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Abstract
Failure-prone manufacturing systems facing dynamical market conditions that result 
in demand variations are considered. The combined production and corrective main-
tenance optimization problem for a one-machine-one-product system is addressed. 
Repairing the machine after the failure, the manager has to solve the dilemma: to 
choose an inexpensive (but lower) repair rate, or to use the higher, (but more expen-
sive) repair rate. The former decision seems to be appropriate when there is no risk 
of inventory shortage, while the latter one has to be used in critical (stock shortage) 
situations. Precise solution to this problem presented in the paper is theoretically 
instructive and valuable for practitioners. Optimality conditions in the form of time-
dependent Hamilton–Jacoby–Bellman equations are obtained and a novel numeri-
cal approach is proposed for solving these equations for the case of periodically 
time-varying demand. The optimal policy is shown to be the hedging-curve-policy, 
that extends the hedging-point-policy to the case of varying level of safety stock. 
The simulation results show that the optimal policies have an important property of 
anticipating the future demand evolutions and making the optimal decisions relevant 
to such dynamic conditions. In particular, it has been shown that in the large domain 
of the system parameters it is advantageous to use the lower (and inexpensive) 
repair rate when the stock is approaching the hedging level and especially when the 
demand level is near its bottom edge.
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1  Introduction

This paper is devoted to the combined optimization of production and correc-
tive maintenance in the dynamic environment, namely under the varying mar-
ket demand. Dynamic conditions often appear in practical applications, but are 
replaced by stationary ones for simplifications required by existing solution meth-
odologies. Demand variations in time occur for several reasons and are often par-
titioned into fast random component and slower systematics component. The for-
mer is usually unpredictable, while the latter may follow different patterns. Most 
important among them are the trend-type and oscillatory behaviors. The former 
are mainly due to increasing sales along the period when the product is new on 
the market, then the demand usually stabilizes and finally declines close to the 
end of the product life cycle. The latter are usually due to the seasonal variations 
in market price and environmental or logistical factors.

The behavior of the systems under varying demand was often addressed in sci-
entific literature using the framework of economic order quantity (EOQ) (Tripathi 
2011), especially when the trend-type demand variations are considered. The inven-
tory control problem for the systems under non-stationary stochastic demand are 
considered in Leo et al. (2011) and Prak et al. (2016) with particular interest to inter-
actions between demand forecasting and safety stock calculation. Ramp-type vary-
ing demand model is used in Mishra and Singh (2011) and Wang and Huang (2014) 
for the cost analysis of inventory in the systems with deteriorating items. Seasonal 
demand variations were addressed in Kleber et  al. (2002) and Minner and Kleber 
(2001), in the context of the systems that use remanufacturing in the production pro-
cess. In these papers, the system under consideration was supposed to be fully reli-
able, both demand and return rates were represented by periodically varying func-
tions and optimal control technique was used to determine the production policies.

Production optimization of failure-prone manufacturing systems have been 
addressed in numerous works (Boukas and Haurie 1990; Sethi and Zhang 1994; 
Gershwin 2011). For the system that contains one machine and manufactures 
one product type, the analytical solution has been obtained in Akella and Kumar 
(1986), were the demand was set constant and the flows of failures and repairs 
were described as stochastic Markov processes with fixed rates.

Considering the corrective maintenance as a controlled activity was proposed 
in Boukas et al. (1996) and Boukas (1998). This approach constitutes an impor-
tant extension to the production optimization problem with fixed repair rate for-
mulated and solved in Akella and Kumar (1986). In Boukas (1998) the repair rate 
is supposed to belong to an interval from minimal to maximal rate, with a par-
ticular value of this rate chosen by the decision maker at the expense of the repair 
cost proportional to the chosen rate. The term corrective maintenance is desig-
nated to such activity in contrast to the term repair used when the rate is fixed. 
The proposed approach was further developed in Kenne et al. (2003), where the 
case of multi-machine manufacturing system producing several product types was 
addressed through numerical implementation of optimality conditions in the form 
of Hamilton–Jacoby–Bellman (HJB) equations.
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It is important to consider the corrective maintenance with controlled rate 
in order to resolve the trade-off between the direct repair cost and the cost attrib-
uted to the machine downtime. Considering the role of downtime cost in relations 
with maintenance activity is not new, although it is appear sparsely in the litera-
ture. It worth mentioning in this context two papers: Saranga (2004) and Saltoglu 
et al. (2016). The former paper proposes the generic downtime cost model in order 
to optimize the maintenance cost using opportunistic approach (and genetic algo-
rithm technique). The latter paper addresses the problem of aircraft maintenance 
optimization considering the combined direct maintenance cost and downtime cost 
to characterize the performance. It is of particular importance to address the trade-
off between explicit repair costs and implicit downtime cost the dynamic situation: 
when the demand rate changes in time the impact of the machine downtime varies 
(higher demand rate results in faster decrease of stock level leading to stock short-
age). This makes the timely decision about the maintenance rate critical for system 
performance, and determines the relevance of our study to industrial practice.

It worth emphasizing that we consider in this work only corrective maintenance 
as opposed to preventive maintenance —an important concept often studied in 
the context of deteriorating systems and subject of numerous researches. We out-
line below few important results obtained in this direction. In Chelbi and Ait-Kadi 
(2004) periodical preventive maintenance was considered and optimal safety stock 
level to hedge against stochastic flow of failures and random durations of repair and 
maintenance actions. In Dehayem Nodem and Kenne (2011) authors studied the 
deteriorating systems and determined the joint optimal production and preventive 
maintenance policy using stochastic dynamic programming framework and numeri-
cal approach to solve underlying HJB equations. Further results for the systems that 
deteriorates both in quality and reliability were obtained in Rivera-Gomez et  al. 
(2013) and for the systems that make use of overhaul (maintenance) and subcon-
tracting strategy—in Rivera-Gomez et al. (2016).

It worth noticing the connection between controlled corrective maintenance and 
subcontracting activity. In Rivera-Gomez et al. (2016) subcontracting option was used 
to supplement the limited production capacity of the system in spite of its higher cost. 
Maintenance option was used to cope with deterioration. In a similar way, company 
may consider subcontracting option for repair and maintenance. Namely, it may an 
in-house repair team used for ordinary repair/maintenance with usually acceptable 
repair time and relatively low cost. However, in critical situations such as major fail-
ure, necessitating specific qualifications, or failure occurring at the moment of high 
demand (with risk of costly backlog or loss of sale), subcontracting the repair activity 
to insure short downtime in spite of higher direct cost may turn out to be advantageous.

