0.0478 —0.0280
9 0,0,1,1,223 -13379 -0.3295 -0.1379 -0.0761 -0.0511 -0.0380 -0.0314
10 0,1,1,1,223 —1.0474 -0.2883 -0.1291 -0.0851 —-0.0641 —0.0464 —0.0377

—_
—_

0,1,1,1,22,4 -0.8739 -0.2214 -0.0947 -0.0631 -0.0504 —0.0322 —0.0240
12 0,1,1,1,234 -0.7315 -0.1696 —-0.0731 —0.0500 -0.0413 —0.0291 —0.0202
13 0,1,1,2234 -0.6098 —0.1286 —0.0677 —0.0448 —-0.0357 -—0.0267 —0.0232
14 0,1,1,22,3,5 -0.5161 —0.1025 -0.0508 —0.0368 —0.0266 —0.0230 -0.0163
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Table 15 Numerical results per iteration for scenario L,, T3, O, of the 8-machine line, under the EB pol-
icy

Iter. C\-C, Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 —23.8408 —12.5923 —4.3866 —3.4782 —2.2200 -—1.8642 —0.3470
1 0,0,0,0,0,0,1 —17.4370 —13.7149 —-4.8671 -—3.5084 —-2.8667 —1.3116 —0.1313
2 0,0,0,0,0,02 —16.9519 —11.1042 —-4.3646 —3.0398 —1.4437 —0.3429 -0.0436
3 0,0,0,0,0,1,2 —16.7244 —8.1541 —3.6225 —1.8898 —0.5931 -0.1213 -0.0438
4 0,0,0,0,1,1,2 —154843 —-5.9952 —-2.6628 —1.0225 —0.3453 —-0.1225 -0.0876
5 0,0,0,0,1,1,3 —13.2761 —4.5250 —-1.8592 -0.5792 -0.1663 —0.0711 -0.0321
6 0,0,0,1,1,1,3 —11.2674 —-3.3252 —12142 -0.4660 —0.1643 —0.1121 —0.0543
7 0,0,0,1,1,23 -9.2518 —-25074 -0.8137 -0.2587 -0.1111 -0.0806 —0.0483
8 0,0,0,1,124 —-74863 —1.9075 -0.5558 —0.1588 -—0.0711 -0.0507 —0.0281
9 0,0,1,1,1,24 —6.1671 —1.3785 —0.4774 -0.1681 —0.1074 —0.0706 —0.0403
10 00,1,1,224 -50534 —1.0266 -0.3241 -0.1421 -0.0882 -0.0567 —0.0475
11 00,1,1,225 -41370 -0.7888 —0.2176 —0.0929 -0.0642 -0.0390 -0.0312
12 00,1,1,235 —3.4253 —-05931 -0.1493 -0.0686 —0.0521 -0.0357 -0.0250
13 01,1,1,23,5 -2.8198 -04742 -0.1708 -0.1011 -0.0709 -0.0450 —0.0308
14 0111236 -23651 —-03527 -0.1255 -0.0731 -0.0503 -0.0310 -0.0214

Table 16 Numerical results per iteration for scenario L;, T3, Os of the 8-machine line, under the EB pol-
icy

Iter. C,-C, Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 —47.1693 —24.8294 —8.6623 —6.8536 —4.3611 -3.6756 —0.6090
1 0,0,0,0,0,0,1 —-345179 -27.0733 -9.6008 -6.9138 —-5.6419 —2.5553 —-0.2325
2 0,0,0,0,0,0,2 —33.5927 -21.9507 -8.6059 —-59748 —-2.8044 -0.6215 -0.0539
3 0,0,0,0,0,1,2 —-33.1601 —-16.0993 -7.1241 -3.6838 —1.1124 -0.1908 -0.0716
4 0,0,0,0,1,1,2 —-30.6971 —11.8158 —52155 -1.9636 -0.6416 -0.2071 -0.1527
5 0,0,0,0,1,1,3 —26.3303 —8.9032 -3.6221 —1.0832 -0.2766 —0.1048 —0.0475
6 0,0,0,0,1,2,3 —-22.0469 —6.6617 —-24074 -0.6064 —-0.1650 —0.0882 —0.0424
7 0,0,0,1,1,23 —183336 —49046 —1.5549 -0.4708 -0.1916 -0.1281 -0.0740
8 0,0,0,1,1,24 —-14.8330 —3.7182 —1.0461 -0.2690 -0.1059 -0.0734 -—0.0414
9 0,0,1,1,1,24 —-12.2170 -2.6756 —-0.9056 —0.2967 —0.1818 —-0.1162 —0.0643
10 00,1,1,1,2,5 -99407 -2.0356 -0.5925 -0.1970 -0.1219 -0.0700 -0.0318
11 0,0,1,1,2,2,5 —-8.1877 —1.5111 -0.3950 -0.1553 —-0.0996 —-0.0566 —0.0478
12 00,1,1,22,6 -6.7257 —1.1417 -0.2631 -0.1052 -0.0726 -0.0407 -0.0221