Evolutionary stochastic optimization procedure for one-machine-multiple-prod-
uct systems characterized by short-run cost functions was proposed in Mok and 
Porter (2005), where the behavior of corresponding short-run hedging points is 
investigated for the various initial inventory and demand levels. Proposed methodol-
ogy allowed to adapt the hedging point strategy to to uncertain or varying demand 
level. Similar approach based on discrete-event simulations is used in Sajadi et al. 
(2011) to address the production optimization problem for a network of multiple 
machines with restrictions imposed on the values of intermediate inventory buffers. 
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The systems with impatient customers characterized by backlog-dependent demand 
are considered in Wang et  al. (2014) where optimality of hedging-point policy is 
investigated analytically and numerically.

The results of previous works in the context of the problem in hand can be summa-
rized as follows: the combined optimal production and corrective maintenance policy 
is of hedging point type, namely there exist a production hedging level (PHL) and a 
maintenance hedging level (MHL) such that (1)—maximal production rate is to be 
used below PHL, and zero production rate is to be used above PHL, and (2)—maximal 
repair rate is to be used below MHL, and minimal repair rate is to be used above MHL.

We address in this work the situation when the system is facing time-varying 
demand and propose the solution to the problem of combined optimization of pro-
duction and corrective maintenance for failure-prone manufacturing systems. To the 
best of authors’ knowledge this problem has not been addressed in the literature.

An additional aspect of the problem that has not attracted sufficient attention in 
the previous works is the relative position of the hedging levels determining pro-
duction (PHL) and corrective maintenance (MHL) policies. For example in Boukas 
(1998) the presented production and maintenance policies are such that the PHL is 
below the MHL, thus making MHL barely useful, since the system can not reach 
MHL level under the proposed optimal policy. This aspect is important for practi-
tioners as directly affecting the structure of optimal policy; it also is significant in 
the context of this study because the demand variation affects two hedging points 
(PHL and MHL) differently, thus changing their relative position.

The remainder of the paper is organized as follows: in Sect. 2 the detailed prob-
lem formulation is given. Theoretical basis for the proposed approach is given in 
Sect. 3. Section 4 is devoted to the method guidelines and the production optimiza-
tion in one-machine-on-product system. The main results about combined produc-
tion and corrective maintenance optimization are described in Sect.  5. In Sect.  6 
we present the results about the comparison of the policies taking into account the 
demand variation with those based on the average demand level. We continue in 
Sect. 7 with more general discussion of our contributions, assumptions and limita-
tions. Conclusions and future works are addressed in Sect. 8.

2 � Problem formulation

Before providing the detailed problem description we summarize in the next section 
the notations used throughout the paper.

2.1 � Notations

�	� State of the machine
x	� Serviceable inventory level
u1	� Production rate
U1	� Maximal production rate
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u2	� Corrective maintenance rate
U+

2
	� Maximal corrective maintenance rate

U−
2
	� Minimal corrective maintenance rate

Dm	� Average demand rate
Da	� Amplitude of change of the demand rate
�	� Frequency of the demand rate evolutions
�	� Initial phase of the demand rate evolutions
c+	� Unitary holding cost
c−	� Unitary backlog cost
C−
r
	� Cost of slow maintenance (per time unit)

C+
r
	� Cost of fast maintenance (per time unit)

cr(u2)	� Maintenance cost as a function of maintenance rate
h(⋅)	� Instantaneous holding and maintenance cost (per time unit)
�	� Discount factor
p	� Machine failure rate
�	� Random state of the machine
Q	� Generator (transition rate) matrix
q��	� Transition rate form state � to state �
� (�)	� Admissible control set at state �
J(⋅)	� Total expected cost
V(⋅)	� Value function (minimal expected cost)

 Let us formulate the problem of policy optimization for manufacturing system 
under random perturbations and facing varying demand, by extending the conven-
tional model to encompass the demand behavior.

2.2 � System dynamics

The system under consideration is composed of one failure-prone machine manufac-
turing one product type stored in the inventory used to service the market demand, 
which varies in time. The schematics of the system is shown in Fig. 1. It emphasizes 
that the system is under variable rate market demand, and that in order to control the 
process performance, the decision maker regulates production rate ( u1 ) and correc-
tive maintenance rate ( u2).

Fig. 1   Manufacturing system schematics
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We would like to emphasize that the term machine is used here for simplicity; it 
may actually designate the production unit of any size, as soon as we may consider 
its activity as production process.

The system dynamics is hybrid, it contains a continuous (evolutions of inven-
tory level x(t)) and a discrete (switching between failure and operational states) 
components.

The continuous system dynamics can be described by the following equation:

Equation (1) states that the variation of the stock level (at any instance t) equals to 
the difference between production and demand rates.

The following generic demand will be considered in this study:

where F(⋅) is a strictly positive continuously differentiable bounded function with 
bounded derivative, � is a small parameter responsible of the pace of the temporal 
evolution of the demand rate.

In other words demand rate is a slowly varying function, and its derivative over t 
is small of the order O(�) . Both � and F(⋅) are known and therefore can be used in 
the design of optimal control policy.

As the system performance is characterized by its behavior over the infinite hori-
zon (the details are described in the next (sub)section), an assumption about know-
ing in advance the demand rate for infinitely long period of time seems rather limit-
ing. This leads to considering an important particular class of the demand varying 
periodically, in which case only the behavior along the finite time interval—demand 
period—is needed.

We therefore consider below (and use for the numerical simulations) the demand 
varying periodically in time. This is often the case for repeatable seasonal demand 
variations (see Minner and Kleber 2001 for the examples). As an example of the 
demand of this type we chose the following model

Here Dm naturally corresponds to the average demand level, Da—to the amplitude of 
periodical variations, �—to the frequency of variation and �0—to the initial phase. 
By setting Dm > Da , we also ensure that the demand remains positive and bounded. 
and therefore model (3) satisfies the generic conditions (2).

At each moment t the machine is either in operational state �(t) = 1 or in failure 
state �(t) = 2 , randomly switching between these states according to Poisson pro-
cess (time intervals between failures and repair time intervals both have exponential 
distributions).

Discrete stochastic dynamics is described by the transition matrix

(1)ẋ(t) = u1(t) − D(t)

(2)
D = F(𝜔t), t ∈ [0,∞]

0 < F(𝜔t) ≤ F+, ‖F�(𝜔t)‖ ≤ f d(2a)

(3)D(t) = Dm + Da cos(�t − �)

(4)Q = {qij} =

(
−p p

u2 − u2

)
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Here q12 = p is the (constant) transition probability from operational to failure state 
(failure rate), q21 = u2 is the transition probability from failure to operational (repair 
rate) which can vary between lower and upper limits in order to optimize the system 
behavior (decision variable).

The set � (⋅) of admissible control policies � = (u1(.),

u2(.)) at state � is defined as follows :

where Indk(�) =
{

1 if k = �

0 otherwise.