13 00,1,1,23,6 —-55911 —0.8462 —0.1754 -0.0759 -0.0544 -0.0345 -0.0239
14 01,1,1,23,6 —-4.6763 —-0.6591 -0.2216 -0.1218 -0.0807 -0.0444 —0.0307
15 01,1,1,23,7 —-3.9487 —-0.4648 -0.1578 —0.0847 —-0.0537 -0.0298 -0.0186
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Table 17 Numerical results per iteration for scenario L,, T3, O¢ of the 8-machine line, under the EB pol-
icy

Iter. C-C, Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 -2.8512 —1.5709 -0.5395 -04367 -0.3035 -0.2286 —0.1120
1 0,0,0,0,0,0,1 —-2.0622 —1.6662 —0.6018 —0.4358 —0.3613 —0.1962 —0.0391
2 0,0,0,0,0,1,1 —-2.0369 —1.3004 -0.5320 -0.3868 —0.2128 —0.0798 —0.0338
3 0,0,0,0,1,1,1 —=2.0414 —-0.9255 -0.4364 —02572 —0.1466 —0.0689 —0.0483
4 0,0,0,0,1,1,2 —1.7925 -0.7083 —-0.3460 —0.1712 -0.0873 —0.0401 —0.0230
5 0,0,0,1,1,1,2 —1.5833 —0.5157 —0.2440 -0.1409 -0.0689 —0.0494 —0.0335
6 0,0,1,1,1,1,2 —-1.3122 -0.3855 -0.2358 —0.1136 —0.0755 —0.0603 —0.0453
7 00,1,1,1,22 -1.0872 -02805 —0.1552 -0.0818 —0.0608 —0.0503 —0.0347
8 0,0,1,1,1,23 -0.8817 -0.2194 -0.1103 -0.0582 —0.0451 -0.0374 -0.0206
9 0,1,1,1,1,23 —0.6792 —-0.2004 —0.0908 —0.0605 —0.0506 —0.0432 —0.0256
10 01,1,1,223 -0.5649 -0.1383 —-0.0736 —0.0523 -0.0430 -0.0331 —0.0289
11 0,1,1,1,22,4 —-0.4688 —0.1038 —0.0547 -0.0412 -0.0373 -0.0261 —0.0178
12 01,1,1,234 —-03931 -0.0769 —0.0424 -0.0339 -0.0320 -0.0227 -0.0162

13 0,1,1,2,234 -03277 -0.0550 -0.0393 -0.0293 -0.0266 —0.0216 -0.0184
14 0,1,1,223,5 -0.2763 —0.0423 -0.0303 -0.0265 -0.0210 -0.0196 -0.0124
15 1,1,1,2225 -0.2469 -0.0558 -0.0380 —0.0285 -—0.0272 -0.0225 -0.0144

Table 18 Numerical results per iteration for scenario L,, T, O, of the 8-machine line, under the EB pol-
icy

Iter. C-C Eignenvalues of Hessian matrix

0 0,0,0,0,000 -5.7708 -—3.1286 -1.0742 -0.8717 -0.5545 —0.4645 -0.1259
1 0,0,0,0,0,0,1 —42162 -33955 —1.2064 —0.8831 —0.7246 —0.3449 —0.0521
2 0,0,0,0,0,1,1 —4.1362 -2.7552 -1.0983 -0.7752 -0.3802 -0.1214 -0.0525
3 0,0,0,0,1,1,1 —4.1615 -1.9939 -09046 -0.4906 -02612 -0.1119 -0.0738
4 0,0,0,0,1,1,2 —-3.6958 —1.5522 -0.7117 -0.3020 -0.1231 -0.0545 -0.0335
5 0,0,0,1,1,1,2 -3.2608 —1.1512 -0.4976 -0.2556 -0.1061 -0.0718 —0.0498
6 0,0,0,1,1,1,3 —2.6967 -0.9085 -0.3578 —0.1551 -0.0718 -0.0532 -0.0251
7 00,1,1,1,1,3 -22291 -0.6743 -0.3326 -0.1358 -0.0875 -0.0721 -0.0317
8 0,0,1,1,1,23 —-1.8332 -0.5304 -0.2245 -0.0950 —0.0655 —0.0507 —0.0294
9 0,0,1,1,2,2,3 -1.5011 -04146 -0.1643 -0.0852 —0.0563 —0.0401 —0.0331
10 001,224 -12301 -0.3389 -0.1208 -0.0611 -0.0461 —0.0294 -0.0209
11 0,1,1,1,22,4 -09869 —02882 —0.1168 -0.0742 -0.0563 —0.0343 —0.0249
12 0111234 -0.8280 -0.2280 -0.0924 -0.0589 -0.0454 -0.0306 -0.0210
13 01,12234 -0.6919 -0.1805 -0.0841 -0.0541 -0.0390 -0.0291 -0.0240
14 01,2235 -05882 -0.1498 -0.0655 —0.0441 -0.0292 -0.0244 -0.0167
15 0122235 -04902 -0.1289 -0.0661 —0.0378 —0.0284 —0.0257 -0.0189
16 0122335 -04206 -0.1047 -0.0583 -0.0356 -0.0246 -0.0219 -0.0194
17 0122336 -03659 -0.0877 -0.0463 -0.0292 -0.0220 -0.0178 -0.0142
18 1,1,1,233,6 -03316 -0.0954 -0.0535 -0.0376 -0.0255 -0.0177 -0.0147
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Table 19 Numerical results per iteration for scenario L, T3, Og of the 8-machine line, under the EB pol-
icy

Iter. C-C, Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 —-1.3838 —0.8140 -02709 -0.2312 -0.1679 -0.1166 —0.0821
1 0,0,0,0,0,0,1 —-0.9953 —-0.8367 —0.3066 —0.2256 —0.1886 —0.1176 —0.0311
2 0,0,0,0,0,1,1 —-09784 —-0.6392 -02743 -02082 -0.1310 -0.0596 —0.0212
3 0,0,0,0,1,1,1 —=0.9720 -0.4638 -0.2334 -0.1522 -0.0927 -0.0431 -0.0330
4 0,0,0,1,1,1,1 —-09018 —0.3333 —-0.1859 —0.1368 —0.0726 —0.0531 —0.0424
5 0,0,0,1,1,1,2 —0.7479 —-0.2698 —0.1443 —0.0939 -0.0498 —0.0387 —0.0225
6 0,0,1,1,1,1,2 —-0.6238 —-0.2023 -0.1322 -0.0731 -0.0515 —0.0436 —0.0296
7 0,1,1,1,1,1,2 -04510 -0.2197 -=0.1031 -0.0667 —0.0549 —0.0431 —0.0358
8 0,1,1,1,1,22 -0.3891 —0.1450 -0.0753 —0.0520 -0.0451 —0.0402 —0.0292
9 0,1,1,1,1,23 —-0.3220 —-0.1091 —0.0587 —0.0429 -0.0378 -0.0332 —0.0169
10 01,1,1,223 =0.2700 -0.0802 -0.0473 -0.0378 —0.0343 -0.0241 —0.0201
11 0,1,1,1,23,3 —-0.2273 -0.0637 -0.0379 -0.0321 -0.0318 -0.0234 -0.0157
12 01,1,1,234 —0.1908 —0.0534 —0.0335 -0.0296 -0.0266 -0.0177 -0.0110

13 0,1,1,22,34 -0.1604 —0.0419 -0.0281 -—0.0267 -0.0199 -0.0188 —0.0128
14 1,1,1,2234 -0.1173 -0.0315 -0.0272 -0.0216 —-0.0207 -0.0189 —0.0140
15 1,1,1,2235 -0.1011 -0.0261 -0.0246 -0.0193 -0.0187 -0.0170 —0.0090
16 1,1,1,2225 -0.1155 -0.0344 -0.0279 -0.0229 -0.0217 -0.0195 —0.0095