The instantaneous cost is:

where most of parameters are defined in Sect. 2.1, x+ = max(0, x), x− = max(0,−x) , 
corrective maintenance (repair) cost function cr(u2) is defined by a generic linear 
expression over u2:

One can see that expression (7) linearly interpolates the maintenance cost onto all 
admissible maintenance rates u2 ∈ [U−

2
,U+

2
] as per expressions (4), from the costs 

corresponding to the extremal rates U−
2
 and U+

2
.

2.3 � Objective function and optimality conditions

The objective is to determine production and corrective maintenance policies 
u1(⋅), u2(⋅) in order to minimize the expected discounted cost, that is defined on the 
time interval (t,∞) as follows:

The value functions are conventionally defined as follows (Boukas and Haurie 
1990):

As we consider the time-varying demand rate D(t), the optimality conditions will be 
represented by the set of non-stationary Hamilton–Jacobi–Bellman (HJB) equations 

(5)� (�) =

⎧
⎪⎨⎪⎩

� = u1(.), u2(.) ∶

0 ≤ u1(.) ≤ U1 Ind1(�)

U−
2
≤ u2(.) ≤ U+

2

⎫
⎪⎬⎪⎭
, � = 1, 2

(6)h(x, �, �) = c+x+ + c−x− + cr(u2)Ind2(�)

(7)cr(u2) = C−
r
+ (u2 − U−

2
)
C+
r
− C−

r

U+
2
− U−

2

(8)
J(x0, �, t, �) = E

{
∫

∞

t

e−�sh(x(s),�(s)ds ∣

x(0) = x0, �(0) = �, � ∈ � (�)
}

(9)V(x, t, �) = inf
�∈� (�)

{J(x,�, t, �)}, � = 1, 2
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which are similar to the conventional stationary case derived in Boukas and Hau-
rie (1990), Boukas (1998) and Kenne and Gharbi (2004), but contains an additional 
value-function-time-derivative term.

It is worth noting that deriving expressions (5), (6) and (10) we have rectified the 
mathematical formulation of the problem given previously in the literature, and 
defined a more general maintenance cost (7) comparing to Boukas and Haurie 
(1990), Boukas (1998) and Kenne and Boukas (1997).

3 � Analysis of non‑stationary HJB equations using asymptotic 
expansion methodology

In case of constant demand rate, in order to determine the optimal policy one needs 
to find the stationary solution of HJB equations (10). For time-varying demand rate 
D(t)—it is not the case, the solutions of HJB equations will be also time-varying. 
Below we show how to exploit an assumption that demand rate variation [according to 
(2) or (3)] is slow ( � is small) and apply asymptotic expansion methods (Vasil’eva and 
Butuzov 1973) for constructing an approximate solutions to (10).

Let us perform the time transformation to slow time � = �t , we get

For the case of D(�) determined by model (3) we can equivalently define it by dif-
ferential equations:

Since small parameter � multiplies the time-derivative term in (11) the system (11, 
12) is a singularly perturbed system of differential equations. As one can see, setting 
� = 0 transforms equations (11) into conventional HJB equations without value-
function-time-de- rivative term (as in Kenne et al. 2003), which depends on D(�) as 

(10)

�V(x, t, �) =
�V(x, t, �)

�t
+ min

�∈� (�)

{
(u1Ind1(�) − D(t))⋅

�V(x, t, �)

�x
+ h(x, �, �)

+ q��(u2) ⋅ (V(x, t, �) − V(x, t, �))
}
, � ≠ �

(11)

�V(x, �, �) = �
�V(x, �, �)

��
+ min

�∈� (�)

{
(u1Ind1(�) − D(�))⋅

�V(x, �, �)

�x
+ h(x, �, �)+

q��(u2) ⋅ (V(x, �, �) − V(x, �, �))
}
, � ≠ �

(12)
dD∕d� = S

dS∕d� = −D
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parameter. Let us denote this solution (value function) called degenerate solution by 
V (0)(x, 0, �,D(�)).

For non-zero value of � , the solutions V(x, �, �,D(�) of (11,12), according to Tik-
honov theorem Vasil’eva and Butuzov (1973), converge to the degenerate solution 
V (0)(x, 0, �,D(�) , for 𝜏 > 0:

This convergence is not uniform near � = 0—there exists a thin layer 0 < 𝜏 < 𝜏p(𝜔)

—boundary layer, shrinking to zero when � → 0 , in which solutions differ signifi-
cantly V(x, �, �,D(�)) ≠ V (0)(x, 0, �,D(�)).

Based on Tikhonov theorem and using two-scale expansion the full asymptotic 
expansion series for the solutions for (11, 12) can be constructed. Description of this 
technique goes beyond the scope of this paper. Also, in line with conventional argu-
ments for computing stationary solution of HJB equations, we are not interested in 
transient component tightly related to the solution within by boundary layer—tech-
nically most challenging part of the asymptotic expansion technique. We rather need 
to better approximate the slow-varying long term component of the solution. The 
following result describes an approximated solution of (11) up to second order (over 
�):

where �2(x, t,�) = O(�2); V (1)(x, t, �,D(�)) is a solution of

where V (0)(⋅, �) = V (0)(x, 0, �,D) is a degenerate solution to (11) with � = 0 (with-
out time-derivative term)

Recall that V (0)(x, 0, �,D) only approximates V(x, 
t, �,D(�t)) with first (over omega) oder of accuracy:

where �1(x, t,�) = O(�).
Therefore, we have obtained a better approximation (13) for an (unknown) exact 

solution, but at the expense of solving modified HJB equations (14).
In the remaining part of the paper we develop a numerical procedure that imple-

ments the proposed approach. This implementation is based primarily on the fact, 
that the powerful numerical method exists for solving the stationary HJB equations 
(proposed in Kushner and Dupuis (1992), and that this method can extended for 
solving modified HJB (14). Kushner method belongs to the class of policy iteration 
algorithms, it uses discrete representation Vh(xk, �) of value functions V(x, �) over 
the grid (with the step h in inventory space x. It was successfully used in numerous 

V(x, �, �,D(�) → when � → 0

(13)V(x, t, �,D(�t)) = V (1)(x, t, �,D(�t)) + �2(x, t,�)

(14)

�V (1)(⋅, �) =
�V (0)(⋅, �)

�t
+ min

�∈� (�)

{
(u1Ind1(�) − D(�t))⋅

�V (1)(⋅, �)

�x
+ h(⋅, �)

+ q�� ⋅ (u2)(V
(1)(⋅, �) − V (1)(⋅, �))

}
, � ≠ �

(15)V(x, t, �,D(�t)) = V (0)(x, 0, �,D(�t)) + �1(x, t,�)
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works, e.g. (Boukas and Haurie 1990; Boukas et  al. 1996; Dehayem Nodem and 
Kenne 2011). Algorithm allows to iteratively compute the new set of value func-
tions on the basis of the set computed previously. Successful utilization of this 
grid-based method for solving contitnuous problem is essentially based on the con-
vergence theorem (Boukas and Haurie 1990; Boukas et  al. 1996), asserting that 
Vh(xk, �) → V(x, �) when h → 0 here (xk+1 − xk = h, k = 1, 2,…).

4 � One‑machine‑one‑product system with fixed failure/repair rates

To validate the methodology proposed for dealing with the case of varying demand 
rate we consider in this section the one-machine-one-product system (M1P1) with 
fixed transition rates, for which the analytical solution has been obtained in Akella 
and Kumar (1986) under assumptions that the demand rate is constant. Applying the 
proposed approach to the benchmark M1P1-system allows to highlight the key algo-
rithmic issues and to get the insight used later in the analysis of more general prob-
lems. Our main contribution—the combined production and corrective maintenance 
optimization under varying demand is presented in Sect. 5.

We consider the demand model is described by equation (3) and demand range is 
D̄ = [Dm − Da,Dm + Da] , although the results hold for generic demand model (2). 
For any value D(t) ∈ D̄ one can compute a “ stationary” solution of HJB equation 
(10) with time-derivative term �V(�,t,�)

�t
 being neglected. However, considering the 

obtained solutions for a whole set of demand rates one will find out that the solutions 
depend on D(t), which itself varies in time according to equations (3). Therefore, 
neglecting the time derivative term, although does provide an approximation (since 
D(t) varies slowly in time), but introduces an error that is often not acceptable. This 
error can be rectified by retroactively estimating the neglected term based on approxi-
mative solution), and recomputing the solution with this term taken into account.

We describe below a four-step procedure that implements the outlined approach 
and allows to find the suboptimal policy for the case of varying demand rate.

1.	 Our first step consists of dividing the segment D into N intervals 
Ij = [dj, dj+1], j = 1,… ,N; d1 = Dm − Da, d

N = Dm + Da . Larger is N, more 
precise is the result, but more is the computational burden.

2.	 Next step consists of computing the solutions of conventional HJB equations 
(without non-stationary terms) for discrete demand levels D = dj (taken at times 
tj ), and thus obtain numerically the series of value functions Vj(x, �) ( � = 1, 2 with 
� = 1 standing for operational state and � = 0—for failure state). Note that we 
may also use an analytical solution found in Akella and Kumar (1986) instead of 
the numerical one. It is important that the demand model (2) determines the map-
ping from the demand level dj to the time domain tj , namely tj = tj(d

j) when 
D(tj) = dj . For each dj there are two time-points t1,2

j
(dj) for each period, except 

the extremal levels dj = Dm − Da or dj = Dm + Da where there is only one point 
t1
j
= t2

j
.
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3.	 Third step consists of computing the numerical estimates for the time-deriva-
tive term using value functions for consecutive j (obtained for two consecutive 
demand levels dj and dj+1 ): 

4.	 The last step consists of recomputing the numerical solutions of the HJB equa-
tions with the time-derivative terms integrated into the grid data. The conven-
tional algorithm (Kushner and Dupuis 1992; Boukas and Haurie 1990) is modi-
fied in a way that the time-derivative terms (approximated with the ratio of finite 
differences) are calculated using the “previous” value functions for all grid-points, 
then these terms are added to the conventional grid-based expressions and used 
for computing the newly updated value functions.

The described approach has been implemented, and the results obtained numeri-
cally for the system parameters given in Table 1 are illustrated in Figs.  2, 3, 4, 5 
and 6. We recall that repair rate is constant and denoted by q. The guidelines for the 
choice of parameters are the following:

•	 the maximal production rate U1 sufficiently exceeds the maximal demand rate 
Dm + Da;

•	 for Poisson type failure and repair flows with average rates p and q respectively, 
the mean-time-to-failure (MTTF) and mean-time-to-repair (MTTR) are 1 / p and 
1 / q respectively, and are chosen to satisfy the natural constraint MTTF ≫ MTTR 
and to respect feasibility condition (U1 − Dm − Da)MTTF > (Dm + Da)MTTR;

•	 the demand half-period �∕� (full range evolution time) is sufficiently large com-
paring to a  tenfold discount decay time ( 𝜋∕𝜔 > 2.3∕𝜌).

In Fig. 2 the value functions for operational mode (V(x, 1) are shown for different 
”frozen” demand levels (from Dm − Da = 0.17 to Dm + Da = 0.21 ). The correspond-
ing hedging-point-policies are shown in Fig. 3, and value functions for failure state 
(V(x, 0))—in Fig. 4.

Observing the figures one can come to the following conclusions: operational 
state value functions are moving consistently up when the demand rate increases 
(Fig.  2). The curves are located in the following (bottom–up) order : D  =  0.17 
(marked as 1), D = 0.18 (marked as 2), D = 0.19 (marked as 3) D = 0.2 (marked 

�Vj(x, �)

�t
≃

Vj+1(x, �) − Vj(x, �)

tj+1(d
j+1) − tj(d

j)

Table 1   First set of parameters 
used for simulations

Param U
1

� MTTF = 1 / p MTTR = 1 / q N

Value 0.27 0.01 25 6.67 6
Param c

+
c
− � D

m
D

a

Value 1 20 0.005 0.19 0.02
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Fig. 2   Value function (operational state) for various demand levels

Fig. 3   Policy switching for various demand levels
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as 4), D = 0.21 (marked as 5). The inventory level where the value function attains 
its minimum (hedging level) consistently increases when the demand rate increases 
(this is clearly visible in Fig. 3, and also in Fig. 2—the points of minimum of higher 
located curves are located further to the right and up). Failure state value functions 
are located above the operational state value functions for each particular value of 
demand rate. This property, however, does not hold globally—for example the fail-
ure state value function for the lower demand level (e.g d = 0.17 , marked as 1 in 
Fig. 4) is below the operational state value function for the higher demand level (e.g 
d = 0.21 marked as 5 in Fig. 2).

Figure 5 illustrates the results obtained after taking into account the demand vari-
ation in the neighborhood of a particular demand rate level ( D = 0.19 in this case), 
not only the level itself. One can observe 3 curves representing operational state 
value-functions and corresponding to the frozen demand (1), increasing demand (2) 
and decreasing demand (3) respectively.

When the demand rate varies, the hedging level also varies, namely it increases 
(respectively decreases) when the demand rate increases (respectively decreases)—
that is also observable on Fig. 5. However, there is an additional anticipatory effect: 
namely the hedging level increases (respectively decreases) more and earlier then 
it would do if we just compare two corresponding demand rate levels. The rational 
behind this property is that the hedging point “reacts” not only on the demand level, 
but also on the pace of evolutions and the direction of change.