Table 20 Numerical results per iteration for scenario L, T3, O, of the 8-machine line, under the EB pol-
icy

Iter. C-C Eignenvalues of Hessian matrix

0 0,0,0,0,0,00 —2.8455 —1.5827 —0.5384 —0.4419 -02953 -0.2339 -0.1034
1 0,0,0,0,0,0,1 —-2.0650 -1.6925 —0.6068 —0.4437 -0.3687 —0.1930 —0.0389
2 0,0,0,0,0,1,1 -2.0300 -1.3452 -0.5486 —0.3975 -0.2136 —0.0795 -0.0332
3 0,0,0,0,1,1,1 —2.0348 -09739 -04571 -0.2643 —0.1465 —0.0679 —0.0482
4 0,0,0,0,1,1,2 —-1.7930 -0.7570 -0.3656 —0.1769 —0.0887 —0.0404 —0.0229
5 0,0,0,1,1,1,2 -1.5854 -0.5634 -02615 -0.1457 -0.0701 -0.0502 -0.0328
6 0,0,1,1,1,1,2  —1.3159 -0.4259 -02522 -0.1182 -0.0770 -0.0628 —0.0437
7 00,1,1,1,22 -1.0925 -0.3236 -0.1700 -0.0846 -0.0613 -0.0520 -0.0341
8 0,0,1,1,1,23 -0.8903 -02610 -0.1237 -0.0622 -0.0470 -0.0378 —0.0199
9 0,1,1,1,1,23 -0.6862 —0.2371 —0.1033 —0.0663 —0.0544 —0.0432 —0.0244
10 01,1,1223 -05726 -0.1743 -0.0834 -0.0578 -0.0470 -0.0324 —0.0282
11 0,1,1,1,2,24 -04785 —0.1387 -0.0653 -0.0461 —0.0399 -0.0264 —0.0170
12 0112224 -03970 -0.1087 -0.0621 -0.0404 -0.0317 -0.0250 -0.0196
13 1,1,1,2224 -02873 -0.0985 -0.0600 -0.0431 -0.0343 -0.0263 -0.0216
14 1,1,1,2234 -02478 -0.0749 -0.0477 -0.0372 -0.0290 -0.0234 -0.0189
15 1,1,22234 -02029 -0.0732 -0.0410 -0.0328 -0.0262 -0.0219 -0.0206
16 1,1,22235 -0.1778 -0.0567 -0.0345 -0.0268 -0.0217 -0.0201 -0.0143
17 1,122,335 -0.1548 -0.0454 -0.0307 -0.0248 -0.0186 —0.0166 —0.0154
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Table 21 Numerical results per iteration for scenario L;, T3, O, of the 8-machine line, under the EB pol-
icy

Iter. C-C, Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 —2.8455 —1.5827 —0.5384 —0.4419 -0.2953 -0.2339 -0.1034
1 0,0,0,0,0,0,1 —=2.0650 —1.6925 —0.6068 —0.4437 —-0.3687 —0.1930 —0.0389
2 0,0,0,0,0,1,1 —2.0300 —-1.3452 -0.5486 —-0.3975 -0.2136 -0.0795 -0.0332
3 0,0,0,0,1,1,1 —=2.0348 —-0.9739 -0.4571 -0.2643 -0.1465 -0.0679 —0.0482
4 0,0,0,0,1,1,2 —-1.7930 —-0.7570 -0.3656 —0.1769 —0.0887 —0.0404 —0.0229
5 0,0,0,1,1,1,2 —1.5854 —0.5634 —0.2615 -0.1457 -0.0701 -0.0502 —0.0328
6 0,0,1,1,1,1,2 —-1.3159 -0.4259 -0.2522 -0.1182 -0.0770 -0.0628 —0.0437
7 0,0,1,1,1,22 —-1.0925 -0.3236 -0.1700 -0.0846 —0.0613 —0.0520 —0.0341
8 0,0,1,1,1,23 -0.8903 -0.2610 —0.1237 -0.0622 -0.0470 -0.0378 -0.0199
9 0,1,1,1,1,23 —0.6862 —0.2371 —0.1033 —-0.0663 —0.0544 —0.0432 —0.0244
10 01,1,1,223 -0.5726 -0.1743 -0.0834 —0.0578 —0.0470 -0.0324 —-0.0282
11 0,1,1,1,22,4 —-04785 —0.1387 —0.0653 —0.0461 -0.0399 -0.0264 —0.0170
12 01,12224 -03970 -0.1087 -0.0621 —0.0404 -0.0317 -0.0250 -0.0196