The evolution of the hedging point along the whole period of the demand evo-
lution is illustrated in Fig. 6. The curve zs(t) corresponds to the different “frozen” 
levels of the demand. The curve zns(t) corresponds to the ”non-stationary” hedging 

Fig. 6   Evolutions of hedging points for periodically varying demand
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level obtained when local variations of the demand (increase or decrease) are taken 
into account; the curve on the bottom of the plot is shown to illustrate the corre-
sponding demand evolutions). One can clearly see the anticipatory effect in zns(t) 
vs zs(t) : the increases and decreases of the curve zns(t) are advanced with respect to 
those of zs(t) . But near the extremal points of the demand, where it varies slower—
both curves get close ( zns(t) ≃ zs(t) ) to each other.

The results above were obtained for the periodic demand model (3). The tech-
nique is fully applicable to more general demand model (2) and the main results will 
hold. Also, it worth mentioning that as far as discounted cost is used to evaluate the 
performance, the demand rate in the distant future is negligible (highly discounted), 
and therefore the generic demand function ( F(�t) ) can be, without loss of general-
ity, set to zero for t ≥ T  with large enough T, or replaced by a periodic function with 
large enough period (small enough � ). Thus model (3) is a representative example 
of generic model (2) when discounted cost is used for performance evaluation.

Presented analysis of the M1P1-problem under varying demand allowed us to 
validate the key elements of our methodology, to gain the insight about the behavior 
of the numerical scheme, and to target potentially important features of the solu-
tions such as an anticipatory property. In the next section we apply the developed 
methodology to the main subject of our study—the combined production and main-
tenance optimization problem.

5 � Combined production and maintenance optimization 
under varying demand

In order to address the problem in hand—combined production and maintenance 
under time-varying demand—we proceed in a way similar to the one developed in 
Sect. 4. Namely, we apply the proposed 4-steps procedure: (1) discretize the demand 
interval, (2) compute the solutions of HJB equations for each demand level, (3) 
compute the estimates for the derivative terms and (4) recompute the solutions of 
modified HJB equations. The main difference with the simper problem addressed 
in Sect.  4 consists in that no analytic solution of HJB-equations is available, and 
solving them is numerically more involved, because the admissible control set �  is 
2-dimensional. We describe below the algorithmic aspects that we had to address 
along the implementation.

5.1 � Algorithmic aspects

Compute the series of value functions for the series of “frozen” demand lev-
els (N = 18 has been chosen for the numerical examples discussed below). These 
demand levels are obtained from the points in time domain distributed uniformly 
along the segment [�∕�, (� + �)∕�] . This results in more dense distribution of dis-
cretization points within the region where demand rate changes faster.
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Save these 2(N + 1) = 38 functions (number is doubled because value functions 
for both operational and failure states are needed) in the memory to make them 
available for subsequent computations.

Using adjacent value functions, compute the finite difference terms approximat-
ing the time derivative of value functions (attributed to the middle point between 
two adjacent demand levels stored in memory); compute additional value functions 
for “frozen” middle layers (18 in current implementation). This step is based on the 
chain rule for derivatives of composite functions

Compute the modified value functions corresponding to increasing (positive time 
derivative terms) and decreasing (negative time derivative terms) demand rate 
respectively for both operational and failure states ( 72 = 18 × 2 × 2 in total). Oper-
ational state value functions used further to compute optimal the hedging curves 
determining optimal production and maintenance policies.

5.2 � Numerical examples

We present here the series of the results obtained by numerical simulations. The set 
of the parameters used for numerical simulations is shown in Table 2.

Figures 7 and 8 illustrate these results. The curves 1 and 2 in Fig. 7 show pro-
duction and corrective maintenance hedging levels (respectively PHL and MHL) 
obtained for“frozen” (constant) demand levels. One can see that for low demand 
level (indexes 1–10 and 27–36) the MHL is below the PHL, and therefore belongs 
to the operational area (optimal policy does not allow inventory to grow above the 
PHL). The zones with MHL below PHL are marked by larges (yellow) stripes. 
When demand gets to higher values, two HLs first coincide (indexes 10-15 and 
23-28), and then MHL gets higher than PHL, thus leaving the area where the real 
system may operate.

Next, we analyze what are the changes that are obtained when we take into 
account the dynamic effects of the demand variation. Corresponding curves are 3 
and 4 (also marked with crosses for production and stars for maintenance HLs). One 
can see that in the low demand areas the “dynamic” and “frozen” curves almost 
coincide (1 with 3 and 2 with 4), so the previous conclusions hold. For higher 
demand area the anticipatory effect is clearly observable for both maintenance and 
production HLs: “dynamic” curves (3 and 4) grow and descend earlier than “frozen” 
ones (1 and 2), .

dV

dt
=

dV

dD
⋅

dD

dt
≃

Vj+1 − Vj

�D

�D

�t
=

(Vj+1 − Vj)�N

�

Table 2   Second set of 
parameters used for simulations

Param. U
1 U

+
2

U
−
2

D
m

D
a

�

Value 0.3 0.6 0.15 0.21 0.05 0.01
Param C

+
r

C
−
r

c
+

c
−

q
12

�

Value 10 0.1 1 60 0.05 0.01
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Fig. 7   Hedging levels for stationary and varying demand

Fig. 8   Hedging levels’ time evolutions for stationary and varying demand
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Obtained result is important from managerial point of view and can be formu-
lated as the following “rule”: the use of lower (less costly) maintenance rate is 
advantageous in a low demand zone and for inventory levels close to the production 
HL (between maintenance and production HLs).

Figure 8 illustrates the behavior discussed above in the time domain (instead of 
indexed demand rate domain). The demand evolution is also shown to illustrate that 
anticipatory effect [“dynamic” curves (3 and 4) with respect to “frozen” curves (1 
and 2)] is synchronized with the intervals of rapidly changing demand.

It is important to ensure that the “representative time” of demand evolution (half-
period : �∕� ≃ 314 ) is of the same order of magnitude as the “representative time” 
(tenfold decay) of the total cost due to discount effect ( 2.3∕� ∼ 230).

In Figs. 9 and 10 we illustrate the case corresponding to a different set of param-
eters exemplifying the different relative location of MHL and PHL (data set 3). 
Namely, the mean repair times (both) and the cost of fast repair are higher (respec-
tively rates are lower): c ( U−

2
= 0.12, U+

2
= 0.5, C+

r
= 12 ; average demand and 

backlog cost are slightly lower dm = 0.2, c− = 50 . Other parameters were left intact. 
In Fig.  9 the phenomena are studied in terms of the (enumerated) demand levels 
(indexes 1–18 correspond to the demand increasing from 0.15 to 0.25, and indexes 
19–36—to the demand decreasing from 0.25 to 0.15). In Fig. 10 the phenomena are 
studied in time domain.

For constant demands at all levels the corrective maintenance HL (curve 2) 
is located consistently lower than production HL (curve 1). This suggests using 

Fig. 9   Hedging points for leveled and varying demand
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the slow repair rate in the inventory layer between the curves 1 and 2 and within 
the whole domain of demand. One can observe that this layer is larger for low 
demand rates (0.15, indexes 1-12, 25-36) and narrower for high demand rate 
(0.25, indexes 13–24).

When the demand dynamics is taken into account, the situation is different: 
it depends on whether the demand is increasing or decreasing. For increasing 
demand both hedging points increase faster comparing to the case of “frozen” 
demand, but MHL (curve 4) remains below the PHL (curve 3). However, when 
the demand decreases, the layer, where the slow (and less costly) repair rate is 
suggested disappears until the demand level sufficiently decreases (at the time 
t ≃ 400 , see Fig. 10). Here, the layer between two hedging levels PHL and MHL 
starts growing again and gets large ( ≃ 0.5 ) by the time when the demand reaches 
its minimum (at the time t ≃ 600).

Figures  11 and 12 illustrate the production (Fig.  11) and corrective main-
tenance (Fig.  12) policies for frozen and time-varying demand in terms of 3D 
plots. The higher surface (marked with 1) corresponds to the time-varying case, 
the lower one (marked with 2)—to the frozen case. The former was explicitly 
shifted up to show their distinct shapes.

Fig. 10   Hedging points’ evolution in time
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6 � Performance comparison

We present in this section an approach that allows to compare the performance of 
the system under different policies that are computed through the optimization pro-
cedures that use different demand models. Conventional approach for comparing the 
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systems that use for example constant and varying demand models would consist of 
directly computing their performance under corresponding assumptions. This does 
not allow the fair comparison, because one system actually functioning under vary-
ing demand, while another—under constant demand. We propose to put the systems 
in the same conditions—let say apply the varying demand—but consider the deci-
sion making policies computed by using different assumptions leading to different 
models (that may match the reality up to higher or lower degree).

The same is true for comparing the systems with fixed and controlled return rate 
as it has been done in Kenne and Boukas (1997). It is natural that the system with 
corrective maintenance (that uses controlled repair rate) has better performance than 
the system with slow repair rate—since it has higher availability. It would be of 
more interest to compare system with corrective maintenance (controlled repair rate) 
to the system with fast but fixed repair rate. To get better performance in this case we 
must show that slowing the repair rate might be sometime advantageous due to cost 
saving.

For a fair comparison of the policies under study, the systems have to be function-
ing in the identical environment, but the models used for decision making might be 
different. Thus for comparing the constant and varying demand models we consider 
the systems that use 3 different decision making procedures:

•	 policy 1 uses the model described by equations (3) and full methodology 
described in Sect. 5;

•	 policy 2 uses the model described by equations (3), but takes into account the 
frozen demand levels for decision making (neglecting its instantaneous rate of 
change);

•	 policy 3 uses the average demand level D = Dm for decision making, completely 
neglecting the demand variations.

All three instances of the system (under different policies) are exposed to the 
demand that actually follows the model (3).

In order to evaluate the system performance we solve the HJB equations using 
conventional numerical approach (Kushner and Dupuis 1992), but use one of the 
methods itemized above to compute the policy on each iteration, instead of mini-
mizing over the whole admissible policies � (⋅) as it is conventionally done for solv-
ing HJB equations. In other words: the system under policy 1 uses optimal produc-
tion and maintenance policies based on the solution of HJB equations (10) with an 
approach described in Sect. 5.

The system under policy 2 uses conventional methods Kenne and Boukas (1997) 
and Kenne et al. (2003) applied for several “frozen” demand rate levels and ignores 
that this levels changes in time (thus neglecting the time-derivative terms in HJB 
equations). These policies are computed and applied to calculate the value functions 
through the series of iterations until they converge.

The system under policy 3 totally ignores the demand rate variations and uses the 
average demand rate Dm to compute the maintenance and production hedging lev-
els and corresponding policies, that are for this case (see Kenne and Boukas 1997; 
Kenne et al. 2003).
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here Zp and Zm are production and maintenance hedging point respectively.
We present below 2 figures to illustrate the comparison of the policies 1 and 2 

that we call adaptive policies against the policy 3 that we call fixed policy. In Fig. 13 
we show value functions computed for an adaptive policy (1 or 2) shown as solid 
curve and a fixed policy 3 shown as dashed curve. We apply the demand close to the 
maximal range Dm + Da . Note that in this case systems that use either one of adap-
tive policies (1 or 2) provide similar results, because the time-derivative terms are 
small near the maximum of the demand.The system performance under fixed policy 
is worse, namely, one can see that the value function for the system under policy 3 
has consistently higher value in the whole inventory space, and near the minimum 
( x ≃ 3 , corresponding to the hedging point), it is ∼ 3.7 times worse.

Figure 14 illustrates the comparison of adaptive policies (1 and 2) against fixed 
policy using the ratio R(i) = (V (3) − V (i))∕V (i), i = 1, 2, computed for the increasing 
demand interval (from Dm − Da to Dm + Da ), and averaged along the operational 
area of inventory space. Solid curve corresponds to i = 1 (fully adaptive policy), 

(16)u1 =

⎧
⎪⎨⎪⎩

U1 if x < Zp
Dm if x = Zp
0 otherwise

(17)u2 =

{
U+

2
if x < Zm

U−
2

otherwise
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dashed curve—to i = 2 (frozen demand). One can see that under the fixed policy 
the system behaves poorly against both adaptive policies, especially for the large 
demands. In other words: using the average demand when it is actually below aver-
age (overestimation) is acceptable, but using it when demand is actually above aver-
age (underestimation) is not. We can also see that fully adaptive time-varying policy 
1 outperforms the frozen demand policy 2 in the domain of large demand (above the 
average Dm—level indexes from 9 to 18), while for the demand levels below average 
they are comparable (but both outperform the system under policy 3 by ∼ 10%)

7 � Generalization to non‑exponential repair time distributions

In the previous sections a system subject to failures and repairs with exponentially 
distributed time between failures and time to repair. In the real manufacturing sys-
tems, an assumption about exponential inter-event time may not hold: the machine 
up and down time often follows more general distribution.

First it worth mentioning that within stochastic production control framework 
along the last 40 years no methods have been developed for optimal control of man-
ufacturing systems subject to non-Poisson type failure and repair flows. Optimality 
conditions (Sect. 2) are derived based on exponentially distributed inter-failures and 
repair times, and without such assumption the optimality condition in the form of 
HJB equations (or similar) are difficult (if ever possible) to obtain.
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Fig. 14   Relative quality of fixed control against adaptive control
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Indeed, the industrial practice requires to circumvent this situation and the fol-
lowing approach, coupling optimization and simulation methods has been repeat-
edly used starting (Kenne and Gharbi 2000) and various application problems have 
been successfully addressed (Gharbi et al. 2006; Hlioui et al. 2017).