13 1,1,1,2224 -0.2873 —0.0985 —0.06000 —-0.0431 -0.0343 —0.0263 -0.0216
14 1,1,1,2234 -0.2478 -0.0749 -0.0477 -0.0372 -0.0290 -0.0234 —0.0189
15 1,1,1,2235 -0.2139 -0.0614 -0.0396 -0.0323 -0.0233 —-0.0205 -0.0131
16 1,1,1,2225 -0.2467 -0.0771 -0.0488 —0.0376 —0.0288 —0.0236 —0.0138

Table 22 Numerical results per iteration for scenario L, T, O}, of the 8-machine line, under the EB pol-
icy

Iter. C-C, Eignenvalues of Hessian matrix

0 0,0,0,0,0,0,0 —2.8455 —1.5827 —-0.5384 —-04419 -0.2953 -0.2339 -0.1034
1 0,0,0,0,0,0,1 —2.0650 -—1.6925 -0.6068 —0.4437 -0.3687 —0.1930 —0.0389
2 0,0,0,0,0,1,1 —2.0300 —-1.3452 -0.5486 -0.3975 -0.2136 -0.0795 —0.0332
3 0,0,0,0,1,1,1 —2.0348 —-0.9739 -0.4571 -0.2643 —-0.1465 -0.0679 —0.0482
4 0,0,0,0,1,1,2 —-1.7930 -0.7570 -0.3656 —0.1769 —0.0887 —0.0404 —0.0229
5 0,0,0,1,1,1,2 —1.5854 —0.5634 —-0.2615 —0.1457 -0.0701 -0.0502 —-0.0328
6 0,0,1,1,1,1,2 —-1.3159 -04259 -0.2522 -0.1182 -0.0770 —0.0628 —0.0437
7 0,0,1,1,1,22 —-1.0925 -0.3236 —-0.1700 -0.0846 —-0.0613 —0.0520 —0.0341
8 0,0,1,1,1,23 -0.8903 -0.2610 -0.1237 -0.0622 —-0.0470 -0.0378 —0.0199
9 0,1,1,1,1,23 -0.6862 —0.2371 -0.1033 -0.0663 —0.0544 —0.0432 -0.0244
10 0,1,1,1,223 -0.5726 -0.1743 -0.0834 -0.0578 —-0.0470 -0.0324 —-0.0282
11 0,1,1,1,224 -04785 —0.1387 -0.0653 -0.0461 -0.0399 -0.0264 -0.0170
12 0,1,1,1,224 -04785 —0.1387 -0.0653 —0.0461 -0.0399 -0.0264 -0.0170

Appendix 2: Additional numerical results for the 20-machine line
with randomly chosen input parameters

Table 23 shows the randomly generated parameter values for instances 41-80 of the
20-machine line, and Table 24 and shows the optimization results for all these instances.
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Appendix 3: Numerical results for the 8-machine line with base
production probabilities 0.4 and 0.8

Table 25 shows eight additional scenarios for the production rates of the 8-machine
flow line example considered in Sect. 6.2. These scenarios are denoted Ls,...,L;,
and are similar to scenarios L, ..., L, shown in Table 5, except that they use a differ-
ent base production probability than 0.6, which is used in scenarios L,, ..., L,. More
specifically, scenarios Ls, ..., Lg use base production probability 0.4, while scenarios
Ly, ..., L, use base production probability 0.8. As in Table 5, the production prob-
abilities of the slowest machine in scenarios Lg-Lg and L,-L,, are shown bold.

We solved problem (1)-(2) for all combinations of scenarios Ls—L,,, T,—T3, and
0,-0,;, i.e., for a total of 8 X 3 X 11 = 264 instances. Tables 26, 27, 28, 29, 30, 31,
32 and 33 show the optimization results for all these instances.

Table 25 Production rate
scenarios with base production
probability 0.4 and 0.8 for the
8-machine line

L 0.4 0.4 0.4 0.4 04 0.4 0.4 04
Lg 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4
L, 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4
Lg 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.4
Ly 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Ly, 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8
Ly, 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8
L, 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8
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