In Kenne and Gharbi (2000) authors study the benchmark M1P1 problem solved 
by Akella and Kumar in Akella and Kumar (1986) (see also Sect. 4) and compare 
analytical solution, numerical solution based on HJB equation (in both cases the 
time-between-failures and repair time are exponentially distributed), and the series 
of solutions obtained using simulations based on design of experiments  (DOE) and 
response surface methodology (RSM) for differently distributed time-between-fail-
ures and repair times. DOE and RSM utilize the parametric representation of the 
control policy inspired by the structure of the optimal policy obtained under more 
restrictive (exponential time distribution) assumptions. Comparing wide range of 
distributions (Gamma, Weibull, Lognormal) with same means and variances against 
the exponential distribution with the same mean, it was shown that (1) the safety 
threshold (hedging point) for exponential distribution is the highest among all other 
cases, (2) the incurred cost for exponential distribution is also the highest, (3) the 
threshold and the incurred costs obtained for other distributions are rather close (for 
the same means and variances). The reason behind this result is that the hedging 
point determines the level of stock needed to protect the system against the shortage-
related penalty. This level depends on the mean-time-to-failure (MTTF) and mean-
time-to-repair (MTTR)—more frequent are failures and longer are the repairs—
higher is the threshold. But it also depends on the variability of underlying flows. 
Namely, higher is the variability, more frequent are the repair times much longer 
than average, and more frequent are the undesirable couplings of “long repair times” 
with short up-times between them.

To illustrate in more detail how the general failure/repair distribution affects the 
behavior of the system with variable demand described in previous sections, we ana-
lyze in this section the case of non-exponen- tial repair time using direct numeri-
cal simulations. We have kept the exponential distribution for time-between- failures 
since according to the literature (Kieckhafer et  al. 2000) this distribution is most 
often close to exponential, while the repair time in real applications rarely holds this 
property.

The numerical experiments are set up as follows (1) the sequence of failures sepa-
rated by exponentially distributed time-intervals with average value (MTTF) 1∕q12 
has been generated, (2) the sequence of repair time-intervals following Weibull-
distributions and Gam- ma-distributions with the mean 1∕q21 and various standard 
deviations �(k) (k is the shape parameter) have been generated, (3) the sequence of 
exponentially distributed repair time-intervals with the mean 1∕q21 has been gener-
ated and used for comparison. Production and maintenance policies based on hedg-
ing curves determined in Sect. 5.2 are used (see Fig. 10).

Representative results are shown in Figs.  15, 16 and 17. In Fig.  15 the stock 
dynamics within the system affected by the series of failures with exponentially 
distributed inter-arrival times, and the series of exponentially distributed repair 
times is presented. In Fig.  16 the system with the identical series of failures, but 
repair times distributed according to Weibull distribution with shape parameter 
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k = 3 and scale parameter �weib = �exp� (1 + 1∕k) (last expression serves to adjust 
the Weibull MTTR to exponential MTTR, �exp = q21 ≃ 0.15 ). Comparing Figs. 15 
and 16 one can observe several instances of long repairs leading to shortage/backlog 
( t ≃ 55, 160,… etc.). However, for the exponential repair case these shortage/back-
logs are much more pronounced than for Weibull case ( ≃ 0.3 for Weibull and ≃ 1 for 
exponential). Observed behavior is due to higher variability of exponential distri-
bution (vs. Weibull distribution). Characterizing variability by the standard devia-
tion we get �exp = 1∕�exp ≃ 6.67, �(3) ≃ 2.423 (last value is computed according to 
analytic expression available for Weibull distribution). These results are consistent 
with the result reported in Kenne and Gharbi (2000) that exponential distribution 
is the most unfavorable one. As a particular event illustrating the distinctive behav-
iors for the two cases under study one can observe the “third long repair” in Fig. 15 
that leads to significant shortage in exponential case (time t ≃ 250 ), but in Weibull 
case (Fig. 16) the stock level remains positive (an event occurs earlier t ≃ 200 due to 
shorter repair times occurred beforehand).

Table 3   Cost and variability 
ratio

Case Exp W-l-2 Gam. W-l-3 W-l-5

�∕�
exp

1 0.52 0.52 0.36 0.23
Cost 810 516 503 186 143
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Note that we have mentioned above only one value q21 of repair rate, but in fact, 
it is a control variable taking two values U+

2
 and U−

2
 according to maintenance policy 

(determined by the lower (hedging) curve shown as dashed line in Figs.  15, 16). 
So, actually, 2 sets of repair times have been generated (for both exponential and 
Weibull cases). Also, the lower panels in Figs. 15 and 16 show the resulting produc-
tion rates (doubled in scale and shifted down for better visibility) for both exponen-
tial (Fig. 15) and Weibull (Fig. 16) cases.

In Fig. 17 the evolution of incurred costs for 5 different cases are shown for com-
parison. The highest curve corresponds to exponential distribution of repair times. 
Next two closely located curves correspond to Weibull distribution with k = 2 
(dashed curve) and Gamma distribution with k ≃ 3.66 (solid curve) that have same 
variances. Remaining two curves correspond to Weibull with k = 3 (dotted curve), 
and k = 5 (dash-dotted curve) respectively. We my characterize each curve be the 
ratio of the standard deviation (std) of corresponding distribution to the std of expo-
nential distribution (variability ratio. The results are summarized in Table 3 together 
with the final incurred cost for each case.

Figure 17 and Table 3 clearly illustrate that higher is the variability of the distri-
bution—higher is the incurred cost (MTTR are the same). Exponential repair distri-
bution is the worst case, in full agreement with Kenne and Gharbi (2000).

Obtained results show that the optimal policies computed using exponentially dis-
tributed repairs are usable in general case and provide “conservative overestimate” 
(Kieckhafer et al. 2000) comparing to other distributions with lower variability. That 
means that for such distributions, lower hedging value (hedging curve in case of 
variable demand considered here) may further lower the expected costs. In order to 
compute such policies, the full implementation of DOE/RSM methodology (Kenne 
and Gharbi 2000; Gharbi et al. 2006) based on adequate parametrization of hedging 
curves is needed—a non trivial problem that will be addressed in our future work.

8 � Discussion: contributions and limitations

We continue with the discussion of the contribution made in this paper as well as 
existing limitations.

The main contribution of the paper can be divided in two parts. The first part con-
cerns a particular problem studied in this paper, namely: combined production and 
corrective maintenance policy optimization for the systems under slow periodically 
varying demand. The optimal production policy can be characterized as extended 
hedging point policy. It requires to apply maximal production rate until the inven-
tory reaches the hedging level, then switches to on-demand production in order to 
follow the hedging level that varies in time due to demand evolutions. The optimal 
maintenance policy is also of extended hedging point-type. Switching from low to 
high maintenance rate occurs along the hedging level, which also varies in time due 
to demand evolutions.

One of important features revealed by our study is an anticipatory effect: con-
sidering the extended hedging point evolutions in time, it is shown that the hedging 
level rises and descends earlier then in the system under “frozen”demand (computed 
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by neglecting time-derivative terms). Another result concerns the relative position 
of production and corrective maintenance hedging levels (HLs). This is of particular 
importance, because the maintenance HL is only valid when it is located within the 
operational area of the system below the production HL, and since both HLs vary in 
time, their relative position may change in time in a nontrivial way.

The second part of our contribution concerns the generic problem of policy opti-
mization for failure-prone manufacturing systems under time-varying demand.

Proposed methodology is based on the approximated solution of non-stationary 
Hamilton–Jacobi–Bellman equations using asymptotic expansion framework. The 
methodology is implemented numerically as a four steps procedure that consists of (1) 
discretizing the demand range, (2) solving the conventional optimization problem for 
several frozen (discrete) demand levels (using HJB equations), (3) estimation of non-
stationary terms in HJB equations using finite difference approximation, and (4) solu-
tions of modified HJB equations upgraded with the non-stationary terms estimates.

We consider in this study a single-machine-single-product system. Concerning 
this limitation the following aspects needs to be emphasized. An approach, coupling 
optimization and simulation methods based on design of experiments (DOE) and 
response surface methodology (RSM) outlined in previous section in the context of 
studying non-Poisson failure/repair flows has been also successfully used for produc-
tion control optimization of multi-machine systems. In Kenne et al. (2003), Gharbi 
et al. (2006) and Hlioui et al. (2017) the multi-machine multi-product systems were 
analyzed that addressed controlled corrective maintenance, setups and combined 
optimization of supplier selection, production and replenishment respectively.

In all systems considered in the above papers, the policy structure inspired by the 
optimal policy computed under simplified assumptions (one machine, exponentially 
distributed up and down times, etc.) is para- metrized, then DOE/RSM simulation-
based approach is used to find optimal parameters and to determine suboptimal poli-
cies. Rather complex systems containing several machines were successfully ana-
lyzed: five machines in Gharbi et al. (2006) and two-machines, two suppliers, four 
products in Hlioui et  al. (2017). This proves that simulation-based approach that 
makes use of DOE/ RSM methods is well suited for addressing multi-machine sys-
tems subject to general failure/repair time distributions.

We can therefore expect that this approach can be used to address the multi-
machine systems under variable demand. This will allow to extend the prosed me- 
thodology and to make it applicable to a wider class of manufacturing systems. As 
a first example of such extension it worth mentioning production optimization prob-
lem for hybrid manufacturing–remanufacturing systems under variable demand and 
return has been addressed in Polotski et al. (2018). The system studied in that paper is 
of more complex structure (two machines), but no maintenance option is considered.

The main difficulty that can be envisioned in application of DOE/RSM simula-
tion-based approach to the system under variable demand is that the optimal policy 
is determined by hedging curve instead of hedging point. The parametrization of 
such curves may constitute a challenging task. A novel approach to approximation 
of complex systems by a simpler model, based on the concept of intrinsic variability 
ratio and on thorough analysis of the system bottlenecks was proposed in Wu and 
McGinnis (2012) and further developed in Wu et  al. (2016). Although developed 
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within queuing system framework, an approach may be applicable to constructing 
adequate parametrization of the production policy in the complex systems, for fur-
ther analysis using DOE/RSM methodology. Investigation of this approach is the 
subject of our future work.

In this study, the demand rate is variable and known (this is the case of expected 
rump-up, seasonal changes, etc.). We describe an approach that allows to decision 
maker to determine the combined optimal production and maintenance policy under 
such varying but known conditions. Considering the stochastic demand models is an 
alternative approach used by several authors and also utilized in Ouaret et al. (2013). 
This approach differs from the one pursued in the current study in that the solution 
that is optimal in average over all possible realizations of stochastic demand is tar-
geted. Our approach aims at utilizing the known evolutions of the demand rate in 
order to account for them in optimization procedure.

In the context of the presented study the demand evolution frequency � is sup-
posed to be small. This is rather natural: we describe the method that is dedicated 
to capture the demand variation based on the solution obtained by neglecting the 
time-derivative of value function (first step of proposed procedure). Such step is 
only meaningful if this term is small in some sense. When the demand rate varies 
slowly in time the above mentioned term is actually small—it is proven in the paper 
by considering the system behavior in slow time ( �t ). When HJB equations are re-
written in slow time, the value-function-time-derivative gets multiplied by ( � ), lead-
ing to singularly perturbed HJB. Its degenerate solution (corresponding to � = 0 ) 
corresponds to a conventional stationary solution of the HJB equations, which dif-
fers from the exact solution by an �-proportional term. Proposed approach and cor-
responding algorithm allows to construct better approximation (of second order over 
� ) of the exact solution. Our approach may not be suitable to the system with very 
large variation of the demand because it inherently considers them as small. But 
conventional assumption about constant demand rate are even less suitable. Our 
approach aims at capturing the known variations in order to include them into the 
model and account for them in optimization algorithm.

9 � Conclusion

We have described in this work a novel approach to optimization of failure-prone 
manufacturing systems under time-varying demand. The results are based on the 
numerical solution of non-stationary Hamilton–Jacobi–Bellman equations. We have 
first validated our methodology by analyzing a one-machine-one-product manu-
facturing system under varying demand, and then used the proposed approach for 
studying the combined productive and corrective maintenance optimization problem 
under dynamic market conditions (demand variation). The solution of this problem 
obtained earlier in the literature for the constant demand is known to be of hedging-
point type for both production and maintenance policies. Maintenance switching 
level (from low to high rate and back) is only relevant, from managerial point of 
view, if it belongs to the system’s operational zone (is located below the production 
hedging level).
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When the time-varying demand is considered, the relative position of mainte-
nance and production hedging points varies in time making the combined control 
problem challenging from the theoretical point of view. Solution of this problem is 
important for the practitioners who need to adjust the managerial decision based to 
varying market conditions.

Another important aspect encountered in the case of varying demand is that the 
on-demand production mode in which the system keeps the required safety stock 
level necessitates the production rate that varies in time in a nontrivial way. Even if 
the production rate is not adjusted instantly (to keep stock on the optimal level) the 
decision maker may adjust the production rate periodically, following the hedging 
point evolutions under varying market conditions.

In the future works we plan to address some limitations related to the assump-
tions made in this study. In particular, an assumption about slow varying demand 
(formalized through small frequency � ) needs be quantified in order to simplify the 
assessment of applicability of the proposed approach in practical situations.

Another important issue is the extension of the proposed methodology in order 
to study more complex systems. As a step in this direction it worth mentioning the 
recent study of manufacturing-remanufacturing systems under varying demand and 
return (Polotski et al. 2018). To analyze the multi-machine systems, the integration 
of the proposed numerical procedure with the simulation approach based on design-
of-experiments and response-surface-methodology (Gharbi et al. 2006) is planned. 
This will likely necessitate the parametrization of the hedging curves that are cur-
rently computed only numerically.
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